1
|
Li X, Ma C, Bian X, Fu Y, Zhang G, Liu X, Zhang N. Effect of Germination on Mineral Content Changes in Brown Rice (Oryza sativa L.). Biol Trace Elem Res 2025; 203:535-543. [PMID: 38472512 DOI: 10.1007/s12011-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Minerals are the essential micronutrients for human health. Brown rice is a whole-grain food rich in minerals, with its bran portion limiting the application of minerals. In the present study, the changes in the contents of 23 different minerals (Na, Mg, K, Ca, B, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sb, Ba, Li, Al, As, Cd, Sn, Hg, and Pb) in brown rice were evaluated during 17, 24, 30, 35, and 48 h of germination. The results showed that germination was associated with the decreased contents of Pb, Cd, As, Al, Li, Ba, Fe, Cr, Co, V, and Hg, and the increased content of Na in brown rice (p < 0.05). In contrast, this process was not significantly influential on the contents of Mg, K, Ca, B, Ni, Cu, Zn, Se, Sn, Sb, and Mn (p > 0.05). In addition, significant correlations were found among most of the mineral contents. Furthermore, according to the principal component analysis, three principal components of the different mineral contents were extracted to explain 96.60% of the cumulative variances. In summary, these findings demonstrated that germination represented a feasible approach to regulating and controlling the distribution of the mineral elements in brown rice, optimizing the levels of the mineral contents, and thus reducing the potential health risks.
Collapse
Affiliation(s)
- Xiang Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
2
|
Xu T, Wan S, Shi J, Xu T, Wang L, Guan Y, Luo J, Luo Y, Sun M, An P, He J. Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients 2024; 16:335. [PMID: 38337620 PMCID: PMC10857573 DOI: 10.3390/nu16030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Inconsistent findings exist regarding the relationship between heme iron intake and type 2 diabetes (T2D) among Western and Eastern populations. Easterners tend to consume a plant-based diet which is abundant in antioxidant minerals. To examine the hypothesis that antioxidant mineral may modify the relationship between iron and T2D, we performed a case-control study by measuring the serum mineral levels in 2198 Chinese subjects. A total of 2113 T2D patients and 2458 controls were invited; 502 T2D patients and 1696 controls were finally analyzed. In the total population, high serum iron showed a positive association with T2D odds (odds ratio [OR] = 1.27 [1.04, 1.55]); high magnesium (OR = 0.18 [0.14, 0.22]), copper (OR = 0.27 [0.21, 0.33]), zinc (OR = 0.37 [0.30, 0.46]), chromium (OR = 0.61 [0.50, 0.74]), or selenium concentrations (OR = 0.39 [0.31, 0.48]) were inversely associated with T2D odds. In contrast, in individuals with higher magnesium (>2673.2 µg/dL), zinc (>136.7 µg/dL), copper (>132.1 µg/dL), chromium (>14.0 µg/dL), or selenium concentrations (>16.8 µg/dL), serum iron displayed no association with T2D (p > 0.05). Serum copper and magnesium were significant modifiers of the association between iron and T2D in individuals with different physiological status (p < 0.05). Our findings support the idea that consuming a diet rich in antioxidant minerals is an effective approach for preventing T2D.
Collapse
Affiliation(s)
- Teng Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Sitong Wan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jiaxin Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Tiancheng Xu
- School of Food and Health, Beijing Technology & Business University, Beijing 100048, China;
| | - Langrun Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yiran Guan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Mingyue Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100190, China; (S.W.); (J.S.); (L.W.); (Y.G.); (J.L.); (Y.L.)
| |
Collapse
|
3
|
Alqahtani AA, Alhalabi F, Alam MK. Salivary elemental signature of dental caries: a systematic review and meta-analysis of ionomics studies. Odontology 2024; 112:27-50. [PMID: 37526792 DOI: 10.1007/s10266-023-00839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Trace- and macro-chemical elements are crucial for cellular physiological functioning, and their alterations in biological fluids might be associated with an underlying pathological state. Hence, this study aimed to examine and summarize the published literature concerning the application of salivary ionomics for caries diagnosis. An extensive search of studies was conducted using PubMed, EMBASE, Web of Science, and Scopus, without any language and year restriction for answering the following PECO question: "In subjects (i.e., children, adolescents, or adults) with good systematic health, are there any variations in the salivary concentrations of trace- or macro-elements between caries-free (CF) individuals and caries-active (CA) subjects?" A modified version of the QUADOMICS tool was used to assess the quality of the included studies. The Review Manager Version 5.4.1. was used for data analyses. The analysis of salivary chemical elements that significantly differed between CF and CA subjects was also performed. Thirty-four studies were included, involving 2299 CA and 1669 CF subjects, having an age range from 3 to 64 years in over 16 countries. The meta-analysis revealed a statistically significant difference (p < 0.05) in the salivary levels of calcium, phosphorus, chloride, magnesium, potassium, sodium, and zinc between CA and CF subjects, suggesting higher levels of calcium, phosphorus, potassium, and sodium in CF subjects while higher levels of chloride, magnesium, and zinc in CA patients. Half of the included studies (17/34) were considered high quality, while the remaining half were considered medium quality. Only zinc and chloride ions were found to be higher significantly and consistent in CF and CA subjects, respectively. Conflicting outcomes were observed for all other salivary chemical elements including aluminum, bromine, calcium, copper, fluoride, iron, potassium, magnesium, manganese, sodium, ammonia, nitrite, nitrate, phosphorus, lead, selenium, and sulfate ions.
Collapse
Affiliation(s)
- Abdullah Ali Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia.
| | - Feras Alhalabi
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Mohammad Khursheed Alam
- Orthodontics, Department of Preventive Dental Science, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Deng C, Yue Y, Zhang H, Liu M, Ge Y, Xu E, Zheng J. Serum Metabolomics and Ionomics Analysis of Hoof-Deformed Cows Based on LC-MS/MS and ICP-OES/MS. Animals (Basel) 2023; 13:ani13091440. [PMID: 37174477 PMCID: PMC10177257 DOI: 10.3390/ani13091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In order to explore the metabolic and ionic changes of hoof-deformed cows, the serum samples of 10 healthy cows (group C) and 10 hoof-deformed cows (group T) were analyzed by LC-MS/MS and ICP-OES/MS. The pathway enrichment of differential metabolites was analyzed by screening and identifying differential metabolites and ions and using a bioinformatics method. The integration of metabolomics and ionics was analyzed with ggplot2 software in R language, and verified by MRM target metabolomics. The results showed that 127 metabolites were screened by metabolomics, of which 81 were up-regulated (p < 0.05) and 46 were down-regulated (p < 0.05). The results of ICP-OES/MS showed that 13 kinds of ions such as K, Li, and Pb in serum of dairy cows were up-regulated, while 18 kinds of ions such as Al, Cu and Sb were down-regulated. The integrated analysis of metabolomics and ionics found that potassium ions were positively correlated with L-tyrosine, L-proline, thiamine and L-valine. Sodium ions were positively correlated with L-valine and negatively correlated with α-D-glucose. The results of high-throughput target metabolomics showed that the contents of L-proline, L-phenylalanine and L-tryptophan in serum of dairy cows increased significantly, which was consistent with the results of non-target metabolomics. In a word, the metabolism and ion changes in dairy cows with hoof deformation were revealed by metabolomics and ionics.
Collapse
Affiliation(s)
- Chaoyang Deng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yang Yue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Hefei Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Meng Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yansong Ge
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Enshuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Jiasan Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| |
Collapse
|
5
|
Yang J, Lu Y, Bai Y, Cheng Z. Sex-specific and dose-response relationships of urinary cobalt and molybdenum levels with glucose levels and insulin resistance in U.S. adults. J Environ Sci (China) 2023; 124:42-49. [PMID: 36182150 DOI: 10.1016/j.jes.2021.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/16/2023]
Abstract
Growing studies have linked metal exposure to diabetes risk. However, these studies had inconsistent results. We used a multiple linear regression model to investigate the sex-specific and dose-response associations between urinary metals (cobalt (Co) and molybdenum (Mo)) and diabetes-related indicators (fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), homeostasis model assessment for insulin resistance (HOMA-IR), and insulin) in a cross-sectional study based on the United States National Health and Nutrition Examination Survey. The urinary metal concentrations of 1423 eligible individuals were stratified on the basis of the quartile distribution. Our results showed that the urinary Co level in males at the fourth quartile (Q4) was strongly correlated with increased FPG (β = 0.61, 95% CI: 0.17-1.04), HbA1c (β = 0.31, 95% CI: 0.09-0.54), insulin (β = 8.18, 95% CI: 2.84-13.52), and HOMA-IR (β = 3.42, 95% CI: 1.40-5.44) when compared with first quartile (Q1). High urinary Mo levels (Q4 vs. Q1) were associated with elevated FPG (β = 0.46, 95% CI: 0.17-0.75) and HbA1c (β = 0.27, 95% CI: 0.11-0.42) in the overall population. Positive linear dose-response associations were observed between urinary Co and insulin (Pnonlinear = 0.513) and HOMA-IR (Pnonlinear = 0.736) in males, as well as a positive linear dose-response relationship between urinary Mo and FPG (Pnonlinear = 0.826) and HbA1c (Pnonlinear = 0.376) in the overall population. Significant sex-specific and dose-response relationships were observed between urinary metals (Co and Mo) and diabetes-related indicators, and the potential mechanisms should be further investigated.
Collapse
Affiliation(s)
- Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongbin Lu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Zhiyuan Cheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhang Y, Huang B, Jin J, Xiao Y, Ying H. Recent advances in the application of ionomics in metabolic diseases. Front Nutr 2023; 9:1111933. [PMID: 36726817 PMCID: PMC9884710 DOI: 10.3389/fnut.2022.1111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Trace elements and minerals play a significant role in human health and diseases. In recent years, ionomics has been rapidly and widely applied to explore the distribution, regulation, and crosstalk of different elements in various physiological and pathological processes. On the basis of multi-elemental analytical techniques and bioinformatics methods, it is possible to elucidate the relationship between the metabolism and homeostasis of diverse elements and common diseases. The current review aims to provide an overview of recent advances in the application of ionomics in metabolic disease research. We mainly focuses on the studies about ionomic or multi-elemental profiling of different biological samples for several major types of metabolic diseases, such as diabetes mellitus, obesity, and metabolic syndrome, which reveal distinct and dynamic patterns of ion contents and their potential benefits in the detection and prognosis of these illnesses. Accumulation of copper, selenium, and environmental toxic metals as well as deficiency of zinc and magnesium appear to be the most significant risk factors for the majority of metabolic diseases, suggesting that imbalance of these elements may be involved in the pathogenesis of these diseases. Moreover, each type of metabolic diseases has shown a relatively unique distribution of ions in biofluids and hair/nails from patients, which might serve as potential indicators for the respective disease. Overall, ionomics not only improves our understanding of the association between elemental dyshomeostasis and the development of metabolic disease but also assists in the identification of new potential diagnostic and prognostic markers in translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China,*Correspondence: Yan Zhang ✉
| | - Biyan Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huimin Ying
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China,Huimin Ying ✉
| |
Collapse
|
7
|
He J, Chen F, Wan S, Luo Y, Luo J, He S, Zhou D, An P, Zeng P. Association of Serum Antioxidant Minerals and Type 2 Diabetes Mellitus in Chinese Urban Residents. Antioxidants (Basel) 2022; 12:62. [PMID: 36670924 PMCID: PMC9854585 DOI: 10.3390/antiox12010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidant minerals including zinc, copper and selenium play critical roles in the maintenance of the redox balance in the body. However, their influences on type 2 diabetes mellitus (T2DM) are still inconclusive in Chinese populations. To elucidate the relationship between antioxidant minerals and T2DM, serum zinc, copper and selenium concentrations were measured in 1443 Chinese urban residents using a 1:2 matched case-control study. Conditional logistic regression models (CLR) were used to obtain the odds ratios (ORs) and 95% confidence intervals (CIs), and restricted cubic splines (RCS) were used to examine their dose−response associations. Serum zinc (OR = 0.52 [0.35, 0.77]) and copper concentrations (OR = 0.25 [0.17, 0.37]) were negatively associated with T2DM in a fully adjusted model. An L-shaped zinc-T2DM association (Poverall association = 0.003, and Pnonlinearity = 0.005) and a negative linear copper-T2DM association (Poverall association < 0.0001, and Pnonlinearity = 0.395) were observed. No association was found between serum selenium and T2DM in fully adjusted CLR or RCS models. In addition, joint associations with T2DM were identified between serum zinc and copper and between serum selenium and copper. In conclusion, our study emphasizes the importance of an adequate intake of antioxidant minerals for T2DM prevention in the Chinese population.
Collapse
Affiliation(s)
- Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fangyan Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shuli He
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Daizhan Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ping Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
8
|
Qiao X, Zhang X, Chen W, Xu X, Chen YW, Liu ZP. tensorGSEA: Detecting Differential Pathways in Type 2 Diabetes via Tensor-Based Data Reconstruction. Interdiscip Sci 2022; 14:520-531. [PMID: 35195883 DOI: 10.1007/s12539-022-00506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Detecting significant signaling pathways in disease progression highlights the dysfunctions and pathogenic mechanisms of complex disease development. Since tensor decomposition has been proven effective for multi-dimensional data representation and reconstruction, differences between original and tensor-processed data are expected to extract crucial information and differential indication. This paper provides a tensor-based gene set enrichment analysis, called tensorGSEA, based on a data reconstruction method to identify relevant significant pathways during disease development. As a proof-of-concept study, we identify the differential pathways of diabetes in rats. Specifically, we first arrange gene expression profiles of each documented pathway as tensors with three dimensions: genes, samples, and periods. Then we compress tensors into core tensors with lower ranks. The pathways with lower reconstruction rates are obtained after reconstructing gene expression profiles in another state via these cores. Thus, differences underlying pathways are extracted by cross-state data reconstruction between controls and diseases. The experiments reveal several critical pathways with diabetes-specific functions which otherwise cannot be identified by alternative methods. Our proposed tensorGSEA is efficient in evaluating pathways by achieving their empirical statistical significance, respectively. The classification experiments demonstrate that the selected pathways can be implemented as biomarkers to identify the diabetic state. The code of tensorGSEA is available at https://github.com/zhxr37/tensorGSEA .
Collapse
Affiliation(s)
- Xu Qiao
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Xianru Zhang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yen-Wei Chen
- Graduate School of Information Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China.
| |
Collapse
|
9
|
Wang M, Tian Y, Yu P, Li N, Deng Y, Li L, Kang H, Chen D, Wang H, Liu Z, Liang J. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26950-26959. [PMID: 34865185 PMCID: PMC8989826 DOI: 10.1007/s11356-021-17054-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/11/2021] [Indexed: 05/10/2023]
Abstract
To investigate the correlation between maternal manganese and iron concentrations and the risk of CHD among their infant. A multi-center hospital-based case control study was conducted in China. There were 322 cases and 333 controls have been selected from pregnant women who received prenatal examinations. Correlations between CHDs and maternal manganese and iron concentrations were estimated by conditional logistic regression. Moreover, the interaction between manganese and iron on CHDs was analyzed. Compared with the controls, mothers whose hair manganese concentration was 3.01 μg/g or more were more likely to have a child with CHD than those with a lower concentration. The adjusted OR was 2.68 (95%CI = 1.44-4.99). The results suggested that mothers whose iron content was 52.95 μg/g or more had a significantly higher risk of having a child with CHD (aOR = 2.87, 95%CI = 1.54-5.37). No interaction between maternal manganese and iron concentrations was observed in the multiplicative or additive model. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD (OR = 7.02). Women with excessive manganese concentrations have a significantly increased risk of having offspring with CHDs. The high maternal iron status also correlates with CHDs. The concurrently existing high concentration of manganese and iron may bring higher risk of CHD.
Collapse
Affiliation(s)
- Meixian Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Tian
- Liupanshui Maternal and Child Health Care Hospital, Liupanshui Children's Hospital, Liupanshui, Guizhou, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Kang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dapeng Chen
- Chenghua District Maternal and Child Health Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hui Wang
- Mianyang Maternal and Child Health Care Hospital, Mianyang, Sichuan, China
| | - Zhen Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Juan Liang
- National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Baima G, Iaderosa G, Corana M, Romano F, Citterio F, Giacomino A, Berta GN, Aimetti M. Macro and trace elements signature of periodontitis in saliva: A systematic review with quality assessment of ionomics studies. J Periodontal Res 2021; 57:30-40. [PMID: 34837226 PMCID: PMC9298699 DOI: 10.1111/jre.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Objectives The present systematic review examined the available evidence on distinctive salivary ion profile in periodontitis compared to periodontal health and provided a qualitative assessment of the literature. Background Macro and trace elements are essential for cellular physiology, and their changes in biological fluids can be revelatory of an underlying pathological status. Methods Data from relevant studies identified from PubMed, Embase, and Scopus databases were retrieved to answer the following PECO question: “In systemically healthy individuals, are there any differences in any salivary macro or trace element concentration between periodontally healthy subjects (H) and patients with periodontitis (P)?” Quality of included studies was rated using a modified version of the QUADOMICS tool. A consistency analysis was performed to identify significantly discriminant chemical elements. Results After the screening of 873 titles, 13 studies were included reporting data on 22 different elements. Among them, levels of sodium and potassium were consistently and significantly higher in P compared to H. Conflicting results were found for all the other elements, despite concentration of calcium, copper, and manganese mostly increased in saliva of P. Levels of magnesium were found higher in P than in H in 2 studies but lower in 3. Zinc resulted significantly increased in saliva from H compared to P individuals in 2 studies, but one study reported opposite results. Four studies were considered as high quality, while reporting of operative protocols and statistical analysis was a major limitation for the others. Due to high methodologic heterogeneity, meta‐analysis was not performed. Conclusions Levels of macro or trace elements were differentially identified in saliva across diverse periodontal conditions, having a major potential for investigation of oral homeostasis and for high‐resolution periodontal diagnosis. Products of inflammatory physiologic cellular impairment, such as sodium and potassium, were the most consistently associated with periodontitis (PROSPERO CRD42021235744).
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giovanni Iaderosa
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Filippo Citterio
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Giovanni N Berta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Shun CH, Yuan TH, Hung SH, Yeh YP, Chen YH, Chan CC. Assessment of the hyperlipidemia risk for residents exposed to potential emitted metals in the vicinity of a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27966-27975. [PMID: 33523380 DOI: 10.1007/s11356-021-12642-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Hyperlipidemia, which is associated with certain environmental factors, is a risk factor for cardiovascular disease. Heavy metals are important pollutants from industrial emissions. However, the relationship between the exposure to heavy metals and the occurrence of hyperlipidemia is limited. This study aimed to investigate the association between serum metal levels and the risk of hyperlipidemia in adults living near a petrochemical complex. Our study subjects were 959 residents aged above 35 years in 11 townships near the largest petrochemical complex in central Taiwan. The serum levels of chromium, arsenic, and mercury in the study subjects were measured. The basic characteristics of the study subjects were collected via a questionnaire survey, and the levels of blood lipid biomarkers were analyzed by health examination. The definition of hyperlipidemia was defined in the provided guidelines. Adjusted generalized linear and logistic regression models were applied to evaluate the associations between petrochemical-related metal exposure and hyperlipidemia. The study subjects had chromium, arsenic, and mercury serum levels of 3.24±3.45, 3.45±4.66, and 1.24±1.08 (μg/L), respectively, and close proximity of the study subjects to the petrochemical complex was significantly associated with increased serum metal levels. The results showed that the total cholesterol levels were significantly associated with the increased serum chromium, arsenic, and mercury levels. And, the LDL-C levels were significantly associated with the increased serum mercury levels. In addition, the increased serum arsenic and mercury levels of the study subjects were significantly associated with higher odds ratios for abnormal total cholesterol levels and the risk of hyperlipidemia. Residing in close proximity to a petrochemical complex and high arsenic and mercury exposure were associated with elevated blood lipid levels and an increased risk of hyperlipidemia among the residential population in the vicinity of the petrochemical industry.
Collapse
Affiliation(s)
- Chih-Hsiang Shun
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan
| | - Tzu-Hsuen Yuan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan.
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan.
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei City, Taiwan.
| | - Shou-Hung Hung
- Department of Community and Family Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin City, Taiwan
| | - Yen-Po Yeh
- Changhua Health Bureau, Changhua County, Taiwan
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan.
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Rm 722, No. 17, Xu-Zhou Road, Taipei City, 10055, Taiwan.
| |
Collapse
|
12
|
Wu Z, Shou L, Wang J, Huang T, Xu X. The Methylation Pattern for Knee and Hip Osteoarthritis. Front Cell Dev Biol 2020; 8:602024. [PMID: 33240895 PMCID: PMC7677303 DOI: 10.3389/fcell.2020.602024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Osteoarthritis is one of the most prevalent chronic joint diseases for middle-aged and elderly people. But in recent years, the number of young people suffering from the disease increases quickly. It is known that osteoarthritis is a common degenerative disease caused by the combination and interaction of many factors such as natural and environmental factors. DNA methylations reflect the effects of environmental factors. Several researches on DNA methylation at specific genes in OA cartilage indicated the great potential roles of DNA methylation in OA. To systematically investigate the methylation pattern in knee and hip osteoarthritis, we analyzed the methylation profiles in cartilage of 16 OA hip samples, 19 control hip samples and 62 OA knee samples. 12 discriminative methylation sites were identified using advanced minimal Redundancy Maximal Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The SVM classifier of these 12 methylation sites from genes like MEIS1, GABRG3, RXRA, and EN1, can perfectly classify the OA hip samples, control hip samples and OA knee samples evaluated with LOOCV (Leave-One Out-Cross Validation). These 12 methylation sites can not only serve as biomarker, but also provide underlying mechanism of OA.
Collapse
Affiliation(s)
- Zhen Wu
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lu Shou
- Departmemt of Pneumology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jian Wang
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xinwei Xu
- Departmemt of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Disease Ionomics: Understanding the Role of Ions in Complex Disease. Int J Mol Sci 2020; 21:ijms21228646. [PMID: 33212764 PMCID: PMC7697569 DOI: 10.3390/ijms21228646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.
Collapse
|
14
|
Rios-Lugo MJ, Madrigal-Arellano C, Gaytán-Hernández D, Hernández-Mendoza H, Romero-Guzmán ET. Association of Serum Zinc Levels in Overweight and Obesity. Biol Trace Elem Res 2020; 198:51-57. [PMID: 32020525 DOI: 10.1007/s12011-020-02060-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Low levels of zinc (Zn) have adverse effects on physiological and metabolic functions in humans, especially in processes linked with obesity. In this work, serum Zn levels and their associations with biochemical parameters (glucose, triglycerides, and total cholesterol), sex, and body mass index (BMI) were determined. The distribution of the study sample by sex was homogeneous: 52.6% were women and 47.4% were men. Women had higher BMI and Zn levels (normal weight and obesity) than men, but the differences in BMI and serum Zn levels by sex were not significant (p > 0.05). Nevertheless, the results obtained showed a decrease in serum Zn levels in overweight and obese individuals (p < 0.05) and a negative correlation between BMI and serum Zn levels (r = - 0.663 and p < 0.001); additionally, a significant correlation was identified between cholesterol and triglyceride values (r = 0.493 and p < 0.001). In conclusion, this study demonstrated decreased serum Zn levels in overweight and obese individuals.
Collapse
Affiliation(s)
- María Judith Rios-Lugo
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, UASLP, Avda. Niño Artillero 130, CP 78210, San Luis Potosí, S.L.P., Mexico
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de Salud y Biomedicina. UASLP, Avda Sierra Leona 550, CP 78210, San Luis, S.L.P., Mexico
| | - Casandra Madrigal-Arellano
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, UASLP, Avda. Niño Artillero 130, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Darío Gaytán-Hernández
- Unidad de Posgrado, Facultad de Enfermería y Nutrición, UASLP, Avda. Niño Artillero 130, CP 78210, San Luis Potosí, S.L.P., Mexico
| | - Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, UASLP, Altair 200, CP 78377, San Luis, S.L.P., Mexico.
- Universidad del Centro de México, Capitán Caldera 75, CP 78250, San Luis, S.L.P., Mexico.
| | - Elizabeth Teresita Romero-Guzmán
- Laboratorio Nacional de Investigaciones en Forense Nuclear (LANAFONU), Gerencia de Tecnología Nuclear, Dirección de Investigación Tecnológica, Carretera México s/n, CP 52750, Toluca, La Marquesa Ocoyoacác, Mexico
| |
Collapse
|
15
|
Barajas-Martínez A, Easton JF, Rivera AL, Martínez-Tapia R, de la Cruz L, Robles-Cabrera A, Stephens CR. Metabolic Physiological Networks: The Impact of Age. Front Physiol 2020; 11:587994. [PMID: 33117199 PMCID: PMC7577192 DOI: 10.3389/fphys.2020.587994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic homeostasis emerges from the interplay between several feedback systems that regulate the physiological variables related to energy expenditure and energy availability, maintaining them within a certain range. Although it is well known how each individual physiological system functions, there is little research focused on how the integration and adjustment of multiple systems results in the generation of metabolic health. The aim here was to generate an integrative model of metabolism, seen as a physiological network, and study how it changes across the human lifespan. We used data from a transverse, community-based study of an ethnically and educationally diverse sample of 2572 adults. Each participant answered an extensive questionnaire and underwent anthropometric measurements (height, weight, and waist), fasting blood tests (glucose, HbA1c, basal insulin, cholesterol HDL, LDL, triglycerides, uric acid, urea, and creatinine), along with vital signs (axillar temperature, systolic, and diastolic blood pressure). The sample was divided into 6 groups of increasing age, beginning with less than 25 years and increasing by decades up to more than 65 years. In order to model metabolic homeostasis as a network, we used these 15 physiological variables as nodes and modeled the links between them, either as a continuous association of those variables, or as a dichotomic association of their corresponding pathological states. Weight and overweight emerged as the most influential nodes in both types of networks, while high betweenness parameters, such as triglycerides, uric acid and insulin, were shown to act as gatekeepers between the affected physiological systems. As age increases, the loss of metabolic homeostasis is revealed by changes in the network’s topology that reflect changes in the system−wide interactions that, in turn, expose underlying health stages. Hence, specific structural properties of the network, such as weighted transitivity, i.e., the density of triangles in the network, can provide topological indicators of health that assess the whole state of the system. Overall, our findings show the importance of visualizing health as a network of organs and/or systems, and highlight the importance of triglycerides, insulin, uric acid and glucose as key biomarkers in the prevention of the development of metabolic disorders.
Collapse
Affiliation(s)
- Antonio Barajas-Martínez
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jonathan F Easton
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Leonor Rivera
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Martínez-Tapia
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lizbeth de la Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Robles-Cabrera
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Christopher R Stephens
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
16
|
ICP-Mass-Spectrometry Ionic Profile of Whole Saliva in Patients with Untreated and Treated Periodontitis. Biomedicines 2020; 8:biomedicines8090354. [PMID: 32942752 PMCID: PMC7555328 DOI: 10.3390/biomedicines8090354] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, there has been growing interest in the association between macro and trace minerals in body fluids and systemic diseases related to chronic inflammation and oxidative stress. Due to the paucity of data in the literature on periodontitis, the aim of this cross-sectional study was to assess the relationship between mineral elements in saliva and periodontal status in patients with untreated and treated periodontitis compared to periodontally healthy controls. Salivary samples from 66 nonsmoker healthy patients (20 periodontally healthy, 24 untreated severe periodontitis and 22 treated severe periodontitis) were analyzed by using inductively coupled plasma mass-spectrometry (ICP-MS). Significant increases in copper (Cu), sodium (Na), iron (Fe) and manganese (Mn) concentrations occurred in saliva of severe periodontitis subjects compared to periodontally healthy controls. No differences were detected between healthy controls and treated periodontitis patients apart from levels of zinc (Zn) and lithium (Li) that were found to be increased and reduced, respectively, in periodontitis group. Most subjects were correctly separated by cluster analysis into active periodontitis and periodontally healthy individuals. Treated periodontitis individuals were classified as healthy subjects. Based on these preliminary results, the assessment of salivary concentration of mineral elements might be useful in discriminating periodontal health and disease.
Collapse
|
17
|
Wu A, Bai S, Ding X, Wang J, Zeng Q, Peng H, Wu B, Zhang K. The Systemic Zinc Homeostasis Was Modulated in Broilers Challenged by Salmonella. Biol Trace Elem Res 2020; 196:243-251. [PMID: 31641975 PMCID: PMC7289780 DOI: 10.1007/s12011-019-01921-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Abstract
Salmonella challenge leads to systemic responses that induce the hypozincaemia in mice, which is considered a vital strategy against Salmonella invasion. However, it is not yet known if this phenomenon occurs in broilers. To investigate the change in zinc homeostasis of broilers against Salmonella challenge, 1-day-old male broilers were fed with the basal diet for 7 days. Afterwards, broilers were orally inoculated with either 0 or 0.5 × 108 CFU Salmonella Typhimurium (ST). The serum and selected tissues of Salmonella-challenged and non-challenged broilers were collected at 1, 3 and 7 days post-challenge for zinc homeostasis analysis. Our results showed that Salmonella challenge results in hypozincaemia (serum zinc decrease and liver zinc increase) via modulating the systemic zinc homeostasis of broilers. A profound, zinc transporter-mediated zinc absorption and redistribution affecting zinc homeostasis provided a mechanistic explanation for this phenomenon. In addition, we found that the zinc importers Zip5, Zip10, Zip11, Zip12, Zip13 and Zip14 were mainly downregulated in Salmonella-challenged broilers to reduce zinc absorption in the duodenum, while the Zip14 mRNA expression was upregulated to redistribute zinc into the liver. Collectively, these findings reveal that broilers counteract Salmonella infection via modulating their systemic zinc homeostasis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Bing Wu
- Sichuan Chelota Group, Liangshui Village, Jinyu Town, Guanghan City, 618300, Sichuan, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China.
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, China.
| |
Collapse
|
18
|
Yang X, Zhao H, Wang Y, Liu J, Guo M, Fei D, Mu M, Xing M. The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum. Biol Trace Elem Res 2020; 195:613-623. [PMID: 31473897 DOI: 10.1007/s12011-019-01871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/18/2019] [Indexed: 11/24/2022]
Abstract
Arsenic and copper, two toxic pollutants, are powerful inducers of oxidative stress. Exposure to copper and arsenic can cause intestinal injury in cockerel. This study was carried out to investigate the effects of these two pollutants on the gastrointestinal tract of cockerels. Experimental results showed that the activity of antioxidant enzymes (catalase and glutathione peroxidase) was inhibited and the ionic balance was destroyed after exposure to copper sulfate (300 mg/kg) and/or arsenic trioxide (30 mg/kg). However, the expression of pro-inflammatory cytokines (nuclear factor kappa-B, cyclooxygenase-2, tumor necrosis factor-α, and prostaglandin E2 synthases) increased markedly. Damages to the biofilm structure and inflammatory cell infiltration were simultaneously observed during histological examination. Heat-shock proteins were also expressed in large quantities after exposure to the poisons. Collectively, exposure to arsenite and/or Cu2+ can cause rectal damage in cockerels, inducing inflammation and an imbalance in immune system responses. Sometimes, exposure to both pollutants can produce even more toxic effects. Heat-shock proteins can protect the tissue from the exotoxins but the specific mechanisms require exploration. After oral ingestion of toxins, the rectum can still be damaged, necessitating attention to the safety of poultry breeding, human food safety, and environmental protection.
Collapse
Affiliation(s)
- Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
19
|
Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, Yin J. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca 2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells 2020; 9:E1045. [PMID: 32331484 PMCID: PMC7225978 DOI: 10.3390/cells9041045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
This study is aimed at exploring the mechanism underlying the homeostasis between myogenesis and adipogenesis in skeletal muscle using a special porcine model with a distinct phenotype on muscle growth rate and intramuscular fat deposition. Differentiation potential of muscle-derived Myo-lineage cells of lean-type pigs was significantly enhanced relative to obese-type pigs, while that of their Adi-lineage cells was similar. Single-cell RNA sequencing revealed that lean-type pigs reserved a higher proportion of Myo-lineage cells in skeletal muscle relative to obese-type pigs. Besides, Myo-lineage cells of the lean-type pig settled closer to the original stage of muscle-derived progenitor cells. Proteomics analysis found that differentially expressed proteins between two sources of Myo-lineage cells are mainly involved in muscle development, cell proliferation and differentiation, ion homeostasis, apoptosis, and the MAPK signaling pathway. The regulation of intracellular ion homeostasis, Ca2+ in particular, significantly differed between two sources of Myo-lineage cells. Ca2+ concentration in both cytoplasm and endoplasmic reticulum was lower in Myo-lineage cells of lean-type pigs relative to obese-type pigs. In conclusion, a higher proportion and stronger differentiation capacity of Myo-lineage cells are the main causes for the higher capability of myogenic differentiation and lower intramuscular fat deposition. Relative low concentration of cellular Ca2+ is advantageous for Myo-lineage cells to keep a potent differentiation potential.
Collapse
Affiliation(s)
- Kai Qiu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Liqi Wang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Xin Zhang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Jingdong Yin
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| |
Collapse
|
20
|
Cheng Q, Li J, Fan F, Cao H, Dai ZY, Wang ZY, Feng SS. Identification and Analysis of Glioblastoma Biomarkers Based on Single Cell Sequencing. Front Bioeng Biotechnol 2020; 8:167. [PMID: 32195242 PMCID: PMC7066068 DOI: 10.3389/fbioe.2020.00167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive primary adult brain tumors. Tumor heterogeneity poses a great challenge to the treatment of GBM, which is determined by both heterogeneous GBM cells and a complex tumor microenvironment. Single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of great deal of individual cells to be assayed in an unbiased manner and has been applied in head and neck cancer, breast cancer, blood disease, and so on. In this study, based on the scRNA-seq results of infiltrating neoplastic cells in GBM, computational methods were applied to screen core biomarkers that can distinguish the discrepancy between GBM tumor and pericarcinomatous environment. The gene expression profiles of GBM from 2343 tumor cells and 1246 periphery cells were analyzed by maximum relevance minimum redundancy (mRMR). Upon further analysis of the feature lists yielded by the mRMR method, 31 important genes were extracted that may be essential biomarkers for GBM tumor cells. Besides, an optimal classification model using a support vector machine (SVM) algorithm as the classifier was also built. Our results provided insights of GBM mechanisms and may be useful for GBM diagnosis and therapy.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zi-Yu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ze-Yu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Song-Shan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Qu KC, Li HQ, Tang KK, Wang ZY, Fan RF. Selenium Mitigates Cadmium-Induced Adverse Effects on Trace Elements and Amino Acids Profiles in Chicken Pectoral Muscles. Biol Trace Elem Res 2020; 193:234-240. [PMID: 30805876 DOI: 10.1007/s12011-019-01682-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/17/2019] [Indexed: 01/02/2023]
Abstract
Cadmium (Cd), as one of the most toxic heavy metals, has become a widespread environmental contaminant and threats the food quality and safety. The protective effect of selenium (Se) on Cd-induced tissue lesion and cytotoxicity in chicken has been extensively reported. The objective of this study was to investigate the antagonistic effect of Se on Cd-induced damage of chicken pectoral muscles via analyzing the trace elements and amino acids profiles. Firstly, 19 trace elements contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that under Cd exposure, the contents of Cd, lead (Pb), mercury (Hg), aluminum (Al), and lithium (Li) were significantly elevated, and the contents of Se, iron (Fe), and chromium (Cr) were significantly reduced. However, supplementing Se significantly reversed the effects induced by Cd. Secondly, the amino acids contents were detected by L-8900 automatic amino acid analyzer. The results showed that supplementing Se increased significantly Cd-induced decrease of valine (Val), leucine (Leu), arginine (Arg), and proline (Pro). Thirdly, the results of principal component analysis (PCA) showed that cobalt (Co), manganese (Mn), silicium (Si), and Pro may play special roles in response to the process of Se antagonizes Cd-induced damage of pectoral muscles in chickens. In summary, these results indicated that different trace elements and amino acids possessed and exhibited distinct responses to suffer from Se and/or Cd in chicken pectoral muscles. Notably, Se alleviated Cd-induced adverse effects by regulating trace elements and amino acids profiles in chicken pectoral muscles.
Collapse
Affiliation(s)
- Kui-Chao Qu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Hui-Qin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
22
|
Yao Y, Gu Y, Yang M, Cao D, Wu F. The Gene Expression Biomarkers for Chronic Obstructive Pulmonary Disease and Interstitial Lung Disease. Front Genet 2019; 10:1154. [PMID: 31824564 PMCID: PMC6879656 DOI: 10.3389/fgene.2019.01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
COPD (chronic obstructive pulmonary disease) and ILD (interstitial lung disease) are two common respiratory diseases. They share similar clinical traits but require different therapeutic treatments. Identifying the biomarkers that are differentially expressed between them will not only help the diagnosis of COPD and ILD, but also provide candidate drug targets that may facilitate the development of new treatment for COPD and ILD. Due to the irreversible complex pathological changes of COPD, there are very limited therapeutic options for COPD patients. In this study, we analyzed the gene expression profiles of two datasets: one training dataset that includes 144 COPD patients and 194 ILD patients, and one test dataset that includes 75 COPD patients and 61 ILD patients. Advanced feature selection methods, mRMR (minimal Redundancy Maximal Relevance) and incremental feature selection (IFS), were applied to identify the 38-gene biomarker. An SVM (support vector machine) classifier was built based on the 38-gene biomarker. Its accuracy, sensitivity, and specificity on training dataset evaluated by leave one out cross-validation were 0.905, 0.896, and 0.912, respectively. And on independent test dataset, the accuracy, sensitivity, and specificity on were as great as and were 0.904, 0.933, and 0.869, respectively. The biological function analysis of the 38 genes indicated that many of them can be potential treatment targets that may benefit COPD and ILD patients.
Collapse
Affiliation(s)
- Yangwei Yao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Yangyang Gu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Meng Yang
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Dakui Cao
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| | - Fengjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
23
|
Zhang GL, Pan LL, Huang T, Wang JH. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer 2019; 10:5883-5890. [PMID: 31737124 PMCID: PMC6843882 DOI: 10.7150/jca.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
The previous cancer studies were difficult to reproduce since the tumor tissues were analyzed directly. But the tumor tissues were actually a mixture of different cancer cells. The transcriptome of single-cell was much robust than the transcriptome of a mixed tissue. The single-cell transcriptome had much smaller variance. In this study, we analyzed the single-cell transcriptome of 272 colorectal cancer (CRC) epithelial cells and 160 normal epithelial cells and identified 342 discriminative transcripts using advanced machine learning methods. The most discriminative transcripts were LGALS4, PHGR1, C15orf48, HEPACAM2, PERP, FABP1, FCGBP, MT1G, TSPAN1 and CKB. We further clustered the 342 transcripts into two categories. The upregulated transcripts in CRC epithelial cells were significantly enriched in Ribosome, Protein processing in endoplasmic reticulum, Antigen processing and presentation and p53 signaling pathway. The downregulated transcripts in CRC epithelial cells were significantly enriched in Mineral absorption, Aldosterone-regulated sodium reabsorption and Oxidative phosphorylation pathways. The biological analysis of the discriminative transcripts revealed the possible mechanism of colorectal cancer.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Le-Lin Pan
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Hai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
24
|
Guo Y, Yu P, Zhu J, Yang S, Yu J, Deng Y, Li N, Liu Z. High maternal selenium levels are associated with increased risk of congenital heart defects in the offspring. Prenat Diagn 2019; 39:1107-1114. [PMID: 31461777 DOI: 10.1002/pd.5551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine whether maternal hair or cord blood selenium levels are associated with infant congenital heart defects (CHDs). METHOD A hospital-based case-control study was performed with samples collected from 2010 to 2014. Selenium levels in maternal hair and fetal cord serum were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Data from medical records of infants with CHDs were collected. Logistic regression analysis was employed to examine the independent association between maternal selenium exposure and fetal CHD. RESULTS In total, 888 pregnant women were included in this study. Median (interquartile range) selenium levels in of maternal hair was similar in the control and CHD group. A significant association was detected between increased maternal hair selenium concentration and CHDs in offspring (adjusted odds ratio [aOR] 3.57, 95 %CI, 1.90-6.70). The association was present in all CHD groups, including septal defects, conotruncal defects, left ventricular outflow tract obstruction, right ventricular outflow tract obstruction, and anomalous pulmonary venous return. CONCLUSION High maternal selenium level is significantly associated with the occurrence of fetal CHD.
Collapse
Affiliation(s)
- Yixiong Guo
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Department of Biobank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ping Yu
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuihua Yang
- Department of Ultrasound, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Yu
- Department of Pediatric, Mianyang Central Hospital, Mianyang, China
| | - Ying Deng
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Nana Li
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Zhen Liu
- Department of birth defect molecular epidemiology laboratory, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,National Center for Birth Defect Monitoring, Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Bian J, Shi X, Li Q, Zhao M, Wang L, Lee J, Tao M, Wu X. A novel functional role of nickel in sperm motility and eukaryotic cell growth. J Trace Elem Med Biol 2019; 54:142-149. [PMID: 31109604 DOI: 10.1016/j.jtemb.2019.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Metal ions are essential for numerous life processes. This study aims to investigate the relationship between seminal quality and ion levels in seminal plasma. BASIC PROCEDURES A total of 205 semen samples were collected and seminal plasma ion levels were examined with inductively-coupled plasma-mass spectrometry. The nickel function was demonstrated by in vitro assay and cell growth. MAIN FINDINGS The low sperm motility group showed distinctively reduced nickel concentration in seminal plasma compared with the normal sperm motility group. However, arsenic, sulfur, selenium, magnesium and zinc were negatively associated with sperm quality. No significant relationship between other examined cations and semen quality was observed. In vitro assay suggested low concentration of nickel significantly increased sperm total motility and progressive motility. Cell growth assay further confirmed nickel promoted eukaryotic yeast cell growth. Nickel level in seminal plasma may play important functions to determine sperm quality. PRINCIPAL CONCLUSIONS Our study reveals a strong correlation between S, Mg, Se, Zn, As, Ni and seminal quality as well as discovers a novel functional role of nickel in sperm motility and eukaryotic cell growth. These findings may provide a potential avenue for assessment of sperm quality and treatment of reproduction disorders.
Collapse
Affiliation(s)
- Jiang Bian
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Xiaohong Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Qin Li
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Miaoyun Zhao
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Lingyun Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Minfang Tao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Xiaobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
26
|
Li Q, Hu C, Lin J, Yang Z, Zhou Q, Yang R, Yuan H, Zhu X, Lv Y, Liang Q, Lv Z, Sun L, Zhang Y. Urinary ionomic analysis reveals new relationship between minerals and longevity in a Han Chinese population. J Trace Elem Med Biol 2019; 53:69-75. [PMID: 30910209 DOI: 10.1016/j.jtemb.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human longevity involves genetic, nutritional, environmental and many other factors playing a key role in healthy aging. Previous studies have shown that mineral metabolism and homeostasis are associated with lifespan extension. However, the majority of them have focused on a limited number of elements and ignored the complex relationship between them. In this study, we carried out a network-based approach to investigate the urinary ionome of nonagenarians and centenarians (longevity group) when compared with their biologically unrelated and younger family members (control group) from a Han Chinese population. Several differentially changed elements were identified, almost all of which showed an elevated level in the longevity group. Correlation analysis of the ionome revealed significant element-element interactions in each group. We then divided each group into distinct subgroups according to age ranges, and built the elemental correlation network for each of them. Significant elemental correlations and correlation changes involving all examined elements were identified within or between different subgroups, implying a highly dynamic and complex crosstalk among the elements during human life. Finally, more similar elemental patterns were observed between extremely old and middle-aged people. Overall, our data reveal new relationship between urinary minerals and human longevity, which may extend our understanding of the mechanism of healthy aging.
Collapse
Affiliation(s)
- Qingxiu Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Caiyou Hu
- Department of Neurology, Jiangbin Hospital, Nanning 530021, Guangxi, PR China
| | - Jie Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Qi Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Ruiyue Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Huiping Yuan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Xiaoquan Zhu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital, Nanning 530021, Guangxi, PR China
| | - Qinghua Liang
- Department of Neurology, Jiangbin Hospital, Nanning 530021, Guangxi, PR China
| | - Zeping Lv
- Department of Neurology, Jiangbin Hospital, Nanning 530021, Guangxi, PR China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, PR China.
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, PR China.
| |
Collapse
|
27
|
Zhang P, Georgiou CA, Brusic V. Elemental metabolomics. Brief Bioinform 2019; 19:524-536. [PMID: 28077402 DOI: 10.1093/bib/bbw131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Elemental metabolomics is quantification and characterization of total concentration of chemical elements in biological samples and monitoring of their changes. Recent advances in inductively coupled plasma mass spectrometry have enabled simultaneous measurement of concentrations of > 70 elements in biological samples. In living organisms, elements interact and compete with each other for absorption and molecular interactions. They also interact with proteins and nucleotide sequences. These interactions modulate enzymatic activities and are critical for many molecular and cellular functions. Testing for concentration of > 40 elements in blood, other bodily fluids and tissues is now in routine use in advanced medical laboratories. In this article, we define the basic concepts of elemental metabolomics, summarize standards and workflows, and propose minimum information for reporting the results of an elemental metabolomics experiment. Major statistical and informatics tools for elemental metabolomics are reviewed, and examples of applications are discussed. Elemental metabolomics is emerging as an important new technology with applications in medical diagnostics, nutrition, agriculture, food science, environmental science and multiplicity of other areas.
Collapse
Affiliation(s)
- Ping Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Constantinos A Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Vladimir Brusic
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia.,School of Medicine and Bioinformatics Center, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
28
|
McKeating DR, Fisher JJ, Perkins AV. Elemental Metabolomics and Pregnancy Outcomes. Nutrients 2019; 11:E73. [PMID: 30609706 PMCID: PMC6356574 DOI: 10.3390/nu11010073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/26/2018] [Accepted: 01/01/2019] [Indexed: 01/22/2023] Open
Abstract
Trace elements are important for human health and development. The body requires specific micronutrients to function, with aberrant changes associated with a variety of negative health outcomes. Despite this evidence, the status and function of micronutrients during pregnancy are relatively unknown and more information is required to ensure that women receive optimal intakes for foetal development. Changes in trace element status have been associated with pregnancy complications such as gestational diabetes mellitus (GDM), pre-eclampsia (PE), intrauterine growth restriction (IUGR), and preterm birth. Measuring micronutrients with methodologies such as elemental metabolomics, which involves the simultaneous quantification and characterisation of multiple elements, could provide insight into gestational disorders. Identifying unique and subtle micronutrient changes may highlight associated proteins that are affected underpinning the pathophysiology of these complications, leading to new means of disease diagnosis. This review will provide a comprehensive summary of micronutrient status during pregnancy, and their associations with gestational disorders. Furthermore, it will also comment on the potential use of elemental metabolomics as a technique for disease characterisation and prediction.
Collapse
Affiliation(s)
- Daniel R McKeating
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport 9726, Queensland, Australia.
| | - Joshua J Fisher
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport 9726, Queensland, Australia.
| | - Anthony V Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport 9726, Queensland, Australia.
| |
Collapse
|
29
|
Sheng M, Dong Z, Xie Y. Identification of tumor-educated platelet biomarkers of non-small-cell lung cancer. Onco Targets Ther 2018; 11:8143-8151. [PMID: 30532555 PMCID: PMC6241732 DOI: 10.2147/ott.s177384] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lung cancer is a severe cancer with a high death rate. The 5-year survival rate for stage III lung cancer is much lower than stage I. Early detection and intervention of lung cancer patients can significantly increase their survival time. However, conventional lung cancer-screening methods, such as chest X-rays, sputum cytology, positron-emission tomography (PET), low-dose computed tomography (CT), magnetic resonance imaging, and gene-mutation, -methylation, and -expression biomarkers of lung tissue, are invasive, radiational, or expensive. Liquid biopsy is non-invasive and does little harm to the body. It can reflect early-stage dysfunctions of tumorigenesis and enable early detection and intervention. METHODS In this study, we analyzed RNA-sequencing data of tumor-educated platelets (TEPs) in 402 non-small-cell lung cancer (NSCLC) patients and 231 healthy controls. A total of 48 biomarker genes were selected with advanced minimal-redundancy, maximal-relevance, and incremental feature-selection (IFS) methods. RESULTS A support vector-machine (SVM) classifier based on the 48 biomarker genes accurately predicted NSCLC with leave-one-out cross-validation (LOOCV) sensitivity, specificity, accuracy, and Matthews correlation coefficients of 0.925, 0.827, 0.889, and 0.760, respectively. Network analysis of the 48 genes revealed that the WASF1 actin cytoskeleton module, PRKAB2 kinase module, RSRC1 ribosomal protein module, PDHB carbohydrate-metabolism module, and three intermodule hubs (TPM2, MYL9, and PPP1R12C) may play important roles in NSCLC tumorigenesis and progression. CONCLUSION The 48-gene TEP liquid-biopsy biomarkers will facilitate early screening of NSCLC and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Meiling Sheng
- Department of Respiration, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China
| | - Zhaohui Dong
- Department of Intensive Care Unit, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Yanping Xie
- Department of Respiratory Medicine, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China,
| |
Collapse
|
30
|
The early detection of asthma based on blood gene expression. Mol Biol Rep 2018; 46:217-223. [PMID: 30421126 DOI: 10.1007/s11033-018-4463-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023]
Abstract
Asthma is a complex heterogeneous disorder with hereditary tendency and the most widely used therapy is inhalation of anti-inflammatory corticosteroids. But it has systemic side effects. If the chronic inflammation can be detected in early stage, the dosage of corticosteroids will be low and the side effects can be avoided. Therefore, to discover the early stage blood biomarkers for asthma, we analyzed the gene expression profiles in the blood of 77 moderate asthma patients and 87 healthy controls. With advanced feature selection methods, minimal Redundancy Maximal Relevance and Incremental Feature Selection, we identified 31 genes, such as MYD88, ZFP36, CCR3 and CYP3A5, as the optimal asthma biomarker. The sensitivity, specificity and accuracy of the 31-gene Support Vector Machine predictor evaluated with Leave-One-Out Cross Validation were 0.870, 0.816 and 0.841, respectively. Through literature survey, many biomarker genes have asthma associated functions. Our results not only provided the easy-to-apply blood gene expression biomarkers for early detection of asthma, but also an explainable qualitative model with biological significance.
Collapse
|
31
|
Lin H, Qiu X, Zhang B, Zhang J. Identification of the predictive genes for the response of colorectal cancer patients to FOLFOX therapy. Onco Targets Ther 2018; 11:5943-5955. [PMID: 30271178 PMCID: PMC6149834 DOI: 10.2147/ott.s167656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer is a malignant tumor with high death rate. Chemotherapy, radiotherapy and surgery are the three common treatments of colorectal cancer. For early colorectal cancer patients, postoperative adjuvant chemotherapy can reduce the risk of recurrence. For advanced colorectal cancer patients, palliative chemotherapy can significantly improve the life quality of patients and prolong survival. FOLFOX is one of the mainstream chemotherapies in colorectal cancer, however, its response rate is only about 50%. Methods To systematically investigate why some of the colorectal cancer patients have response to FOLFOX therapy while others do not, we searched all publicly available database and combined three gene expression datasets of colorectal cancer patients with FOLFOX therapy. With advanced minimal redundancy maximal relevance and incremental feature selection method, we identified the biomarker genes. Results A Support Vector Machine-based classifier was constructed to predict the response of colorectal cancer patients to FOLFOX therapy. Its accuracy, sensitivity and specificity were 0.854, 0.845 and 0.863, respectively. Conclusion The biological analysis of representative biomarker genes suggested that apoptosis and inflammation signaling pathways were essential for the response of colorectal cancer patients to FOLFOX chemotherapy.
Collapse
Affiliation(s)
- Hengjun Lin
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Xueke Qiu
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Bo Zhang
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| | - Jichao Zhang
- Department of Tumor, Anus and Intestine, Jinhua People's Hospital, Jinhua, Zhejiang 321000, China,
| |
Collapse
|
32
|
Zhang R, Liu Y, Xing L, Zhao N, Zheng Q, Li J, Bao J. The protective role of selenium against cadmium-induced hepatotoxicity in laying hens: Expression of Hsps and inflammation-related genes and modulation of elements homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:205-212. [PMID: 29753822 DOI: 10.1016/j.ecoenv.2018.05.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to examine the potential role of high selenium (Se) diets in alleviating chronic cadmium (Cd) hepatic toxicity in laying hens. In the present study, 128 healthy 31-week-old laying hens were fed a diet supplemented with Se (Na2SeO3, 2 mg/kg), Cd (CdCl2, 150 mg/kg), or both Se and Cd (150 mg/kg of CdCl2 and 2 mg/kg of Na2SeO3) for 90 days. The expression levels of heat shock proteins (Hsps, including Hsp60, Hsp70 and Hsp90) and inflammation-related factors, including nuclear factor-kappa B p50 (NF-κB), cyclooxygenase-2 (COX-2), prostaglandin E synthases (PTGES), interleukin 1-beta (IL-1β), and tumor necrosis factor-α (TNF-α) were investigated. The concentrations of 28 elements were also determined. The results indicated that Cd treatment significantly increased the mRNA and protein expression levels of Hsps and significantly improved the expression of inflammation-related genes. Moreover, Cd addition to the diets resulted in disturbances in the systemic balance of 13 elements, leading to decrease in the concentrations of Cr, Mn, Sr, Ba, and Hg and increase in Li, B, Ca, Ti, Fe, Cu, Mo, and Cd concentrations. Treatment with Se significantly alleviated Cd-induced hepatic toxicity, as evidenced by a reduction in Hsp60, Hsp70, Hsp90, NF-κB, COX-2, PTGES, TNF-α, and IL-1β expression. Additionally, Se and Cd co-treatment alleviated the changes in Li, B, Ca, Fe, Ti, Cu, Mo, Cd, Cr, Se, Sr, Ba, and Hg concentrations, which was in contrast to that upon Cd induction. The study indicated that Se could help against the negative effects of Cd and may be related to the alleviation of Cd-induced Hsps stress and the inflammatory responses along with modulating the element homeostasis.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yanhong Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qimin Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
33
|
Li J, Lan CN, Kong Y, Feng SS, Huang T. Identification and Analysis of Blood Gene Expression Signature for Osteoarthritis With Advanced Feature Selection Methods. Front Genet 2018; 9:246. [PMID: 30214455 PMCID: PMC6125376 DOI: 10.3389/fgene.2018.00246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is a complex disease that affects articular joints and may cause disability. The incidence of OA is extremely high. Most elderly people have the symptoms of osteoarthritis. The physiotherapy of OA is time consuming, and the chances of full recovery from OA are very minimal. The most effective way of fighting OA is early diagnosis and early intervention. Liquid biopsy has become a popular noninvasive test. To find the blood gene expression signature for OA, we reanalyzed the publicly available blood gene expression profiles of 106 patients with OA and 33 control samples using an automatic computational pipeline based on advanced feature selection methods. Finally, a compact 23-gene set was identified. On the basis of these 23 genes, we constructed a Support Vector Machine (SVM) classifier and evaluated it with leave-one-out cross-validation. Its sensitivity (Sn), specificity (Sp), accuracy (ACC), and Mathew's correlation coefficient (MCC) were 0.991, 0.909, 0.971, and 0.920, respectively. Obviously, the performance needed to be validated in an independent large dataset, but the in-depth biological analysis of the 23 biomarkers showed great promise and suggested that mRNA surveillance pathway and multicellular organism growth played important roles in OA. Our results shed light on OA diagnosis through liquid biopsy.
Collapse
Affiliation(s)
- Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Na Lan
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Kong
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Song-Shan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Trace Elements and Healthcare: A Bioinformatics Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1005:63-98. [PMID: 28916929 DOI: 10.1007/978-981-10-5717-5_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
Collapse
|
35
|
Chen P, Zhu Y, Wan H, Wang Y, Hao P, Cheng Z, Liu Y, Liu J. Effects of the Oral Administration of K 2Cr 2O 7 and Na 2SeO 3 on Ca, Mg, Mn, Fe, Cu, and Zn Contents in the Heart, Liver, Spleen, and Kidney of Chickens. Biol Trace Elem Res 2017; 180:285-296. [PMID: 28353138 DOI: 10.1007/s12011-017-0999-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effects of selenium on the ion profiles in the heart, liver, spleen, and kidney through the oral administration of hexavalent chromium. Approximately 22.14 mg/kg b.w. K2Cr2O7 was added to water to establish a chronic poisoning model. Different selenium levels (0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg Na2SeO3/kg b.w.) around the safe dose were administered to the experimental group model. Ca, Mg, Mn, Fe, Cu, and Zn were detected in the organs through flame atomic absorption spectrometry after these organs were exposed to K2Cr2O7 and Na2SeO3 for 14, 28, and 42 days. Results showed that these elements exhibited various changes. Ca contents declined in the heart, liver, and spleen. Ca contents also decreased on the 28th day and increased on the 42nd day in the kidney. Mn contents declined in the heart and spleen but increased in the kidney. Mn contents also decreased on the 28th day and increased on the 42nd day in the liver. Cu contents declined in the heart and spleen. Cu contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Zn contents declined in the heart and spleen. Zn contents increased on the 28th day and decreased on the 42nd day in the liver and kidney. Fe contents decreased in the heart and liver. Fe contents increased on the 28th day and decreased on the 42nd day in the spleen and kidney. Mg contents did not significantly change in these organs. Appropriate selenium contents enhanced Mn and Zn contents, which were declined by chromium. Conversely, appropriate selenium contents reduced Ca, Fe, and Cu contents, which were increased by chromium. In conclusion, the exposure of chickens to K2Cr2O7 induced changes in different trace elements, and Na2SeO3 supplementation could alleviate this condition.
Collapse
Affiliation(s)
- Peng Chen
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yiran Zhu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Huiyu Wan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yang Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Pan Hao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China.
| |
Collapse
|
36
|
Yao H, Zhao X, Fan R, Sattar H, Zhao J, Zhao W, Zhang Z, Li Y, Xu S. Selenium deficiency-induced alterations in ion profiles in chicken muscle. PLoS One 2017; 12:e0184186. [PMID: 28877212 PMCID: PMC5587317 DOI: 10.1371/journal.pone.0184186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/19/2017] [Indexed: 11/30/2022] Open
Abstract
Ion homeostasis plays important roles in development of metabolic diseases. In the present study, we examined the contents and distributions of 25 ions in chicken muscles following treatment with selenium (Se) deficiency for 25 days. The results revealed that in chicken muscles, the top ranked microelements were silicon (Si), iron (Fe), zinc (Zn), aluminum (Al), copper (Cu) and boron (B), showing low contents that varied from 292.89 ppb to 100.27 ppm. After Se deficiency treatment, essential microelements [Cu, chromium (Cr), vanadium (V) and manganese (Mn)], and toxic microelements [cadmium (Cd) and mercury (Hg)] became more concentrated (P < 0.05). Elements distribution images showed generalized accumulation of barium (Ba), cobalt (Co), Cu, Fe and V, while Cr, Mn, and Zn showed pin point accumulations in muscle sections. Thus, the ion profiles were generally influenced by Se deficiency, which suggested a possible role of Se deficiency in muscle dysfunctions caused by these altered ion profiles.
Collapse
Affiliation(s)
- Haidong Yao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xia Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ruifeng Fan
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hamid Sattar
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jinxin Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Wenchao Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yufeng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Center for Environmental Safety and Health, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SX); (YL)
| | - Shiwen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- * E-mail: (SX); (YL)
| |
Collapse
|
37
|
Xin Y, Gao H, Wang J, Qiang Y, Imam MU, Li Y, Wang J, Zhang R, Zhang H, Yu Y, Wang H, Luo H, Shi C, Xu Y, Hojyo S, Fukada T, Min J, Wang F. Manganese transporter Slc39a14 deficiency revealed its key role in maintaining manganese homeostasis in mice. Cell Discov 2017; 3:17025. [PMID: 28751976 PMCID: PMC5519003 DOI: 10.1038/celldisc.2017.25] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/02/2017] [Indexed: 01/09/2023] Open
Abstract
SLC39A14 (also known as ZIP14), a member of the SLC39A transmembrane metal transporter family, has been reported to mediate the cellular uptake of iron and zinc. Recently, however, mutations in the SLC39A14 gene have been linked to manganese (Mn) accumulation in the brain and childhood-onset parkinsonism dystonia. It has therefore been suggested that SLC39A14 deficiency impairs hepatic Mn uptake and biliary excretion, resulting in the accumulation of Mn in the circulation and brain. To test this hypothesis, we generated and characterized global Slc39a14-knockout (Slc39a14-/- ) mice and hepatocyte-specific Slc39a14-knockout (Slc39a14fl/fl;Alb-Cre+ ) mice. Slc39a14-/- mice develop markedly increased Mn concentrations in the brain and several extrahepatic tissues, as well as motor deficits that can be rescued by treatment with the metal chelator Na2CaEDTA. In contrast, Slc39a14fl/fl;Alb-Cre+ mice do not accumulate Mn in the brain or other extrahepatic tissues and do not develop motor deficits, indicating that the loss of Slc39a14 expression selectively in hepatocytes is not sufficient to cause Mn accumulation. Interestingly, Slc39a14fl/fl;Alb-Cre+ mice fed a high Mn diet have increased Mn levels in the serum, brain and pancreas, but not in the liver. Taken together, our results indicate that Slc39a14-/- mice develop brain Mn accumulation and motor deficits that cannot be explained by a loss of Slc39a14 expression in hepatocytes. These findings provide insight into the physiological role that SLC39A14 has in maintaining Mn homeostasis. Our tissue-specific Slc39a14-knockout mouse model can serve as a valuable tool for further dissecting the organ-specific role of SLC39A14 in regulating the body's susceptibility to Mn toxicity.
Collapse
Affiliation(s)
- Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hong Gao
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jia Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuzhen Qiang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mustapha Umar Imam
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Li
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruochen Zhang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yingying Yu
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shintaro Hojyo
- Osteoimmunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Junxia Min
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Konz T, Migliavacca E, Dayon L, Bowman G, Oikonomidi A, Popp J, Rezzi S. ICP-MS/MS-Based Ionomics: A Validated Methodology to Investigate the Biological Variability of the Human Ionome. J Proteome Res 2017; 16:2080-2090. [PMID: 28383921 DOI: 10.1021/acs.jproteome.7b00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We here describe the development, validation and application of a quantitative methodology for the simultaneous determination of 29 elements in human serum using state-of-the-art inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). This new methodology offers high-throughput elemental profiling using simple dilution of minimal quantity of serum samples. We report the outcomes of the validation procedure including limits of detection/quantification, linearity of calibration curves, precision, recovery and measurement uncertainty. ICP-MS/MS-based ionomics was used to analyze human serum of 120 older adults. Following a metabolomic data mining approach, the generated ionome profiles were subjected to principal component analysis revealing gender and age-specific differences. The ionome of female individuals was marked by higher levels of calcium, phosphorus, copper and copper to zinc ratio, while iron concentration was lower with respect to male subjects. Age was associated with lower concentrations of zinc. These findings were complemented with additional readouts to interpret micronutrient status including ceruloplasmin, ferritin and inorganic phosphate. Our data supports a gender-specific compartmentalization of the ionome that may reflect different bone remodelling in female individuals. Our ICP-MS/MS methodology enriches the panel of validated "Omics" approaches to study molecular relationships between the exposome and the ionome in relation with nutrition and health.
Collapse
Affiliation(s)
- Tobias Konz
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | | | - Loïc Dayon
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | - Gene Bowman
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| | | | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, CHUV , 1011 Lausanne, Switzerland.,Leenaards Memory Center, Department of Clinical Neurosciences, CHUV , 1011 Lausanne, Switzerland
| | - Serge Rezzi
- Nestlé Institute of Health Sciences , 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Zhang R, Wang Y, Wang C, Zhao P, Liu H, Li J, Bao J. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys. Biol Trace Elem Res 2017; 176:391-400. [PMID: 27561294 DOI: 10.1007/s12011-016-0825-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yanan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Peng Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huo Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
40
|
Zhang R, Xing L, Bao J, Sun H, Bi Y, Liu H, Li J. Selenium supplementation can protect from enhanced risk of keel bone damage in laying hens exposed to cadmium. RSC Adv 2017. [DOI: 10.1039/c6ra26614b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate whether selenium (Se) supplementation can provide protection from an enhanced risk of keel bone damage (KBD) in laying hens due to the cadmium (Cd) toxicity associated with sub-chronic exposure.
Collapse
Affiliation(s)
- Runxiang Zhang
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Lu Xing
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Hanqing Sun
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Yanju Bi
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Huo Liu
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| | - Jianhong Li
- College of Life Science
- Northeast Agricultural University
- Harbin
- People's Republic of China
| |
Collapse
|
41
|
Jin X, Liu CP, Teng XH, Fu J. Effects of Dietary Selenium Against Lead Toxicity Are Related to the Ion Profile in Chicken Muscle. Biol Trace Elem Res 2016; 172:496-503. [PMID: 26743866 DOI: 10.1007/s12011-015-0585-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 01/15/2023]
Abstract
Complex antagonistic interactions between Selenium (Se) and heavy metals have been reported in previous studies. However, little is known regarding the effects of Se on lead (Pb)-induced toxicity and the ion profile in the muscles of chickens. In this present study, we fed chickens either Se or Pb or both Se and Pb supplement and later analyzed the concentrations of 26 ions in chicken muscle tissues. We determined that a Se- and Pb-containing diets significantly affected microelements in chicken muscle. Treatment with Se increased the content of Se but resulted in a reduced concentration of Cu, As, Cd, Sn, Hg, and Ba. Treatment with Pb increased concentrations of Ni while reducing those of B, V, Cr, Fe, Co, Cu, Zn, and Mo. Moreover, Se also reduced the concentration of Pb, Zn, Co, Fe, V, and Cr, which in contrast were induced by Pb. Additionally, we also found that synergistic and antagonistic interactions existed between Se and Pb supplementation. Our findings suggested that Se can exert a negative effect on Pb in chicken muscle tissues and may be related to changes in ion profiles.
Collapse
Affiliation(s)
- Xi Jin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chun Peng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao Hua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jing Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
42
|
Huang XY, Salt DE. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. MOLECULAR PLANT 2016; 9:787-97. [PMID: 27212388 DOI: 10.1016/j.molp.2016.05.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Ionomics is a high-throughput elemental profiling approach to study the molecular mechanistic basis underlying mineral nutrient and trace element composition (also known as the ionome) of living organisms. Since the concept of ionomics was first introduced more than 10 years ago, significant progress has been made in the identification of genes and gene networks that control the ionome. In this update, we summarize the progress made in using the ionomics approach over the last decade, including the identification of genes by forward genetics and the study of natural ionomic variation. We further discuss the potential application of ionomics to the investigation of the ecological functions of ionomic alleles in adaptation to the environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
43
|
Effect of Yi Gong San Decoction on Iron Homeostasis in a Mouse Model of Acute Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2696480. [PMID: 27143982 PMCID: PMC4838806 DOI: 10.1155/2016/2696480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/28/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
We investigated the effect of Yi Gong San (YGS) decoction on iron homeostasis and the possible underlying mechanisms in a mouse model of acute inflammation in this study. Our findings suggest that YGS regulates iron homeostasis by downregulating the level of HAMP mRNA, which may depend on regulation of the IL-6/STAT3 or BMP/HJV/SMAD pathway during acute inflammation.
Collapse
|
44
|
Liu Z, Lin Y, Tian X, Li J, Chen X, Yang J, Li X, Deng Y, Li N, Liang J, Li S, Zhu J. Association between maternal aluminum exposure and the risk of congenital heart defects in offspring. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2016; 106:95-103. [PMID: 26707789 DOI: 10.1002/bdra.23464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aluminum (Al) is the third most common element in the earth' s crust and has been reported to be teratogenic. However, there is lack of understanding about the association between maternal aluminum exposure and the risks of birth defects such as congenital heart defects (CHDs). METHODS A multi-center, hospital-based case-control study was performed at four maternal and child tertiary hospitals in China. A total of 223 cases with CHDs and 223 controls without any abnormalities were recruited according to the inclusion and matching criteria. Hair samples were prepared and measured by inductively coupled plasma mass spectrometry (ICP-MS). The correlation between CHDs and maternal aluminum concentrations was estimated by a 1:1 conditional logistic regression. RESULTS The geometric mean and median of hair aluminum levels in isolated or multiple CHD cases was significantly higher than in controls (p < 0.05). A significant association was found between increased hair aluminum concentrations and the risk of total CHDs in offspring (adjusted odds ration [aOR], 2.32; 95% confidence interval [CI], 1.72-3.13), especially in some subtypes of CHDs, such as septal defects (aOR, 2.17; 95% CI, 1.15-4.10), conotruncal defects (aOR, 5.42; 95%CI, 2.43-12.10), and right ventricular outflow track obstruction (aOR, 2.43; 95% CI, 1.08-5.44). However, there was no statistically significant association with left ventricular outflow track obstruction (aOR, 1.66; 95% CI, 0.95-2.88). CONCLUSION A high maternal aluminum concentration may significantly increase the risk of delivering a child with a CHD, such as a septal defect, conotruncal heart defect and right-side obstruction.
Collapse
Affiliation(s)
- Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Lin
- Department of Obstetrics & Gynecology, Fujian Provincial Maternal and Child Healthcare Hospital, Fuzhou, Fujian, China
| | - Xiaoxian Tian
- Department of Ultrasound, Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jun Li
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Department of Ultrasound, Hubei Provincial Maternal and Child Healthcare Hospital, Wuhan, Hubei, China
| | - Jiaxiang Yang
- Department of Ultrasound, Sichuan Provincial Maternal and Child Healthcare Hospital, Chengdu, Sichuan, China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics & Gynecology, Fujian Provincial Maternal and Child Healthcare Hospital, Fuzhou, Fujian, China
| | - Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics & Gynecology, Fujian Provincial Maternal and Child Healthcare Hospital, Fuzhou, Fujian, China
| | - Juan Liang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengli Li
- Department of Ultrasound, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Xu T, Gao X, Liu G. The Antagonistic Effect of Selenium on Lead Toxicity Is Related to the Ion Profile in Chicken Liver. Biol Trace Elem Res 2016; 169:365-73. [PMID: 26123166 DOI: 10.1007/s12011-015-0422-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/22/2015] [Indexed: 01/08/2023]
Abstract
The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, limited data are available regarding the effects of Se on Pb and the ion profile in chicken liver. Whether the change in the ion profile was involved in the protective process of Se and the toxic effect of Pb is unknown. In the present study, we detected 26 ion profiles (including those of Na, Mg, K, Ca, B, Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Sb, Ba, Tl, Li, Al, As, Cd, Sn, Hg, and Pb) in chicken liver following treatment with Se or Pb and with the compound treatment of Se and Pb. The results showed that Se supplementation decreased the content of B and Cr and increased that of Zn and Ba (P < 0.05); however, Pb exposure decreased Cr, Mn, Cu, Se, Mo, and Hg and increased V, Fe, Cd, and Sn (P < 0.05). The results showed that Se and Pb primarily influenced essential microelements and toxic microelements in the chicken liver. In this process, Se alleviated the increased Cd and Pb induced by Pb exposure but aggravated the decreased Cu and Mn. The results also indicated that there existed both synergistic and antagonistic interactions between different ions, further verifying the principal component analysis. Thus, the results showed that prolonged exposure to Se and Pb influences the ion profiles in chicken liver. The protective role of Se and toxic effect of Pb may be related to these changing ion profiles in chicken liver.
Collapse
Affiliation(s)
- Tong Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuejiao Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Guowen Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
46
|
Zhang W, Chen C, Shi H, Yang M, Liu Y, Ji P, Chen H, Tan RX, Li E. Curcumin is a biologically active copper chelator with antitumor activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1-8. [PMID: 26902401 DOI: 10.1016/j.phymed.2015.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Curcumin is a natural product with antitumor activity. The compound targets multiple cell signaling pathways, including cell survival and proliferation, caspase activation and oncogene expression. As a β-diketone, curcumin also exists as a keto-enol tautomer that chelates transition metal ions with high affinity. PURPOSE Copper has an integral role in promoting tumor growth and angiogenesis. This study aims to investigate whether curcumin exerts its antitumor activity through copper chelation. METHODS Copper chelation ability of curcumin was validated by measuring US/VIS spectrum. The antitumor activity and in vivo copper removal ability of curcumin was determined in a murine xenograft model. The effect of curcumin on copper-induced MAPK activation and cell proliferation was determined in cell culture system. RESULTS Administration of curcumin to tumor-bearing animals resulted in suppression of A549 xenograft growth, an effect that was also observed in animals treated with ammonium tetrathiomolybdate (TM), a metal chelator used for copper storage disorders clinically. The inhibition on tumor growth was associated with reduction of copper concentrations in the serum of treated groups. In cell culture studies, we showed that copper promoted cell proliferation through Erk/MAPK activation. Treatment with curcumin or U0126, a specific MAPK inhibitor, or suppression of cellular uptake of copper by siRNA knockdown of copper transporter protein 1 (CTR1) blocked copper-induced cell proliferation. CONCLUSIONS This study therefore demonstrates curcumin antitumor effect to its copper chelation capability. These results also implicate copper chelation as a general mechanism for their action of some biologically active polyphenols like flavonoids.
Collapse
Affiliation(s)
- Wei Zhang
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China .
| | - Changmai Chen
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; College of Life Sciences, Nanjing University, Nanjing, China
| | - Hengfei Shi
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Manyi Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yu Liu
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ping Ji
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Huijun Chen
- Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ren Xiang Tan
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; College of Life Sciences, Nanjing University, Nanjing, China
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; Jiangsu Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China .
| |
Collapse
|
47
|
Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genomics 2015; 16:1093. [PMID: 26690364 PMCID: PMC4687076 DOI: 10.1186/s12864-015-2328-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many differences between different ethnic groups have been observed, such as skin color, eye color, height, susceptibility to some diseases, and response to certain drugs. However, the genetic bases of such differences have been under-investigated. Since the HapMap project, large-scale genotype data from Caucasian, African and Asian population samples have been available. The project found that these populations were located in different areas of the PCA (Principal Component Analysis) plot. However, as an unsupervised method, PCA does not measure the differences in each single nucleotide polymorphism (SNP) among populations. RESULTS We applied an advanced mutual information-based feature selection method to detect associations between SNP status and ethnic groups using the latest HapMap Phase 3 release version 3, which included more sub-populations. A total of 299 SNPs were identified, and they can accurately predicted the ethnicity of all HapMap populations. The 10-fold cross validation accuracy of the SMO (sequential minimal optimization) model on training dataset was 0.901, and the accuracy on independent test dataset was 0.895. CONCLUSIONS In-depth functional analysis of these SNPs and their nearby genes revealed the genetic bases of skin and eye color differences among populations.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Yang Shu
- Sate Key Laboratory of Biotherapy, Sichuan University, Sichuan, 610041, P. R. China.
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
48
|
Zhang H, Li Y, Wang T. Antioxidant capacity and concentration of redox-active trace mineral in fully weaned intra-uterine growth retardation piglets. J Anim Sci Biotechnol 2015; 6:48. [PMID: 26587234 PMCID: PMC4652383 DOI: 10.1186/s40104-015-0047-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background The redox status of intra-uterine growth retardation (IUGR) piglets post-weaning has been poorly studied. Methods Newborns from twenty-four sows were weighted, weaned at 21 d and fed a starter diet until sampling. Sampling was done at 14 d post-weaning. A piglet was defined as IUGR when its birth weight was 2 SD below the mean birth weight of the total population. At weaning, eighteen piglets with nearly equal body weight from each category (i.e. IUGR or normal birth weight (NBW) piglets) were selected and then allocated to two treatments, consisted of six replicates with each pen having three piglets. Results Compared with NBW group, IUGR significantly decreased average daily gain (P < 0.001), average daily feed intake (P = 0.003), and feed efficiency (P < 0.001) of piglets during the first two weeks post-weaning. IUGR decreased the activities of total antioxidant capacity (P = 0.019), total superoxide dismutase (T-SOD, P = 0.023), and ceruloplasmin (P = 0.044) but increased the levels of malondialdehyde (P = 0.040) and protein carbonyl (P = 0.010) in plasma. Similarly, the decreased activities of T-SOD (P = 0.005), copper- and zinc-containing superoxide dismutase (Cu/Zn-SOD, P = 0.002), and catalase (P = 0.049) was observed in the liver of IUGR piglets than these of NBW piglets. IUGR decreased hepatic Cu/Zn-SOD activity (P = 0.023) per unit of Cu/Zn-SOD protein in piglets when compared with NBW piglets. In addition, IUGR piglets exhibited the decreases in accumulation of copper in both plasma (P = 0.001) and liver (P = 0.014), as well as the concentrations of iron (P = 0.002) and zinc (P = 0.048) in liver. Compared with NBW, IUGR down-regulated mRNA expression of Cu/Zn-SOD (P = 0.021) in the liver of piglets. Conclusions The results indicated that IUGR impaired antioxidant capacity and resulted in oxidative damage in fully weaned piglets, which might be associated with the decreased levels of redox-active trace minerals. This study highlights the importance of redox status in IUGR offspring and provides a rationale for alleviating oxidative damage by dietary interventions aiming to supplement trace minerals and to restore redox balance in the future.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Yue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095 China
| |
Collapse
|
49
|
Serum trace element differences between Schizophrenia patients and controls in the Han Chinese population. Sci Rep 2015; 5:15013. [PMID: 26456296 PMCID: PMC4601041 DOI: 10.1038/srep15013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/15/2015] [Indexed: 11/08/2022] Open
Abstract
Little is known about the trace element profile differences between Schizophrenia patients and healthy controls; previous studies about the association of certain elements with Schizophrenia have obtained conflicting results. To identify these differences in the Han Chinese population, inductively coupled plasma-mass spectrometry was used to quantify the levels of 35 elements in the sera of 111 Schizophrenia patients and 110 healthy participants, which consisted of a training (61/61 for cases/controls included) and a test group including remaining participants. An orthogonal projection to latent structures model was constructed from the training group (R2Y = 0.465, Q2cum = 0.343) had a sensitivity of 76.0% and a specificity of 71.4% in the test group. Single element analysis indicated that the concentrations of cesium, zinc, and selenium were significantly reduced in patients with Schizophrenia in both the training and test groups. The meta-analysis including 522 cases and 360 controls supported that Zinc was significantly associated with Schizophrenia (standardized mean difference [SMD], −0.81; 95% confidence intervals [CI], −1.46 to −0.16, P = 0.01) in the random-effect model. Information theory analysis indicated that Zinc could play roles independently in Schizophrenia. These results suggest clear element profile differences between patients with Schizophrenia and healthy controls, and reduced Zn level is confirmed in the Schizophrenia patients.
Collapse
|
50
|
Rotter I, Kosik-Bogacka D, Dołęgowska B, Safranow K, Lubkowska A, Laszczyńska M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3944-61. [PMID: 25867198 PMCID: PMC4410226 DOI: 10.3390/ijerph120403944] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
Abstract
Heavy metals may exacerbate metabolic syndrome (MS) but abnormal serum concentrations of bioelements may also co-exist with MS. The primary aim of the study was to assess the relationship of blood heavy metal and bioelement concentrations and MS, in men aged 50-75 years. Heavy metals-lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), tungsten (W), Macroelements-magnesium (Mg) and calcium (Ca), and microelements-iron (Fe), zinc (Zn) copper (Cu), chromium (Cr), molybdenum (Mo), selenium (Se) and manganese (Mn), body mass index (BMI), waist to hip ratio (WHR), abdominal circumference (AC) and blood pressure (BP), total cholesterol (TCh), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), fasting plasma glucose (FPG), insulin, and Homeostasis Model Assessment-Insulin resistance (HOMA-IR). The men with MS showed statistically significant higher Zn and lower Mg concentrations. Those with diabetes had higher Ca concentration and lower Mg concentration. Cr and Mn concentrations were significantly higher in obese men. The participants with hypertension had lower Mg concentration. We found statistically significant positive correlations (W-TCh, W-LDL, Mg-TCh, Mg-LDL, Ca-TCh, Ca-LDL, Ca-insulin, Ca-HOMAR-IR, Zn-TG, Zn-insulin, Zn-HOMA-IR, Cu-BP systolic, Mn-BMI, Mn-AC, Mn-WHR, Mn-insulin, Mn-HOMA-IR, Se-TCh, Se-LDL, Se-TG, Se-insulin, Se-HOMA-IR, Cr-TCh, Cr-HDL, Cr-LDL, Cr-TG) and negative correlations (Cd-insulin, Hg-WHR, W-insulin, W-HOMA-IR, Mg-BMI, Mg-AC, Mg-WHR, Mg-BP systolic, Mo-insulin, Mn-HDL). Tungsten may contribute to lipid disorders. Magnesium appears to play the protective role in the occurrence of metabolic disorders. Microelements Mn, Cr and Se may intensify MS.
Collapse
Affiliation(s)
- Iwona Rotter
- Independent Laboratory of Medical Rehabilitation, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland.
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Barbara Dołęgowska
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Anna Lubkowska
- Department of Physical Medicine and Functional Diagnostics, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland.
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland.
| |
Collapse
|