1
|
Tüfekci KK, Tatar M, Elamin AAE, Kaplan S. An Evaluation of Neuronal PARP-1 and Caspase-3 Levels in the Brain Tissue of Female Rats Exposed to Electromagnetic Fields at Different Gestational Stages. Int J Dev Neurosci 2025; 85:e70010. [PMID: 39964245 DOI: 10.1002/jdn.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 05/10/2025] Open
Abstract
Foetal exposure to electromagnetic fields (EMFs) may cause marked neurocognitive impairment, although the mechanisms involved are still unclear. EMF induces region-specific neuronal and astroglial death in the rat hippocampus. Poly (ADP-ribose) polymerase-1 (PARP-1) regulates necrosis, apoptosis and other cellular processes occurring following injury. This study, therefore, investigated whether PARP-1 also regulates neuronal responses in the hippocampus of rats subjected to EMF radiation during different developmental periods. Male and female rats were first allowed to mate in separate cages. Rats identified as pregnant were then divided into four groups. A 900-MHz EMF was applied for 2 h daily on gestational days (GD) 1-7, GD 8-14 and GD 15-21. The female offspring were sacrificed at the end of the 28th postnatal day, and PARP-1 and Caspase-3 expressions in the hippocampus were then evaluated. No special treatment was applied to the control group. In the EMF-exposed group, pyramidal neurons in the cornu ammonis (CA) region appeared normal after exposure on GD 1-7 but were darkly stained and shrunken after exposure on GD 15-21, while the majority of granular cells exhibited a normal appearance during all GDs. The group exposed to EMF on GD 15-21 exhibited strong PARP-1 and Caspase-3 immune reactivity in CA and dentate gyrus (DG) cells. Higher H-scores were also observed in the EMF-exposed group following GD 15-21 irradiation. As a result, a 900-MHz EMF application at GD 15-21, which coincides with hippocampal neurogenesis, triggered hippocampal neuron cell death by activating PARP-1 and Caspase-3.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Abdalla Ahmed Eldaw Elamin
- Department of Anatomy, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Tuysuz MZ, Kayhan H, Saglam ASY, Senturk F, Bagriacik EU, Yagci M, Canseven AG. Radiofrequency Induced Time-Dependent Alterations in Gene Expression and Apoptosis in Glioblastoma Cell Line. Bioelectromagnetics 2025; 46:e22543. [PMID: 39810728 DOI: 10.1002/bem.22543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h). To achieve this, we designed and implemented an in vitro RF exposure system operating at a frequency of 2.1 GHz, specifically for cell culture studies, with an average specific absorption rate (SAR) of 1.12 ± 0.18 W/kg determined through numerical dosimetry calculations. Results reveal a significant influence of a 48 h exposure to a 2.1 GHz RF field on U118-MG cell viability, gene expression, and the induction of caspase (CASP) dependent apoptosis. Notably, increased CASP3, CASP8, and CASP9 mRNA levels were observed after 24 and 48 h of RF treatment. However, only the 48 h RF exposure resulted in apoptotic cell death and a significant elevation in the BAX/BCL-2 ratio. This observed effect may be influenced by extended exposure durations surpassing the cell's doubling time. The increased BAX/BCL-2 ratio, which acts as a key switch for apoptosis, and the heterogeneous morphology of the astrocyte-derived U118-MG cell line may also play a role in this effect.
Collapse
Affiliation(s)
- Mehmet Zahid Tuysuz
- Department of Biophysics, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Emin Umit Bagriacik
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Munci Yagci
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | |
Collapse
|
3
|
Kim JH, Seok JY, Kim YH, Kim HJ, Lee JK, Kim HR. Exposure to Radiofrequency Induces Synaptic Dysfunction in Cortical Neurons Causing Learning and Memory Alteration in Early Postnatal Mice. Int J Mol Sci 2024; 25:8589. [PMID: 39201275 PMCID: PMC11355025 DOI: 10.3390/ijms25168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Yun-Hee Kim
- Department of Biology Education, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52609, Republic of Korea;
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| |
Collapse
|
4
|
Massaro L, De Sanctis S, Franchini V, Regalbuto E, Alfano G, Focaccetti C, Benvenuto M, Cifaldi L, Sgura A, Berardinelli F, Marinaccio J, Barbato F, Rossi E, Nardozi D, Masuelli L, Bei R, Lista F. Study of genotoxic and cytotoxic effects induced in human fibroblasts by exposure to pulsed and continuous 1.6 GHz radiofrequency. Front Public Health 2024; 12:1419525. [PMID: 39145180 PMCID: PMC11323689 DOI: 10.3389/fpubh.2024.1419525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.
Collapse
Affiliation(s)
- Luca Massaro
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania De Sanctis
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Valeria Franchini
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Elisa Regalbuto
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Gaetano Alfano
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | | | | | - Federica Barbato
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Erica Rossi
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Florigio Lista
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| |
Collapse
|
5
|
Salameh M, Zeitoun-Ghandour S, Sabra L, Daher A, Khalil M, Joumaa WH. Impact of GSM-EMW exposure on the markers of oxidative stress in fetal rat liver. Sci Rep 2023; 13:17806. [PMID: 37853153 PMCID: PMC10584814 DOI: 10.1038/s41598-023-44814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
The current study investigated the effects of 24 h/day prenatal exposure to global system for mobile communication electromagnetic fields (GSM-EMFs), 900 MHZ-induced electromagnetic radiation (EMR), on oxidative stress (OS) status, apoptotic, and inflammatory changes in liver of rats during their fetal development period. Fifty-two Sprague-Dawley pregnant rats were equally divided into control and exposed groups. Whole embryos were removed at 7.5 dpc (days post coitus), while liver tissues were extracted from embryos at 11.5, 15.5, and 19.5 dpc. For exposed animals, results showed an increased OS reflected by high levels of malondialdehyde (MDA), a decrease in cytosolic superoxide dismutase (cytoSOD) activity, in mitochondrial superoxide dismutase (mitoSOD) levels and catalase (CAT) mRNA expression but also in hepatic nuclear factor erythroïd 2-related Factor 2 (Nrf-2), protein kinase B (Akt1), and intercellular adhesion molecule-1 (ICAM-1) mRNA expression at 15.5 dpc. Moreover, GSM-EMR exposure was shown to significantly decrease mitoSOD and CAT activities at almost all studied ages. Thus, rat embryos may be protected by their mothers from OS, apoptotic, and pro-inflammatory responses till a sensitive developmental stage, during a continuous prenatal EMR exposure. This protection could be then created from the embryos themselves.
Collapse
Affiliation(s)
- Mariam Salameh
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Sukaina Zeitoun-Ghandour
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences Section V, Lebanese University, Nabih Berri Street, Nabatieh, Lebanon
| | - Lina Sabra
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences Section V, Lebanese University, Nabih Berri Street, Nabatieh, Lebanon
| | - Ahmad Daher
- Rammal Hassan Rammal Research Laboratory, ATAC Research Group, Faculty of Sciences (I), Lebanese University, Hadat, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences Section V, Lebanese University, Nabih Berri Street, Nabatieh, Lebanon.
| |
Collapse
|
6
|
Shirbandi K, Khalafi M, J Bevelacqua J, Sadeghian N, Adiban S, Bahaeddini Zarandi F, Mortazavi SA, Mortazavi SH, Mortazavi SMJ, S Welsh J. Exposure to Low Levels of Radiofrequency Electromagnetic Fields Emitted from Cell-phones as a Promising Treatment of Alzheimer's Disease: A Scoping Review Study. J Biomed Phys Eng 2023; 13:3-16. [PMID: 36818013 PMCID: PMC9923247 DOI: 10.31661/jbpe.v0i0.2109-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 06/18/2023]
Abstract
Background Alzheimer's disease (AD) is one of the most significant public health concerns and tremendous economic challenges. Studies conducted over the past decades show that exposure to radiofrequency electromagnetic fields (RF-EMFs) may relieve AD symptoms. Objective To determine if exposure to RF-EMFs emitted by cellphones affect the risk of AD. Material and Methods In this review, all relevant published articles reporting an association of cell phone use with AD were studied. We systematically searched international datasets to identify relevant studies. Finally, 33 studies were included in the review. Our review discusses the effects of RF-EMFs on the amyloid β (Aβ), oxidative stress, apoptosis, reactive oxygen species (ROS), neuronal death, and astrocyte responses. Moreover, the role of exposure parameters, including the type of exposure, its duration, and specific absorption rate (SAR), are discussed. Results Progressive factors of AD such as Aβ, myelin basic protein (MBP), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and neurofilament light polypeptide (NFL) were decreased. While tau protein showed no change, factors affecting brain activity such as glial fibrillary acidic protein (GFAP), mitogen-activated protein kinases (MAPKs), cerebral blood flow (CBF), brain temperature, and neuronal activity were increased. Conclusion Exposure to low levels of RF-EMFs can reduce the risk of AD by increasing MAPK and GFAP and decreasing MBP. Considering the role of apoptosis in AD and the effect of RF-EMF on the progression of the process, this review indicates the positive effect of these exposures.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Department of International Affairs (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Khalafi
- Allied Health Science, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Najmeh Sadeghian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saina Adiban
- Biotechnology Student, Islamic Azad University, Tehran, Iran
| | | | | | | | | | - James S Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, USA
- Department of Radiation Oncology, Edward Hines Jr VA Hospital Hines, Illinois, USA
| |
Collapse
|
7
|
Cardiac Cell Exposure to Electromagnetic Fields: Focus on Oxdative Stress and Apoptosis. Biomedicines 2022; 10:biomedicines10050929. [PMID: 35625666 PMCID: PMC9138495 DOI: 10.3390/biomedicines10050929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
Exposure to electromagnetic fields (EMFs) is a sensitive research topic. Despite extensive research, to date there is no evidence to conclude that exposure to EMFs influences the cardiovascular system. In the present study, we examined whether 915 MHz EMF exposure affects myocardial antioxidative and apoptotic status in vitro and in vivo. No statistically significant difference in the apoptotic cell profile and antioxidant capacity was observed between controls and short-term EMF-exposed mouse cardiomyocytes and H9C2 cardiomyoblasts. Compared with sham-exposed controls, mice subjected to a 915 MHz EMF for 48 h and 72 h had no significant effect on structural tissue integrity and myocardial expression of apoptosis and antioxidant genes. Therefore, these results indicate that short-term exposure to EMF in cardiac cells and tissues did not translate into a significant effect on the myocardial antioxidant defense system and apoptotic cell death.
Collapse
|
8
|
Aparicio-Bautista DI, Chávez-Valenzuela D, Ambriz-Álvarez G, Córdova-Fraga T, Reyes-Grajeda JP, Medina-Contreras Ó, Rodríguez-Cruz F, García-Sierra F, Zúñiga-Sánchez P, Gutiérrez-Gutiérrez AM, Arellanes-Robledo J, Basurto-Islas G. An Extremely Low-Frequency Vortex Magnetic Field Modifies Protein Expression, Rearranges the Cytoskeleton, and Induces Apoptosis of a Human Neuroblastoma Cell Line. Bioelectromagnetics 2022; 43:225-244. [PMID: 35437793 DOI: 10.1002/bem.22400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Homogeneous extremely low-frequency electromagnetic fields (ELF-EMFs) alter biological phenomena, including the cell phenotype and proliferation rate. Heterogenous vortex magnetic fields (VMFs), a new approach of exposure to magnetic fields, induce systematic movements on charged biomolecules from target cells; however, the effect of VMFs on living systems remains uncertain. Here, we designed, constructed, and characterized an ELF-VMF-modified Rodin's coil to expose SH-SY5Y cells. Samples were analyzed by performing 2D-differential-gel electrophoresis, identified by MALDI-TOF/TOF, validated by western blotting, and characterized by confocal microscopy. A total of 106 protein spots were differentially expressed; 40 spots were downregulated and 66 were upregulated in the exposed cell proteome, compared to the control cell proteome. The identified spots are associated with cytoskeleton and cell viability proteins, and according to the protein-protein interaction network, a significant interaction among them was found. Our data revealed a decrease in cell survival associated with apoptotic cells without effects on the cell cycle, as well as evident changes in the cytoskeleton. We demonstrated that ELF-VMFs, at a specific frequency and exposure time, alter the cell proteome and structurally affect the target cells. This is the first report showing that VMF application might be a versatile system for testing different hypotheses in living systems, using appropriate exposure parameters.© 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Diana I Aparicio-Bautista
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | | | - Teodoro Córdova-Fraga
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| | - Juan P Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Óscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Fanny Rodríguez-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | | | | | - Jaime Arellanes-Robledo
- CONACYT-Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| |
Collapse
|
9
|
Romeo S, Zeni O, Scarfì MR, Poeta L, Lioi MB, Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:2322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz-300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
Affiliation(s)
- Stefania Romeo
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Olga Zeni
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Rosaria Scarfì
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Loredana Poeta
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Brigida Lioi
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy
| | - Anna Sannino
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| |
Collapse
|
10
|
Joushomme A, Garenne A, Dufossée M, Renom R, Ruigrok HJ, Chappe YL, Canovi A, Patrignoni L, Hurtier A, Poulletier de Gannes F, Lagroye I, Lévêque P, Lewis N, Priault M, Arnaud-Cormos D, Percherancier Y. Label-Free Study of the Global Cell Behavior during Exposure to Environmental Radiofrequency Fields in the Presence or Absence of Pro-Apoptotic or Pro-Autophagic Treatments. Int J Mol Sci 2022; 23:ijms23020658. [PMID: 35054844 PMCID: PMC8776001 DOI: 10.3390/ijms23020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
It remains controversial whether exposure to environmental radiofrequency signals (RF) impacts cell status or response to cellular stress such as apoptosis or autophagy. We used two label-free techniques, cellular impedancemetry and Digital Holographic Microscopy (DHM), to assess the overall cellular response during RF exposure alone, or during co-exposure to RF and chemical treatments known to induce either apoptosis or autophagy. Two human cell lines (SH-SY5Y and HCT116) and two cultures of primary rat cortex cells (astrocytes and co-culture of neurons and glial cells) were exposed to RF using an 1800 MHz carrier wave modulated with various environmental signals (GSM: Global System for Mobile Communications, 2G signal), UMTS (Universal Mobile Telecommunications System, 3G signal), LTE (Long-Term Evolution, 4G signal, and Wi-Fi) or unmodulated RF (continuous wave, CW). The specific absorption rates (S.A.R.) used were 1.5 and 6 W/kg during DHM experiments and ranged from 5 to 24 W/kg during the recording of cellular impedance. Cells were continuously exposed for three to five consecutive days while the temporal phenotypic signature of cells behavior was recorded at constant temperature. Statistical analysis of the results does not indicate that RF-EMF exposure impacted the global behavior of healthy, apoptotic, or autophagic cells, even at S.A.R. levels higher than the guidelines, provided that the temperature was kept constant.
Collapse
Affiliation(s)
- Alexandre Joushomme
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Mélody Dufossée
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Rémy Renom
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Hermanus Johannes Ruigrok
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Yann Loick Chappe
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Anne Canovi
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Lorenza Patrignoni
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Florence Poulletier de Gannes
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Isabelle Lagroye
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Paris Sciences et Lettres Research University, F-75006 Paris, France
| | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
| | - Noëlle Lewis
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
| | - Muriel Priault
- Univ. Bordeaux, CNRS, IBGC/UMR 5095, F-33000 Bordeaux, France; (M.D.); (M.P.)
| | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM/UMR 7252, F-87000 Limoges, France; (P.L.); (D.A.-C.)
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS/UMR 5218, F-33400 Talence, France; (A.J.); (A.G.); (R.R.); (H.J.R.); (Y.L.C.); (A.C.); (L.P.); (A.H.); (F.P.d.G.); (I.L.); (N.L.)
- Correspondence: ; Tel.: +33-5-40-00-27-24
| |
Collapse
|
11
|
Kim JH, Jeon S, Choi HD, Lee JH, Bae JS, Kim N, Kim HG, Kim KB, Kim HR. Exposure to long-term evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via Akt/mTOR-mediated cellular senescence. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:846-857. [PMID: 34196262 DOI: 10.1080/15287394.2021.1944944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to examine the potential effects of long-term evolution (LTE) radiofrequency electromagnetic fields (RF-EMF) on cell proliferation using SH-SY5Y neuronal cells. The growth rate and proliferation of SH-SY5Y cells were significantly decreased upon exposure to 1760 MHz RF-EMF at 4 W/kg specific absorption rate (SAR) for 4 hr/day for 4 days. Cell cycle analysis indicated that the cell cycle was delayed in the G0/G1 phase after RF-EMF exposure. However, DNA damage or apoptosis was not involved in the reduced cellular proliferation following RF-EMF exposure because the expression levels of histone H2A.X at Ser139 (γH2AX) were not markedly altered and the apoptotic pathway was not activated. However, SH-SY5Y cells exposed to RF-EMF exhibited a significant elevation in Akt and mTOR phosphorylation levels. In addition, the total amount of p53 and phosphorylated-p53 was significantly increased. Data suggested that Akt/mTOR-mediated cellular senescence led to p53 activation via stimulation of the mTOR pathway in SH-SY5Y cells. The transcriptional activation of p53 led to a rise in expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27. Further, subsequent inhibition of CDK2 and CDK4 produced a fall in phosphorylated retinoblastoma (pRb at Ser807/811), which decreased cell proliferation. Taken together, these data suggest that exposure to RF-EMF might induce Akt/mTOR-mediated cellular senescence, which may delay the cell cycle without triggering DNA damage in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| | - Sangbong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon, South Korea
| | - Jae-Hun Lee
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Jun-Sang Bae
- Medical Laser Research Center, Dankook University, Cheonan, South Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
- NeuroVis Inc., Cheonan, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, South Korea
| |
Collapse
|
12
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
13
|
Bertagna F, Lewis R, Silva SRP, McFadden J, Jeevaratnam K. Effects of electromagnetic fields on neuronal ion channels: a systematic review. Ann N Y Acad Sci 2021; 1499:82-103. [PMID: 33945157 DOI: 10.1111/nyas.14597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Many aspects of chemistry and biology are mediated by electromagnetic field (EMF) interactions. The central nervous system (CNS) is particularly sensitive to EMF stimuli. Studies have explored the direct effect of different EMFs on the electrical properties of neurons in the last two decades, particularly focusing on the role of voltage-gated ion channels (VGCs). This work aims to systematically review published evidence in the last two decades detailing the effects of EMFs on neuronal ion channels as per the PRISM guidelines. Following a predetermined exclusion and inclusion criteria, 22 papers were included after searches on three online databases. Changes in calcium homeostasis, attributable to the voltage-gated calcium channels, were found to be the most commonly reported result of EMF exposure. EMF effects on the neuronal landscape appear to be diverse and greatly dependent on parameters, such as the field's frequency, exposure time, and intrinsic properties of the irradiated tissue, such as the expression of VGCs. Here, we systematically clarify how neuronal ion channels are particularly affected and differentially modulated by EMFs at multiple levels, such as gating dynamics, ion conductance, concentration in the membrane, and gene and protein expression. Ion channels represent a major transducer for EMF-related effects on the CNS.
Collapse
Affiliation(s)
- Federico Bertagna
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rebecca Lewis
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - S Ravi P Silva
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,Advanced Technology Institute, University of Surrey, Guildford, Surrey, UK
| | - Johnjoe McFadden
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Kamalan Jeevaratnam
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
14
|
Tohidi FZ, Sadr-Nabavi A, Haghir H, Fardid R, Rafatpanah H, Azimian H, Bahreyni-Toossi MH. Long-term exposure to electromagnetic radiation from mobile phones can cause considerable changes in the balance of Bax/Bcl2 mRNA expression in the hippocampus of mice. Electromagn Biol Med 2021; 40:131-137. [PMID: 33081559 DOI: 10.1080/15368378.2020.1830793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present study was the investigation of the effects of mobile phones at different daily exposure times on the hippocampal expression of two apoptotic genes. Forty-eight male BALB/c mice were randomly divided into six groups with 8 animals in each group. Four experimental groups were respectively exposed to electromagnetic waves for 0.5, 1, 2 and 4 hours twice a day for 30 consecutive days. One experimental group was radiated for 4 hours once a day, while the control group did not receive any radiation during the experiment. The expression of both Bax and Bcl2 mRNAs was upregulated in the mice exposed for one and two hours. Whilst the highest expressions were observed in the two-hours radiation in the exposed group, the expression of both studied genes was downregulated in animals with longer exposure to radiation in a duration-dependent manner. The highest ratio of Bax/Bcl2 expression was observed in the mice that received radiation for four hours twice a day. These results revealed that mobile phone radiation can cause considerable changes in the balance of Bax/Bcl2 mRNA expression in laboratory mice hippocampus.
Collapse
Affiliation(s)
- Fatemeh-Zakieh Tohidi
- Department of Medical Physics, Faculty of Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - Arianeh Sadr-Nabavi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomical Sciences and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| | | |
Collapse
|
15
|
Halgamuge MN. Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4595. [PMID: 32604814 PMCID: PMC7345599 DOI: 10.3390/ijerph17124595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022]
Abstract
The emergence of new technologies to incorporate and analyze data with high-performance computing has expanded our capability to accurately predict any incident. Supervised Machine learning (ML) can be utilized for a fast and consistent prediction, and to obtain the underlying pattern of the data better. We develop a prediction strategy, for the first time, using supervised ML to observe the possible impact of weak radiofrequency electromagnetic field (RF-EMF) on human and animal cells without performing in-vitro laboratory experiments. We extracted laboratory experimental data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental case studies of human and animal cells response to RF-EMF. We used domain knowledge, Principal Component Analysis (PCA), and the Chi-squared feature selection techniques to select six optimal features for computation and cost-efficiency. We then develop grouping or clustering strategies to allocate these selected features into five different laboratory experiment scenarios. The dataset has been tested with ten different classifiers, and the outputs are estimated using the k-fold cross-validation method. The assessment of a classifier's prediction performance is critical for assessing its suitability. Hence, a detailed comparison of the percentage of the model accuracy (PCC), Root Mean Squared Error (RMSE), precision, sensitivity (recall), 1 - specificity, Area under the ROC Curve (AUC), and precision-recall (PRC Area) for each classification method were observed. Our findings suggest that the Random Forest algorithm exceeds in all groups in terms of all performance measures and shows AUC = 0.903 where k-fold = 60. A robust correlation was observed in the specific absorption rate (SAR) with frequency and cumulative effect or exposure time with SAR×time (impact of accumulated SAR within the exposure time) of RF-EMF. In contrast, the relationship between frequency and exposure time was not significant. In future, with more experimental data, the sample size can be increased, leading to more accurate work.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Vafaei H, Kavari G, Izadi HR, Zare Dorahi Z, Dianatpour M, Daneshparvar A, Jamhiri I. Wi-Fi (2.4 GHz) affects anti-oxidant capacity, DNA repair genes expression and, apoptosis in pregnant mouse placenta. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:833-840. [PMID: 32695301 PMCID: PMC7351435 DOI: 10.22038/ijbms.2020.40184.9512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/25/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The placenta provides nutrients and oxygen to embryo and removes waste products from embryo's blood. As far as we know, the effects of exposure to Wi-Fi (2.4 GHz) signals on placenta have not been evaluated. Hence, we examined the effect of prenatal exposure to Wi-Fi signals on anti-oxidant capacity, expressions of CDKNA1, and GADD45a as well as apoptosis in placenta and pregnancy outcome. MATERIALS AND METHODS Pregnant mice were exposed to Wi-Fi signal (2.4 GHz) for 2 and 4 hr. Placenta tissues were examined to measure the MDA and SOD levels. To measure SOD, CDKNA1, GADD45a, Bax, and Bcl-2 expressions were compared by real-time PCR analysis. TUNEL assay was used to assess apoptosis in placenta tissues. The results were analyzed by one-way analysis of variance (ANOVA) using Prism version 6.0 software. RESULTS MDA and SOD levels had significantly increased in exposed Wi-Fi signal groups (P-value< 0.05). Also, quantitative PCR experiment showed that SOD mRNA expression significantly increased in Wi-Fi signal groups. The data showed that CDKN1A and GADD45a genes were increased in Wi-Fi groups (P-value<0.05). The quantitative PCR and the TUNEL assay showed that apoptosis increased in Wi-Fi groups (P-value<0.05). CONCLUSION Our results provide evidence that Wi-Fi signals increase lipid peroxidation, SOD activity (oxidative stres), apoptosis and CDKN1A and GADD45a overexpression in mice placenta tissue. However, further experimental studies are warranted to investigate other genes and aspects of pregnancy to determine the role of Wi-Fi radiation on fertility and pregnancy.
Collapse
Affiliation(s)
- Homeira Vafaei
- Maternal Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Kavari
- Maternal Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Izadi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zare Dorahi
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afrooz Daneshparvar
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Yu Q, Zhao MW, Yang P. LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochem Res 2020; 45:783-795. [DOI: 10.1007/s11064-019-02952-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/01/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
18
|
Li DY, Song JD, Liang ZY, Oskouei K, Xiao XQ, Hou WZ, Li JT, Yang YS, Wang ML, Murbach M. Apoptotic Effect of 1800 MHz Electromagnetic Radiation on NIH/3T3 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030819. [PMID: 32013005 PMCID: PMC7037840 DOI: 10.3390/ijerph17030819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/26/2022]
Abstract
To investigate the effect of 1800 MHz electromagnetic radiation (EMR) on apoptosis, we exposed NIH/3T3 cells at 1800 MHz with a specific absorption rate (SAR) of 2 W/kg intermittently for 12, 24, 36, and 48 h. After exposure, Cell Counting Kit-8 (CCK-8) and flow cytometry were used to detect cell viability and apoptosis; the expression of p53, a molecule with the key role in apoptosis, was measured by real-time qPCR, western blot, and immunofluorescence; and images of the structure of the mitochondria, directly reflecting apoptosis, were captured by electron microscopy. The results showed that the viability of cells in the 12, 36, and 48 h exposure groups significantly decreased compared with the sham groups; after 48 h of exposure, the percentage of late apoptotic cells in the exposure group was significantly higher. Real-time qPCR results showed that p53 mRNA in the 48 h exposure group was 1.4-fold of that in the sham group; significant differences of p53 protein fluorescence expression were observed between the exposure groups and the sham groups after 24 h and 48 h. The mitochondrial swelling and vesicular morphology were found in the electron microscopy images after 48 h exposure. These findings demonstrated 1800 MHz, SAR 2 W/kg EMR for 48 h may cause apoptosis in NIH/3T3 cells and that this apoptosis might be attributed to mitochondrial damage and upregulation of p53 expression.
Collapse
Affiliation(s)
- Dan-Yang Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Jing-Dong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.-D.S.); (W.-Z.H.)
| | - Zhao-Yuan Liang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Kiana Oskouei
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Xiang-Qian Xiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Wen-Zhe Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.-D.S.); (W.-Z.H.)
| | - Jin-Tao Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Yi-Shu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Ming-Lian Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
- Correspondence: (M.-L.W.); (M.M.)
| | - Manuel Murbach
- IT’IS Foundation, Zeughausstrasse 43, 8004 Zurich, Switzerland
- Correspondence: (M.-L.W.); (M.M.)
| |
Collapse
|
19
|
García-Minguillán O, Prous R, Ramirez-Castillejo MDC, Maestú C. CT2A Cell Viability Modulated by Electromagnetic Fields at Extremely Low Frequency under No Thermal Effects. Int J Mol Sci 2019; 21:ijms21010152. [PMID: 31878361 PMCID: PMC6981628 DOI: 10.3390/ijms21010152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
The effects produced by electromagnetic fields (EMFs) on human beings at extremely low frequencies (ELFs) have being investigated in the past years, across in vitro studies, using different cell lines. Nevertheless, the effects produced on cells are not clarified, and the cellular mechanisms and cell-signaling processes involved are still unknown. This situation has resulted in a division among the scientific community about the adequacy of the recommended level of exposure. In this sense, we consider that it is necessary to develop long-term exposure studies and check if the recommended levels of EMFs are under thermal effects. Hence, we exposed CT2A cells to different EMFs at different ELFs at short and long times. Our results showed frequency dependence in CT2A exposed during 24 h to a small EMF of 30 μT equal to those originated by the Earth and frequency dependence after the exposure during seven days to an EMF of 100 µT at different ELFs. Particularly, our results showed a remarkable cell viability decrease of CT2A cells exposed to EMFs of 30 Hz. Nevertheless, after analyzing the thermal effects in terms of HSP90 expression, we did not find thermal damages related to the differences in cell viability, so other crucial cellular mechanism should be involved.
Collapse
Affiliation(s)
- Olga García-Minguillán
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (O.G.-M.); (R.P.)
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Raquel Prous
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (O.G.-M.); (R.P.)
| | | | - Ceferino Maestú
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (O.G.-M.); (R.P.)
- CTB (CTB-UPM) Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- CIBER-BBN Centro de Investigación Biomédica en Red, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-9133-646-55
| |
Collapse
|
20
|
Ouadah NS, Lecomte A, Robidel F, Olsson A, Deltour I, Schüz J, Blazy K, Villégier AS. Possible effects of radiofrequency electromagnetic fields on in vivo C6 brain tumors in Wistar rats. J Neurooncol 2018; 140:539-546. [PMID: 30421158 DOI: 10.1007/s11060-018-03012-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Glioblastoma is a malignant brain tumor which has one of the poorest prognosis. It is not clear if toxic environmental factors can influence its aggressiveness. Recently, it was suggested that brain cancer patients with heavy cell phone use showed reduced survival. Here we aimed to assess the effect of controlled brain averaged specific absorption rate (BASAR) from heavy use of cell phone radiofrequency electromagnetic fields (RF-EMF) on in vivo C6 brain tumors in Wistar rats. METHODS C6 cells grafted male rats were exposed to GSM 900 MHz signal at environmental BASAR, 0 (sham), 0.25 or 0.5 W/kg (5 days a week, 45 min a day in restraint), or were cage controls (no restraint). At death, tumor volume and immunohistochemistry for CD31, cleaved caspase (CC) 3 and Ki67 were assessed to examine vascularization, apoptosis and cellular divisions, respectively. Moreover, immune cell invasion, necrosis and mitotic index were determined. RESULTS Results showed no BASAR effect on survival (31 days post-graft median), tumor volume, mitotic index, vascularization, infiltration, necrosis or cell division. However, results suggested a BASAR-dependent reduction of immune cell invasion and apoptosis. CONCLUSIONS Our data suggested an action of RF-EMF by reducing immune cell invasion and glioblastoma cell apoptosis, at probably too low amplitude to impact survival. Further replication studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Nihal S Ouadah
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Anthony Lecomte
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Franck Robidel
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Ann Olsson
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Isabelle Deltour
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- PERITOX-INERIS laboratory, CURS, Picardie University Jules Verne, CHU Sud, 80054, Amiens, France.
| |
Collapse
|
21
|
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5076271. [PMID: 30533171 PMCID: PMC6250044 DOI: 10.1155/2018/5076271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.
Collapse
|
22
|
Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. J Chem Neuroanat 2018; 91:1-7. [DOI: 10.1016/j.jchemneu.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
|
23
|
Impact of Long-Term RF-EMF on Oxidative Stress and Neuroinflammation in Aging Brains of C57BL/6 Mice. Int J Mol Sci 2018; 19:ijms19072103. [PMID: 30029554 PMCID: PMC6073444 DOI: 10.3390/ijms19072103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 11/16/2022] Open
Abstract
The expansion of mobile phone use has raised questions regarding the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on oxidative stress and brain inflammation. Despite accumulative exposure of humans to radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, their long-term effects on oxidative stress and neuroinflammation in the aging brain have not been studied. In the present study, middle-aged C57BL/6 mice (aged 14 months) were exposed to 1950 MHz electromagnetic fields for 8 months (specific absorption rate (SAR) 5 W/kg, 2 h/day, 5 d/week). Compared with those in the young group, levels of protein (3-nitro-tyrosine) and lipid (4-hydroxy-2-nonenal) oxidative damage markers were significantly increased in the brains of aged mice. In addition, levels of markers for DNA damage (8-hydroxy-2'-deoxyguanosine, p53, p21, γH2AX, and Bax), apoptosis (cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP-1)), astrocyte (GFAP), and microglia (Iba-1) were significantly elevated in the brains of aged mice. However, long-term RF-EMF exposure did not change the levels of oxidative stress, DNA damage, apoptosis, astrocyte, or microglia markers in the aged mouse brains. Moreover, long-term RF-EMF exposure did not alter locomotor activity in aged mice. Therefore, these findings indicate that long-term exposure to RF-EMF did not influence age-induced oxidative stress or neuroinflammation in C57BL/6 mice.
Collapse
|
24
|
Kim JH, Sohn UD, Kim HG, Kim HR. Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:277-289. [PMID: 29719450 PMCID: PMC5928341 DOI: 10.4196/kjpp.2018.22.3.277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/22/2017] [Accepted: 01/27/2018] [Indexed: 12/19/2022]
Abstract
The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
25
|
Han Q, Chen R, Wang F, Chen S, Sun X, Guan X, Yang Y, Peng B, Pan X, Li J, Yi W, Li P, Zhang H, Feng D, Chen A, Li X, Li S, Yin Z. Pre-exposure to 50 Hz-electromagnetic fields enhanced the antiproliferative efficacy of 5-fluorouracil in breast cancer MCF-7 cells. PLoS One 2018; 13:e0192888. [PMID: 29617363 PMCID: PMC5884488 DOI: 10.1371/journal.pone.0192888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Resistance to 5-fluorouracil (5-FU) and its induced immune suppression have prevented its extensive application in the clinical treatment of breast cancer. In this study, the combined effect of 50 Hz-EMFs and 5-FU in the treatment of breast cancer was explored. MCF-7 and MCF10A cells were pre-exposed to 50 Hz-EMFs for 0, 2, 4, 8 and 12 h and then treated with different concentrations of 5-FU for 24 h; cell viability was analyzed by MTT assay and flow cytometry. After pre-exposure to 50 Hz-EMFs for 12 h, apoptosis and cell cycle distribution in MCF-7 and MCF10A cells were detected via flow cytometry and DNA synthesis was measured by EdU incorporation assay. Apoptosis-related and cell cycle-related gene and protein expression levels were monitored by qPCR and western blotting. Pre-exposure to 50 Hz-EMFs for 12 h enhanced the antiproliferative effect of 5-FU in breast cancer cell line MCF-7 in a dose-dependent manner but not in normal human breast epithelial cell line MCF10A. Exposure to 50 Hz-EMFs had no effect on apoptosis and P53 expression of MCF-7 and MCF10A cells, whereas it promoted DNA synthesis, induced entry of MCF-7 cells into the S phase of cell cycle, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E. Considering the pharmacological mechanisms of 5-FU in specifically disrupting DNA synthesis, this enhanced inhibitory effect might have resulted from the specific sensitivity of MCF7 cells in active S phase to 5-FU. Our findings demonstrate the enhanced cytotoxic activity of 5-FU on MCF7 cells through promoting entry into the S phase of the cell cycle via exposure to 50 Hz-EMFs, which provides a novel method of cancer treatment based on the combinatorial use of 50 Hz-EMFs and chemotherapy.
Collapse
Affiliation(s)
- Qi Han
- General Hospital of Tibet Area Military Command, Lhasa, China
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Rui Chen
- Tibetan Traditional Medical College, Lhasa, China
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Sha Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongshan Sun
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Bingjie Peng
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinfang Li
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weijing Yi
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peng Li
- Urology, 201th Hospital of People's Liberation Army, Liaoyang, China
| | - Hongwei Zhang
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - Dongfang Feng
- General Hospital of Tibet Area Military Command, Lhasa, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China
- * E-mail: (ZY); (SL); (XL)
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Medical Laboratory Science, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZY); (SL); (XL)
| | - Zuoming Yin
- General Hospital of Tibet Area Military Command, Lhasa, China
- * E-mail: (ZY); (SL); (XL)
| |
Collapse
|
26
|
Kim JH, Yu DH, Kim HJ, Huh YH, Cho SW, Lee JK, Kim HG, Kim HR. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicol Ind Health 2017; 34:23-35. [DOI: 10.1177/0748233717740066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyo-Jeong Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Seong-Wan Cho
- Department of Pharmaceutical Engineering, Konyang University, Nonsan, Chungnam, South Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| |
Collapse
|
27
|
Kim JH, Kim HJ, Yu DH, Kweon HS, Huh YH, Kim HR. Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS One 2017; 12:e0186416. [PMID: 29045446 PMCID: PMC5646811 DOI: 10.1371/journal.pone.0186416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022] Open
Abstract
We studied the effects of radiofrequency electromagnetic fields (RF-EMFs) exposure on neuronal functions of mice. Particularly, we focused on RF-EMF effects on synaptic vesicles (SVs), which store neurotransmitters at axon terminals or synaptic boutons. C57 BL/6 mice were exposed to 835 MHz RF-EMF (4.0 W/kg SAR, for 5 h daily) and alterations in SVs at presynaptic terminals in the cerebral cortex were determined. Ultrastructure of randomly selected cortical neurons was observed using typical electron microscopy and bio-high voltage electron microscopy (Bio-HVEM) methods, which enable the estimation of the numbers and size of SVs. The density of the SVs (number /10 μm2 or 40 μm3) was significantly decreased in the presynaptic boutons of cortical neurons after RF-EMF exposure. Furthermore, qPCR and immunoblotting analyses revealed that the expression of synapsins I/II (Syns I/II) genes and proteins were significantly decreased in the cortical neurons of RF-EMF exposed mice. The present study suggested that alteration of SVs and Syn levels may result in alterations of neurotransmitters in the cerebral cortex following RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hyo-Jeong Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
| | - Hee-Seok Kweon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chungbuk, South Korea
- * E-mail: (HRK); (YHH)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, South Korea
- * E-mail: (HRK); (YHH)
| |
Collapse
|
28
|
Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep 2017; 7:11776. [PMID: 28924214 PMCID: PMC5603574 DOI: 10.1038/s41598-017-10407-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Low frequency magnetic fields (LF-MFs) can affect cell proliferation in a cell-type and intensity-dependent way. Previous study has reported the anti-tumor effect of LF-MFs in lung cancers. Our previous study also optimized the intensity and duration of LF-MFs to effectively inhibit the proliferation of lung cancer cells. However, the anti-tumor mechanism of LF-MFs remains unclear, which limit the clinical application of LF-MFs in anti-tumor therapy. Here, in a well-established Lewis Lung Cancer (LLC) mouse model, we found that LF-MFs inhibit tumor growth and induce an autophagic cell death in lung cancer. We also found that LF-MFs could up-regulate the expression level of miR-486, which was involved in LF-MFs activated cell autophagy. Furthermore, we found B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) is a direct target of miR-486. miR-486 inhibit AKT/mTOR signaling through inhibiting expression of BCAP. Moreover, a decreased expression of miR-486 and an increased expression of BCAP were found in tumor tissues of lung cancer patients. Taken together, this study proved that LF-MFs can inhibit lung cancers through miR-486 induced autophagic cell death, which suggest a clinical application of LF-MFs in cancer treatment.
Collapse
|
29
|
Ghatei N, Nabavi AS, Toosi MHB, Azimian H, Homayoun M, Targhi RG, Haghir H. Evaluation of bax, bcl-2, p21 and p53 genes expression variations on cerebellum of BALB/c mice before and after birth under mobile phone radiation exposure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1037-1043. [PMID: 29085599 PMCID: PMC5651457 DOI: 10.22038/ijbms.2017.9273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The increasing rate of over using cell phones has been considerable in youths and pregnant women. We examined the effect of mobile phones radiation on genes expression variation on cerebellum of BALB/c mice before and after of the birth. MATERIALS AND METHODS In this study, a mobile phone jammer, which is an instrument to prevent receiving signals between cellular phones and base transceiver stations (two frequencies 900 and 1800 MHz) for exposure was used and twelve pregnant mice (BALB/c) divided into two groups (n=6), first group irradiated in pregnancy period (19th day), the second group did not irradiate in pregnancy period. After childbirth, offspring were classified into four groups (n=4): Group1: control, Group 2: B1 (Irradiated after birth), Group 3: B2 (Irradiated in pregnancy period and after birth), Group 4: B3 (Irradiated in pregnancy period). When maturity was completed (8-10 weeks old), mice were dissected and cerebellum was isolated. The expression level of bax, bcl-2, p21 and p53 genes examined by real-time reverse transcription polymerase chain reaction (Real-Time RT- PCR). RESULTS The data showed that mobile phone radio waves were ineffective on the expression level of bcl-2 and p53 genes) P>0.05(. Also gene expression level of bax decreased and gene expression level of p21 increased comparing to the control group (P<0.05). CONCLUSION From the obtained data it could be concluded that the mobile phone radiations did not induce apoptosis in cells of the cerebellum and the injured cells can be repaired by cell cycle arrest.
Collapse
Affiliation(s)
- Najmeh Ghatei
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr Nabavi
- Department of Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansour Homayoun
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Ghasemnezhad Targhi
- Department of Radiation Biology, School of Allied, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Eghlidospour M, Ghanbari A, Mortazavi SMJ, Azari H. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells. Anat Cell Biol 2017; 50:115-123. [PMID: 28713615 PMCID: PMC5509895 DOI: 10.5115/acb.2017.50.2.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/13/2016] [Accepted: 03/18/2017] [Indexed: 11/27/2022] Open
Abstract
Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices.
Collapse
Affiliation(s)
- Mahsa Eghlidospour
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran.,Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Ghanbari
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyyed Mohammad Javad Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Altun G, Kaplan S, Deniz OG, Kocacan SE, Canan S, Davis D, Marangoz C. Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields. J Microsc Ultrastruct 2017; 5:230-241. [PMID: 30023259 PMCID: PMC6025784 DOI: 10.1016/j.jmau.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
The purpose of the study was to investigate the effects of pulsed digital electromagnetic radiation emitted by mobile phones on the central nervous system of the adult Wistar albino rats. The study evaluated structural and functional impacts of four treatment arms: electromagnetic field (EMF) exposed; EMF exposed + melatonin treated group (EMF + Mel); EMF exposed + omega-3 (ω3) treated group (EMF + ω3); and control group (Cont). The 12-weeks-old rats were exposed to 900 MHz EMF for 60 min/day (4:00–5:00 p.m.) for 15 days. Stereological, biochemical and electrophysiological techniques were applied to evaluate protective effects of Mel and ω3. Significant cell loss in the CA1 and CA2 regions of hippocampus were observed in the EMF compared to other groups (p < 0.01). In the CA3 region of the EMF + ω3, a significant cell increase was found compared to other groups (p < 0.01). Granular cell loss was observed in the dentate gyrus of the EMF compared to the Cont (p < 0.01). EMF + ω3 has more granular cells in the cerebellum than the Cont, EMF + Mel (p < 0.01). Significant Purkinje cell loss was found in the cerebellum of EMF group compared to the other (p < 0.01). EMF + Mel and EMF + ω3 showed the same protection compared to the Cont (p > 0.05). The passive avoidance test showed that entrance latency into the dark compartment was significantly shorter in the EMF (p < 0.05). Additionally, EMF had a higher serum enzyme activity than the other groups (p < 0.01). In conclusion, our analyses confirm that EMF may lead to cellular damage in the hippocampus and the cerebellum, and that Mel and ω3 may have neuroprotective effects.
Collapse
Affiliation(s)
- Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
- Corresponding author. E-mail address: (G. Altun)
| | - Suleyman Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Omur Gulsum Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Sinan Canan
- Department of Psychology, Üsküdar University, Istanbul, Turkey
| | - Devra Davis
- Department of Medicine and Public Health, The Hebrew University, Jerusalem, Israel
- Environmental Health Trust, Teton Village, WY, USA
| | - Cafer Marangoz
- Department of Physiology, Medical Faculty, Medipol University, Istanbul, Turkey
| |
Collapse
|
32
|
Kim JH, Yu DH, Kim HR. Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:179-188. [PMID: 28280411 PMCID: PMC5343051 DOI: 10.4196/kjpp.2017.21.2.179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether short-term exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
33
|
Kim JH, Yu DH, Huh YH, Lee EH, Kim HG, Kim HR. Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Sci Rep 2017; 7:41129. [PMID: 28106136 PMCID: PMC5247706 DOI: 10.1038/srep41129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Radiofrequency electromagnetic field (RF-EMF) is used globally in conjunction with mobile communications. There are public concerns of the perceived deleterious biological consequences of RF-EMF exposure. This study assessed neuronal effects of RF-EMF on the cerebral cortex of the mouse brain as a proxy for cranial exposure during mobile phone use. C57BL/6 mice were exposed to 835 MHz RF-EMF at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day during 12 weeks. The aim was to examine activation of autophagy pathway in the cerebral cortex, a brain region that is located relatively externally. Induction of autophagy genes and production of proteins including LC3B-II and Beclin1 were increased and accumulation of autolysosome was observed in neuronal cell bodies. However, proapoptotic factor Bax was down-regulted in the cerebral cortex. Importantly, we found that RF-EMF exposure led to myelin sheath damage and mice displayed hyperactivity-like behaviour. The data suggest that autophagy may act as a protective pathway for the neuronal cell bodies in the cerebral cortex during radiofrequency exposure. The observations that neuronal cell bodies remained structurally stable but demyelination was induced in cortical neurons following prolonged RF-EMF suggests a potential cause of neurological or neurobehavioural disorders.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| | - Da-Hyeon Yu
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of Korea
| | - Eun Ho Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
34
|
Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070701. [PMID: 27420084 PMCID: PMC4962242 DOI: 10.3390/ijerph13070701] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.
Collapse
|
35
|
Nagarjunakonda S, Amalakanti S, Uppala V, Gajula RK, Tata RS, Bolla HB, Rajanala L, Athina S, Daggumati R, Lavu H, Devanaboina AK. Mobile phones and seizures: drug-resistant epilepsy is less common in mobile-phone-using patients. Postgrad Med J 2016; 93:25-28. [DOI: 10.1136/postgradmedj-2016-134140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 11/03/2022]
|
36
|
KEILHOFF GERBURG, LUCAS BENJAMIN, UHDE KATJA, FANSA HISHAM. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med 2016; 11:1685-1699. [PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels in vivo. Minocycline was also shown to have inhibitory effects. The nuclear factor-κB signalling pathway may be a possible target of minocycline.
Collapse
Affiliation(s)
- GERBURG KEILHOFF
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - BENJAMIN LUCAS
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
- Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - KATJA UHDE
- Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - HISHAM FANSA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany
| |
Collapse
|
37
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
38
|
Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice. Osong Public Health Res Perspect 2015; 7:12-7. [PMID: 26981337 PMCID: PMC4776265 DOI: 10.1016/j.phrp.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. METHODS Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. RESULTS When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. CONCLUSION These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.
Collapse
|
39
|
Eghlidospour M, Mortazavi SMJ, Yousefi F, Mortazavi SAR. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation. J Biomed Phys Eng 2015; 5:95-104. [PMID: 26396965 PMCID: PMC4576878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure.
Collapse
Affiliation(s)
- M. Eghlidospour
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. M. J. Mortazavi
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - F. Yousefi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. A. R. Mortazavi
- Medical Student, Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Liu YX, Li GQ, Fu XP, Xue JH, Ji SP, Zhang ZW, Zhang Y, Li AM. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells. BMC Public Health 2015; 15:764. [PMID: 26253141 PMCID: PMC4529714 DOI: 10.1186/s12889-015-1996-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/30/2015] [Indexed: 11/23/2022] Open
Abstract
Background The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Methods Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. Results No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Conclusions Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response. Electronic supplementary material The online version of this article (doi:10.1186/s12889-015-1996-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, 51 Fushi Road, Beijing, People's Republic of China
| | - Guo-qing Li
- China Telecommunication Technology Labs, Beijing, China
| | - Xiang-ping Fu
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, 51 Fushi Road, Beijing, People's Republic of China
| | - Jing-hui Xue
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, 51 Fushi Road, Beijing, People's Republic of China
| | - Shou-ping Ji
- Department of blood molecular biology, Institute of blood transfusion medicine, Beijing, China
| | - Zhi-wen Zhang
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, 51 Fushi Road, Beijing, People's Republic of China.
| | - Yi Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - An-ming Li
- Department of Neurosurgery, First Affiliated Hospital of PLA General Hospital, 51 Fushi Road, Beijing, People's Republic of China.
| |
Collapse
|
41
|
Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, Feng H, Chen Z, Zhu G. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015; 1601:92-101. [PMID: 25598203 DOI: 10.1016/j.brainres.2015.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
Abstract
With the rapid increase in the number of mobile phone users, the potential adverse effects of the electromagnetic field radiation emitted by a mobile phone has become a serious concern. This study demonstrated, for the first time, the blood-brain barrier and cognitive changes in rats exposed to 900 MHz electromagnetic field (EMF) and aims to elucidate the potential molecular pathway underlying these changes. A total of 108 male Sprague-Dawley rats were exposed to a 900 MHz, 1 mW/cm(2) EMF or sham (unexposed) for 14 or 28 days (3h per day). The specific energy absorption rate (SAR) varied between 0.016 (whole body) and 2 W/kg (locally in the head). In addition, the Morris water maze test was used to examine spatial memory performance determination. Morphological changes were investigated by examining ultrastructural changes in the hippocampus and cortex, and the Evans Blue assay was used to assess blood brain barrier (BBB) damage. Immunostaining was performed to identify heme oxygenase-1 (HO-1)-positive neurons and albumin extravasation detection. Western blot was used to determine HO-1 expression, phosphorylated ERK expression and the upstream mediator, mkp-1 expression. We found that the frequency of crossing platforms and the percentage of time spent in the target quadrant were lower in rats exposed to EMF for 28 days than in rats exposed to EMF for 14 days and unexposed rats. Moreover, 28 days of EMF exposure induced cellular edema and neuronal cell organelle degeneration in the rat. In addition, damaged BBB permeability, which resulted in albumin and HO-1 extravasation were observed in the hippocampus and cortex. Thus, for the first time, we found that EMF exposure for 28 days induced the expression of mkp-1, resulting in ERK dephosphorylation. Taken together, these results demonstrated that exposure to 900 MHz EMF radiation for 28 days can significantly impair spatial memory and damage BBB permeability in rat by activating the mkp-1/ERK pathway.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
42
|
Lu Y, He M, Zhang Y, Xu S, Zhang L, He Y, Chen C, Liu C, Pi H, Yu Z, Zhou Z. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields. PLoS One 2014; 9:e108318. [PMID: 25275372 PMCID: PMC4183530 DOI: 10.1371/journal.pone.0108318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022] Open
Abstract
Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.
Collapse
Affiliation(s)
- Yonghui Lu
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Yang Zhang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shangcheng Xu
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhai Chen
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Occupational Health, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells. Sci Rep 2014; 4:5103. [PMID: 24869783 PMCID: PMC4037711 DOI: 10.1038/srep05103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/09/2014] [Indexed: 01/31/2023] Open
Abstract
A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.
Collapse
|
44
|
Ma Q, Deng P, Zhu G, Liu C, Zhang L, Zhou Z, Luo X, Li M, Zhong M, Yu Z, Chen C, Zhang Y. Extremely low-frequency electromagnetic fields affect transcript levels of neuronal differentiation-related genes in embryonic neural stem cells. PLoS One 2014; 9:e90041. [PMID: 24595264 PMCID: PMC3940726 DOI: 10.1371/journal.pone.0090041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Previous studies have reported that extremely low-frequency electromagnetic fields (ELF-EMF) can affect the processes of brain development, but the underlying mechanism is largely unknown. The proliferation and differentiation of embryonic neural stem cells (eNSCs) is essential for brain development during the gestation period. To date, there is no report about the effects of ELF-EMF on eNSCs. In this paper, we studied the effects of ELF-EMF on the proliferation and differentiation of eNSCs. Primary cultured eNSCs were treated with 50 Hz ELF-EMF; various magnetic intensities and exposure times were applied. Our data showed that there was no significant change in cell proliferation, which was evaluated by cell viability (CCK-8 assay), DNA synthesis (Edu incorporation), average diameter of neurospheres, cell cycle distribution (flow cytometry) and transcript levels of cell cycle related genes (P53, P21 and GADD45 detected by real-time PCR). When eNSCs were induced to differentiation, real-time PCR results showed a down-regulation of Sox2 and up-regulation of Math1, Math3, Ngn1 and Tuj1 mRNA levels after 50 Hz ELF-EMF exposure (2 mT for 3 days), but the percentages of neurons (Tuj1 positive cells) and astrocytes (GFAP positive cells) were not altered when detected by immunofluorescence assay. Although cell proliferation and the percentages of neurons and astrocytes differentiated from eNSCs were not affected by 50 Hz ELF-EMF, the expression of genes regulating neuronal differentiation was altered. In conclusion, our results support that 50 Hz ELF-EMF induce molecular changes during eNSCs differentiation, which might be compensated by post-transcriptional mechanisms to support cellular homeostasis.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Chuan Liu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhou Zhou
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Xue Luo
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Min Li
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Min Zhong
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
- * E-mail: (CC); (YZ)
| | - Yanwen Zhang
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing, People's Republic of China
- * E-mail: (CC); (YZ)
| |
Collapse
|