1
|
Włodarski A, Szymczak-Pajor I, Kasznicki J, Antanaviciute EM, Szymańska B, Śliwińska A. Dysregulated miR-21/SOD3, but Not miR-30b/CAT, Profile in Elderly Patients with Carbohydrate Metabolism Disorders: A Link to Oxidative Stress and Metabolic Dysfunction. Int J Mol Sci 2025; 26:4127. [PMID: 40362367 PMCID: PMC12071572 DOI: 10.3390/ijms26094127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrate metabolism disorders (CMDs), including prediabetes and type 2 diabetes mellitus (T2DM), are increasingly prevalent in the aging population. Oxidative stress (OxS) plays a pivotal role in CMD pathogenesis, with extracellular superoxide dismutase (SOD3) and catalase (CAT) serving as critical antioxidant defenses. Additionally, microRNAs (miR-21 and miR-30b) regulate the oxidative and inflammatory pathways, yet their roles in elderly CMD patients remain unclear. This study evaluated miR-21 and miR-30b expression alongside SOD3 and CAT plasma levels in individuals aged ≥ 65 years (n = 126) categorized into control (n = 38), prediabetes (n = 37), and T2DM (n = 51) groups. Quantitative PCR assessed miRNA expression, while ELISA measured the enzyme levels. SOD3 levels were significantly reduced in CMDs, particularly in T2DM, whereas miR-21 was upregulated. A negative correlation between SOD3 and miR-21 was strongest in T2DM, suggesting a regulatory interplay. Neither CAT levels nor miR-30b expression differed among groups. Logistic regression indicated SOD3 as a protective biomarker, with each 1 ng/mL increase reducing the CMD risk by ~5-6%. The ROC analysis supported SOD3's diagnostic potential, while miR-21 showed a modest association. These findings highlight SOD3 downregulation and miR-21 upregulation as potential contributors to CMD progression in elderly patients, warranting further research into their mechanistic roles and therapeutic potential.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Egle Morta Antanaviciute
- Centre for Cellular Microenvironments, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bożena Szymańska
- CoreLab, Central Scientific Laboratory of the Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| |
Collapse
|
2
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 PMCID: PMC11539659 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
3
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
4
|
Kura B, Pavelkova P, Kalocayova B, Pobijakova M, Slezak J. MicroRNAs as Regulators of Radiation-Induced Oxidative Stress. Curr Issues Mol Biol 2024; 46:7097-7113. [PMID: 39057064 PMCID: PMC11276491 DOI: 10.3390/cimb46070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Patricia Pavelkova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Bory Hospital–Penta Hospitals, 841 03 Bratislava, Slovakia;
- Radiological Science, Faculty of Nursing and Medical Professional Studies, Slovak Medical University, 831 01 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| |
Collapse
|
5
|
Zhang Z, Gu Q, Chen L, Yuan D, Gu X, Qian H, Xie P, Liu Q, Hu Z. Selective microRNA expression of exosomes from retinal pigment epithelial cells by oxidative stress. Vision Res 2024; 220:108388. [PMID: 38593635 DOI: 10.1016/j.visres.2024.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The function of exosomal miRNAs (miRs) in retinal degeneration is largely unclear. We were aimed to investigate the functions of exosomes as well as their miRs derived from retinal pigment epithelial (RPE) cells following exposure to oxidative stress (OS). After the OS by lipopolysaccharide and rotenone on RPE cells, interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) were upregulated, along with the decreased mitochondrial membrane potential and upregulated oxidative damage marker 8-OH-dG in RPE cells. RPE-derived exosomes were then isolated, identified, injected into the subretinal space in mice. After subretinal injection, RPE-exosomes after OS not only induced higher ROS level and apoptotic retinal cells, but also elevated IL-1β, IL-6 alongside TNF-α expressions among retina/RPE/choroidal complex. Next, miRs inside the exosomes were sequenced by the next generation sequencing (NGS) technology. NGS revealed that certain miRs were abundant in exosomes, while others were selectively kept by RPE cells. Further, downregulated miRs, like miR-125b-5p, miR-125a-5p, alongside miR-128-3p, and upregulated miR, such as miR-7-5p were validated byRT-qPCR. Finally, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to find the possible target genes of those selective exosomal miRs. Our results proved that the RPE-derived exosomes after OS selectively express certain miRs, providing novel insights into the pathogenesis of age-related macular degeneration (AMD) in future.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Lu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Dongqing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Xunyi Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| |
Collapse
|
6
|
Rasheed Z. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. Int J Health Sci (Qassim) 2024; 18:1-6. [PMID: 38455600 PMCID: PMC10915913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Affiliation(s)
- Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
7
|
Pérez-Carrillo L, Giménez-Escamilla I, García-Manzanares M, Triviño JC, Feijóo-Bandín S, Aragón-Herrera A, Lago F, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Altered MicroRNA Maturation in Ischemic Hearts: Implication of Hypoxia on XPO5 and DICER1 Dysregulation and RedoximiR State. Antioxidants (Basel) 2023; 12:1337. [PMID: 37507877 PMCID: PMC10376795 DOI: 10.3390/antiox12071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María García-Manzanares
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Medicine and Animal Surgery, Veterinary School, CEU Cardenal Herrera University, C/Lluís Vives, 1, 46115 Alfara del Patriarca, Spain
| | | | - Sandra Feijóo-Bandín
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Francisca Lago
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Tr.ª da Choupana, 15706 Santiago de Compostela, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
8
|
Mini- αA Upregulates the miR-155-5p Target Gene CDK2 and Plays an Antiapoptotic Role in Retinal Pigment Epithelial Cells during Oxidative Stress. J Ophthalmol 2023; 2023:6713094. [PMID: 36824443 PMCID: PMC9943629 DOI: 10.1155/2023/6713094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of serious vision loss in the elderly. Regulating microRNA (miRNA) gene expression offers exciting new avenues for treating AMD. This study aimed to investigate whether miRNAs and their target genes play an antiapoptotic role during oxidative stress-induced apoptosis of retinal pigment epithelial (RPE) cells via mini-αA. Methods ARPE-19 cells were treated with 3.5 mM NaIO3 for 48 h to establish a retinal degeneration model. Cells were treated with mini-αA (10, 15, and 20 μM) for 4 h. miR-155-5p was knocked down and overexpressed. Cell viability and apoptosis were measured using the Cell Counting Kit-8 assay and flow cytometry, respectively. The reactive oxygen species level was detected by flow cytometry. miR-155-5p target genes were predicted via bioinformatics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed for miR-155-5p target genes. A quantitative real-time polymerase chain reaction was performed to detect miRNAs and cell cycle-related target genes. Western blotting was performed to measure the levels of apoptotic pathway genes encoding Bcl-2, Bax, cleaved caspase-3, and cyclin-dependent kinase 2 (CDK2). Dual-luciferase reporter gene assay was performed to verify the targeted binding relationship between miR-155-5p and CDK2. Results NaIO3 can induce oxidative damage and promote apoptosis. Conversely, mini-αA had inhibitory effects and could reverse the oxidative damage and apoptosis triggered by NaIO3 in the retinal degeneration model. The expression of miR-155-5p was upregulated in cells treated with NaIO3 and was downregulated after mini-αA treatment. Furthermore, miR-155-5p can target the following cell cycle-related and proliferation-related genes: CDK2, CDK4, CCND1, and CCND2. Moreover, our study indicated that miR-155-5p was involved in the antioxidative damage and antiapoptotic effects of mini-αA via CDK2 regulation. Conclusions miR-155-5p promotes the antioxidative damage and antiapoptotic effects of mini-αA during oxidative stress-induced apoptosis of RPE cells via CDK2 regulation. This study provides a new therapeutic target for AMD.
Collapse
|
9
|
Andrade FEC, Correia-Silva RD, Covre JL, Lice I, Gomes JÁP, Gil CD. Effects of galectin-3 protein on UVA-induced damage in retinal pigment epithelial cells. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:21-32. [PMID: 36036336 DOI: 10.1007/s43630-022-00294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023]
Abstract
Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.
Collapse
Affiliation(s)
- Frans E C Andrade
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - Joyce L Covre
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Izabella Lice
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil
| | - José Álvaro P Gomes
- Department of Ophthalmology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04023-062, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil.
| |
Collapse
|
10
|
Lin L, Chen X, Sun X, Xiao B, Li J, Liu J, Li G. MiR-125b-5p is targeted by curcumin to regulate the cellular antioxidant capacity. Free Radic Res 2022; 56:640-650. [PMID: 36583645 DOI: 10.1080/10715762.2022.2162393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a natural polyphenolic food supplement and the principal curcuminoid in turmeric, curcumin shows antioxidant, anti-inflammatory, and antitumor activities. However, its specific functional mechanism remains unclear. Our preliminary study indicated that miR-125b-5p was downregulated by a curcumin extract. This study aimed to determine whether miR-125b-5p is involved in the antioxidant regulation of curcumin. The results showed that miR-125b-5p overexpression had a pro-oxidant effect by reducing the cellular antioxidant capacity, as well as decreasing the activities of catalase (CAT) and superoxide dismutase (SOD) in the normal liver cell line LO2. However, miR-125b-5p repression significantly increased the cellular antioxidant capacity and enhanced the activities of CAT and SOD. Further investigation demonstrated that the cellular antioxidant capacity induced by curcumin extract was inhibited by miR-125b-5p overexpression. Thus, curcumin may exhibit antioxidant effects by repressing miR-125b-5p expression, which provides new insights into the molecular antioxidant mechanism of curcumin and other functional food components.
Collapse
Affiliation(s)
- Lingli Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xi Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xiaoting Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Baoping Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| |
Collapse
|
11
|
Tarazón E, Pérez-Carrillo L, Giménez-Escamilla I, Ramos-Castellanos P, Martínez-Dolz L, Portolés M, Roselló-Lletí E. Relationships of Telomere Homeostasis with Oxidative Stress and Cardiac Dysfunction in Human Ischaemic Hearts. Antioxidants (Basel) 2021; 10:antiox10111750. [PMID: 34829621 PMCID: PMC8615212 DOI: 10.3390/antiox10111750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Although the roles of telomeres and oxidative stress in ischaemic cardiomyopathy (ICM) are known, mechanisms of telomere homeostasis and their relationship with oxidative stress are incompletely understood. We performed two RNA-seq analyses (mRNA n = 23; ncRNA n = 30) and protein validation on left ventricles of explanted hearts from ICM and control subjects. We observed dysregulation of the shelterin and cohesin complexes, which was related to an increase in the response to cellular oxidative stress. Moreover, we found alterations at mRNA level in the mechanisms of telomeric DNA repair. Specifically, increased RAD51D mRNA levels were correlated with left ventricular diameters. RAD51D protein levels were unaltered, however, and were inversely corelated with the miR-103a-3p upregulation. We also observed the overexpression of lncRNAs (TERRA and GUARDIN) involved in telomere protection in response to stress and alterations in their regulatory molecules. Expression of the TERRA transcription factor ATF7 was correlated with superoxide dismutase 1 expression and left ventricular diameters. The levels of GUARDIN and its transcription factor FOSL2 were correlated with those of catalase. Therefore, we showed specific alterations in the mechanisms of telomeric DNA repair and protection, and these alterations are related to an increase in the response mechanisms to oxidative stress and cardiac dysfunction in ICM.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| | - Lorena Pérez-Carrillo
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Isaac Giménez-Escamilla
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Pablo Ramos-Castellanos
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), 46026 Valencia, Spain; (L.P.-C.); (I.G.-E.); (P.R.-C.); (L.M.-D.); (M.P.)
- CIBERCV, Institute of Health Carlos III, C/Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (E.T.); (E.R.-L.); Tel.: +34-96-124-66-44 (E.T. & E.R.-L.)
| |
Collapse
|
12
|
Sobczak M, Strachowska M, Gronkowska K, Karwaciak I, Pułaski Ł, Robaszkiewicz A. LSD1 Facilitates Pro-Inflammatory Polarization of Macrophages by Repressing Catalase. Cells 2021; 10:cells10092465. [PMID: 34572113 PMCID: PMC8469135 DOI: 10.3390/cells10092465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
The increased level of hydrogen peroxide accompanies some modes of macrophage specification and is linked to ROS-based antimicrobial activity of these phagocytes. In this study, we show that activation of toll-like receptors with bacterial components such as LPS is accompanied by the decline in transcription of hydrogen peroxide decomposing enzyme-catalase, suppression of which facilitates the polarization of human macrophages towards the pro-inflammatory phenotype. The chromatin remodeling at the CAT promoter involves LSD1 and HDAC1, but activity of the first enzyme defines abundance of the two proteins on chromatin, histone acetylation status and the CAT transcription. LSD1 inhibition prior to macrophage activation with LPS prevents CAT repression by enhancing the LSD1 and interfering with the HDAC1 recruitment to the gene promoter. The maintenance of catalase level with LSD1 inhibitors during M1 polarization considerably limits LPS-triggered expression of some pro-inflammatory cytokines and markers such as IL1β, TNFα, COX2, CD14, TLR2, and IFNAR, but the effect of LSD1 inhibitors is lost upon catalase deficiency. Summarizing, activity of LSD1 allows for the CAT repression in LPS stimulated macrophages, which negatively controls expression of some key pro-inflammatory markers. LSD1 inhibitors can be considered as possible immunosuppressive drugs capable of limiting macrophage M1 specialization.
Collapse
Affiliation(s)
- Maciej Sobczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Magdalena Strachowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; (I.K.); (Ł.P.)
| | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland; (I.K.); (Ł.P.)
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.S.); (M.S.); (K.G.)
- Correspondence: ; Tel.: +48-42-6354144
| |
Collapse
|
13
|
Galasso M, Gambino S, Romanelli MG, Donadelli M, Scupoli MT. Browsing the oldest antioxidant enzyme: catalase and its multiple regulation in cancer. Free Radic Biol Med 2021; 172:264-272. [PMID: 34129927 DOI: 10.1016/j.freeradbiomed.2021.06.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023]
Abstract
Aerobic organisms possess numerous antioxidant enzymatic families, including catalases, superoxide dismutases (SODs), peroxiredoxins (PRDXs), and glutathione peroxidases (GPXs), which work cooperatively to protect cells from an excess of reactive oxygen species (ROS) derived from endogenous metabolism or external microenvironment. Catalase, as well as other antioxidant enzymes, plays an important dichotomous role in cancer. Therefore, therapies aimed at either reverting the increased or further escalating catalase levels could be effective, depending on the metabolic landscape and on the redox status of cancer cells. This dichotomous role of catalase in cancers highlights the importance to deepen comprehensively the role and the regulation of this crucial antioxidant enzyme. The present review highlights the role of catalase in cancer and provides a comprehensive description of the molecular mechanisms associated with the multiple levels of catalase regulation.
Collapse
Affiliation(s)
- Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Simona Gambino
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Research Center LURM -Interdepartmental Laboratory of Medical Research, University of Verona, Verona, Italy.
| |
Collapse
|
14
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
15
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Wang L, Zhang Y, Zhang B, Zhong H, Lu Y, Zhang H. Candidate gene screening for lipid deposition using combined transcriptomic and proteomic data from Nanyang black pigs. BMC Genomics 2021; 22:441. [PMID: 34118873 PMCID: PMC8201413 DOI: 10.1186/s12864-021-07764-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background Lower selection intensities in indigenous breeds of Chinese pig have resulted in obvious genetic and phenotypic divergence. One such breed, the Nanyang black pig, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model in which to investigate lipid position trait mechanisms in pigs. An understanding of lipid deposition in pigs might improve pig meat traits in future breeding and promote the selection progress of pigs through modern molecular breeding techniques. Here, transcriptome and tandem mass tag-based quantitative proteome (TMT)-based proteome analyses were carried out using longissimus dorsi (LD) tissues from individual Nanyang black pigs that showed high levels of genetic variation. Results A large population of Nanyang black pigs was phenotyped using multi-production trait indexes, and six pigs were selected and divided into relatively high and low lipid deposition groups. The combined transcriptomic and proteomic data identified 15 candidate genes that determine lipid deposition genetic divergence. Among them, FASN, CAT, and SLC25A20 were the main causal candidate genes. The other genes could be divided into lipid deposition-related genes (BDH2, FASN, CAT, DHCR24, ACACA, GK, SQLE, ACSL4, and SCD), PPARA-centered fat metabolism regulatory factors (PPARA, UCP3), transcription or translation regulators (SLC25A20, PDK4, CEBPA), as well as integrin, structural proteins, and signal transduction-related genes (EGFR). Conclusions This multi-omics data set has provided a valuable resource for future analysis of lipid deposition traits, which might improve pig meat traits in future breeding and promote the selection progress in pigs, especially in Nanyang black pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07764-2.
Collapse
Affiliation(s)
- Liyuan Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China.,National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Yunfeng Lu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China.
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
17
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
18
|
Intartaglia D, Giamundo G, Conte I. The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Front Cell Dev Biol 2021; 8:589985. [PMID: 33520981 PMCID: PMC7844312 DOI: 10.3389/fcell.2020.589985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Biology, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Fuchs HR, Meister R, Lotke R, Framme C. The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells. Exp Eye Res 2020; 201:108258. [PMID: 32980316 DOI: 10.1016/j.exer.2020.108258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023]
Abstract
The transforming growth factor-beta (TGFB) plays an essential role in the pathogenesis of some ophthalmologic diseases, including neovascular age-related macular degeneration (nAMD) and proliferative vitreoretinopathy (PVR). TGFB activates the transcription factors SMAD2 and SMAD3 via the TGFB receptor, which together activate several genes, including VEGFA. TGFB treated ARPE-19 cells show an increased proliferation rate and undergo epithelial to mesenchymal transition (EMT). Since microRNAs (miRNAs) are capable of inhibiting the translation of multiple genes, we screened for miRNAs that regulate the TGFB signalling pathways at multiple levels. In this study, we focused on two miRNAs, miR-302d and miR-93, which inhibit TGFB signalling pathway and therefore TGFB-induced EMT transition as well as VEGFA secretion from ARPE-19 cells. Furthermore, we could show that both miRNAs can retransform TGFB-stimulated mesenchymal ARPE-19 cells towards the morphological epithelial-like state. Taken together, transient overexpression of these miRNAs in RPE cells might be a promising approach for further translational strategies.
Collapse
Affiliation(s)
- Heiko R Fuchs
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany.
| | - Roland Meister
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Rishikesh Lotke
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| | - Carsten Framme
- Institute of Experimental Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
20
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
21
|
Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020; 36:101607. [PMID: 32593128 PMCID: PMC7322687 DOI: 10.1016/j.redox.2020.101607] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that do not encode for proteins and play key roles in the regulation of gene expression. miRNAs are involved in a comprehensive range of biological processes such as cell cycle control, apoptosis, and several developmental and physiological processes. Oxidative stress can affect the expression levels of multiple miRNAs and, conversely, miRNAs may regulate the expression of redox sensors, alter critical components of the cellular antioxidants, interact with the proteasome, and affect DNA repair systems. The number of publications identifying redox-sensitive miRNAs has increased significantly over the last few years, and some miRNA targets such as Nrf2, SIRT1 and NF-κB have been identified. The complex interplay between miRNAs and ROS is discussed together with their role in myocardial ischemia-reperfusion injury and the potential use of circulating miRNAs as biomarkers of myocardial infarction. Detailed knowledge of redox-sensitive miRNAs is needed to be able to effectively use individual compounds or sets of miRNA-modulating compounds to improve the health-related outcomes associated with different diseases.
Collapse
Affiliation(s)
- Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda Diagonal 643, 08028, Barcelona, Spain.
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA; Department of Physiology, Neurobiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
22
|
Zhao C, Dang Z, Sun J, Yuan S, Xie L. Up-regulation of microRNA-30b/30d cluster represses hepatocyte apoptosis in mice with fulminant hepatic failure by inhibiting CEACAM1. IUBMB Life 2020; 72:1349-1363. [PMID: 32101367 DOI: 10.1002/iub.2256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Recently, impacts of microRNAs have been unraveled in human diseases, and we aimed to confirm the role of miR-30b/30d in fulminant hepatic failure (FHF). Expression of miR-30b/30d and CEACAM1 in serum of FHF patients and healthy people was measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Mice FHF models were established by injection of D-Galn and lipopolysaccharide, and were treated with miR-30b/30d mimics. Oxidative stress, liver injury, and inflammatory reaction in mouse liver tissues were measured using oxidative stress-related factor kits, hematoxylin-eosin staining and enzyme-linked immunosorbent assay, respectively. Moreover, cell cycle distribution and apoptosis of hepatocytes of mice were determined by flow cytometry, and the target relation between miR-30b/30d and CEACAM1 was confirmed by bioinformatic method and dual luciferase reporter gene assay. MiR-30b/30d expression was positively, and CEACAM1 expression was negatively related to prognosis of FHF patients. Up-regulation of miR-30b/30d attenuated oxidative stress, liver injury, and inflammatory reaction, and improved survival rate of FHF mice. Furthermore, elevated miR-30b/30d ameliorated apoptosis and cell cycle arrest of hepatocytes of FHF mice. CEACAM1 was a target gene of miR-30b/30d. This study highlights that up-regulated miR-30b/30d attenuates the progression of FHF by targeting CEACAM1, which may be helpful to FHF treatment.
Collapse
Affiliation(s)
- Changpu Zhao
- Internal Medicine Department, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Hepatobiliary Spleen and Stomach Department, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junbo Sun
- Personnel Office, Henan Hospital of Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuaiqiang Yuan
- Department of Digestion, Affiliated Hospital of Henan Academy of Chinese Medicine, Zhengzhou, China
| | - Li Xie
- Internal Medicine Department, Henan Electric Power Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Li H, Huang X, Zhan A. Stress Memory of Recurrent Environmental Challenges in Marine Invasive Species: Ciona robusta as a Case Study. Front Physiol 2020; 11:94. [PMID: 32116797 PMCID: PMC7031352 DOI: 10.3389/fphys.2020.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluctuating environmental changes impose tremendous stresses on sessile organisms in marine ecosystems, in turn, organisms develop complex response mechanisms to keep adaptive homeostasis for survival. Physiological plasticity is one of the primary lines of defense against environmental challenges, and such defense often relies on the antioxidant defense system (ADS). Hence, it is imperative to understand response mechanisms of ADS to fluctuating environments. Invasive species provide excellent models to study how species cope with environmental stresses, as invasive species encounter sudden, and often recurrent, extensive environmental challenges during the whole invasion process. Here, we studied the roles of ADS on rapid response to recurrent cold challenges in a highly invasive tunicate (Ciona robusta) by simulating cold stresses during its invasion process. We assessed antioxidative indicators, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), as well as transcriptional changes of ADS-related genes to reveal the physiological plasticity under recurring cold stresses. Our results demonstrated that physiological homeostasis relied on the resilience of ADS, which further accordingly tuned antioxidant activity and gene expression to changing environments. The initial cold stress remodeled baselines of ADS to promote the development of stress memory, and subsequent stress memory largely decreased the physiological response to recurrent environmental challenges. All results here suggest that C. robusta could develop stress memory to maintain physiological homeostasis in changing or harsh environments. The results obtained in this study provide new insights into the mechanism of rapid physiological adaption during biological invasions.
Collapse
Affiliation(s)
- Hanxi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuena Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
miR302a and 122 are deregulated in small extracellular vesicles from ARPE-19 cells cultured with H 2O 2. Sci Rep 2019; 9:17954. [PMID: 31784665 PMCID: PMC6884596 DOI: 10.1038/s41598-019-54373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Age related macular degeneration (AMD) is a common retina-related disease leading to blindness. Little is known on the origin of the disease, but it is well documented that oxidative stress generated in the retinal pigment epithelium and choroid neovascularization are closely involved. The study of circulating miRNAs is opening new possibilities in terms of diagnosis and therapeutics. miRNAs can travel associated to lipoproteins or inside small Extracellular Vesicles (sEVs). A number of reports indicate a significant deregulation of circulating miRNAs in AMD and experimental approaches, but it is unclear whether sEVs present a significant miRNA cargo. The present work studies miRNA expression changes in sEVs released from ARPE-19 cells under oxidative conditions (i.e. hydrogen peroxide, H2O2). H2O2 increased sEVs release from ARPE-19 cells. Moreover, 218 miRNAs could be detected in control and H2O2 induced-sEVs. Interestingly, only two of them (hsa-miR-302a and hsa-miR-122) were significantly under-expressed in H2O2-induced sEVs. Results herein suggest that the down regulation of miRNAs 302a and 122 might be related with previous studies showing sEVs-induced neovascularization after oxidative challenge in ARPE-19 cells.
Collapse
|
25
|
Kalinina EV, Ivanova-Radkevich VI, Chernov NN. Role of MicroRNAs in the Regulation of Redox-Dependent Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:1233-1246. [DOI: 10.1134/s0006297919110026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
27
|
E6 Oncoproteins from High-Risk Human Papillomavirus Induce Mitochondrial Metabolism in a Head and Neck Squamous Cell Carcinoma Model. Biomolecules 2019; 9:biom9080351. [PMID: 31398842 PMCID: PMC6722992 DOI: 10.3390/biom9080351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) cells that are positive for human papillomavirus (HPV+) favor mitochondrial metabolism rather than glucose metabolism. However, the involvement of mitochondrial metabolism in HNSCC HPV+ cells is still unknown. The aim of this work was to evaluate the role of E6 oncoproteins from HPV16 and HPV18 in the mitochondrial metabolism in an HNSCC model. We found that E6 from both viral types abates the phosphorylation of protein kinase B-serine 473 (pAkt), which is associated with a shift in mitochondrial metabolism. E6 oncoproteins increased the levels of protein subunits of mitochondrial complexes (I to IV), as well as the ATP synthase and the protein levels of the voltage dependent anion channel (VDAC). Although E6 proteins increased the basal and leak respiration, the ATP-linked respiration was not affected, which resulted in mitochondrial decoupling. This increase in leak respiration was associated to the induction of oxidative stress (OS) in cells expressing E6, as it was observed by the fall in the glutathione/glutathione disulfide (GSH/GSSG) rate and the increase in reactive oxygen species (ROS), carbonylated proteins, and DNA damage. Taken together, our results suggest that E6 oncoproteins from HPV16 and HPV18 are inducers of mitochondrial metabolism.
Collapse
|
28
|
The microRNA in ventricular remodeling: the miR-30 family. Biosci Rep 2019; 39:BSR20190788. [PMID: 31320543 PMCID: PMC6680373 DOI: 10.1042/bsr20190788] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Ventricular remodeling (VR) is a complex pathological process of cardiomyocyte apoptosis, cardiac hypertrophy, and myocardial fibrosis, which is often caused by various cardiovascular diseases (CVDs) such as hypertension, acute myocardial infarction, heart failure (HF), etc. It is also an independent risk factor for a variety of CVDs, which will eventually to damage the heart function, promote cardiovascular events, and lead to an increase in mortality. MicroRNAs (miRNAs) can participate in a variety of CVDs through post-transcriptional regulation of target gene proteins. Among them, microRNA-30 (miR-30) is one of the most abundant miRNAs in the heart. In recent years, the study found that the miR-30 family can participate in VR through a variety of mechanisms, including autophagy, apoptosis, oxidative stress, and inflammation. VR is commonly found in ischemic heart disease (IHD), hypertensive heart disease (HHD), diabetic cardiomyopathy (DCM), antineoplastic drug cardiotoxicity (CTX), and other CVDs. Therefore, we will review the relevant mechanisms of the miR-30 in VR induced by various diseases.
Collapse
|
29
|
Yaribeygi H, Atkin SL, Sahebkar A. Potential roles of microRNAs in redox state: An update. J Cell Biochem 2019; 120:1679-1684. [PMID: 30160790 DOI: 10.1002/jcb.27475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
Oxidative stress is an important underlying cause of many disease processes and may arise due to either increasing free radical generation or decreasing antioxidant defense systems. MicroRNAs (miRs) are 22-nucleotide non-coding RNAs that may regulate many intracellular processes; and, more recently, they have been implicated in the pathways for free radical generation leading to oxidative stress. However, conversely, there is evidence that miRs may have an antioxidant effect, thus miR expression may be critical for the maintenance of the normal redox state and cell homeostasis. This review addresses these discrepant and opposing miR actions on how they may modify and regulate the oxidative balance.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Malik SA, Khole S, Mittal SPK, Urmode T, Kusurkar R, Ghaskadbi SS. Differential response of antioxidant defense in HepG2 cells on exposure of Livotrit ®, in a concentration dependent manner. J Tradit Complement Med 2019; 9:38-44. [PMID: 30671364 PMCID: PMC6335567 DOI: 10.1016/j.jtcme.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 01/24/2023] Open
Abstract
Livotrit®, a polyherbal formulation (Zandu, India) is commonly prescribed for liver health. The present study was undertaken to elucidate possible mechanism of antioxidant potential of Livotrit®. Livotrit® exhibited concentration dependent radical scavenging activity, inhibition of lipid peroxidation as well as activation and gene expression of antioxidant enzymes. Interestingly, lower concentration of Livotrit® (0.05%) significantly increased activities and gene expression of catalase, Glutathione reductase (GR) and Gluthathione peroxidase (GPx), while higher concentration of Livotrit® (0.5%) significantly increased antioxidant enzyme Heme-oxygenase 1(HO-1) and not catalase (CAT), GR and GPx. Transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2) required for expression of catalase, GR, GPx and HO-1 was efficiently translocated into the nucleus at both concentrations. Inspite of this, concentration dependent activation of these enzymes was found to be mediated through miRNAs involved in regulation of their gene expression.
Collapse
Affiliation(s)
- S A Malik
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S Khole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S P K Mittal
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - T Urmode
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - R Kusurkar
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
32
|
Investigating Nrf2-associated non-coding RNAs in the hibernating ground squirrel, Ictidomys tridecemlineatus. J Therm Biol 2018; 75:38-44. [PMID: 30017050 DOI: 10.1016/j.jtherbio.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/27/2018] [Indexed: 12/30/2022]
Abstract
Small mammals hibernate to deal with environmental conditions associated with the winter season. Numerous physiological changes occur during a typical torpor-arousal cycle including variations in heart rate and blood flow. Such cycle possesses characteristics of ischemia-reperfusion cycles that can lead to oxidative stress in non-hibernating models. Interestingly, hibernators can cope with these conditions and the complete molecular picture underlying this adaptation is not fully understood. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), can impact expression and activity of various targets and have been associated with oxidative stress response. This work was aimed at assessing expression of oxidative stress-associated non-coding RNAs and their targets during hibernation. Measurement of miRNAs miR-93, miR-141, miR-144 and miR-200a, lncRNAs Mhrt and ODRUL, as well as of several targets associated with the Nrf2 signaling cascade including Keap1 was conducted using qRT-PCR in hibernating hearts of the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. Elevated Nrf2 levels and reduced miR-200a levels were notably observed in hibernating versus euthermic samples. Functional analysis of targets predicted to be regulated by the investigated miRNAs was performed and revealed transcriptional regulation and phosphorylation as relevant processes. These results highlight a potential interplay between non-coding RNAs and targets associated with oxidative stress response during hibernation and further strengthen the underlying importance of non-coding RNAs in cold torpor.
Collapse
|
33
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
34
|
Askou AL, Alsing S, Holmgaard A, Bek T, Corydon TJ. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy. Acta Ophthalmol 2018; 96:9-23. [PMID: 28271607 DOI: 10.1111/aos.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD.
Collapse
Affiliation(s)
| | - Sidsel Alsing
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | | | - Toke Bek
- Department of Ophthalmology; Aarhus University Hospital; Aarhus C Denmark
| | | |
Collapse
|
35
|
Evaluation of Potential Mechanisms Controlling the Catalase Expression in Breast Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018. [PMID: 29535798 PMCID: PMC5829333 DOI: 10.1155/2018/5351967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of cancer cell resistance against prooxidant drugs limits its potential clinical use. MCF-7 breast cancer cells chronically exposed to ascorbate/menadione became resistant (Resox cells) by increasing mainly catalase activity. Since catalase appears as an anticancer target, the elucidation of mechanisms regulating its expression is an important issue. In MCF-7 and Resox cells, karyotype analysis showed that chromosome 11 is not altered compared to healthy mammary epithelial cells. The genomic gain of catalase locus observed in MCF-7 and Resox cells cannot explain the differential catalase expression. Since ROS cause DNA lesions, the activation of DNA damage signaling pathways may influence catalase expression. However, none of the related proteins (i.e., p53, ChK) was activated in Resox cells compared to MCF-7. The c-abl kinase may lead to catalase protein degradation via posttranslational modifications, but neither ubiquitination nor phosphorylation of catalase was detected after catalase immunoprecipitation. Catalase mRNA levels did not decrease after actinomycin D treatment in both cell lines. DNMT inhibitor (5-aza-2′-deoxycytidine) increased catalase protein level in MCF-7 and its resistance to prooxidant drugs. In line with our previous report, chromatin remodeling appears as the main regulator of catalase expression in breast cancer after chronic exposure to an oxidative stress.
Collapse
|
36
|
Lan J, Huang Z, Han J, Shao J, Huang C. Redox regulation of microRNAs in cancer. Cancer Lett 2018; 418:250-259. [PMID: 29330105 DOI: 10.1016/j.canlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has long been implicated in tumorigenesis, whereas the underlying mechanisms remain largely unknown. Oxidative stress is a hallmark of cancer that involved in multiple pathophysiological processes, including the aberrant regulation of miRNAs. Compelling evidences have implied complicated interplay between reactive oxygen species (ROS) and miRNAs. Indeed, ROS induces carcinogenesis through either reducing or increasing the miRNA level, leading to the activation of oncogenes or silence of tumor suppressors, respectively. In turn, miRNAs target ROS productive genes or antioxidant responsive elements to affect cellular redox balance, which contributes to establishing a microenvironment favoring cancer cell growth and metastasis. Both miRNAs and ROS have been identified as potential biomarkers and therapeutic targets in human malignancies, and comprehensive understanding of the molecular events herein will facilitate the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jiang Lan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
37
|
Huang J, Wang Y, Wang L, Pan Y, Chen T. MicroRNA-16 inhibits hypoxia-induced vascular endothelial growth factor expression in ARPE-19 cells. Cutan Ocul Toxicol 2017; 37:228-232. [PMID: 29237295 DOI: 10.1080/15569527.2017.1416624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianfeng Huang
- Ophthalmology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yueqian Wang
- Ophthalmology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yang Pan
- Center for Disease Control and Prevention of Beijing, Beijing, China
| | - Tong Chen
- Ophthalmology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
38
|
miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget 2017; 7:15915-29. [PMID: 26895377 PMCID: PMC4941286 DOI: 10.18632/oncotarget.7432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNAs that usually cause gene silencing by translational repression or degradation of mRNAs, are implicated in DNA damage-induced stress responses. To identify senescence-associated miRNAs, we performed microarray analyses using wild-type and p53-deficient HCT116 colon carcinoma cells that following gamma-irradiation (γIR) are driven into senescence and apoptosis, respectively. Several miRNAs including miR-30e were found upregulated in a p53-dependent manner specifically in senescent cells, but not in apoptotic cells. Overexpression of miR-30e in HCT116 cells not only inhibited γIR-, etoposide- or miR-34a-induced caspase-3-like DEVDase activities and cell death, but greatly accelerated and augmented their senescent phenotype. Consistently, procaspase-3 protein, but not mRNA decreased in the presence of miR-30e, whereas expression of the cyclin-dependent kinase inhibitor p21 increased both at the mRNA and protein level. Performing luciferase reporter gene assays, we identified the 3′-UTR of the caspase-3 mRNA as a direct miR-30e target. In contrast, although miR-30e was unable to bind to the p21 mRNA, it increased expression of a luciferase construct containing the p21 promoter, suggesting that the miR-30e-mediated upregulation of p21 occurs indirectly at the transcriptional level. Interestingly, despite suppressing procaspase-3 expression, miR-30e was unable to protect RKO colon carcinoma cells from DNA damage-induced death or to induce senescence, as miR-30e completely fails to upregulate p21 in these cells. These data suggest that miR-30e functions in a cell type-dependent manner as an important molecular switch for DNA damage-induced stress responses and may thus represent a target of therapeutic value.
Collapse
|
39
|
Li M, Zauhar RJ, Grazal C, Curcio CA, DeAngelis MM, Stambolian D. RNA expression in human retina. Hum Mol Genet 2017; 26:R68-R74. [PMID: 28854577 DOI: 10.1093/hmg/ddx219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/05/2017] [Indexed: 01/07/2023] Open
Abstract
Recent Genome-wide Association Studies (GWASs) for eye diseases/traits have delivered a number of novel findings across a diverse range of diseases, including age-related macular degeneration (AMD), glaucoma and refractive error. However, despite this astonishing rate of success, the major challenge still remains to not only confirm that the genes implicated in these studies are truly the genes conferring protection from or risk of disease but also to define the functional roles these genes play in disease. Ongoing evidence is accumulating that the single nucleotide polymorphisms (SNPs) used in GWAS and fine mapping studies have causal effects through their influence on gene expression rather than affecting protein function. The biological interpretation of SNP regulatory effects for a tissue requires knowledge of the transcriptome for that tissue. We summarize the reasons to characterize the complete retinal transcriptome as well as the evidence to include an assessment of differences in regional retinal expression.
Collapse
Affiliation(s)
- Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Randy J Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Clare Grazal
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christine A Curcio
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Haque R, Iuvone PM, He L, Hur EH, Chung Choi KS, Park D, Farrell AN, Ngo A, Gokhale S, Aseem M, Kumar B. Prorenin receptor (PRR)-mediated NADPH oxidase (Nox) signaling regulates VEGF synthesis under hyperglycemic condition in ARPE-19 cells. J Recept Signal Transduct Res 2017; 37:560-568. [PMID: 28840773 DOI: 10.1080/10799893.2017.1369120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stimulation of angiotensin II (Ang II), the effector peptide of renin-angiotensin system, has been reported to increase the expression of vascular endothelial growth factor (VEGF) through the activation of the Ang II type 1 receptor (AT1R). In this study, we investigated whether hyperglycemia (HG, 33 mM glucose) in ARPE-19 cells could promote the expression of VEGF independently of Ang II through prorenin receptor (PRR), via an NADPH oxidase (Nox)-dependent mechanism. ARPE-19 cells were treated with the angiotensin converting enzyme (ACE) inhibitor perindopril to block the synthesis of Ang II. Treatment with HG induced VEGF expression in ARPE-19 cells, which was attenuated by pretreatment with the inhibitors of Nox, but not those of nitric oxide synthase, xanthine oxidase and mitochondrial O2 synthesis. In addition, Nox-derived [Formula: see text] and H2O2 signaling in the regulation of VEGF was determined by using both polyethylene glycol (PEG)-catalase (CAT) and PEG-superoxide dismutase (SOD). We demonstrated that small interfering RNA (siRNA)-mediated knockdown of PRR, Nox2 and Nox4 significantly reduced the HG-induced stimulation of VEGF. On the other hand, Nox4 overexpression significantly potentiated PRR-induced stimulation of VEGF under hyperglycemia in ARPE-19 cells. Furthermore, Nox4 was shown to be associated with enhanced activities of ERK1/2 and NF-κB (p65), indicating their involvement in PRR-induced activation of VEGF under HG in ARPE-19 cells. Our results support the hypothesis that Nox4-derived reactive oxygen species (ROS) signaling is implicated in the hyperglycemia-induced increase of VEGF expression through PRR in ARPE-19 cells. However, further work is needed to evaluate the role of PRR and Nox-s in HG-induced stimulation of VEGF in vivo.
Collapse
Affiliation(s)
- Rashidul Haque
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - P Michael Iuvone
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Li He
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Elizabeth H Hur
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Kimberly Su Chung Choi
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Daniel Park
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Annie N Farrell
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Ashley Ngo
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Samantha Gokhale
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Madiha Aseem
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| | - Bhavna Kumar
- a Department of Ophthalmology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
41
|
Ayaz L, Dinç E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress. Cutan Ocul Toxicol 2017; 37:121-126. [DOI: 10.1080/15569527.2017.1355314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lokman Ayaz
- Department of Biochemistry, School of Pharmacy, Trakya University, Edirne, Turkey
| | - Erdem Dinç
- Department of Ophthalmology, School of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
42
|
Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Kabiri M, Mahmoudi Saber M, Dorkoosh FA. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a. J Cell Biochem 2017; 118:4854-4861. [PMID: 28543858 DOI: 10.1002/jcb.26160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H2 O2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nooshin Tasharrofi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | | | - Masoud Soleimani
- Faculty of Medical Science, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Zahra-Sheila Soheili
- Faculty of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohaddeseh Mahmoudi Saber
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Faculty of Pharmacy, Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Faculty of Pharmacy, Medical Biomaterial Research Center (MBRC), Tehran University of Medical Science, No. 1462, Kargar Ave, Tehran, Iran
| |
Collapse
|
43
|
Haque R, Iuvone PM, He L, Choi KSC, Ngo A, Gokhale S, Aseem M, Park D. The MicroRNA-21 signaling pathway is involved in prorenin receptor (PRR) -induced VEGF expression in ARPE-19 cells under a hyperglycemic condition. Mol Vis 2017; 23:251-262. [PMID: 28465657 PMCID: PMC5398881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs/miRs) are involved in a large number of biological functions and diseases, such as cancer, cardiovascular diseases, and diabetes. MiR-21 has been reported to target Sprouty homolog 1 (SPRY1), SMAD7, and PTEN. In this study, we examined the underlying role of miR-21 in the regulation of prorenin receptor (PRR)-mediated induction of vascular endothelial growth factor (VEGF) expression via targeting SMAD7, SPRY1, and PTEN in a hyperglycemic condition. METHODS PRR-mediated induction of VEGF under a hyperglycemic condition (high glucose, 33mM) was studied by treating ARPE-19 cells with perindopril (10 µmol/l), which inhibits angiotensin II-mediated signaling. ARPE-19 cells exposed to normal glucose (NG, 5.5 mM) were considered as the control. To examine the role of miR-21 in the regulation of SPRY1, SMAD7, PTEN, and VEGF, ARPE-19 cells cultured in NG or high glucose were transfected with scramble negative control (Scr), a miR-21 mimic, or a miR-21 antagomir. To investigate the role of PRR and the small GTP-binding protein RAC1 in the regulation of miR-21, the expression of PRR and RAC1 was silenced by transfecting ARPE-19 cells with their corresponding siRNAs. RESULTS Compared with the NG control, high glucose significantly induced the expression of PRR, VEGF, VEGFR2, and miR-21 but significantly suppressed the expression of SPRY1, SMAD7, and PTEN at the transcript and protein levels. In contrast, silencing the expression of PRR significantly abolished the high glucose-induced expression of VEGF, VEGFR2, and miR-21. Knockdown of RAC1 significantly attenuated the high glucose-induced expression of LOX, CTGF, and miR-21, suggesting that PRR and RAC1 are involved in the CTGF/LOX-mediated regulation of miR-21. Furthermore, high glucose dramatically increased the levels of pERK (p44), hypoxia-inducible factor (HIF-1α), and VEGF. However, this effect was antagonized by the miR-21 antagomir, indicative of the involvement of high glucose-induced miR-21 in the regulation of VEGF through ERK signaling. CONCLUSIONS Our findings, for the first time, showed that the pleiotropic action of miR-21 induced the expression of pERK, HIF-1α, and VEGF in the high glucose condition by simultaneously targeting SPRY1, SMAD7, and PTEN in ARPE-19 cells. Therefore, miR-21 may serve as a potential therapeutic target for diabetes-induced retinal pathology.
Collapse
|
44
|
Olivares AM, Jelcick AS, Reinecke J, Leehy B, Haider A, Morrison MA, Cheng L, Chen DF, DeAngelis MM, Haider NB. Multimodal Regulation Orchestrates Normal and Complex Disease States in the Retina. Sci Rep 2017; 7:690. [PMID: 28386079 PMCID: PMC5429617 DOI: 10.1038/s41598-017-00788-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Collapse
Affiliation(s)
- A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - A S Jelcick
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - J Reinecke
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - B Leehy
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - A Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - L Cheng
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
45
|
Romano GL, Platania CBM, Drago F, Salomone S, Ragusa M, Barbagallo C, Di Pietro C, Purrello M, Reibaldi M, Avitabile T, Longo A, Bucolo C. Retinal and Circulating miRNAs in Age-Related Macular Degeneration: An In vivo Animal and Human Study. Front Pharmacol 2017; 8:168. [PMID: 28424619 PMCID: PMC5371655 DOI: 10.3389/fphar.2017.00168] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/14/2017] [Indexed: 01/05/2023] Open
Abstract
Age related macular degeneration (AMD) is the leading cause of blindness among people aged 50 and over. Retinal deposition of amyloid-β (Aβ) aggregates in AMD patients has suggested a potential link between AMD and Alzheimer's disease (AD). We have evaluated the differential retinal expression profile of miRNAs in a rat model of AMD elicited by Aβ. A serum profile of miRNAs in AMD patients has been also assessed using single TaqMan assay. Analysis of retina from rats intravitreally injected with Aβ revealed that miR-27a, miR-146a, and miR-155 were up-regulated in comparison to control rats. Seven miRNA (miR-9, miR-23a, miR-27a, miR-34a, miR-126, miR-146a, and miR-155) have been found to be dysregulated in serum of AMD patients in comparison to control group. Analysis of pathways has revealed that dysregulated miRNAs, both in the AMD animal model and in AMD patients, can target genes regulating pathways linked to neurodegeneration and inflammation, reinforcing the hypothesis that AMD is a protein misfolding disease similar to AD. In fact, miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 have been found to be dysregulated both in AMD and AD. In conclusion, we suggest that miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155 represent potential biomarkers and new pharmacological targets for AMD.
Collapse
Affiliation(s)
- Giovanni L Romano
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Chiara B M Platania
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| | - Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of CataniaCatania, Italy
| | - Michele Reibaldi
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Antonio Longo
- Department of Ophthalmology, School of Medicine, University of CataniaCatania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of CataniaCatania, Italy
| |
Collapse
|
46
|
Berber P, Grassmann F, Kiel C, Weber BHF. An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology. Mol Diagn Ther 2017; 21:31-43. [PMID: 27658786 PMCID: PMC5250647 DOI: 10.1007/s40291-016-0234-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries, and is the third leading cause worldwide. Emerging evidence suggests that beside environmental and genetic factors, epigenetic mechanisms, such as microRNA (miRNA) regulation of gene expression, are relevant to AMD providing an exciting new avenue for research and therapy. MiRNAs are short, non-coding RNAs thought to be imperative for coping with cellular stress. Numerous studies have analyzed miRNA dysregulation in AMD patients, although with varying outcomes. Four studies which profiled dysregulated circulating miRNAs in AMD yielded unique sets, and there is only minimal overlap in ocular miRNA profiling of AMD. Mouse models of AMD, including oxygen-induced retinopathy and laser-induced choroidal neovascularization, showed similarities to some extent with miRNA patterns in AMD. For example, miR-146a is an extensively researched miRNA thought to modulate inflammation, and was found to be upregulated in AMD mice and cellular systems, but also in human AMD retinae and vitreous humor. Similarly, mir-17, miR-125b and miR-155 were dysregulated in multiple AMD mouse models as well as in human AMD plasma or retinae. These miRNAs are thought to regulate angiogenesis, apoptosis, phagocytosis, and inflammation. A promising avenue of research is the modulation of such miRNAs, as the phenotype of AMD mice could be ameliorated with antagomirs or miRNA-mimic treatment. However, before meaningful strides can be made to develop miRNAs as a diagnostic or therapeutic tool, reproducible miRNA profiles need to be established for the various clinical outcomes of AMD.
Collapse
Affiliation(s)
- Patricia Berber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
47
|
Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0160887. [PMID: 27505139 PMCID: PMC4978424 DOI: 10.1371/journal.pone.0160887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - John B. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| |
Collapse
|
48
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs Regulate Mitochondrial Function in Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci 2015; 16:24895-917. [PMID: 26492239 PMCID: PMC4632781 DOI: 10.3390/ijms161024895] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yue Hu
- Graduate School, Tianjin University of Traditional Chinese Medicine, 312 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Hao Deng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 314 An Shan Xi Road, Nan Kai District, Tianjin 300193, China.
| |
Collapse
|
50
|
Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Radic Biol Med 2015; 87:84-97. [PMID: 26117330 DOI: 10.1016/j.freeradbiomed.2015.06.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
Abstract
Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.
Collapse
Affiliation(s)
- Christophe Glorieux
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Marcel Zamocky
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Juan Marcelo Sandoval
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Julien Verrax
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Pedro Buc Calderon
- Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium; Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile.
| |
Collapse
|