1
|
Yeh HY. Epitope mapping of recombinant Salmonella enterica serotype Heidelberg flagellar hook-associated protein by in silico and in vivo approaches. BMC Vet Res 2025; 21:54. [PMID: 39915877 PMCID: PMC11803983 DOI: 10.1186/s12917-025-04479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Salmonella is a leading cause of human acute bacterial gastroenteritis worldwide. Outbreaks of human salmonellosis have often been associated with consumption of contaminated poultry products. Various strategies have been explored to control this microorganism during poultry production and processing. Vaccination of broiler chickens is regarded as one of the effectives means to control this microorganism. The aim of the present study was to compare the epitope identification in the Salmonella enterica serotype Heidelberg FlgK protein by in silico prediction and in vivo experiment with mass spectrometry in association with immunoprecipitation proteomics. RESULTS The Salmonella serotype Heidelberg FlgK protein contains 553 amino acids with a molecular mass of 61 kDa. This protein is conserved among Salmonella serotype Heidelberg isolates. The results show that both approaches identified three common shared consensus peptide epitope sequences at the positions of 77-95, 243-255 and 358-373 in the Salmonella serotype Heidelberg FlgK protein. CONCLUSIONS These findings provide a rational for further evaluation of these shared linear epitopes in vaccine development to cover the chicken population.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, GA, 30605-2720, USA.
| |
Collapse
|
2
|
Yao T, Huang Y, Huai Z, Liu X, Liu X, Liu Y, Sun H, Pang Y. Response mechanisms to acid stress promote LF82 replication in macrophages. Front Cell Infect Microbiol 2023; 13:1255083. [PMID: 37881369 PMCID: PMC10595154 DOI: 10.3389/fcimb.2023.1255083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background Adherent-invasive E. coli (AIEC) LF82 is capable of adhering to and invading intestinal epithelial cells, as well as replicating within macrophages without inducing host cell death. Methods We compared the transcriptomics of LF82 at pH=7.5 and pH=5.8 by RNA-sequencing, and qRT-PCR verified differentially expressed genes (DEGs). The deletion mutants of DEGs in the treatment group (pH=5.8) compared to the control group (pH=7.5) were constructed by λ recombinant. The replication differences between the mutants and WT infected Raw 264.7 at 24 h.p.i were analyzed by combining LB solid plate count and confocal observation. NH4Cl and chloroquine diphosphate (CQ) were used for acid neutralization to study the effect of pH on the replication of LF82 in macrophages. Na2NO3 was added to RPMI 1640 to study the effect of nitrate on the replication of LF82 in macrophages. 0.3% solid LB was used for flagellar motility assay and Hela was used to study flagellar gene deletion mutants and WT adhesion and invasion ability. Results In this study, we found that infection with LF82 results in acidification of macrophages. Subsequent experiments demonstrated that an intracellular acidic environment is necessary for LF82 replication. Transcriptome and phenotypic analysis showed that high expression of acid shock genes and acid fitness genes promotes LF82 replication in macrophages. Further, we found that the replication of LF82 in macrophages was increased under nitrate treatment, and nitrogen metabolism genes of LF82 were upregulated in acid treatment. The replication in macrophages of ΔnarK, ΔnarXL, ΔnarP, and Δhmp were decreased. In addition, we found that the expression of flagellar genes was downregulated in acidic pH and after LF82 invading macrophages. Motility assay shows that the movement of LF82 on an acidic semisolid agar plate was limited. Further results showed that ΔfliC and ΔfliD decreased in motility, adhesion ability, and invasion of host cells, but no significant effect on replication in macrophages was observed. Conclusion In this study, we simulated the acidic environment in macrophages, combined with transcriptome technology, and explained from the genetic level that LF82 promotes replication by activating its acid shock and fitness system, enhancing nitrate utilization, and inhibiting flagellar function.
Collapse
Affiliation(s)
- Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Zimeng Huai
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaowen Liu
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
3
|
Gu M, Wang Q, Fan R, Liu S, Zhu F, Feng G, Zhang J. Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense. Molecules 2023; 28:molecules28083572. [PMID: 37110806 PMCID: PMC10146670 DOI: 10.3390/molecules28083572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents.
Collapse
Affiliation(s)
- Mengxuan Gu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Qin Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning 571533, China
| | - Shoubai Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan Key Laboratory for Biology of Tropical Specific Ornamental Plants Germplasm, School of Forestry, Hainan University, Haikou 570228, China
| | - Fadi Zhu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Jing Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| |
Collapse
|
4
|
Yue Y, Wang W, Ma Y, Song N, Jia H, Li C, Wang Q, Li H, Li B. Cooperative Regulation of Flagellar Synthesis by Two EAL-Like Proteins upon Salmonella Entry into Host Cells. Microbiol Spectr 2023; 11:e0285922. [PMID: 36749049 PMCID: PMC10100727 DOI: 10.1128/spectrum.02859-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
When Salmonella enters host cells, the synthesis of flagella is quickly turned off to escape the host immune system. In this study, we investigated the cooperative regulatory mechanism of flagellar synthesis by two EAL-like proteins, STM1344 and STM1697, in Salmonella. We found that Salmonella upregulated the expression of both STM1344 and STM1697 to various degrees upon invading host cells. Importantly, deletion of STM1697 or STM1344 led to failure of Salmonella flagellar control within host cells, suggesting that the two factors are not redundant but indispensable. STM1697 was shown to modulate Salmonella flagellar biogenesis by preventing the flagellar master protein FlhDC from recruiting RNA polymerase. However, STM1344 was identified as a bifunctional factor that inhibits RNA polymerase recruitment of FlhDC at low molar concentrations and the DNA binding activity of FlhDC at high molar concentrations. Structural analysis demonstrated that STM1344-FlhD binds more tightly than STM1697-FlhD, and size exclusion chromatography (SEC) experiments showed that STM1344 could replace STM1697 in a STM1697-FlhDC complex. Our data suggest that STM1697 might be a temporary flagellar control factor upon Salmonella entry into the host cell, while STM1344 plays a more critical role in persistent flagellar control when Salmonella organisms survive and colonize host cells for a long period of time. Our study provides a more comprehensive understanding of the complex flagellar regulatory mechanism of Salmonella based on regulation at the protein level of FlhDC. IMPORTANCE Salmonella infection kills more than 300,000 people every year. After infection, Salmonella mainly parasitizes host cells, as it prevents host cell pyroptosis by turning off the synthesis of flagellar antigen. Previous studies have determined that there are two EAL-like proteins, STM1344 and STM1697, encoded in the Salmonella genome, both of which inhibit flagellar synthesis by interacting with the flagellar master protein FlhDC. However, the expression order and simultaneous mechanism of STM1344 and STM1697 are not clear. In this study, we determined the expression profiles of the two proteins after Salmonella infection and demonstrated the cooperative mechanism of STM1344 and STM1697 interaction with FlhDC. We found that STM1344 might play a more lasting regulatory role than STM1697. Our results reveal a comprehensive flagellar control process after Salmonella entry into host cells.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yue Ma
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cuiling Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hui Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Jinan, Shandong, China
- Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, China
- Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Li P, Zong W, Zhang Z, Lv W, Ji X, Zhu D, Du X, Wang S. Effects and molecular mechanism of flagellar gene flgK on the motility, adhesion/invasion, and desiccation resistance of Cronobacter sakazakii. Food Res Int 2023; 164:112418. [PMID: 36738023 DOI: 10.1016/j.foodres.2022.112418] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Cronobacter sakazakii (C. sakazakii), a food-borne pathogen, can infect neonates, elderly and immunocompromised populations with a high infection and mortality rate. However, the specific molecular mechanism of its motility, biofilm formation, cell adhesion, and desiccation resistance remains unclear, and flagellum hook associated protein (FlgK), a main component of the flagellar complex, may be an important determinant of its virulence and desiccation resistance. In this study, the flgK mutant strain (ΔflgK) was constructed using the homologous recombination method, and the cpflgK complementary strain was obtained by gene complementation, followed by analysis of the difference between the wild type (WT), mutant, and complementary strains in mobility, biofilm formation, cell adhesion, and desiccation resistance. Results indicated that flgK gene played a positive role in motility and invasion, with no significant effect on biofilm formation. Interestingly, flagellar assembly gene deletion showed increased resistance of C. sakazakii to dehydration. The mechanism underlying the negative correlation of flgK gene with dehydration resistance was further investigated by using the high-throughput sequencing technology to compare the gene expression between WT and ΔflgK strains after drying. The results revealed up-regulation in the expression of 54 genes, including genes involved in osmosis and formate dehydrogenase, while down-regulation in the expression of 50 genes, including genes involved in flagellum hook and nitrate reductase. qRT-PCR analysis of the RNA-seq data further indicated that the flgK gene played an important role in the environmental stress resistance of C. sakazakii by up-regulating the formate dehydrogenase, betaine synthesis, and arginine deiminase pathways, due to dynamic proton imbalance caused by lack of flagella. This study facilitates our understanding of the roles of flgK in motion-related functions and the molecular mechanism of desiccation resistance in C. sakazakii.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenyue Zong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengyang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin 300071, China
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Abstract
Bacterial flagellin activates the host immune system and triggers pyroptosis. Salmonella reduces flagellin expression when it survives within host cells. Here, we found that the UMPylator YdiU significantly altered the Salmonella flagellar biogenesis process upon host cell entry. The expression levels of class II and class III flagellar genes, but not the class I flagellar genes flhDC, were dramatically increased in a ΔydiU strain compared to wild-type (WT) Salmonella in a host-simulating environment. A direct interaction between YdiU and FlhDC was detected by bacterial two-hybrid assay. Furthermore, YdiU efficiently catalyzed the UMPylation of FlhC but not FlhD, FliA, or FliC. UMPylation of FlhC completely eliminated its DNA-binding activity. In vivo experiments showed that YdiU was required and sufficient for Salmonella flagellar control within host cells. Mice infected with the ΔydiU strain died much earlier than WT strain-infected mice and developed much more severe inflammation and injury in organs and much higher levels of cytokines in blood, demonstrating that early host death induced by the ΔydiU strain is probably due to excessive inflammation. Our results indicate that YdiU acts as an essential factor of Salmonella to mediate host immune escape.
Collapse
|
7
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
8
|
Lee J, Heo L, Han SW. Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli. THE PLANT PATHOLOGY JOURNAL 2021; 37:673-680. [PMID: 34897258 PMCID: PMC8666244 DOI: 10.5423/ppj.nt.09.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.
Collapse
Affiliation(s)
| | | | - Sang-Wook Han
- Corresponding author: Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail)
| |
Collapse
|
9
|
Ma S, Jiang L, Wang J, Liu X, Li W, Ma S, Feng L. Downregulation of a novel flagellar synthesis regulator AsiR promotes intracellular replication and systemic pathogenicity of Salmonella typhimurium. Virulence 2021; 12:298-311. [PMID: 33410728 PMCID: PMC7808427 DOI: 10.1080/21505594.2020.1870331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) exploits host macrophage as a crucial survival and replicative niche. To minimize host immune response stimulated by flagellin, the expression of flagellar genes is downregulated during S. Typhimurium growth within host macrophages. However, the underlying mechanisms are largely unknown. In this study, we show that STM14_1285 (named AsiR), a putative RpiR-family transcriptional regulator, which is downregulated within macrophages as previously reported and also confirmed here, positively regulates the expression of flagellar genes by directly binding to the promoter of flhDC. By generating an asiR mutant strain and a strain that persistently expresses asiR gene within macrophages, we confirmed that the downregulation of asiR contributes positively to S. Typhimurium replication in macrophages and systemic infection in mice, which could be attributed to decreased flagellar gene expression and therefore reduced flagellin-stimulated secretion of pro-inflammatory cytokines IL-1β and TNF-α. Furthermore, the acidic pH in macrophages is identified as a signal for the downregulation of asiR and therefore flagellar genes. Collectively, our results reveal a novel acidic pH signal-mediated regulatory pathway that is utilized by S. Typhimurium to promote intracellular replication and systemic pathogenesis by repressing flagellar gene expression.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Jingting Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Wanwu Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University , Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University , Tianjin, China
| |
Collapse
|
10
|
Dyke JS, Huertas-Diaz MC, Michel F, Holladay NE, Hogan RJ, He B, Lafontaine ER. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of Burkholderia mallei and provides protection against lethal aerosol challenge. Virulence 2020; 11:1024-1040. [PMID: 32799724 PMCID: PMC7567441 DOI: 10.1080/21505594.2020.1804275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
BURKHOLDERIA MALLEI is a highly pathogenic bacterium that causes the fatal zoonosis glanders. The organism specifies multiple membrane proteins, which represent prime targets for the development of countermeasures given their location at the host-pathogen interface. We investigated one of these proteins, Pal, and discovered that it is involved in the ability of B. mallei to resist complement-mediated killing and replicate inside host cells in vitro, is expressed in vivo and induces antibodies during the course of infection, and contributes to virulence in a mouse model of aerosol infection. A mutant in the pal gene of the B. mallei wild-type strain ATCC 23344 was found to be especially attenuated, as BALB/c mice challenged with the equivalent of 5,350 LD50 completely cleared infection. Based on these findings, we tested the hypothesis that a vaccine containing the Pal protein elicits protective immunity against aerosol challenge. To achieve this, the pal gene was cloned in the vaccine vector Parainfluenza Virus 5 (PIV5) and mice immunized with the virus were infected with a lethal dose of B. mallei. These experiments revealed that a single dose of PIV5 expressing Pal provided 80% survival over a period of 40 days post-challenge. In contrast, only 10% of mice vaccinated with a PIV5 control virus construct survived infection. Taken together, our data establish that the Peptidoglycan-associated lipoprotein Pal is a critical virulence determinant of B. mallei and effective target for developing a glanders vaccine.
Collapse
Affiliation(s)
- Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | | | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Nathan E. Holladay
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
11
|
de Oliveira Barbosa F, de Freitas Neto OC, Rodrigues Alves LB, Benevides VP, de Souza AIS, da Silva Rubio M, de Almeida AM, Saraiva MM, de Oliveira CJB, Olsen JE, Junior AB. Immunological and bacteriological shifts associated with a flagellin-hyperproducing Salmonella Enteritidis mutant in chickens. Braz J Microbiol 2020; 52:419-429. [PMID: 33150477 DOI: 10.1007/s42770-020-00399-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.
Collapse
Affiliation(s)
- Fernanda de Oliveira Barbosa
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lucas Bocchini Rodrigues Alves
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Valdinete Pereira Benevides
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Andrei Itajahy Secundo de Souza
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Marcela da Silva Rubio
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Adriana Maria de Almeida
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Mauro Mesquita Saraiva
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Angelo Berchieri Junior
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| |
Collapse
|
12
|
Song X, Zhang H, Ma S, Song Y, Lv R, Liu X, Yang B, Huang D, Liu B, Jiang L. Transcriptome analysis of virulence gene regulation by the ATP-dependent Lon protease in Salmonella Typhimurium. Future Microbiol 2019; 14:1109-1122. [PMID: 31370702 DOI: 10.2217/fmb-2019-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Determination of the virulence regulatory network controlled by the ATP-dependent Lon protease in Salmonella enterica serovar Typhimurium. Materials & methods: The effect of Lon on S. Typhimurium virulence genes expression was investigated by RNA sequencing, and virulence-associated phenotypes between the wild-type and lon mutant were compared. Results: SPI-1, SPI-4, SPI-9 and flagellar genes were activated, while SPI-2 genes were repressed in the lon mutant. Accordingly, the lon mutant exhibited increased adhesion to and invasion of epithelial cells, increased motility and decreased replication in macrophages. The activation of SPI-2 genes by Lon partially accounts for the replication defect of the mutant. Conclusion: A wide range of virulence regulatory functions are governed by Lon in S. enterica ser. Typhimurium.
Collapse
Affiliation(s)
- Xiaorui Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Huan Zhang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.,College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Yajun Song
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Runxia Lv
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Di Huang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Bin Liu
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences & Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China.,The Key Laboratory of Molecular Microbiology & Technology, Ministry of Education, Tianjin 300071, PR China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China
| |
Collapse
|
13
|
Jozwick AKS, LaPatra SE, Graf J, Welch TJ. Flagellar regulation mediated by the Rcs pathway is required for virulence in the fish pathogen Yersinia ruckeri. FISH & SHELLFISH IMMUNOLOGY 2019; 91:306-314. [PMID: 31121291 DOI: 10.1016/j.fsi.2019.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The flagellum is a complex surface structure necessary for a number of activities including motility, chemotaxis, biofilm formation and host attachment. Flagellin, the primary structural protein making up the flagellum, is an abundant and potent activator of innate and adaptive immunity and therefore expression of flagellin during infection could be deleterious to the infection process due to flagellin-mediated host recognition. Here, we use quantitative RT-PCR to demonstrate that expression of the flagellin locus fliC is repressed during the course of infection and subsequently up-regulated upon host mortality in a motile strain of Yersinia ruckeri. The kinetics of fliC repression during the infection process is relatively slow as full repression occurs 7-days after the initiation of infection and after approximately 3-logs of bacterial growth in vivo. These results suggests that Y. ruckeri possesses a regulatory system capable of sensing host and modulating the expression of motility in response. Examination of the master flagellar operon (flhDC) promoter region for evidence of transcriptional regulation and regulatory binding sites revealed potential interaction with the Rcs pathway through an Rcs(A)B Box. Deletion of rcsB (ΔrcsB) by marker-exchange mutagenesis resulted in overproduction of flagellin and unregulated motility, showing that the Rcs pathway negatively regulates biosynthesis of the flagellar apparatus. Experimental challenge with ΔrcsB and ΔrcsBΔfliC1ΔfliC2 mutants revealed that mutation of the Rcs pathway results in virulence attenuation which is dependent on presence of the flagellin gene. These results suggest that the inappropriate expression of flagellin during infection triggers host recognition and thus immune stimulation resulting in attenuation of virulence. In addition, RNAseq analyses of the ΔrcsB mutant strain verified the role of this gene as a negative regulator of the flagellar motility system and identified several additional genes regulated by the Rcs pathway.
Collapse
Affiliation(s)
| | | | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Timothy J Welch
- (d)National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, West Virginia, USA.
| |
Collapse
|
14
|
Raman V, Van Dessel N, O'Connor OM, Forbes NS. The motility regulator flhDC drives intracellular accumulation and tumor colonization of Salmonella. J Immunother Cancer 2019; 7:44. [PMID: 30755273 PMCID: PMC6373116 DOI: 10.1186/s40425-018-0490-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Salmonella have potential as anticancer therapeutic because of their innate tumor specificity. In clinical studies, this specificity has been hampered by heterogeneous responses. Understanding the mechanisms that control tumor colonization would enable the design of more robust therapeutic strains. Two mechanisms that could affect tumor colonization are intracellular accumulation and intratumoral motility. Both of these mechanisms have elements that are controlled by the master motility regulator flhDC. We hypothesized that 1) overexpressing flhDC in Salmonella increases intracellular bacterial accumulation in tumor cell masses, and 2) intracellular accumulation of Salmonella drives tumor colonization in vitro. Methods To test these hypotheses, we transformed Salmonella with genetic circuits that induce flhDC and express green fluorescent protein after intracellular invasion. The genetically modified Salmonella was perfused into an in vitro tumor-on-a-chip device. Time-lapse fluorescence microscopy was used to quantify intracellular and colonization dynamics within tumor masses. A mathematical model was used to determine how these mechanisms are related to each other. Results Overexpression of flhDC increased intracellular accumulation and tumor colonization 2.5 and 5 times more than control Salmonella, respectively (P < 0.05). Non-motile Salmonella accumulated in cancer cells 26 times less than controls (P < 0.001). Minimally invasive, ΔsipB, Salmonella colonized tumor masses 2.5 times less than controls (P < 0.05). When flhDC was selectively induced after penetration into tumor masses, Salmonella both accumulated intracellularly and colonized tumor masses 2 times more than controls (P < 0.05). Mathematical modeling of tumor colonization dynamics demonstrated that intracellular accumulation increased retention of Salmonella in tumors by effectively causing the bacteria to bind to cancer cells and preventing leakage out of the tumors. These results demonstrated that increasing intracellular bacterial density increased overall tumor colonization and that flhDC could be used to control both. Conclusions This study demonstrates a mechanistic link between motility, intracellular accumulation and tumor colonization. Based on our results, we envision that therapeutic strains of Salmonella could use inducible flhDC to drive tumor colonization. More intratumoral bacteria would enable delivery of higher therapeutic payloads into tumors and would improve treatment efficacy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0490-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Nele Van Dessel
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Owen M O'Connor
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
15
|
Guo X, Wang H, Cheng Y, Zhang W, Luo Q, Wen G, Wang G, Shao H, Zhang T. Quinolone resistance phenotype and genetic characterization of Salmonella enterica serovar Pullorum isolates in China, during 2011 to 2016. BMC Microbiol 2018; 18:225. [PMID: 30587131 PMCID: PMC6307136 DOI: 10.1186/s12866-018-1368-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Background Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum), is one of the most important bacterial infections in the poultry industry in developing countries, including China. To examine the prevalence and characteristics of S. Pullorum, the Multilocus Sequence Typing (MLST) genotypes, fluoroquinolones resistance, and biofilm-forming abilities of S. Pullorum isolates were investigated, collected from 2011 to 2016 in China. Results Thirty S. Pullorum isolates collected from 2011 to 2016 were analyzed. Quinolones susceptibility testing showed that 90% of the isolates were resistant to the first generation of quinolines nalidixic acid, but the resistance rates to different fluoroquinolones agents were lower than 13.3%; for some there was even no resistance. Multilocus sequence typing (MLST) showed that ST-92 was the dominating genotype, accounting for 90.0% of all S. pullorum strains. The remaining three isolates were of the new reported sequence type ST-2151. Interestingly, the Asp87Gly substitution in quinolone resistance-determining regions (QRDR) of GyrA was only observed in the three strains of ST-2151, suggesting a potential correlation between Asp87Gly substitution and sequence type (p < 0.05). However, Asp87Gly substitution could not confer the resistant to ofloxacin and ciprofloxacin of these isolates. The plasmid-mediated quinolone resistance (PMQR) gene was not found in any of the tested isolates. Furthermore, an assay measuring biofilm-forming abilities showed that 46.7% of the isolates were non-biofilm producers, while 53.3% could form very weak biofilms, which might explain the relatively lower resistance to fluoroquinolones. Conclusions We reported a high resistance rate to the first generation of quinolines nalidixic acid and relatively low resistance rates to fluoroquinolones in S. Pullorum isolates. In addition, weak biofilm-forming abilities were found, which might be an important reason of the low fluoroquinolones resistance rates of S. Pullorum isolates. ST-92 was the dominating genotype demonstrated by MLST, and the new sequence type ST-2151 showed a potential correlation with Asp87Gly substitution in QRDR of GyrA. We believe the characterization of these S. Pullorum isolates will be helpful to develop prevention and control strategies. Electronic supplementary material The online version of this article (10.1186/s12866-018-1368-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Honglin Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Engineering Technology Center of Veterinary Diagnostic products, Wuhan, 430070, China
| | - Yiluo Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Engineering Technology Center of Veterinary Diagnostic products, Wuhan, 430070, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China. .,Hubei Engineering Technology Center of Veterinary Diagnostic products, Wuhan, 430070, China.
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China. .,Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
16
|
Yeh HY, Kojima K, Mobley JA. Epitope mapping of Salmonella flagellar hook-associated protein, FlgK, with mass spectrometry-based immuno-capture proteomics using chicken (Gallus gallus domesticus) sera. Vet Immunol Immunopathol 2018; 201:20-25. [DOI: 10.1016/j.vetimm.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/19/2018] [Accepted: 05/13/2018] [Indexed: 12/13/2022]
|
17
|
Das C, Mokashi C, Mande SS, Saini S. Dynamics and Control of Flagella Assembly in Salmonella typhimurium. Front Cell Infect Microbiol 2018; 8:36. [PMID: 29473025 PMCID: PMC5809477 DOI: 10.3389/fcimb.2018.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/25/2018] [Indexed: 11/13/2022] Open
Abstract
The food-borne pathogen Salmonella typhimurium is a common cause of infections and diseases in a wide range of hosts. One of the major virulence factors associated to the infection process is flagella, which helps the bacterium swim to its preferred site of infection inside the host, the M-cells (Microfold cells) lining the lumen of the small intestine. The expression of flagellar genes is controlled by an intricate regulatory network. In this work, we investigate two aspects of flagella regulation and assembly: (a) distribution of the number of flagella in an isogenic population of bacteria and (b) dynamics of gene expression post cell division. More precisely, in a population of bacteria, we note a normal distribution of number of flagella assembled per cell. How is this distribution controlled, and what are the key regulators in the network which help the cell achieve this? In the second question, we explore the role of protein secretion in dictating gene expression dynamics post cell-division (when the number of hook basal bodies on the cell surface is reduced by a factor of two). We develop a mathematical model and perform stochastic simulations to address these questions. Simulations of the model predict that two accessory regulators of flagella gene expression, FliZ and FliT, have significant roles in maintaining population level distribution of flagella. In addition, FliT and FlgM were predicted to control the level and temporal order of flagellar gene expression when the cell adapts to post cell division consequences. Further, the model predicts that, the FliZ and FliT dependent feedback loops function under certain thresholds, alterations in which can substantially affect kinetics of flagellar genes. Thus, based on our results we propose that, the proteins FlgM, FliZ, and FliT, thought to have accessory roles in regulation of flagella, likely play a critical role controlling gene expression during cell division, and frequency distribution of flagella.
Collapse
Affiliation(s)
- Chandrani Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India
| | - Chaitanya Mokashi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Limited, Pune, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
18
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
19
|
Hu M, Zhao W, Gao W, Li W, Meng C, Yan Q, Wang Y, Zhou X, Geng S, Pan Z, Cui G, Jiao X. Recombinant Salmonella expressing SspH2-EscI fusion protein limits its colonization in mice. BMC Immunol 2017; 18:21. [PMID: 28468643 PMCID: PMC5415771 DOI: 10.1186/s12865-017-0203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Background Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of E. coli EscI protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by EscI can reduce the colonization of Salmonella in mice. Results A recombinant S. typhimurium strain expressing fusion protein of the N-terminal SspH2 (a Salmonella type III secretion system 2 effector) and C-terminal EscI was constructed and designated as X4550(pYA3334-SspH2-EscI). In vitro assay showed that X4550(pYA3334-SspH2-EscI) significantly enhanced IL-1β and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-EscI) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-EscI) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-EscI) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2). Conclusion Fusion protein SspH2-EscI may be translocated into macrophages and activate NLRC4 inflammasome, which limits Salmonella colonization in spleen and liver of mice.
Collapse
Affiliation(s)
- Maozhi Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weixin Zhao
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Gao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenhua Li
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chuang Meng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiuxiang Yan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuyang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaohui Zhou
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, 06269-3089, CT, USA
| | - Shizhong Geng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guiyou Cui
- College of Tourism & Cuisine (College of Food Science and Engineering), Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
20
|
Wales AD, Davies RH. Salmonella Vaccination in Pigs: A Review. Zoonoses Public Health 2016; 64:1-13. [PMID: 26853216 DOI: 10.1111/zph.12256] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 12/22/2022]
Abstract
The control of Salmonella enterica in pig production is necessary for both public and animal health. The persistent and frequently asymptomatic nature of porcine Salmonella infection and the organism's abilities to colonize other animal species and to survive in the environment mean that effective control generally requires multiple measures. Vaccination is one such measure, and the present review considers its role and its future, drawing on studies in pigs from the 1950s to the present day. Once established in the body as an intracellular infectious agent, Salmonella can evade humoral immunity, which goes some way to explaining the often disappointing performance of inactivated Salmonella vaccines. More recent approaches, using mucosal presentation of antigens, live vaccines and adjuvants to enhance cell-mediated immunity, have met with more success. Vaccination strategies that involve stimulating both passive immunity from the dam plus active immunity in offspring appear to be most efficacious, although either approach alone can yield significant control of Salmonella. Problems that remain include relatively poor control of Salmonella serovars that are dissimilar to the vaccine antigen mix, and difficulties in measuring and predicting the performance of candidate vaccines in ways that are highly relevant to their likely use in commercial production.
Collapse
Affiliation(s)
- A D Wales
- Department of Bacteriology and Food Safety, Animal and Plant Health Agency Weybridge, Addlestone, Surrey, UK
| | - R H Davies
- Department of Bacteriology and Food Safety, Animal and Plant Health Agency Weybridge, Addlestone, Surrey, UK
| |
Collapse
|
21
|
Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis. Curr Top Microbiol Immunol 2016; 398:185-205. [PMID: 27000091 DOI: 10.1007/82_2016_493] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infections by motile, pathogenic bacteria, such as Campylobacter species, Clostridium species, Escherichia coli, Helicobacter pylori, Listeria monocytogenes, Neisseria gonorrhoeae, Pseudomonas aeruginosa, Salmonella species, Vibrio cholerae, and Yersinia species, represent a severe economic and health problem worldwide. Of special importance in this context is the increasing emergence and spread of multidrug-resistant bacteria. Due to the shortage of effective antibiotics for the treatment of infections caused by multidrug-resistant, pathogenic bacteria, the targeting of novel, virulence-relevant factors constitutes a promising, alternative approach. Bacteria have evolved distinct motility structures for movement across surfaces and in aqueous environments. In this review, I will focus on the bacterial flagellum, the associated chemosensory system, and the type-IV pilus as motility devices, which are crucial for bacterial pathogens to reach a preferred site of infection, facilitate biofilm formation, and adhere to surfaces or host cells. Thus, those nanomachines constitute potential targets for the development of novel anti-infectives that are urgently needed at a time of spreading antibiotic resistance. Both bacterial flagella and type-IV pili (T4P) are intricate macromolecular complexes made of dozens of different proteins and their motility function relies on the correct spatial and temporal assembly of various substructures. Specific type-III and type-IV secretion systems power the export of substrate proteins of the bacterial flagellum and type-IV pilus, respectively, and are homologous to virulence-associated type-III and type-II secretion systems. Accordingly, bacterial flagella and T4P represent attractive targets for novel antivirulence drugs interfering with synthesis, assembly, and function of these motility structures.
Collapse
|
22
|
Kim YT, Kim KH, Kang ES, Jo G, Ahn SY, Park SH, Kim SI, Mun S, Baek K, Kim B, Lee K, Yun WS, Kim YH. Synergistic Effect of Detection and Separation for Pathogen Using Magnetic Clusters. Bioconjug Chem 2015; 27:59-65. [PMID: 26710682 DOI: 10.1021/acs.bioconjchem.5b00681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Early diagnosis of infectious diseases is important for treatment; therefore, selective and rapid detection of pathogenic bacteria is essential for human health. We report a strategy for highly selective detection and rapid separation of pathogenic microorganisms using magnetic nanoparticle clusters. Our approach to develop probes for pathogenic bacteria, including Salmonella, is based on a theoretically optimized model for the size of clustered magnetic nanoparticles. The clusters were modified to provide enhanced aqueous solubility and versatile conjugation sites for antibody immobilization. The clusters with the desired magnetic property were then prepared at critical micelle concentration (CMC) by evaporation-induced self-assembly (EISA). Two different types of target-specific antibodies for H- and O-antigens were incorporated on the cluster surface for selective binding to biological compartments of the flagella and cell body, respectively. For the two different specific binding properties, Salmonella were effectively captured with the O-antibody-coated polysorbate 80-coated magnetic nanoclusters (PCMNCs). The synergistic effect of combining selective targeting and the clustered magnetic probe leads to both selective and rapid detection of infectious pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Il Kim
- Life Science Division, Amogreentech Co. Ltd. , Seoul 137-902, Korea
| | - Saem Mun
- Life Science Division, Amogreentech Co. Ltd. , Seoul 137-902, Korea
| | - Kyuwon Baek
- Life Science Division, Amogreentech Co. Ltd. , Seoul 137-902, Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 136-701, Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University , Seoul 136-701, Korea
| | | | | |
Collapse
|
23
|
Zhang Q, Zhang Y, Zhang X, Zhan L, Zhao X, Xu S, Sheng X, Huang X. The novel cis-encoded antisense RNA AsrC positively regulates the expression of rpoE-rseABC operon and thus enhances the motility of Salmonella enterica serovar typhi. Front Microbiol 2015; 6:990. [PMID: 26441919 PMCID: PMC4585123 DOI: 10.3389/fmicb.2015.00990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Bacterial non-coding RNAs are essential in many cellular processes, including response to environmental stress, and virulence. Deep sequencing analysis of the Salmonella enterica serovar typhi (S. typhi) transcriptome revealed a novel antisense RNA transcribed in cis on the strand complementary to rseC, an activator gene of sigma factor RpoE. In this study, expression of this antisense RNA was confirmed in S. typhi by Northern hybridization. Rapid amplification of cDNA ends and sequence analysis identified an 893 bp sequence from the antisense RNA coding region that covered all of the rseC coding region in the reverse direction of transcription. This sequence of RNA was named as AsrC. After overexpression of AsrC with recombinantant plasmid in S. typhi, the bacterial motility was increased obviously. To explore the mechanism of AsrC function, regulation of rseC and rpoE expression by AsrC was investigated. We found that AsrC increased the levels of rseC mRNA and protein. The expression of rpoE was also increased in S. typhi after overexpression of AsrC, which was dependent on rseC. Thus, we propose that AsrC increased RseC level and indirectly activating RpoE which can initiate fliA expression and promote the motility of S. typhi.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China ; Danyang People's Hospital of Jiangsu Province Danyang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Xiaolei Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Lifang Zhan
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Xin Zhao
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Shungao Xu
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, Jiangsu University - School of Medicine Zhenjiang, China
| |
Collapse
|
24
|
Elhadad D, McClelland M, Rahav G, Gal-Mor O. Feverlike Temperature is a Virulence Regulatory Cue Controlling the Motility and Host Cell Entry of Typhoidal Salmonella. J Infect Dis 2015; 212:147-56. [PMID: 25492917 PMCID: PMC4542590 DOI: 10.1093/infdis/jiu663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022] Open
Abstract
Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae.
Collapse
Affiliation(s)
- Dana Elhadad
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
- The Department of Clinical Microbiology and Immunology
- Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
25
|
Zimmerman SM, Michel F, Hogan RJ, Lafontaine ER. The Autotransporter BpaB Contributes to the Virulence of Burkholderia mallei in an Aerosol Model of Infection. PLoS One 2015; 10:e0126437. [PMID: 25993100 PMCID: PMC4438868 DOI: 10.1371/journal.pone.0126437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Burkholderia mallei is a highly pathogenic bacterium that causes the zoonosis glanders. Previous studies indicated that the genome of the organism contains eight genes specifying autotransporter proteins, which are important virulence factors of Gram-negative bacteria. In the present study, we report the characterization of one of these autotransporters, BpaB. Database searches identified the bpaB gene in ten B. mallei isolates and the predicted proteins were 99-100% identical. Comparative sequence analyses indicate that the gene product is a trimeric autotransporter of 1,090 amino acids with a predicted molecular weight of 105-kDa. Consistent with this finding, we discovered that recombinant bacteria expressing bpaB produce a protein of ≥300-kDa on their surface that is reactive with a BpaB-specific monoclonal antibody. Analysis of sera from mice infected with B. mallei indicated that animals produce antibodies against BpaB during the course of disease, thus establishing production of the autotransporter in vivo. To gain insight on its role in virulence, we inactivated the bpaB gene of B. mallei strain ATCC 23344 and determined the median lethal dose of the mutant in a mouse model of aerosol infection. These experiments revealed that the bpaB mutation attenuates virulence 8-14 fold. Using a crystal violet-based assay, we also discovered that constitutive production of BpaB on the surface of B. mallei promotes biofilm formation. To our knowledge, this is the first report of a biofilm factor for this organism.
Collapse
Affiliation(s)
- Shawn M. Zimmerman
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
27
|
Galen JE, Curtiss R. The delicate balance in genetically engineering live vaccines. Vaccine 2014; 32:4376-4385. [PMID: 24370705 PMCID: PMC4069233 DOI: 10.1016/j.vaccine.2013.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 11/24/2022]
Abstract
Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.
Collapse
Affiliation(s)
- James E Galen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
28
|
Phenotypic evolution of therapeutic Salmonella enterica serovar Typhimurium after invasion of TRAMP mouse prostate tumor. mBio 2014; 5:e01182-14. [PMID: 24987088 PMCID: PMC4161240 DOI: 10.1128/mbio.01182-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella has been of interest in cancer research due to its intrinsic ability to selectively target and colonize within tumors, leading to tumor cell death. Current research indicates promising use of Salmonella in regular administrations to remove tumors in mouse models while minimizing toxic side effects. However, selection of mutants during such long-term tumor colonization is a safety concern, and understanding selection of certain phenotypes within a tumor is an important consideration in predicting the long-term success of bacterium-based cancer treatment strategies. Thus, we have made an initial examination of selected phenotypes in a therapeutic Salmonella enterica serovar Typhimurium population developed from an archival wild-type LT2 strain and intraperitoneally injected into a 6-month-old TRAMP (transgenic adenocarcinoma of mouse prostate) mouse. We compared the original injected strain to isolates recovered from prostate tumors and those recovered from the spleen and liver of non-tumor-bearing TRAMP mice through phenotypic assessments of bacteriophage susceptibility, motility, growth rates, morphology, and metabolic activity. Tumor isolate traits, particularly the loss of wild-type motility and flagella, reflect the selective pressure of the tumor, while the maintenance of bacteriophage resistance indicates no active selection to remove this robust trait. We posit that the Salmonella population adopts certain strategies to minimize energy consumption and maximize survival and proliferation once within the tumor. We find these insights to be nonnegligible considerations in the development of cancer therapies involving bacteria and suggest further examinations into the evolution of therapeutic strains during passage through tumors. Salmonella is of interest in cancer research due to its intrinsic abilities to selectively target, colonize, and replicate within tumors, leading to tumor cell death. However, mutation of strains during long-term colonization within tumors is a safety concern, and understanding their evolution within a tumor is an important consideration in predicting the long-term success of bacterium-based cancer treatment strategies. Thus, we have made an initial examination of phenotypically diverse Salmonella colonies recovered from a therapeutic Salmonella strain that we developed and injected into prostate tumor-bearing mice. We compared the bacteriophage susceptibility, motility, growth rates, morphology, and metabolic activity of the original therapeutic strain to those of strains recovered from prostate tumors of tumor-bearing mice and the liver and spleen of non-tumor-bearing mice. Our results suggest that the Salmonella population adopts certain strategies to minimize energy consumption and maximize survival and proliferation once within the tumor, leading to phenotypic changes in the strain.
Collapse
|
29
|
Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium. Appl Environ Microbiol 2014; 80:2804-10. [PMID: 24584242 DOI: 10.1128/aem.03565-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.
Collapse
|
30
|
Mouslim C, Hughes KT. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog 2014; 10:e1003987. [PMID: 24603858 PMCID: PMC3946378 DOI: 10.1371/journal.ppat.1003987] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/25/2014] [Indexed: 12/22/2022] Open
Abstract
The flagellar regulon controls Salmonella biofilm formation, virulence gene expression and the production of the major surface antigen present on the cell surface: flagellin. At the top of a flagellar regulatory hierarchy is the master operon, flhDC, which encodes the FlhD₄C₂ transcriptional complex required for the expression of flagellar, chemotaxis and Salmonella pathogenicity island 1 (Spi1) genes. Of six potential transcriptional start-sites within the flhDC promoter region, only two, P1(flhDC) and P5(flhDC), were functional in a wild-type background, while P6(flhDC) was functional in the absence of CRP. These promoters are transcribed differentially to control either flagellar or Spi1 virulent gene expression at different stages of cell growth. Transcription from P1(flhDC) initiates flagellar assembly and a negative autoregulatory loop through FlhD₄C₂-dependent transcription of the rflM gene, which encodes a repressor of flhDC transcription. Transcription from P1(flhDC) also initiates transcription of the Spi1 regulatory gene, hilD, whose product, in addition to activating Spi1 genes, also activates transcription of the flhDC P5 promoter later in the cell growth phase. The regulators of flhDC transcription (RcsB, LrhA, RflM, HilD, SlyA and RtsB) also exert their control at different stages of the cell growth phase and are also subjected to cell growth phase control. This dynamic of flhDC transcription separates the roles of FlhD₄C₂ transcriptional activation into an early cell growth phase role for flagellar production from a late cell growth phase role in virulence gene expression.
Collapse
Affiliation(s)
- Chakib Mouslim
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
31
|
Enhancement of host immune responses by oral vaccination to Salmonella enterica serovar Typhimurium harboring both FliC and FljB flagella. PLoS One 2013; 8:e74850. [PMID: 24069357 PMCID: PMC3775770 DOI: 10.1371/journal.pone.0074850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/06/2013] [Indexed: 01/17/2023] Open
Abstract
Flagellin, the structural component of the flagellar filament in various motile bacteria, can contribute to the activation of NF-κB and proinflammatory cytokine expression during the innate immune response in host cells. Thus, flagellin proteins represent a particularly attractive target for the development of vaccine candidates. In this study, we investigated the immune response by increasing the flagella number in the iacP mutant strain and the adjuvant activity of the flagellin component FljB of Salmonella enterica serovar Typhimurium. We found that the iacP mutant strain expresses two flagellin proteins (FliC and FljB), which result in increased NF-κB-dependent gene expression in bone marrow derived macrophages. Using an oral immunization mouse model, we observed that the administration of a live attenuated S. typhimurium BRD509 strain expressing the FliC and FljB flagellins induced significantly enhanced flagellin-specific IgG responses in the systemic compartment. The mice immunized with the recombinant attenuated S. typhimurium strain that has two types of flagella were protected from lethal challenge with the Salmonella SL1344 strain. These results indicate that overexpression of flagella in the iacP mutant strain enhance the induction of an antigen-specific immune responses in macrophage cell, and both the FliC and FljB flagellar filament proteins-producing S. typhimurium can induce protective immune responses against salmonellosis.
Collapse
|
32
|
The virulence of Salmonella enterica Serovar Typhimurium in the insect model galleria mellonella is impaired by mutations in RNase E and RNase III. Appl Environ Microbiol 2013; 79:6124-33. [PMID: 23913419 DOI: 10.1128/aem.02044-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium able to invade and replicate inside eukaryotic cells. To cope with the host defense mechanisms, the bacterium has to rapidly remodel its transcriptional status. Regulatory RNAs and ribonucleases are the factors that ultimately control the fate of mRNAs and final protein levels in the cell. There is growing evidence of the direct involvement of these factors in bacterial pathogenicity. In this report, we validate the use of a Galleria mellonela model in S. Typhimurium pathogenicity studies through the parallel analysis of a mutant with a mutation in hfq, a well-established Salmonella virulence gene. The results obtained with this mutant are similar to the ones reported in a mouse model. Through the use of this insect model, we demonstrate a role for the main endoribonucleases RNase E and RNase III in Salmonella virulence. These ribonuclease mutants show an attenuated virulence phenotype, impairment in motility, and reduced proliferation inside the host. Interestingly, the two mutants trigger a distinct immune response in the host, and the two mutations seem to have an impact on distinct bacterial functions.
Collapse
|
33
|
Xu Y, Xu X, Lan R, Xiong Y, Ye C, Ren Z, Liu L, Zhao A, Wu LF, Xu J. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013; 8:e64211. [PMID: 23785398 PMCID: PMC3681947 DOI: 10.1371/journal.pone.0064211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/10/2013] [Indexed: 12/28/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of zoonotic food- and water-borne intestinal infections worldwide with clinical consequences ranging from mild diarrhoea to hemolytic uraemic syndrome. The genome of EHEC O157:H7 contains many regions of unique DNA that are referred to as O islands including the Shiga toxin prophages and pathogenicity islands encoding key virulence factors. However many of these O islands are of unknown function. In this study, genetic analysis was conducted on OI-172 which is a 44,434 bp genomic island with 27 open reading frames. Comparative genome analysis showed that O1-72 is a composite island with progressive gain of genes since O157:H7 evolved from its ancestral O55:H7. A partial OI-172 island was also found in 2 unrelated E. coli strains and 2 Salmonella strains. OI-172 encodes several putative helicases, one of which (Z5898) is a putative DEAH box RNA helicase. To investigate the function of Z5898, a deletion mutant (EDL933ΔZ5898) was constructed in the O157:H7 strain EDL933. Comparative proteomic analysis of the mutant with the wild-type EDL933 found that flagellin was down-regulated in the Z5898 mutant. Motility assay showed that EDL933ΔZ5898 migrated slower than the wild-type EDL933 and electron microscopy found no surface flagella. Quantitative reverse transcription PCR revealed that the fliC expression of EDL933ΔZ5898 was significantly lower while the expression of its upstream regulator gene, fliA, was not affected. Using a fliA and a fliC promoter - green fluorescent protein fusion contruct, Z5898 was found to affect only the fliC promoter activity. Therefore, Z5898 regulates the flagella based motility by exerting its effect on fliC. We conclude that OI-172 is a motility associated O island and hereby name it the MAO island.
Collapse
Affiliation(s)
- Yanmei Xu
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Li Liu
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P R China
| | - Ailan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Long-Fei Wu
- Laboratoire de Chimie Bactérienne, UPR9043, Université de la Méditerranée Aix-Marseille II, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control (China CDC), Beijing, P R China
- National Institute of Communicable Diseases Control and Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, P R China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- * E-mail:
| |
Collapse
|
34
|
Pascual DW, Suo Z, Cao L, Avci R, Yang X. Attenuating gene expression (AGE) for vaccine development. Virulence 2013; 4:384-90. [PMID: 23652809 PMCID: PMC3714130 DOI: 10.4161/viru.24886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Live attenuated vaccines are adept in stimulating protective immunity. Methods for generating such vaccines have largely adopted strategies used with Salmonella enterica. Yet, when similar strategies were tested in other gram-negative bacteria, the virulence factors or genes responsible to incapacitate Salmonella often failed in providing the desired outcome. Consequently, conventional live vaccines rely on prior knowledge of the pathogen's virulence factors to successfully attenuate them. This can be problematic since such bacterial pathogens normally harbor thousands of genes. To circumvent this problem, we found that overexpression of bacterial appendages, e.g., fimbriae, capsule, and flagella, could successfully attenuate wild-type (wt) Salmonella enterica serovar Typhimurium. Further analysis revealed these attenuated Salmonella strains conferred protection against wt S. Typhimurium challenge as effectively as genetically defined Salmonella vaccines. We refer to this strategy as attenuating gene expression (AGE), a simple efficient approach in attenuating bacterial pathogens, greatly facilitating the construction of live vaccines.
Collapse
Affiliation(s)
- David W Pascual
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL USA.
| | | | | | | | | |
Collapse
|
35
|
Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:287-94. [PMID: 23269417 DOI: 10.1128/cvi.00616-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia, which causes serious economic losses in the pig farming industry worldwide. Due to a lack of knowledge of its virulence factors and a lack of effective vaccines able to confer cross-serotype protection, it is difficult to place this disease under control. By analyzing its genome sequences, we found that type IV fimbrial subunit protein ApfA is highly conserved among different serotypes of A. pleuropneumoniae. Our study shows that ApfA is an adhesin since its expression was greatly upregulated (135-fold) upon contact with host cells, while its deletion mutant attenuated its capability of adhesion. The inactivation of apfA dramatically reduced the ability of A. pleuropneumoniae to colonize mouse lung, suggesting that apfA is a virulence factor. Purified recombinant ApfA elicited an elevated humoral immune response and conferred robust protection against challenges with A. pleuropneumoniae serovar 1 strain 4074 and serovar 7 strain WF83 in mice. Importantly, the anti-ApfA serum conferred significant protection against both serovar 1 and serovar 7 in mice. These studies indicate that ApfA promotes virulence through attachment to host cells, and its immunogenicity renders it a promising novel subunit vaccine candidate against infection with A. pleuropneumoniae.
Collapse
|