1
|
Abdelrahman F, Makky S, Teba HE, Agwa MM, Abd ElAziz MM, Awad R, Hassan YY, Abdelsattar AS, Connerton IF, El-Shibiny A. Potential of vB_Pa_ZCPS1 phage embedded in situ gelling formulations as an ocular delivery system to attenuate Pseudomonas aeruginosa keratitis in a rabbit model. J Control Release 2025; 380:52-70. [PMID: 39892651 DOI: 10.1016/j.jconrel.2025.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Pseudomonas aeruginosa keratitis (or pink eye) is a challenging ocular infection that causes serious complications due to the deficiency of effective antibiotic treatment. Thus, in this study we isolated and characterized a specific bacteriophage, phage vB_Pa_ZCPS1, to be used to formulate an in situ- gel loaded bacteriophage for an in vivo rabbit infection treatment model. Phage vB_Pa_ZCPS1 is a double-stranded DNA bacterial virus, of 46,135 bp encoding 75 open reading frames (ORFs) with no antibiotic resistance genes detected. Moreover, it has a podoviral morphotype from the Caudoviricetes class with a 62.4 nm capsid and a short inflexible tail of around 18.8 nm, as indicated by the transmission electron microscope (TEM). Phage vB_Pa_ZCPS1 presented good stability to the UV exposure and a wide range of pH values from 3.0 to 11.0. In addition, the phage-bacteria dynamics study showed that phage vB_Pa_ZCPS1 was effective against P. aeruginosa, especially at low multiplicities of infections (MOIs), including 0.001, 0.01, and 0.1. Respectively, it was loaded to the characterized in situ gel composed of 14 % Pluronic F-127 and 1.5 % HPMC K4M polymer. The in situ-gel has a gelling time of 30 s ± 1, and a temperature of 33 °C ± 1, where the viscosity of the gel increases 10-fold. For the in vivo trial, the infected group treated with phage presented improved clinical outcomes, where the histopathological analysis revealed normal corneal thickness and intact corneal stratified squamous epithelium. Thus, the in situ-gel loaded phage vB_Pa_ZCPS1 could be a potential candidate approach to treat P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Hoda E Teba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marwa M Abd ElAziz
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ramy Awad
- Department of Ophthalmology, Faculty of Medicine, Delta University for Science and Technology, Dakahlia, Egypt; Department of Ophthalmology, Alexandria General Ophthalmology Hospital, Alexandria, Egypt
| | - Yara Y Hassan
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ian F Connerton
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, UK
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
2
|
Komárková M, Benešík M, Černá E, Sedláčková L, Moša M, Vojtová L, Franc A, Pantůček R. The pharmaceutical quality of freeze-dried tablets containing therapeutic bacteriophages against Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm 2025; 671:125199. [PMID: 39800006 DOI: 10.1016/j.ijpharm.2025.125199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The preparation of a solid dosage form containing bacteriophages, which meets pharmaceutical requirements and ensures long-term stability of the phage effect, is significant for implementing phage therapy in practice. A commonly used method for processing phages into a solid form is freeze-drying into a so-called freeze-dried cake; however, to date there have been no studies examining the pharmacopeial parameters of freeze-dried tablets with bacteriophages. In this study, we describe the preparation and properties of freeze-dried tablets containing a cocktail of purified pseudomonal bacteriophage DSM 33593 from the genus Pbunavirus and staphylococcal bacteriophage DSM 33473 from the genus Kayvirus (108 PFU/tablet) as the active ingredient. Maltodextrin was used as a tablet filler, and D-mannitol was used as a cryoprotectant. The tablet preparation process resulted in a decrease in phage titer by no more than 1 log PFU/mL. For Pbunavirus, the titer values in tablet and liquid form were comparable. Kayvirus was more stable in tablet form than in liquid form after six months of storage at 25 °C (a decrease of 1.9 ± 0.8 log PFU/mL and 3.8 ± 0.7 log PFU/mL, respectively). The uniformity of mass of single-dose preparations, uniformity of content of single-dose preparations, and their disintegration complied with pharmacopeial requirements. The uniformity of dosage units of the tablets was maintained over three months. A microscopic examination of the internal part of the tablet revealed a heterogeneous structure, which does not affect the required pharmacopeial properties of the tablets. This study highlights the potential of freeze-dried tablets for long-term preservation of the phage effect at room temperature.
Collapse
Affiliation(s)
- Marie Komárková
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | | | - Eva Černá
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Lucie Sedláčková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Marek Moša
- MB Pharma s.r.o., 120 00 Prague, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Lucy Vojtová
- Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
3
|
Mursalin MH, Coburn PS, Longoria-Gonzalez L, Astley R, Fischetti VA, Callegan MC. Novel Anti-Microbial/Anti-Inflammatory Combination Improves Clinical Outcome of Bacillus cereus Endophthalmitis. Invest Ophthalmol Vis Sci 2025; 66:39. [PMID: 39813055 PMCID: PMC11741065 DOI: 10.1167/iovs.66.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis. Methods C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control. A group of uninfected mice was injected with only PlyB to serve as a treatment control. Eight hours post-treatment, infected/treated mice were analyzed for bacterial counts, retinal function, histology, and inflammation. Results Groups treated with PlyB alone or PlyB/OxPAPC showed significantly reduced bacterial loads compared with untreated eyes. Compared with untreated eyes, PlyB and PlyB/OxPAPC-treated eyes retained significant A-wave and B-wave function. PlyB/OxPAPC-treated eyes retained greater A- and B-wave function compared with eyes treated with PlyB alone. Histology showed that retinal structures were well preserved, and retinal layers were distinguishable in eyes treated with PlyB and PlyB/OxPAPC. Ninety-five percent of infiltrating CD45+ cells in infected untreated eyes were Ly6G+/Ly6C+ neutrophils. Infected eyes treated with PlyB and PlyB/OxPAPC had significantly reduced numbers of CD45+ immune cells compared with untreated eyes. Eyes treated with PlyB/OxPAPC had a significantly lower number of neutrophils than eyes treated with PlyB alone. Conclusions These results demonstrated that the novel combination of bacteriophage lysin and TLR2/4 inhibitor was a successful treatment option for treating experimental Bacillus cereus endophthalmitis.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Luis Longoria-Gonzalez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Parra B, Sandoval M, Arriagada V, Amsteins L, Aguayo C, Opazo-Capurro A, Dechesne A, González-Rocha G. Isolation and Characterization of Lytic Bacteriophages Capable of Infecting Diverse Multidrug-Resistant Strains of Pseudomonas aeruginosa: PaCCP1 and PaCCP2. Pharmaceuticals (Basel) 2024; 17:1616. [PMID: 39770458 PMCID: PMC11728774 DOI: 10.3390/ph17121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antimicrobial resistance (AMR) is a major public health threat, which is exacerbated by the lack of new antibiotics and the emergence of multidrug-resistant (MDR) superbugs. Comprehensive efforts and alternative strategies to combat AMR are urgently needed to prevent social, medical, and economic consequences. Pseudomonas aeruginosa is a pathogen responsible for a wide range of infections, from soft tissue infections to life-threatening conditions such as bacteremia and pneumonia. Bacteriophages have been considered as a potential therapeutic option to treat bacterial infections. Our aim was to isolate phages able to infect MDR P. aeruginosa strains. METHODS We isolated two lytic phages, using the conventional double layer agar technique (DLA), from samples obtained from the influent of a wastewater treatment plant in Concepción, Chile. The phages, designated as PaCCP1 and PaCCP2, were observed by electron microscopy and their host range was determined against multiple P. aeruginosa strains using DLA. Moreover, their genomes were sequenced and analyzed. RESULTS Phage PaCCP1 is a member of the Septimatrevirus genus and phage PaCCP2 is a member of the Pbunavirus genus. Both phages are tailed and contain dsDNA. The genome of PaCCP1 is 43,176 bp in length with a GC content of 54.4%, encoding 59 ORFs, one of them being a tRNA gene. The genome of PaCCP2 is 66,333 bp in length with a GC content of 55.6%, encoding 102 non-tRNA ORFs. PaCCP1 is capable of infecting five strains of P. aeruginosa, whereas phage PaCCP2 is capable of infecting three strains of P. aeruginosa. Both phages do not contain bacterial virulence or AMR genes and contain three and six putative Anti-CRISPR proteins. CONCLUSIONS Phages PaCCP1 and PaCCP2 show promise as effective treatments for MDR P. aeruginosa strains, offering a potential strategy for controlling this clinically important pathogen through phage therapy.
Collapse
Affiliation(s)
- Boris Parra
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Av. Jorge Alessandri 1160, Campus El Boldal, Concepción 4070409, Chile
| | - Maximiliano Sandoval
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Vicente Arriagada
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Luis Amsteins
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Cristobal Aguayo
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, 2800 Kongens Lyngby, Denmark
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
5
|
Park J, Kim D, Kwon M, Kwon H, Yong J, Yoon H, Hwang J, Jung JS, Park KM. Bacterial isolates and antibiotic sensitivity in canine bacterial keratitis in Korea. Vet Ophthalmol 2024. [PMID: 39489612 DOI: 10.1111/vop.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE To analyze bacterial isolates associated with canine bacterial keratitis and their antibiotic susceptibility patterns in Korea, focusing on multidrug resistance (MDR) and identifying effective antibiotic combinations for clinical treatment. ANIMAL STUDIED A total of 146 dogs diagnosed with suspected bacterial keratitis between October 2022 and October 2023 in Korea, with 157 eye samples collected for analysis. PROCEDURE Eye samples were cultured to isolate bacteria, and antibiotic susceptibility testing was performed using the minimum inhibitory concentration (MIC) method. Bacterial identification was conducted using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF). The study assessed the efficacy of individual antibiotics and combination therapies. RESULTS Bacteria were isolated in 55.4% of the samples. The most common genera were Staphylococcus species (48.5%, 48/99), Streptococcus species (13.1%, 13/99), Pseudomonas species (9.1%, 9/99), and Escherichia coli (9.1%, 9/99). Amikacin (84.8%) showed the highest antibiotic susceptibility, while doxycycline exhibited the lowest (17.2%). The most effective antibiotic combinations were amikacin-moxifloxacin (93%). MDR isolates accounted for 52.5% (52/99) of the total bacterial samples. CONCLUSIONS Staphylococcus species were the most common isolates, with 52.5% showing MDR, underscoring the need to curb antibiotic misuse. While antibiotics like amikacin demonstrated high susceptibility rates, their use should be reserved for resistant infections to prevent further resistance development. Rather than focusing solely on finding effective combinations of antibiotics, it is crucial to consider alternative treatment strategies that offer more sustainable solutions. Rather than relying on antibiotic combinations, attention should shift to sustainable alternatives to treat bacterial keratitis and reduce antibiotic dependence in clinical practice.
Collapse
Affiliation(s)
- Jiwoo Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Donghee Kim
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Myeongjee Kwon
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Hyun Kwon
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jungyeon Yong
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Haerin Yoon
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jiyi Hwang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
6
|
Ikpe F, Williams T, Orok E, Ikpe A. Antimicrobial resistance: use of phage therapy in the management of resistant infections. Mol Biol Rep 2024; 51:925. [PMID: 39167154 DOI: 10.1007/s11033-024-09870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The emergence and increase in antimicrobial resistance (AMR) is now widely recognized as a major public health challenge. Traditional antimicrobial drugs are becoming increasingly ineffective, while the development of new antibiotics is waning. As a result, alternative treatments for infections are garnering increased interest. Among these alternatives, bacteriophages, also known as phages, are gaining renewed attention and are reported to offer a promising solution to alleviate the burden of bacterial infections. This review discusses the current successes of phage therapy (PT) against multidrug-resistant organisms (MDROs), such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp. The review also compares the efficacy of PT with that of chemical antibiotics, reporting on its benefits and limitations, while highlighting its impact on the human gut microbiome and immune system. Despite its potential, phage therapy is reported to face challenges such as the narrow antibacterial range, the complexity of developing phage cocktails, and the need for precise dosing and duration protocols. Nevertheless, continued research, improved regulatory frameworks, and increased public awareness are essential to realize its full potential and integration into standard medical practice, paving the way for innovative treatments that can effectively manage infections in an era of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Favour Ikpe
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Tonfamoworio Williams
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Edidiong Orok
- Department of Clinical Pharmacy and Public Health, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Augustine Ikpe
- Department of Sciences, Champion Group of Schools, Okene, Kogi State, Nigeria
| |
Collapse
|
7
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
8
|
Samson R, Dharne M, Khairnar K. Bacteriophages: Status quo and emerging trends toward one health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168461. [PMID: 37967634 DOI: 10.1016/j.scitotenv.2023.168461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The alarming rise in antimicrobial resistance (AMR) among the drug-resistant pathogens has been attributed to the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sp., and Escherichia coli). Recently, these AMR microbes have become difficult to treat, as they have rendered the existing therapeutics ineffective. Thus, there is an urgent need for effective alternatives to lessen or eliminate the current infections and limit the spread of emerging diseases under the "One Health" framework. Bacteriophages (phages) are naturally occurring biological resources with extraordinary potential for biomedical, agriculture/food safety, environmental protection, and energy production. Specific unique properties of phages, such as their bactericidal activity, host specificity, potency, and biocompatibility, make them desirable candidates in therapeutics. The recent biotechnological advancement has broadened the repertoire of phage applications in nanoscience, material science, physical chemistry, and soft-matter research. Herein, we present a comprehensive review, coupling the substantial aspects of phages with their applicability status and emerging opportunities in several interdependent areas under one health concept. Consolidating the recent state-of-the-art studies that integrate human, animal, plant, and environment health, the following points have been highlighted: (i) The biomedical and pharmacological advantages of phages and their antimicrobial derivatives with particular emphasis on in-vivo and clinical studies. (ii) The remarkable potential of phages to be altered, improved, and applied for drug delivery, biosensors, biomedical imaging, tissue engineering, energy, and catalysis. (iii) Resurgence of phages in biocontrol of plant, food, and animal-borne pathogens. (iv) Commercialization of phage-based products, current challenges, and perspectives.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Krishna Khairnar
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Environmental Virology Cell (EVC), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| |
Collapse
|
9
|
Nakajima I, Fukuda K, Ishida W, Kishimoto T, Kuwana A, Suzuki T, Kaito C, Yamashiro K. Staphylococcus aureus-derived virulent phenol-soluble modulin α triggers alarmin release to drive IL-36-dependent corneal inflammation. Microbes Infect 2024; 26:105237. [PMID: 37805122 DOI: 10.1016/j.micinf.2023.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with keratitis produces substantial amounts of phenol-soluble modulin α (PSMα). However, the role of PSMα in S. aureus keratitis remains unclear. We observed that PSMα-producing and PSMα-deficient strains could infect the cornea in our experimental mouse keratitis model; however, only the PSMα-producing strain delayed epithelial wound healing and induced stromal inflammation. PSMα induced damage to the epithelium, the release of alarmins IL-1α and IL-36α, and the expression of inflammatory chemokines by resident corneal cells in the mouse corneal organ culture. The IL-36 (but not IL-1) receptor antagonist attenuated mouse keratitis induced by PSMα-containing bacterial culture supernatants, as well as by infection with PSMα-producing S. aureus, suggesting that the corneal inflammations were dependent on IL-36. Recombinant PSMα elicited IL-36-dependent corneal inflammation in mice. Thus, PSMα and the subsequently released IL-36 are critical factors triggering inflammation during S. aureus keratitis.
Collapse
Affiliation(s)
- Isana Nakajima
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Aozora Kuwana
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University, Tokyo, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
10
|
Rayamajhee B, Willcox M, Henriquez FL, Vijay AK, Petsoglou C, Shrestha GS, Peguda HK, Carnt N. The role of naturally acquired intracellular Pseudomonas aeruginosa in the development of Acanthamoeba keratitis in an animal model. PLoS Negl Trop Dis 2024; 18:e0011878. [PMID: 38166139 PMCID: PMC10795995 DOI: 10.1371/journal.pntd.0011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 12/21/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Acanthamoeba is an environmental host for various microorganisms. Acanthamoeba is also becoming an increasingly important pathogen as a cause of keratitis. In Acanthamoeba keratitis (AK), coinfections involving pathogenic bacteria have been reported, potentially attributed to the carriage of microbes by Acanthamoeba. This study assessed the presence of intracellular bacteria in Acanthamoeba species recovered from domestic tap water and corneas of two different AK patients and examined the impact of naturally occurring intracellular bacteria within Acanthamoeba on the severity of corneal infections in rats. METHODOLOGY/PRINCIPAL FINDINGS Household water and corneal swabs were collected from AK patients. Acanthamoeba strains and genotypes were confirmed by sequencing. Acanthamoeba isolates were assessed for the presence of intracellular bacteria using sequencing, fluorescence in situ hybridization (FISH), and electron microscopy. The viability of the bacteria in Acanthamoeba was assessed by labelling with alkyne-functionalized D-alanine (alkDala). Primary human macrophages were used to compare the intracellular survival and replication of the endosymbiotic Pseudomonas aeruginosa and a wild type strain. Eyes of rats were challenged intrastromally with Acanthamoeba containing or devoid of P. aeruginosa and evaluated for the clinical response. Domestic water and corneal swabs were positive for Acanthamoeba. Both strains belonged to genotype T4F. One of the Acanthamoeba isolates harboured P. aeruginosa which was seen throughout the Acanthamoeba's cytoplasm. It was metabolically active and could be seen undergoing binary fission. This motile strain was able to replicate in macrophage to a greater degree than strain PAO1 (p<0.05). Inoculation of Acanthamoeba containing the intracellular P. aeruginosa in rats eyes resulted in a severe keratitis with increased neutrophil response. Acanthamoeba alone induced milder keratitis. CONCLUSIONS/SIGNIFICANCE Our findings indicate the presence of live intracellular bacteria in Acanthamoeba can increase the severity of acute keratitis in vivo. As P. aeruginosa is a common cause of keratitis, this may indicate the potential for these intracellular bacteria in Acanthamoeba to lead to severe polymicrobial keratitis.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Fiona L. Henriquez
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Scotland, United Kingdom
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Gauri Shankar Shrestha
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
11
|
Karn SL, Gangwar M, Kumar R, Bhartiya SK, Nath G. Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens. Front Med (Lausanne) 2023; 10:1209782. [PMID: 37928478 PMCID: PMC10620811 DOI: 10.3389/fmed.2023.1209782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
The recent approval of experimental phage therapies by the FDA and other regulatory bodies with expanded access in cases in the United States and other nations caught the attention of the media and the general public, generating enthusiasm for phage therapy. It started to alter the situation so that more medical professionals are willing to use phage therapies with conventional antibiotics. However, more study is required to fully comprehend phage therapy's potential advantages and restrictions, which is still a relatively new field in medicine. It shows promise, nevertheless, as a secure and prosperous substitute for antibiotics when treating bacterial illnesses in animals and humans. Because of their uniqueness, phage disinfection is excellent for ready-to-eat (RTE) foods like milk, vegetables, and meat products. The traditional farm-to-fork method can be used throughout the food chain to employ bacteriophages to prevent food infections at all production stages. Phage therapy improves clinical outcomes in animal models and lowers bacterial burdens in numerous preclinical investigations. The potential of phage resistance and the need to make sure that enough phages are delivered to the infection site are obstacles to employing phages in vivo. However, according to preclinical studies, phages appear to be a promising alternative to antibiotics for treating bacterial infections in vivo. Phage therapy used with compassion (a profound understanding of and empathy for another's suffering) has recently grown with many case reports of supposedly treated patients and clinical trials. This review summarizes the knowledge on the uses of phages in various fields, such as the food industry, preclinical research, and clinical settings. It also includes a list of FDA-approved bacteriophage-based products, commercial phage products, and a global list of companies that use phages for therapeutic purposes.
Collapse
Affiliation(s)
- Subhash Lal Karn
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Mayank Gangwar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajesh Kumar
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyanam Kumar Bhartiya
- Department of General Surgery, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Mursalin MH, Astley R, Coburn PS, Bagaruka E, Hunt JJ, Fischetti VA, Callegan MC. Therapeutic potential of Bacillus phage lysin PlyB in ocular infections. mSphere 2023; 8:e0004423. [PMID: 37273201 PMCID: PMC10449515 DOI: 10.1128/msphere.00044-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently β-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger Astley
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | - Eddy Bagaruka
- Oklahoma Christian University, Edmond, Oklahoma, USA
| | | | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Shah S, Wozniak RAF. Staphylococcus aureus and P seudomonas aeruginosa infectious keratitis: key bacterial mechanisms that mediate pathogenesis and emerging therapeutics. Front Cell Infect Microbiol 2023; 13:1250257. [PMID: 37671149 PMCID: PMC10475732 DOI: 10.3389/fcimb.2023.1250257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Bacterial keratitis (bacterial infection of the cornea) is a major cause of vision loss worldwide. Given the rapid and aggressive nature of the disease, immediate broad-spectrum antibiotics are essential to adequately treat this disease. However, rising antibiotic resistance continues to accelerate, rendering many commonly used therapeutics increasingly ineffective. As such, there is a significant effort to understand the basic pathogenesis of common causative organisms implicated in keratitis in part, to fuel the development of novel therapies to treat this blinding disease. This review explores two common causes of bacterial keratitis, Staphylococcus aureus and Pseudomonas aeruginosa, with regards to the bacterial mediators of virulence as well as novel therapies on the horizon.
Collapse
Affiliation(s)
| | - Rachel A. F. Wozniak
- Department of Ophthalmology, The University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| |
Collapse
|
14
|
Marasini S, Craig JP, Dean SJ, Leanse LG. Managing Corneal Infections: Out with the old, in with the new? Antibiotics (Basel) 2023; 12:1334. [PMID: 37627753 PMCID: PMC10451842 DOI: 10.3390/antibiotics12081334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
There have been multiple reports of eye infections caused by antibiotic-resistant bacteria, with increasing evidence of ineffective treatment outcomes from existing therapies. With respect to corneal infections, the most commonly used antibiotics (fluoroquinolones, aminoglycosides, and cephalosporines) are demonstrating reduced efficacy against bacterial keratitis isolates. While traditional methods are losing efficacy, several novel technologies are under investigation, including light-based anti-infective technology with or without chemical substrates, phage therapy, and probiotics. Many of these methods show non-selective antimicrobial activity with potential development as broad-spectrum antimicrobial agents. Multiple preclinical studies and a limited number of clinical case studies have confirmed the efficacy of some of these novel methods. However, given the rapid evolution of corneal infections, their treatment requires rapid institution to limit the impact on vision and prevent complications such as scarring and corneal perforation. Given their rapid effects on microbial viability, light-based technologies seem particularly promising in this regard.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Jennifer P. Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Simon J. Dean
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Leon G. Leanse
- Health and Sports Sciences Hub, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. Isolation of a bacteriophage targeting Pseudomonas aeruginosa and exhibits a promising in vivo efficacy. AMB Express 2023; 13:79. [PMID: 37495819 PMCID: PMC10371947 DOI: 10.1186/s13568-023-01582-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen that causes serious infections. Bacterial biofilms are highly resistant and render bacterial treatment very difficult, therefore necessitates alternative antibacterial strategies. Phage therapy has been recently regarded as a potential therapeutic option for treatment of bacterial infections. In the current study, a novel podovirus vB_PaeP_PS28 has been isolated from sewage with higher lytic activity against P. aeruginosa. Isolated phage exhibits a short latent period, large burst size and higher stability over a wide range of temperatures and pH. The genome of vB_PaeP_PS28 consists of 72,283 bp circular double-stranded DNA, with G + C content of 54.75%. The phage genome contains 94 open reading frames (ORFs); 32 for known functional proteins and 62 for hypothetical proteins and no tRNA genes. The phage vB_PaeP_PS28 effectively inhibited the growth of P. aeruginosa planktonic cells and displayed a higher biofilm degrading capability. Moreover, therapeutic efficacy of isolated phage was evaluated in vivo using mice infection model. Interestingly, survival of mice infected with P. aeruginosa was significantly enhanced upon treatment with vB_PaeP_PS28. Furthermore, the bacterial load in liver and kidney isolated from mice infected with P. aeruginosa and treated with phage markedly decreased as compared with phage-untreated P. aeruginosa-infected mice. These findings support the efficacy of isolated phage vB_PaeP_PS28 in reducing P. aeruginosa colonization and pathogenesis in host. Importantly, the isolated phage vB_PaeP_PS28 could be applied alone or as combination therapy with other lytic phages as phage cocktail therapy or with antibiotics to limit infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
16
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
17
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Dantas R, Brocchi M, Pacheco Fill T. Chemical-Biology and Metabolomics Studies in Phage-Host Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:71-100. [PMID: 37843806 DOI: 10.1007/978-3-031-41741-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
For many years, several studies have explored the molecular mechanisms involved in the infection of bacteria by their specific phages to understand the main infection strategies and the host defense strategies. The modulation of the mechanisms involved in the infection, as well as the expression of key substances in the development of the different life cycles of phages, function as a natural source of strategies capable of promoting the control of different pathogens that are harmful to human and animal health. Therefore, this chapter aims to provide an overview of the mechanisms involved in virus-bacteria interaction to explore the main compounds produced or altered as a chemical survival strategy and the metabolism modulation when occurring a host-phage interaction. In this context, emphasis will be given to the chemistry of peptides/proteins and enzymes encoded by bacteriophages in the control of pathogenic bacteria and the use of secondary metabolites recently reported as active participants in the mechanisms of phage-bacteria interaction. Finally, metabolomics strategies developed to gain new insights into the metabolism involved in the phage-host interaction and the metabolomics workflow in host-phage interaction will be presented.
Collapse
Affiliation(s)
- Rodolfo Dantas
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
20
|
Zagaliotis P, Michalik-Provasek J, Gill JJ, Walsh TJ. Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans. Pathog Immun 2022; 7:1-45. [PMID: 36320594 PMCID: PMC9596135 DOI: 10.20411/pai.v7i2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.
Collapse
Affiliation(s)
- Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Department of Pharmacology and Therapeutics, School of Pharmacy, Aristotle University of Thessaloniki, Greece
| | | | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine New York, NY
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA
| |
Collapse
|
21
|
Wannasrichan W, Htoo HH, Suwansaeng R, Pogliano J, Nonejuie P, Chaikeeratisak V. Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Front Microbiol 2022; 13:1004733. [PMID: 36274728 PMCID: PMC9583000 DOI: 10.3389/fmicb.2022.1004733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infections, has been categorized by World Health Organization as a critical pathogen urgently in need of effective therapies. Bacteriophages or phages, which are viruses that specifically kill bacteria, have been considered as alternative agents for the treatment of bacterial infections. Here, we discovered a lytic phage targeting P. aeruginosa, designated as JJ01, which was classified as a member of the Myoviridae family due to the presence of an icosahedral capsid and a contractile tail under TEM. Phage JJ01 requires at least 10 min for 90% of its particles to be adsorbed to the host cells and has a latent period of 30 min inside the host cell for its replication. JJ01 has a relatively large burst size, which releases approximately 109 particles/cell at the end of its lytic life cycle. The phage can withstand a wide range of pH values (3–10) and temperatures (4–60°C). Genome analysis showed that JJ01 possesses a complete genome of 66,346 base pairs with 55.7% of GC content, phylogenetically belonging to the genus Pbunavirus. Genome annotation further revealed that the genome encodes 92 open reading frames (ORFs) with 38 functionally predictable genes, and it contains neither tRNA nor toxin genes, such as drug-resistant or lysogenic-associated genes. Phage JJ01 is highly effective in suppressing bacterial cell growth for 12 h and eradicating biofilms established by the bacteria. Even though JJ01-resistant bacteria have emerged, the ability of phage resistance comes with the expense of the bacterial fitness cost. Some resistant strains were found to produce less biofilm and grow slower than the wild-type strain. Among the resistant isolates, the resistant strain W10 which notably loses its physiological fitness becomes eight times more susceptible to colistin and has its cell membrane compromised, compared to the wild type. Altogether, our data revealed the potential of phage JJ01 as a candidate for phage therapy against P. aeruginosa and further supports that even though the use of phages would subsequently lead to the emergence of phage-resistant bacteria, an evolutionary trade-off would make them more sensitive to antibiotics.
Collapse
Affiliation(s)
- Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Rubsadej Suwansaeng
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Vorrapon Chaikeeratisak,
| |
Collapse
|
22
|
Arumugam SN, Manohar P, Sukumaran S, Sadagopan S, Loh B, Leptihn S, Nachimuthu R. Antibacterial efficacy of lytic phages against multidrug-resistant Pseudomonas aeruginosa infections in bacteraemia mice models. BMC Microbiol 2022; 22:187. [PMID: 35909125 PMCID: PMC9340724 DOI: 10.1186/s12866-022-02603-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that can cause a variety of infections in humans, such as burn wound infections and infections of the lungs, the bloodstream and surgical site infections. Nosocomial spread is often concurrent with high degrees of antibiotic resistance. Such resistant strains are difficult to treat, and in some cases, even reserved antibiotics are ineffective. A particularly promising therapy to combat infections of resistant bacteria is the deployment of bacteriophages, known as phage therapy. In this work, we evaluated the in vivo efficacy of two Pseudomonas phages in bacteremia mice models. For this study, non-neutropenic mice (BalB/C) were infected with P. aeruginosa AB030 strain and treated using two bacteriophages, AP025 and AP006. RESULTS The results showed that a single dose of phages at higher concentrations, bacteria: phage at 1:10 and 1:100 were effective in eliminating the bloodstream infection and achieving 100% mice survival. CONCLUSION This study highlights the efficacy of using a single dose of phages to restore mice from bacteremia.
Collapse
Affiliation(s)
- Shri Natrajan Arumugam
- Anthem Biosciences Pvt Ltd., Bangalore, Karnataka, India
- Antibiotic Resistance and Phage Therapy Laboratory, Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, 632014, India
| | - Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, 314400, Zhejiang, PR China
| | | | | | - Belinda Loh
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department of Antimicrobial Biotechnology, Leipzig, Germany
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, 314400, Zhejiang, PR China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, PR China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Laboratory, Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
23
|
Fangary S, Abdel-Halim M, Fathalla RK, Hassan R, Farag N, Engel M, Mansour S, Tammam SN. Nanoparticle Fraught Liposomes: A Platform for Increased Antibiotic Selectivity in Multidrug Resistant Bacteria. Mol Pharm 2022; 19:3163-3177. [PMID: 35876358 DOI: 10.1021/acs.molpharmaceut.2c00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing antibiotic concentrations within bacterial cells while reducing them in mammalian ones would ultimately result in an enhancement of antibacterial actions, overcoming multidrug resistance, all while minimizing toxicity. Nanoparticles (NPs) have been used in numerous occasions to overcome antibiotic resistance, poor drug solubility, and stability. However, the concomitant increase in antibiotic concentration in mammalian cells and the resultant toxicity are usually overlooked. Without compromising bacterial cell fusion, large liposomes (Lip) have been reported to show reduced uptake in mammalian cells. Therefore, in this work, small NP fraught liposomes (NP-Lip) were formulated with the aim of increasing NP uptake and antibiotic delivery in bacterial cells but not in mammalian ones. Small polylactic-co-glycolic acid NPs were therefore loaded with erythromycin (Er), an antibiotic with low membrane permeability that is susceptible to drug efflux, and 3c, a 5-cyanothiazolyl urea derivative with low solubility and stability. In vitro experiments demonstrated that the incorporation of small NPs into large Lip resulted in a reduction in NP uptake by HEK293 cells while increasing it in Gram-negative bacteria (Escherichia coli DH5α, E. coli K12, and Pseudomonas aeruginosa), consequently resulting in an enhancement of antibiotic selectivity by fourfold toward E. coli (both strains) and eightfold toward P. aeruginosa. Ocular administration of NP-Lip in a P. aeruginosa keratitis mouse model demonstrated the ability of Er/3c-loaded NP-Lip to result in a complete recovery. More importantly, in comparison to NPs, the ocular administration of NP-Lip showed a reduction in TNF-alpha and IL-6 levels, implying reduced interaction with mammalian cells in vivo. This work therefore clearly demonstrated how tailoring the nano-bio interaction could result in selective drug delivery and a reduction in toxicity.
Collapse
Affiliation(s)
- Suzan Fangary
- Department of Pharmaceutical Technology, German University in Cairo (GUC), New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, German University in Cairo (GUC), New Cairo 24681, Egypt
| | - Reem K Fathalla
- Pharmaceutical and Medicinal Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Raghda Hassan
- Department of Pharmaceutical Technology, German University in Cairo (GUC), New Cairo 11835, Egypt
| | - Noha Farag
- Department of Microbiology and Immunology, German University in Cairo (GUC), New Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Samar Mansour
- Department of Pharmaceutical Technology, German University in Cairo (GUC), New Cairo 11835, Egypt.,Department of Pharmaceutics and Industrial Pharmacy-Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Salma N Tammam
- Department of Pharmaceutical Technology, German University in Cairo (GUC), New Cairo 11835, Egypt
| |
Collapse
|
24
|
Jeang L, Tuli SS. Therapy for contact lens-related ulcers. Curr Opin Ophthalmol 2022; 33:282-289. [PMID: 35779052 DOI: 10.1097/icu.0000000000000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current review covers the current literature and practice patterns of antimicrobial therapy for contact lens-related microbial keratitis (CLMK). Although the majority of corneal ulcers are bacterial, fungus and acanthamoeba are substantial contributors in CLMK and are harder to treat due to the lack of commercially available topical medications and low efficacy of available topical therapy. RECENT FINDINGS Topical antimicrobials remain the mainstay of therapy for corneal ulcers. Fluoroquinolones may be used as monotherapy for small, peripheral bacterial ulcers. Antibiotic resistance is a persistent problem. Fungal ulcers are less responsive to topical medications and adjunct oral or intrastromal antifungal medications may be helpful. Acanthamoeba keratitis continues to remain a therapeutic challenge but newer antifungal and antiparasitic agents may be helpful adjuncts. Other novel and innovative therapies are being studied currently and show promise. SUMMARY Contact lens-associated microbial keratitis is a significant health issue that can cause vision loss. Treatment remains a challenge but many promising diagnostics and procedures are in the pipeline and offer hope.
Collapse
Affiliation(s)
- Lauren Jeang
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
25
|
Kishimoto T, Ishida W, Nakajima I, Ujihara T, Suzuki T, Uchiyama J, Matsuzaki S, Fukuda K. Intracameral Bacteriophage Injection as Postoperative Prophylaxis for Enterococcus faecalis-Induced Endophthalmitis After Cataract Surgery in Rabbits. Transl Vis Sci Technol 2022; 11:2. [PMID: 35363260 PMCID: PMC8976926 DOI: 10.1167/tvst.11.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Post–cataract surgery bacterial endophthalmitis is a serious postoperative complication, and Enterococcus spp.–induced endophthalmitis reportedly has a particularly poor visual prognosis. This study aimed to demonstrate the prophylactic effect of postoperative intracameral phage administration in Enterococcus faecalis–induced endophthalmitis after cataract surgery in rabbits. Methods Endophthalmitis was induced in rabbits by injecting E. faecalis into the anterior chamber just after lensectomy while simultaneously administering either phage phiEF24C-P2 or vehicle. Retinal function was evaluated using electroretinography. The number of viable bacteria and myeloperoxidase (MPO) activity in the eye and histopathologic examinations were analyzed 48 hours after infection. Results In the vehicle-treated group, retinal function at 24 hours after infection was impaired, and the number of viable bacteria and MPO activity in the eye increased 48 hours later. In the phage-administered group, retinal function was maintained; the number of viable bacteria and MPO activity were significantly suppressed. Histopathologic examinations showed disruption of the retinal layers and the presence of numerous E. faecalis in the lens capsule and vitreous cavity in vehicle-treated eyes. In contrast, retinal structures were intact, and no E. faecalis staining was observed in phage-treated eyes. No retinal dysfunction was observed in the group that received phage only without lensectomy; almost no phage was detected in the eyes after 14 days of treatment. Conclusions Phage administration in the anterior chamber did not cause retinal dysfunction and suppressed postoperative endophthalmitis in rabbits. Translational Relevance In vivo results of intracameral phage administration suggest that phages are a promising prophylactic candidate for postoperative endophthalmitis.
Collapse
Affiliation(s)
- Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Isana Nakajima
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Takashi Suzuki
- Department of Ophthalmology, Toho University, Tokyo, Japan
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
26
|
Characterisation of Bacteriophage vB_SmaM_Ps15 Infective to Stenotrophomonas maltophilia Clinical Ocular Isolates. Viruses 2022; 14:v14040709. [PMID: 35458438 PMCID: PMC9025141 DOI: 10.3390/v14040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent acknowledgment that multidrug resistant Stenotrophomonas maltophilia strains can cause severe infections has led to increasing global interest in addressing its pathogenicity. While being primarily associated with hospital-acquired respiratory tract infections, this bacterial species is also relevant to ophthalmology, particularly to contact lens-related diseases. In the current study, the capacity of Stenotrophomonas phage vB_SmaM_Ps15 to infect ocular S. maltophilia strains was investigated to explore its future potential as a phage therapeutic. The phage proved to be lytic to a range of clinical isolates collected in Australia from eye swabs, contact lenses and contact lens cases that had previously shown to be resistant to several antibiotics and multipurpose contact lenses disinfectant solutions. Morphological analysis by transmission electron microscopy placed the phage into the Myoviridae family. Its genome size was 161,350 bp with a G + C content of 54.2%, containing 276 putative protein-encoding genes and 24 tRNAs. A detailed comparative genomic analysis positioned vB_SmaM_Ps15 as a new species of the Menderavirus genus, which currently contains six very similar globally distributed members. It was confirmed as a virulent phage, free of known lysogenic and pathogenicity determinants, which supports its potential use for the treatment of S. maltophilia eye infections.
Collapse
|
27
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
28
|
Johnson G, Banerjee S, Putonti C. Diversity of Pseudomonas aeruginosa Temperate Phages. mSphere 2022; 7:e0101521. [PMID: 35196122 PMCID: PMC8865926 DOI: 10.1128/msphere.01015-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Modern sequencing technologies have provided insight into the genetic diversity of numerous species, including the human pathogen Pseudomonas aeruginosa. Bacterial genomes often harbor bacteriophage genomes (prophages), which can account for upwards of 20% of the genome. Prior studies have found P. aeruginosa prophages that contribute to their host's pathogenicity and fitness. These advantages come in many different forms, including the production of toxins, promotion of biofilm formation, and displacement of other P. aeruginosa strains. While several different genera and species of P. aeruginosa prophages have been studied, there has not been a comprehensive study of the overall diversity of P. aeruginosa-infecting prophages. Here, we present the results of just such an analysis. A total of 6,852 high-confidence prophages were identified from 5,383 P. aeruginosa genomes from strains isolated from the human body and other environments. In total, 3,201 unique prophage sequences were identified. While 53.1% of these prophage sequences displayed sequence similarity to publicly available phage genomes, novel and highly mosaic prophages were discovered. Among these prophages, there is extensive diversity, including diversity within the functionally conserved integrase and C repressor coding regions, two genes responsible for prophage entering and persisting through the lysogenic life cycle. Analysis of integrase, C repressor, and terminase coding regions revealed extensive reassortment among P. aeruginosa prophages. This catalog of P. aeruginosa prophages provides a resource for future studies into the evolution of the species. IMPORTANCE Prophages play a critical role in the evolution of their host species and can also contribute to the virulence and fitness of pathogenic species. Here, we conducted a comprehensive investigation of prophage sequences from 5,383 publicly available Pseudomonas aeruginosa genomes from human as well as environmental isolates. We identified a diverse population of prophages, including tailed phages, inoviruses, and microviruses; 46.9% of the prophage sequences found share no significant sequence similarity with characterized phages, representing a vast array of novel P. aeruginosa-infecting phages. Our investigation into these prophages found substantial evidence of reassortment. In producing this, the first catalog of P. aeruginosa prophages, we uncovered both novel prophages as well as genetic content that have yet to be explored.
Collapse
Affiliation(s)
- Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
29
|
Marashi SMA, Nikkhahi F, Hamedi D, Shahbazi G. Isolation, Characterization and in vitro Evaluation of Specific Bacteriophages Targeting Extensive Drug Resistance Strains of Pseudomonas aeruginosa Isolated from Septic Burn Wounds. Infect Chemother 2022; 54:153-164. [PMID: 35384426 PMCID: PMC8987173 DOI: 10.3947/ic.2021.0132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background Antibiotic resistant bacteria and various infections caused by them especially extensive drug resistance (XDR) strains and worrying statistics of mortality due to these strains and also the lack of a clear vision for development and production of new effective antibiotics have made the necessity of using alternative therapies more apparent. Materials and Methods In this study, specific phages affecting the Pseudomonas aeruginosa XDR strain were extracted from hospital wastewater and their laboratory characteristics along with lysis effect on 40 XDR strains of P. aeruginosa were investigated. Results The results indicated that three isolated phages (PaB1, PaBa2 and PaBa3) belonged to the Myoviridae and Pododoviridae families and were specific to Pseudomonas aeruginosa strains. More than 98% of phages absorbed their host in less than 10 minutes (Adsorption time <10 min) and completed their lytic cycle after 40 minutes (latent time = 40 min). Burst size of PaBa1, PaBa2 and PaBa3 was 240, 250 and 220 pfu/cell, respectively. PaBa1 lysed 62.5% of the XDR strains with the highest efficiency. The three Phage cocktail was effective against 67.5% of the studied strains. Conclusion The results of this study indicate the significant potential of these phages for therapeutic use and prophylaxis of infections caused by this bacterium.
Collapse
Affiliation(s)
| | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Dariush Hamedi
- Department of Molecular Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamhassan Shahbazi
- Department of Microbiology and Immunology, Qazvin University of Medical Sciences, Qazvin, Iran
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
30
|
Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022; 2022:4913146. [PMID: 36263241 PMCID: PMC9550513 DOI: 10.1155/2022/4913146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microbiota plays a key role in regulating the pathogenesis of human disease and maintaining health. Many diseases, mainly induced by bacteria, are on the rise due to the emergence of antibiotic-resistant strains. Intestinal microorganisms include organisms such as bacteria, viruses, and fungi. They play an important role in maintaining human health. Among these microorganisms, phages are the main members of intestinal viromes. In particular, the viral fraction, composed essentially of phages, affects homeostasis by exerting selective pressure on bacterial communities living in the intestinal tract. In recent years, with the widespread use and even abuse of antibacterial drugs, more and more drug-resistant bacteria have been found, and they show a trend of high drug resistance and multidrug resistance. Therefore, it has also become increasingly difficult to treat serious bacterial infections. Phages, a natural antibacterial agent with strong specificity and rapid proliferation, have come back to the field of vision of clinicians and scholars. In this study, the current state of research on intestinal phages was discussed, with an exploration of the impact of phage therapy against infectious diseases, as well as potential application beyond infectious diseases.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wen-Min Xu
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| | - Long Zhang
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| |
Collapse
|
31
|
Tuft S, Somerville TF, Li JPO, Neal T, De S, Horsburgh MJ, Fothergill JL, Foulkes D, Kaye S. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2021; 89:101031. [PMID: 34915112 DOI: 10.1016/j.preteyeres.2021.101031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis is a common corneal infection that is treated with topical antimicrobials. By the time of presentation there may already be severe visual loss from corneal ulceration and opacity, which may persist despite treatment. There are significant differences in the associated risk factors and the bacterial isolates between high income and low- or middle-income countries, so that general management guidelines may not be appropriate. Although the diagnosis of bacterial keratitis may seem intuitive there are multiple uncertainties about the criteria that are used, which impacts the interpretation of investigations and recruitment to clinical studies. Importantly, the concept that bacterial keratitis can only be confirmed by culture ignores the approximately 50% of cases clinically consistent with bacterial keratitis in which investigations are negative. The aetiology of these culture-negative cases is unknown. Currently, the estimation of bacterial susceptibility to antimicrobials is based on data from systemic administration and achievable serum or tissue concentrations, rather than relevant corneal concentrations and biological activity in the cornea. The provision to the clinician of minimum inhibitory concentrations of the antimicrobials for the isolated bacteria would be an important step forward. An increase in the prevalence of antimicrobial resistance is a concern, but the effect this has on disease outcomes is yet unclear. Virulence factors are not routinely assessed although they may affect the pathogenicity of bacteria within species and affect outcomes. New technologies have been developed to detect and kill bacteria, and their application to bacterial keratitis is discussed. In this review we present the multiple areas of clinical uncertainty that hamper research and the clinical management of bacterial keratitis, and we address some of the assumptions and dogma that have become established in the literature.
Collapse
Affiliation(s)
- Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Tobi F Somerville
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Timothy Neal
- Department of Clinical Microbiology, Liverpool Clinical Laboratories, Liverpool University Hospital NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK.
| | - Surjo De
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| | - Malcolm J Horsburgh
- Department of Infection and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7BX, UK.
| | - Joanne L Fothergill
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Daniel Foulkes
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Stephen Kaye
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
32
|
Mann A, Nehra K, Rana J, Dahiya T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100030. [PMID: 34841321 PMCID: PMC8610298 DOI: 10.1016/j.crmicr.2021.100030] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a massive problem rising constantly and spreading rapidly since the past decade. The major underlying mechanism responsible for this problem is an overuse or severe misuse of antibiotics. Regardless of this emerging global threat, antibiotics are still being widely used, not only for treatment of human infections, but also to a great extent in agriculture, livestock and animal husbandry. If the current scenario persists, we might enter into a post-antibiotic era where drugs might not be able to treat even the simplest of infections. This review discusses the current status of antibiotic utilization and molecular basis of antibiotic resistance mechanisms acquired by bacteria, along with the modes of transmittance of the resultant resistant genes into human pathogens through their cycling among different ecosystems. The main focus of the article is to provide an insight into the different molecular and other strategies currently being studied worldwide for their use as an alternate to antibiotics with an overall aim to overcome or minimize the global problem of antibiotic resistance.
Collapse
|
33
|
Wang Z, Xue Y, Gao Y, Guo M, Liu Y, Zou X, Cheng Y, Ma J, Wang H, Sun J, Yan Y. Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:689770. [PMID: 34178726 PMCID: PMC8226249 DOI: 10.3389/fcimb.2021.689770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that causes a variety of infections in humans and animals. Due to the inappropriate use of antibiotics, multi-drug resistant (MDR) P. aeruginosa strains have emerged and are prevailing. In recent years, cow mastitis caused by MDR P. aeruginosa has attracted attention. In this study, a microbial community analysis revealed that P. aeruginosa could be a cause of pathogen-induced cow mastitis. Five MDR P. aeruginosa strains were isolated from milk diagnosed as mastitis positive. To seek an alternative antibacterial agent against MDR, P. aeruginosa, a lytic phage, designated vB_PaeS_PAJD-1 (PAJD-1), was isolated from dairy farm sewage. PAJD-1 was morphologically classified as Siphoviridae and was estimated to be about 57.9 kb. Phage PAJD-1 showed broad host ranges and a strong lytic ability. A one-step growth curve analysis showed a relatively short latency period (20 min) and a relatively high burst size (223 PFU per infected cell). Phage PAJD-1 remained stable over wide temperature and pH ranges. Intramammary-administered PAJD-1 reduced bacterial concentrations and repaired mammary glands in mice with mastitis induced by MDR P. aeruginosa. Furthermore, the cell wall hydrolase (termed endolysin) from phage PAJD-1 exhibited a strong bacteriolytic and a wide antibacterial spectrum against MDR P. aeruginosa. These findings present phage PAJD-1 as a candidate for phagotherapy against MDR P. aeruginosa infection.
Collapse
Affiliation(s)
- Zhaofei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yibing Xue
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Ya Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Mengting Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuanping Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Xinwei Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
34
|
Yaeger LN, Coles VE, Chan DCK, Burrows LL. How to kill Pseudomonas-emerging therapies for a challenging pathogen. Ann N Y Acad Sci 2021; 1496:59-81. [PMID: 33830543 DOI: 10.1111/nyas.14596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
As the number of effective antibiotics dwindled, antibiotic resistance (AR) became a pressing concern. Some Pseudomonas aeruginosa isolates are resistant to all available antibiotics. In this review, we identify the mechanisms that P. aeruginosa uses to evade antibiotics, including intrinsic, acquired, and adaptive resistance. Our review summarizes many different approaches to overcome resistance. Antimicrobial peptides have potential as therapeutics with low levels of resistance evolution. Rationally designed bacteriophage therapy can circumvent and direct evolution of AR and virulence. Vaccines and monoclonal antibodies are highlighted as immune-based treatments targeting specific P. aeruginosa antigens. This review also identifies promising drug combinations, antivirulence therapies, and considerations for new antipseudomonal discovery. Finally, we provide an update on the clinical pipeline for antipseudomonal therapies and recommend future avenues for research.
Collapse
Affiliation(s)
- Luke N Yaeger
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Victoria E Coles
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Derek C K Chan
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Lee JW, Somerville T, Kaye SB, Romano V. Staphylococcus aureus Keratitis: Incidence, Pathophysiology, Risk Factors and Novel Strategies for Treatment. J Clin Med 2021; 10:jcm10040758. [PMID: 33668633 PMCID: PMC7918096 DOI: 10.3390/jcm10040758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial keratitis is a devastating condition that can rapidly progress to serious complications if not treated promptly. Certain causative microorganisms such as Staphylococcus aureus and Pseudomonas aeruginosa are notorious for their resistance to antibiotics. Resistant bacterial keratitis results in poorer outcomes such as scarring and the need for surgical intervention. Thorough understanding of the causative pathogen and its virulence factors is vital for the discovery of novel treatments to avoid further antibiotic resistance. While much has been previously reported on P. aeruginosa, S. aureus has been less extensively studied. This review aims to give a brief overview of S. aureus epidemiology, pathophysiology and clinical characteristics as well as summarise the current evidence for potential novel therapies.
Collapse
Affiliation(s)
- Jason W. Lee
- School of Medicine, University of Liverpool, Liverpool L69 3GE, UK;
| | - Tobi Somerville
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Stephen B. Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK; (T.S.); (S.B.K.)
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
- Correspondence:
| |
Collapse
|
36
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms 2021; 9:206. [PMID: 33498243 PMCID: PMC7909267 DOI: 10.3390/microorganisms9020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| |
Collapse
|
37
|
In Vitro and In Vivo Evaluation of Three Newly Isolated Bacteriophage Candidates, phiEF7H, phiEF14H1, phiEF19G, for Treatment of Enterococcus faecalis Endophthalmitis. Microorganisms 2021; 9:microorganisms9020212. [PMID: 33498561 PMCID: PMC7909552 DOI: 10.3390/microorganisms9020212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 01/21/2023] Open
Abstract
Post-operative endophthalmitis caused by Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Therefore, novel alternative treatments that are effective against enterococcal endophthalmitis are required. Bacteriophage therapy has the potential to be an optional therapy for infectious diseases. Therefore, we investigated the therapeutic potential of three newly isolated enterococcal phages, phiEF7H, phiEF14H1, and phiEF19G, in E. faecalis-induced endophthalmitis. These phages could lyse the broad-range E. faecalis, including strains derived from endophthalmitis and vancomycin-resistant E. faecalis in vitro, as determined by the streak test. Morphological and genomic analyses revealed that these phages were classified into the Herelleviridae genus Kochikohdavirus. The whole genomes of these phages contained 143,399, 143,280, and 143,400 bp, respectively. Endophthalmitis was induced in mice by injection of three strains of E. faecalis derived from post-operative endophthalmitis or vancomycin-resistant strains into the vitreous body. The number of viable bacteria and infiltration of neutrophils in the eye were both decreased by intravitreous injection of phiEF7H, phiEF14H1, and phiEF19G 6 h after injection of all E. faecalis strains. Thus, these results suggest that these newly isolated phages may serve as promising candidates for phage therapy against endophthalmitis.
Collapse
|
38
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
39
|
Ong SP, Azam AH, Sasahara T, Miyanaga K, Tanji Y. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J Biosci Bioeng 2020; 129:693-699. [DOI: 10.1016/j.jbiosc.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/30/2019] [Accepted: 02/01/2020] [Indexed: 12/27/2022]
|
40
|
Taati Moghadam M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1867-1883. [PMID: 32523333 PMCID: PMC7237115 DOI: 10.2147/dddt.s251171] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Wound infection kills a large number of patients worldwide each year. Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most important colonizing pathogens of wounds that, with various virulence factors and impaired immune system, causes extensive tissue damage and nonhealing wounds. Furthermore, the septicemia caused by these pathogens increases the mortality rate due to wound infections. Because of the prevalence of antibiotic resistance in recent years, the use of antibiotics to inhibit these pathogens has been restricted, and the topical application of antibiotics in wound infections increases antibiotic resistance. Therefore, finding a new therapeutic strategy against wound infections is so essential since these infections have a destructive effect on the patient’s mental health and high medical costs. In this review, we discussed the use of phages for the prevention of multidrug-resistant (MDR) bacteria, causing wound infection and their role in wound healing in animal models and clinical trials. The results showed that phages have a high ability to inhibit different wound infections caused by MDR bacteria, heal the wound faster, have lower side effects and toxicity, destroy bacterial biofilm, and they are useful in controlling immune responses. Many studies have used animal models to evaluate the function of phages, and this study appears to have a positive impact on the use of phages in clinical practice and the development of a new therapeutic approach to control wound infections, although there are still many limitations.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Farahani
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
42
|
Abstract
Pseudomonas aeruginosa, a versatile Gram-negative pathogen that can cause a wide range of infections, is the most common causative agent in cases of bacterial keratitis associated with contact-lens use. Corneal infections with P. aeruginosa often have poor clinical outcomes and can result in long and costly treatments. During the infection process, the pathogen exploits its large genome, encoding complex regulatory networks and a wide range of virulence factors, including motility and the secretion of various proteases and toxins. Although antibiotic resistance levels in the UK are low, higher levels have been seen in some other countries. In the face of increasing antibiotic resistance, alternative therapeutic approaches such as antivirulence strategies and phage therapy are being developed. There is increasing evidence to suggest that keratitis infections are associated with a phylogenetic subgroup of P. aeruginosa isolates carrying the gene encoding the potent cytotoxin exotoxin U, one of two mutually exclusive exotoxins secreted via the type III secretion system. The mechanisms behind this association are unclear, but understanding the genetic differences that predispose P. aeruginosa to cause corneal infections may allow for the development of targeted and more effective future treatments to reduce the morbidity of P. aeruginosa keratitis. In order to minimize the risk of severe P. aeruginosa eye infections, a wide range of contact-lens disinfection solutions are available. Constant exposure to biocides at a range of concentrations, from sub-inhibitory to inhibitory, could contribute to the development of resistance to both antibiotics and disinfectants.
Collapse
Affiliation(s)
- Yasmin Hilliam
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Stephen Kaye
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Craig Winstanley
- Department of Clinical Infection, Microbiology, and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| |
Collapse
|
43
|
Abstract
Assessing the accuracy of 3D models has become a keystone in the protein structure prediction field. ModFOLD7 is our leading resource for Estimates of Model Accuracy (EMA), which has been upgraded by integrating a number of the pioneering pure-single- and quasi-single-model approaches. Such an integration has given our latest version the strengths to accurately score and rank predicted models, with higher consistency compared to older EMA methods. Additionally, the server provides three options for producing global score estimates, depending on the requirements of the user: (1) ModFOLD7_rank, which is optimized for ranking/selection, (2) ModFOLD7_cor, which is optimized for correlations of predicted and observed scores, and (3) ModFOLD7 global for balanced performance. ModFOLD7 has been ranked among the top few EMA methods according to independent blind testing by the CASP13 assessors. Another evaluation resource for ModFOLD7 is the CAMEO project, where the method is continuously automatically evaluated, showing a significant improvement compared to our previous versions. The ModFOLD7 server is freely available at http://www.reading.ac.uk/bioinf/ModFOLD/ .
Collapse
Affiliation(s)
- Ali H A Maghrabi
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
44
|
Therapeutic Effects of Intravitreously Administered Bacteriophage in a Mouse Model of Endophthalmitis Caused by Vancomycin-Sensitive or -Resistant Enterococcus faecalis. Antimicrob Agents Chemother 2019; 63:AAC.01088-19. [PMID: 31451497 DOI: 10.1128/aac.01088-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023] Open
Abstract
Endophthalmitis due to infection with Enterococcus spp. progresses rapidly and often results in substantial and irreversible vision loss. Given that the frequency of this condition caused by vancomycin-resistant Enterococcus faecalis has been increasing, the development of novel therapeutics is urgently required. We have demonstrated the therapeutic potential of bacteriophage ΦEF24C-P2 in a mouse model of endophthalmitis caused by vancomycin-sensitive (EF24) or vancomycin-resistant (VRE2) strains of E. faecalis Phage ΦEF24C-P2 induced rapid and pronounced bacterial lysis in turbidity reduction assays with EF24, VRE2, and clinical isolates derived from patients with E. faecalis-related postoperative endophthalmitis. Endophthalmitis was induced in mice by injection of EF24 or VRE2 (1 × 104 cells) into the vitreous. The number of viable bacteria in the eye increased to >1 × 107 CFU, and neutrophil infiltration into the eye was detected as an increase in myeloperoxidase activity at 24 h after infection. A clinical score based on loss of visibility of the fundus as well as the number of viable bacteria and the level of myeloperoxidase activity in the eye were all significantly decreased by intravitreous injection of ΦEF24C-P2 6 h after injection of EF24 or VRE2. Whereas histopathologic analysis revealed massive infiltration of inflammatory cells and retinal detachment in vehicle-treated eyes, the number of these cells was greatly reduced and retinal structural integrity was preserved in phage-treated eyes. Our results thus suggest that intravitreous phage therapy is a potential treatment for endophthalmitis caused by vancomycin-sensitive or -resistant strains of E. faecalis.
Collapse
|
45
|
de Melo ACC, da Mata Gomes A, Melo FL, Ardisson-Araújo DMP, de Vargas APC, Ely VL, Kitajima EW, Ribeiro BM, Wolff JLC. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol 2019; 19:134. [PMID: 31208333 PMCID: PMC6580649 DOI: 10.1186/s12866-019-1481-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen and one of the leading causes of nosocomial infections. Moreover, the species can cause severe infections in cystic fibrosis patients, in burnt victims and cause disease in domestic animals. The control of these infections is often difficult due to its vast repertoire of mechanisms for antibiotic resistance. Phage therapy investigation with P. aeruginosa bacteriophages has aimed mainly the control of human diseases. In the present work, we have isolated and characterized a new bacteriophage, named Pseudomonas phage BrSP1, and investigated its host range against 36 P. aeruginosa strains isolated from diseased animals and against P. aeruginosa ATCC strain 27853. Results We have isolated a Pseudomonas aeruginosa phage from sewage. We named this virus Pseudomonas phage BrSP1. Our electron microscopy analysis showed that phage BrSP1 had a long tail structure found in members of the order Caudovirales. “In vitro” biological assays demonstrated that phage BrSP1 was capable of maintaining the P. aeruginosa population at low levels for up to 12 h post-infection. However, bacterial growth resumed afterward and reached levels similar to non-treated samples at 24 h post-infection. Host range analysis showed that 51.4% of the bacterial strains investigated were susceptible to phage BrSP1 and efficiency of plating (EOP) investigation indicated that EOP values in the strains tested varied from 0.02 to 1.72. Analysis of the phage genome revealed that it was a double-stranded DNA virus with 66,189 bp, highly similar to the genomes of members of the genus Pbunavirus, a group of viruses also known as PB1-like viruses. Conclusion The results of our “in vitro” bioassays and of our host range analysis suggested that Pseudomonas phage BrSP1 could be included in a phage cocktail to treat veterinary infections. Our EOP investigation confirmed that EOP values differ considerably among different bacterial strains. Comparisons of complete genome sequences indicated that phage BrSP1 is a novel species of the genus Pbunavirus. The complete genome of phage BrSP1 provides additional data that may help the broader understanding of pbunaviruses genome evolution. Electronic supplementary material The online version of this article (10.1186/s12866-019-1481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Cristhina Carmine de Melo
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Amanda da Mata Gomes
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Fernando L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, CEP 97105-900, Brazil
| | - Agueda Palmira Castagna de Vargas
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Valessa Lunkes Ely
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Elliot W Kitajima
- NAP/MEPA, Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - José Luiz Caldas Wolff
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil.
| |
Collapse
|
46
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
47
|
Fong SA, Drilling AJ, Ooi ML, Paramasivan S, Finnie JW, Morales S, Psaltis AJ, Vreugde S, Wormald PJ. Safety and efficacy of a bacteriophage cocktail in an in vivo model of Pseudomonas aeruginosa sinusitis. Transl Res 2019; 206:41-56. [PMID: 30615845 DOI: 10.1016/j.trsl.2018.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/30/2018] [Accepted: 12/16/2018] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa (PA) is a bacterial pathogen that frequently displays antibiotic resistance. Its presence within the sinuses of chronic rhinosinusitis sufferers is associated with poorer quality of life. Obligately lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death. The aims of this study were to assess the safety and efficacy of a PA phage cocktail (CT-PA) in a sheep model of rhinosinusitis. The sheep rhinosinusitis model was adapted to simulate PA infection in sheep frontal sinuses. To assess efficacy, after a 7-day biofilm formation period, sheep received twice-daily frontal trephine flushes of CT-PA or saline for 1 week. Biofilm quantitation on frontal sinus mucosa was performed using LIVE/DEAD BacLight staining. To assess safety, sheep received twice-daily frontal trephine flushes of CT-PA or vehicle control for 3 weeks. Blood and fecal samples were collected throughout treatment. Histopathology of frontal sinus, lung, heart, liver, spleen, and kidney tissue was performed. Sinus cilia were visualized using scanning electron microscopy (SEM). The Efficacy arm showed a statistically significant reduction in biofilm biomass with all concentrations of CT-PA tested (P < 0.05). Phage presence in sinuses was maintained for at least 16hours after the final flush. All Safety arm sheep completed 3 weeks of treatment. Phage was detected consistently in feces and sporadically in blood and organ samples. Histology and SEM of tissues revealed no treatment-related damage. In conclusion, CT-PA was able to decrease sinus PA biofilm at concentrations of 108-1010 PFU/mL. No safety concerns were noted.
Collapse
Affiliation(s)
- Stephanie A Fong
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - Amanda J Drilling
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - Mian Li Ooi
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - Sathish Paramasivan
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Alkis J Psaltis
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital, University of Adelaide, Woodville South, South Australia, Australia.
| |
Collapse
|
48
|
Cafora M, Deflorian G, Forti F, Ferrari L, Binelli G, Briani F, Ghisotti D, Pistocchi A. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci Rep 2019; 9:1527. [PMID: 30728389 PMCID: PMC6365511 DOI: 10.1038/s41598-018-37636-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease due to mutations in the CFTR gene and causes mortality in humans mainly due to respiratory infections caused by Pseudomonas aeruginosa. In a previous work we used phage therapy, which is a treatment with a mix of phages, to actively counteract acute P. aeruginosa infections in mice and Galleria mellonella larvae. In this work we apply phage therapy to the treatment of P. aeruginosa PAO1 infections in a CF zebrafish model. The structure of the CFTR channel is evolutionary conserved between fish and mammals and cftr-loss-of-function zebrafish embryos show a phenotype that recapitulates the human disease, in particular with destruction of the pancreas. We show that phage therapy is able to decrease lethality, bacterial burden, and the pro-inflammatory response caused by PAO1 infection. In addition, phage administration relieves the constitutive inflammatory state of CF embryos. To our knowledge, this is the first time that phage therapy is used to cure P. aeruginosa infections in a CF animal model. We also find that the curative effect against PAO1 infections is improved by combining phages and antibiotic treatments, opening a useful therapeutic approach that could reduce antibiotic doses and time of administration.
Collapse
Affiliation(s)
- Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Gianluca Deflorian
- Istituto FIRC di Oncologia Molecolare - IFOM, Via Adamello 16, 20139, Milano, Italy
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Laura Ferrari
- Istituto FIRC di Oncologia Molecolare - IFOM, Via Adamello 16, 20139, Milano, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via J.H. Dunant 3, Varese, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Daniela Ghisotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano - LITA, via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
49
|
Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents 2018; 53:16-21. [PMID: 30236954 DOI: 10.1016/j.ijantimicag.2018.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/28/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
Bacteriophages, or phages, are viruses that infect bacteria. They were discovered around a century ago and have been used ever since for therapeutic purposes, particularly in former Soviet Union countries. Their use in Western countries was abandoned after the discovery and broad use of penicillin. The rising problem of antimicrobial resistance has revived interest in bacteriophage therapy. The aim of this article is to provide a comprehensive review of all aspects of natural phage therapy.
Collapse
Affiliation(s)
- Athanasios Kakasis
- 3rd Internal Medicine Department, Athens General Hospital "G Gennimatas", Mesogeion Avenue 154, 11527, Athens, Greece.
| | - Gerasimia Panitsa
- Ophthalmology Department, Athens General Hospital "G Gennimatas", Mesogeion Avenue 154, 11527, Athens, Greece
| |
Collapse
|
50
|
Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models. Antimicrob Agents Chemother 2018; 62:AAC.02573-17. [PMID: 29555626 PMCID: PMC5971607 DOI: 10.1128/aac.02573-17] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
The alarming diffusion of multidrug-resistant (MDR) bacterial strains requires investigations on nonantibiotic therapies. Among such therapies, the use of bacteriophages (phages) as antimicrobial agents, namely, phage therapy, is a promising treatment strategy supported by the findings of recent successful compassionate treatments in Europe and the United States. In this work, we combined host range and genomic information to design a 6-phage cocktail killing several clinical strains of Pseudomonas aeruginosa, including those collected from Italian cystic fibrosis (CF) patients, and analyzed the cocktail performance. We demonstrated that the cocktail composed of four novel phages (PYO2, DEV, E215 and E217) and two previously characterized phages (PAK_P1 and PAK_P4) was able to lyse P. aeruginosa both in planktonic liquid cultures and in biofilms. In addition, we showed that the phage cocktail could cure acute respiratory infection in mice and treat bacteremia in wax moth (Galleria mellonella) larvae. Furthermore, administration of the cocktail to larvae prior to bacterial infection provided prophylaxis. In this regard, the efficiency of the phage cocktail was found to be unaffected by the MDR or mucoid phenotype of the pseudomonal strain. The cocktail was found to be superior to the individual phages in destroying biofilms and providing a faster treatment in mice. We also found the Galleria larva model to be cost-effective for testing the susceptibility of clinical strains to phages, suggesting that it could be implemented in the frame of developing personalized phage therapies.
Collapse
|