1
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
2
|
Ui-Haq Z, Causin L, Kamalati T, Kahol D, Vaikunthanathan T, Wong C, Arebi N. Health-care resource use and costs associated with inflammatory bowel disease in northwest London: a retrospective linked database study. BMC Gastroenterol 2024; 24:480. [PMID: 39736541 DOI: 10.1186/s12876-024-03559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND With 20-40% of patients who have inflammatory bowel disease (IBD) not responding to therapy, resource use and costs can be high. We performed a descriptive analysis of health-care data for IBD management in the National Health Service to explore potential areas for improvement. METHODS In this exploratory study, we analysed real-world data from the Discover dataset for adults with a diagnosis of incident IBD recorded in northwest London, UK, between 31 March, 2016, and 31 March, 2020. We compared mean visit numbers and primary and secondary care costs per patient to examine resource use and costs for active disease versus remission. RESULTS We included 7,733 patients (5,872 with ulcerative colitis [UC], 1,427 with Crohn's disease [CD], and 434 with codes for both [termed IBD-undefined in this study]). Remission was recorded in 19,218 (82%) of 23,488 observations for UC, 4,686 (82%) of 5,708 for CD, and 1,122 (65%) for IBD-undefined observations. Health-care resource use was significantly higher with active disease in all settings except primary care for UC. Total health-care costs were greater with active disease than remission for all diagnoses (all p < 0.0001). The main driver of costs was inpatient hospital care among those with active disease; elective inpatient costs were high among patients with UC and IBD-undefined in remission. CONCLUSIONS Higher health-care resource use and costs were observed with active disease, which underscores the importance of early induction and maintenance of remission in UC and CD. Updated strategies that incorporate treat to target may offer cost benefits by the offsetting of biologic drug costs with a reduction in costly inpatient hospital stays. TRIAL REGISTRATION This trial was not registered as it used pseudonymised retrospective data.
Collapse
Affiliation(s)
- Zia Ui-Haq
- Imperial College Health Partners, London, UK
| | | | | | | | | | - Charlotte Wong
- Department of Inflammatory Bowel Disease, St Mark's National Bowel Hospital, Central Middlesex Hospital, Acton Lane, London, NW10 7NS, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Naila Arebi
- Department of Inflammatory Bowel Disease, St Mark's National Bowel Hospital, Central Middlesex Hospital, Acton Lane, London, NW10 7NS, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
3
|
AlSharari SD, Alameen AA, Aldafiri FS, Ali YS, Alshammari MA, Sari Y, Damaj MI. Activation of α7 nicotinic receptors attenuated hyperalgesia and anxiety induced by palatable obesogenic diet withdrawal. J Pharmacol Sci 2024; 156:86-101. [PMID: 39179339 DOI: 10.1016/j.jphs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/26/2024] Open
Abstract
Consumption of palatable food (PF) can alleviate anxiety, and pain in humans. Contrary, spontaneous withdrawal of long-term PF intake produces anxiogenic-like behavior and abnormal pain sensation, causing challenges to weight-loss diet and anti-obesity agents. Thus, we examined α7-nicotinic acetylcholine receptors (α7nAChR) involvement since it plays essential role in nociception and psychological behaviors. METHODS Adult male C57BL/6 mice were placed on a Standard Chow (SC) alone or with PF on intermittent or continuous regimen for 6 weeks. Then, mice were replaced with normal SC (spontaneous withdrawal). Body weight, food intake, and calories intake with and without the obesogenic diet were measured throughout the study. During PF withdrawal, anxiety-like behaviors and pain sensitivity were measured with PNU-282987 (α7nAChR agonist) administration. RESULTS Six weeks of SC + PF-intermittent and continuous paradigms produced a significant weight gain. PF withdrawal displayed hyperalgesia and anxiety-like behaviors. During withdrawal, PNU-282987 significantly attenuated hyperalgesia and anxiety-like behaviors. CONCLUSION The present study shows that a PF can increase food intake and body weight. Also, enhanced pain sensitivity and anxiety-like behavior were observed during PF withdrawal. α7nAChR activation attenuated anxiolytic-like behavior and hyperalgesia in PF abstinent mice. These data suggest potential therapeutic effects of targeting α7 nAChRs for obesity-withdrawal symptoms in obese subjects.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Fawzeyah S Aldafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousif S Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
4
|
Sun Q, Wang H, Yang M, Xia H, Wu Y, Liu Q, Tang H. miR-153-3p via PIK3R1 Is Involved in Cigarette Smoke-Induced Neurotoxicity in the Brain. TOXICS 2023; 11:969. [PMID: 38133370 PMCID: PMC10747656 DOI: 10.3390/toxics11120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Cigarettes contain various chemicals that cause damage to nerve cells. Exposure to cigarette smoke (CS) causes insulin resistance (IR) in nerve cells. However, the mechanisms for a disorder in the cigarette-induced insulin signaling pathway and in neurotoxicity remain unclear. Therefore, we evaluated, by a series of pathology analyses and behavioral tests, the neurotoxic effects of chronic exposure to CS on C57BL/6 mice. Mice exposed to CS with more than 200 mg/m3 total particulate matter (TPM) exhibited memory deficits and cognitive impairment. Pathological staining of paraffin sections of mouse brain tissue revealed that CS-exposed mice had, in the brain, neuronal damage characterized by thinner pyramidal and granular cell layers and fewer neurons. Further, the exposure of SH-SY5Y cells to cigarette smoke extract (CSE) resulted in diminished insulin sensitivity and reduced glucose uptake in a dose-dependent fashion. The PI3K/GSK3 insulin signaling pathway is particularly relevant to neurotoxicity. microRNAs are involved in the PI3K/GSK3β/p-Tau pathway, and we found that cigarette exposure activates miR-153-3p, decreases PI3K regulatory subunits PIK3R1, and induces Tau hyperphosphorylation. Exposure to an miR-153 inhibitor or to a PI3K inhibitor alleviated the reduced insulin sensitivity caused by CS. Therefore, our results indicate that miR-153-3p, via PIK3R1, causes insulin resistance in the brain, and is involved in CS-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Mingxue Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| |
Collapse
|
5
|
Meng Q, Ma J, Suo L, Pruekprasert N, Chakrapani P, Cooney RN. Galantamine improves glycemic control and diabetic nephropathy in Lepr db/db mice. Sci Rep 2023; 13:15544. [PMID: 37731032 PMCID: PMC10511534 DOI: 10.1038/s41598-023-42665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Galantamine, a centrally acting acetylcholinesterase inhibitor, has been shown to attenuate inflammation and insulin resistance in patients with metabolic syndrome. We investigated the effects of galantamine on glycemic control and development of diabetic nephropathy (DN) in Leprdb/db mice. Galantamine significantly reduced food intake, body weight, blood glucose and HbA1c levels. Insulin resistance (HOMA-IR, QUICKI), HOMA-β and elevations in plasma inflammatory cytokine levels (TNF-α, IL-6 and HMGB-1) were all attenuated by galantamine. Galantamine also ameliorated diabetes-induced kidney injury as evidenced by improvements in renal function (BUN, creatinine, albuminuria), histologic injury and apoptosis. Improved glycemic control and nephropathy were associated with increased circulating GLP-1, decreased renal P-38 MAPK and caspase-1 activation and reduced SGLT-2 expression. These findings provide insights into the mechanisms by which galantamine improves glycemic control and attenuates DN in the Leprdb/db mouse model.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Julia Ma
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Napat Pruekprasert
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Prithi Chakrapani
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Robert N Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Chen Z, Liu XA, Kenny PJ. Central and peripheral actions of nicotine that influence blood glucose homeostasis and the development of diabetes. Pharmacol Res 2023; 194:106860. [PMID: 37482325 DOI: 10.1016/j.phrs.2023.106860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance. The review aims to elucidate the genetic variants of nicotinic acetylcholine receptors associated with diabetes risk and provide a comprehensive overview of the available data on the mechanisms through which nicotine influences blood glucose homeostasis and the development of diabetes. Here we emphasize the central and peripheral actions of nicotine on the release of glucoregulatory hormones, as well as its effects on glucose tolerance and insulin sensitivity. Notably, the central actions of nicotine within the brain, which encompass both insulin-dependent and independent mechanisms, are highlighted as potential targets for intervention strategies in diabetes management.
Collapse
Affiliation(s)
- Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
7
|
Qin X, Hou X, Xu X, Chen L, Gao A, Hao Y, Du X, Zhao L, Shi Y, Li Q. Down-regulation of connexin 43 contributes to structure and function of pulmonary artery in nicotine-administered mice. Toxicol Lett 2023; 377:1-13. [PMID: 36720419 DOI: 10.1016/j.toxlet.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023]
Abstract
Dysregulated connexin signaling is implicated in the pathophysiology of pulmonary artery hypertension (PAH). Nicotine affects pulmonary vascular remodeling. However, the potential mechanistic link between connexin signaling and nicotine-induced pulmonary artery remodeling remains unclear. We aimed to investigate the role of connexin 43 (Cx43) in pulmonary artery remodeling in nicotine-administered C57BL/6 J wild-type (WT) and Cx43 heterozygous (Cx43+/-) mice. Hemodynamic parameters and right ventricle pathology were assessed in the mice. Serum biochemical indices of hepatic and renal function were measured. The RT-PCR, immunofluorescence, and western blotting were conducted to evaluate Cx43 mRNA and protein levels. We performed histological staining to identify pulmonary arteries. Wire myography was used to examine contraction and relaxation responses in the pulmonary arteries. Pulmonary vascular permeability was assessed through Evans blue staining. Compared with the WT group, the Cx43+/- group showed lower Cx43 mRNA and protein expression in the pulmonary arteries (P < 0.01). Nicotine treatment significantly increased Cx43 expression (P < 0.01) and induced morphological changes in the pulmonary arteries (P < 0.01). Our findings suggest that Cx43 plays a crucial role in pulmonary artery reactivity and permeability in mice. Furthermore, downregulation of Cx43 expression may contribute to alterations in pulmonary artery structure and function.
Collapse
Affiliation(s)
- Xiaojiang Qin
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Shanxi, China; China Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China
| | - Xinrong Xu
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
| | - Liangjin Chen
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
| | - Anqi Gao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
| | - Yuxuan Hao
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
| | - Xufeng Du
- Department of Exercise Rehabilitation, Shanxi Medical University, Shanxi, China
| | - Liangyuan Zhao
- Department of Exercise Rehabilitation, Shanxi Medical University, Shanxi, China
| | - Yiwei Shi
- Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Shanxi, China.
| | - Qingshan Li
- Shanxi Key Laboratory of Chronic Inflammatory Targeted Drugs, School of Materia Medica, Shanxi University of Traditional Chinese Medicine, 121 University Street, Jinzhong 030602, Shanxi, China.
| |
Collapse
|
8
|
Nogueira L, Zemljic-Harpf AE, Yusufi R, Ranjbar M, Susanto C, Tang K, Mahata SK, Jennings PA, Breen EC. E-cigarette aerosol impairs male mouse skeletal muscle force development and prevents recovery from injury. Am J Physiol Regul Integr Comp Physiol 2022; 323:R849-R860. [PMID: 36250633 PMCID: PMC9678407 DOI: 10.1152/ajpregu.00314.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
To date, there has been a lag between the rise in E-cigarette use and an understanding of the long-term health effects. Inhalation of E-cigarette aerosol delivers high doses of nicotine, raises systemic cytokine levels, and compromises cardiopulmonary function. The consequences for muscle function have not been thoroughly investigated. The present study tests the hypothesis that exposure to nicotine-containing aerosol impairs locomotor muscle function, limits exercise tolerance, and interferes with muscle repair in male mice. Nicotine-containing aerosol reduced the maximal force produced by the extensor digitorum longus (EDL) by 30%-40% and, the speed achieved in treadmill running by 8%. Nicotine aerosol exposure also decreased adrenal and increased plasma epinephrine and norepinephrine levels, and these changes in catecholamines manifested as increased muscle and liver glycogen stores. In nicotine aerosol exposed mice, muscle regenerating from overuse injury only recovered force to 80% of noninjured levels. However, the structure of neuromuscular junctions (NMJs) was not affected by e-cigarette aerosols. Interestingly, the vehicle used to dissolve nicotine in these vaping devices, polyethylene glycol (PG) and vegetable glycerin (VG), decreased running speed by 11% and prevented full recovery from a lengthening contraction protocol (LCP) injury. In both types of aerosol exposures, cardiac left ventricular systolic function was preserved, but left ventricular myocardial relaxation was altered. These data suggest that E-cigarette use may have a negative impact on muscle force and regeneration due to compromised glucose metabolism and contractile function in male mice.NEW & NOTEWORTHY In male mice, nicotine-containing E-cigarette aerosol compromises muscle contractile function, regeneration from injury, and whole body running speeds. The vehicle used to deliver nicotine, propylene glycol, and vegetable glycerin, also reduces running speed and impairs the restoration of muscle function in injured muscle. However, the predominant effects of nicotine in this inhaled aerosol are evident in altered catecholamine levels, increased glycogen content, decreased running capacity, and impaired recovery of force following an overuse injury.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Department of Medicine, University of California, San Diego, La Jolla, California
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, San Diego, California
| | - Alice E Zemljic-Harpf
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Raihana Yusufi
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Maryam Ranjbar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Christopher Susanto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Kechun Tang
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Pan X, Tao S, Tong N. Potential Therapeutic Targeting Neurotransmitter Receptors in Diabetes. Front Endocrinol (Lausanne) 2022; 13:884549. [PMID: 35669692 PMCID: PMC9163348 DOI: 10.3389/fendo.2022.884549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Neurotransmitters are signaling molecules secreted by neurons to coordinate communication and proper function among different sections in the central neural system (CNS) by binding with different receptors. Some neurotransmitters as well as their receptors are found in pancreatic islets and are involved in the regulation of glucose homeostasis. Neurotransmitters can act with their receptors in pancreatic islets to stimulate or inhibit the secretion of insulin (β cell), glucagon (α cell) or somatostatin (δ cell). Neurotransmitter receptors are either G-protein coupled receptors or ligand-gated channels, their effects on blood glucose are mainly decided by the number and location of them in islets. Dysfunction of neurotransmitters receptors in islets is involved in the development of β cell dysfunction and type 2 diabetes (T2D).Therapies targeting different transmitter systems have great potential in the prevention and treatment of T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shibing Tao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, Ziyang First People’s Hospital, Ziyang, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetes and Islet Transplantation, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
α7nAChR activation protects against oxidative stress, neuroinflammation and central insulin resistance in ICV-STZ induced sporadic Alzheimer's disease. Pharmacol Biochem Behav 2022; 217:173402. [DOI: 10.1016/j.pbb.2022.173402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
|
11
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
12
|
Faheem A, Rehman K, Jabeen K, Akash MSH. Nicotine-mediated upregulation of microRNA-141 expression determines adipokine-intervened insulin resistance. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103506. [PMID: 33002592 DOI: 10.1016/j.etap.2020.103506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that are associated with adipokine homeostasis and insulin resistance. Whereas, smoking can disturb metabolic homeostasis. Present study was aimed to investigate the level of miRNA-141 in experimental animal model that were exposed with graded doses of nicotine. We further aimed to investigate the possible interplay of miRNA-141 expression change with adipokine homeostasis and occurrence of insulin resistance in nicotine-exposed experimental animals. Nicotine (0.5, 1.0, 3.0 and 6.0 mg/Kg) was administered to early adolescent; postnatal days ranging from 25 to 30 Wistar rats for one month. Serum was analyzed for leptin, adipokines, IL-6, MDA, HbA1c, insulin, G6PDH, hexokinase, and lipid profile. While miRNA-141 expression level was determined in plasma. Higher doses of nicotine were associated with higher glucose, HbA1c, leptin, IL-6, MDA and lipids levels, while, insulin, adiponectin, G6PDH, hexokinase and HDL levels were lower. Higher doses of nicotine also impaired glucose tolerance and exhibited significant increase in miR-141 expression signifying that nicotine exposure may influence adipokines regulation altering glycemic profile. This is accompanied with aggravated inflammatory responses where genetic expression of miRNA-141 can be an accessible biomarker for metabolic disturbances with insulin resistance and glucose intolerance.
Collapse
Affiliation(s)
- Amna Faheem
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
13
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
14
|
The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse. Biomolecules 2020; 10:biom10071057. [PMID: 32708537 PMCID: PMC7408520 DOI: 10.3390/biom10071057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. Methods: We used an α7 nAChR knock-out (α7−/−) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. Results: Young α7−/− mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7−/− mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. Conclusion: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.
Collapse
|
15
|
Wang K, Chen Q, Wu N, Li Y, Zhang R, Wang J, Gong D, Zou X, Liu C, Chen J. Berberine Ameliorates Spatial Learning Memory Impairment and Modulates Cholinergic Anti-Inflammatory Pathway in Diabetic Rats. Front Pharmacol 2019; 10:1003. [PMID: 31551793 PMCID: PMC6743342 DOI: 10.3389/fphar.2019.01003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Cognitive impairment caused by diabetes has been recognized. Berberine is well known for its resistance to peripheral lesions, but it is rarely used for the treatment of spatial learning and memory caused by diabetes. This study explored the mechanism of berberine to alleviate cognitive impairment via the cholinergic anti-inflammatory and insulin signaling pathways. Methods: Morris water maze was used to appraise spatial learning and memory. Positron-emission tomography (PET) imaging was adopted to detect the transport of glucose, and blood/cerebrospinal fluid (CSF) glucose was checked using commercial blood glucose meter. Insulin level was measured by ELISA kit and β-Amyloid (Aβ) formation was observed by Congo red staining. Western-blot was performed to appraise protein expression. Results: We found that berberine rectified some aberrant changes in signal molecules concerning inflammation, and cholinergic and insulin signaling pathways in the hippocampus. Furthermore, CSF/blood glucose, inflammatory response or acetyl cholinesterase enzyme (AChE) activity were reduced by berberine. Additionally, acetylcholine levels were enhanced after berberine treatment in diabetic rats. Finally, Aβ formation in diabetic hippocampus was inhibited and spatial learning memory was ameliorated by berberine. Discussion: In conclusion, berberine clears Aβ deposit and consequently ameliorates spatial learning memory impairment via the activation of the cholinergic anti-inflammatory and insulin signaling pathways in diabetic rats.
Collapse
Affiliation(s)
- Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ninghua Wu
- Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yong Li
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jiawen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Di Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Hubei University of Science and Technology, Xianning, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Gupta D, Lacayo AA, Greene SM, Leahy JL, Jetton TL. β-Cell mass restoration by α7 nicotinic acetylcholine receptor activation. J Biol Chem 2018; 293:20295-20306. [PMID: 30397183 DOI: 10.1074/jbc.ra118.004617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although it is well-established how nutrients, growth factors, and hormones impact functional β-cell mass (BCM), the influence of the central nervous system in this regard, and especially in the context of islet immune modulation, has been understudied. Here we investigated the expression and activity of pancreatic islet α7 nicotinic acetylcholine receptor (α7nAChR) in islet anti-inflammatory and prosurvival signaling. Systemic administration of α7nAChR agonists in mice improved glucose tolerance and curtailed streptozotocin-induced hyperglycemia by retaining BCM, in part through maintaining Pdx1 and MafA expression and reducing apoptosis. α7nAChR activation of mouse islets ex vivo led to reduced inflammatory drive through a JAK2-STAT3 pathway that couples with CREB/Irs2/Akt survival signaling. Because the vagus nerve conveys anti-inflammatory signals to immune cells of the spleen and other nonneural tissues in the viscera by activating α7nAChR agonists, our study suggests a novel role for β-cell α7nAChR that functions to maintain β-cell survival and mass homeostasis through modulating islet cytokine and phosphatidylinositol 3-kinase-dependent signaling pathways. Exploiting these pathways may have therapeutic potential for the treatment of autoimmune diabetes.
Collapse
Affiliation(s)
- Dhananjay Gupta
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Adam A Lacayo
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Shane M Greene
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - John L Leahy
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446
| | - Thomas L Jetton
- From the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05446.
| |
Collapse
|
17
|
Hu T, Yang Z, Li MD. Pharmacological Effects and Regulatory Mechanisms of Tobacco Smoking Effects on Food Intake and Weight Control. J Neuroimmune Pharmacol 2018; 13:453-466. [PMID: 30054897 DOI: 10.1007/s11481-018-9800-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Beyond promoting smoking initiation and preventing smokers from quitting, nicotine can reduce food intake and body weight and thus is viewed as desirable by some smokers, especially many women. During the last several decades, the molecular mechanisms underlying the inverse correlation between smoking and body weight have been investigated extensively in both animals and humans. Nicotine's weight effects appear to result especially from the drug's stimulation of α3β4 nicotine acetylcholine receptors (nAChRs), which are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC), leading to activation of the melanocortin circuit, which is associated with body weight. Further, α7- and α4β2-containing nAChRs have been implicated in weight control by nicotine. This review summarizes current understanding of the regulatory effects of nicotine on food intake and body weight according to the findings from pharmacological, molecular genetic, electrophysiological, and feeding studies on these appetite-regulating molecules, such as α3β4, α7, and α4β2 nAChRs; neuropeptide Y (NPY); POMC; melanocortin 4 receptor (MC4R); agouti-related peptide (AgRP); leptin, ghrelin, and protein YY (PYY).
Collapse
Affiliation(s)
- Tongyuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
18
|
Kim HW, Han SH, Lee SW, Suh HJ. Effect of isomaltulose used for osmotic extraction of Prunus mume fruit juice substituting sucrose. Food Sci Biotechnol 2018; 27:1599-1605. [PMID: 30483423 DOI: 10.1007/s10068-018-0408-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022] Open
Abstract
This study evaluated the applicability of isomaltulose as a sucrose substitute in the osmotic extraction of Prunus mume fruit juice. Isomaltulose (20 mM) significantly reduced the uptake of a fluorescent tracer-2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl) amino]-2-deoxyglucose. Juice extracted by isomaltulose had similar pH and titratable acidity values to those of the other sugars. Citric and malic acids were the main organic acids in the extracted juices. The radical-scavenging ability of the plum juice extracted by isomaltulose was significantly higher than in juices extracted by other sugars (p < 0.05) and polyphenols content of the juice was also significantly higher than those of other sugars. The blood glucose level of P. mume juice extracted by fructose or isomaltulose was increased slowly compared to the juice extracted by sucrose. Therefore, the use of isomaltulose or an isomaltulose mixture in the manufacture of P. mume juice will help maintain health by reducing sugar intake.
Collapse
Affiliation(s)
- Hyo-Won Kim
- 1Division of Biotechnology, Food Technology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Sung Hee Han
- 2BK21Plus, College of Health Science, Korea University, Seoul, 02841 Republic of Korea
| | - Seog-Won Lee
- 3Department of Hotel Tourism and Culinary Arts, Culinary Arts and Food Service Management Major, Yuhan University, Bucheon, 14780 Republic of Korea
| | - Hyung Joo Suh
- 4Department of Public Health Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
19
|
Michael OS, Olatunji LA. Ameliorative effect of nicotine exposure on insulin resistance is accompanied by decreased cardiac glycogen synthase kinase-3 and plasminogen activator inhibitor-1 during oral oestrogen-progestin therapy. Arch Physiol Biochem 2018; 124:139-148. [PMID: 28868937 DOI: 10.1080/13813455.2017.1369549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cigarette smoking is considered to be a major risk factor for the development of diabetes and cardiovascular disease. Oestrogen-progestin combined oral contraceptive (COC) use has been associated with adverse cardiometabolic events. OBJECTIVE We hypothesized that nicotine would ameliorate insulin resistance (IR) that is accompanied by decreased cardiac glycogen synthase kinase-3 (GSK-3) and plasminogen activator inhibitor-1 (PAI-1). METHODS Female Wistar rats received (po) low-(0.1 mg/kg) or high-nicotine (1.0 mg/kg) with or without COC containing 5.0 µg levonorgestrel plus 1.0 µg ethinylestradiol daily for 8 weeks. RESULTS Data showed that COC treatment or nicotine exposure led to IR, glucose deregulation, atherogenic dyslipidemia, increased corticosterone, aldosterone, cardiac and circulating GSK-3 values and PAI-1. However, these effects with the exception of corticosterone and aldosterone were ameliorated in COC + nicotine-exposed rats. CONCLUSION Amelioration of IR induced by COC treatment is accompanied by decreased circulating PAI-1, cardiac PAI-1 and GSK-3 instead of circulating aldosterone and corticosterone.
Collapse
Affiliation(s)
- Olugbenga S Michael
- a Cardiovascular Research Laboratory, Department of Physiology , University of Ilorin, Ilorin, Nigeria
- b Hope Cardiometabolic Research Centre , Ilorin , Nigeria
- c Cardiometabolic Research Unit, Department of Physiology , College of Health sciences, Bowen University , Iwo , Nigeria
| | - Lawrence A Olatunji
- a Cardiovascular Research Laboratory, Department of Physiology , University of Ilorin, Ilorin, Nigeria
- b Hope Cardiometabolic Research Centre , Ilorin , Nigeria
| |
Collapse
|
20
|
Rupprecht LE, Kreisler AD, Spierling SR, de Guglielmo G, Kallupi M, George O, Donny EC, Zorrilla EP, Sved AF. Self-administered nicotine increases fat metabolism and suppresses weight gain in male rats. Psychopharmacology (Berl) 2018; 235:1131-1140. [PMID: 29354872 PMCID: PMC8162771 DOI: 10.1007/s00213-018-4830-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE The ability of nicotine to suppress body weight is cited as a factor impacting smoking initiation and the failure to quit. Self-administered nicotine in male rats suppresses weight independent of food intake, suggesting that nicotine increases energy expenditure. OBJECTIVE The current experiment evaluated the impact of self-administered nicotine on metabolism in rats using indirect calorimetry and body composition analysis. METHODS Adult male rats with ad libitum access to powdered standard rodent chow self-administered intravenous infusions of nicotine (60 μg/kg/infusion or saline control) in daily 1-h sessions in the last hour of the light cycle. Indirect calorimetry measured respiratory exchange ratio (RER), energy expenditure, motor activity, and food and water consumption for 22.5 h between select self-administration sessions. RESULTS Self-administered nicotine suppressed weight gain and reduced the percent of body fat without altering the percent of lean mass, as measured by Echo MRI. Nicotine reduced RER, indicating increased fat utilization; this effect was observed prior to weight suppression. Moreover, nicotine intake did not affect motor activity or energy expenditure. Daily food intake was not altered by nicotine self-administration; however, a trend in suppression of meal size, a transient suppression of water intake, and an increase in meal frequency was observed. CONCLUSION These data provide evidence that self-administered nicotine suppresses body weight via increased fat metabolism, independent of significant changes in feeding, activity, or energy expenditure.
Collapse
Affiliation(s)
| | - Alison D. Kreisler
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric C. Donny
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Alan F. Sved
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Liu M, Chuang Key CC, Weckerle A, Boudyguina E, Sawyer JK, Gebre AK, Spoo W, Makwana O, Parks JS. Feeding of tobacco blend or nicotine induced weight loss associated with decreased adipocyte size and increased physical activity in male mice. Food Chem Toxicol 2018; 113:287-295. [PMID: 29421645 DOI: 10.1016/j.fct.2018.01.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Although epidemiological data and results from rodent studies support an inverse relationship between nicotine consumption and body weight, the molecular mechanisms are poorly understood. CD-1 mice were fed a basal diet or a basal diet containing low or high dose smokeless tobacco blend or high dose nicotine tartrate for 14 weeks. High dose tobacco blend and nicotine tartrate diets vs. basal diet reduced mouse body weight (16.3% and 19.7%, respectively), epididymal (67.6% and 72.5%, respectively) and brown adipose weight (42% and 38%, respectively), epididymal adipocyte size (46.4% and 41.4%, respectively), and brown adipose tissue lipid droplet abundance, with no elevation of adipose tissue inflammation. High dose tobacco blend and nicotine diets also increased mouse physical activity and decreased respiratory exchange ratio, suggesting that high dose nicotine intake induces adipose tissue triglyceride lipolysis to provide fatty acids as an energy source. Both low and high dose tobacco blend and nicotine diet feeding vs. basal diet increased plasma insulin levels (2.9, 3.6 and 4.3-fold, respectively) and improved blood glucose disposal without affecting insulin sensitivity. Feeding of the high dose tobacco blend or nicotine feeding in mice induces body weight loss likely by increasing physical activity and stimulating adipose tissue triglyceride lipolysis.
Collapse
Affiliation(s)
- Mingxia Liu
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA.
| | - Chia-Chi Chuang Key
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Allison Weckerle
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Elena Boudyguina
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Janet K Sawyer
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Abraham K Gebre
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Wayne Spoo
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, NC 27101, USA
| | - Om Makwana
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA; RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, NC 27101, USA
| | - John S Parks
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA; Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
22
|
Hasan MK, Friedman TC, Sims C, Lee DL, Espinoza-Derout J, Ume A, Chalfant V, Lee ML, Sinha-Hikim I, Lutfy K, Liu Y, Mahata SK, Sinha-Hikim AP. α7-Nicotinic Acetylcholine Receptor Agonist Ameliorates Nicotine Plus High-Fat Diet-Induced Hepatic Steatosis in Male Mice by Inhibiting Oxidative Stress and Stimulating AMPK Signaling. Endocrinology 2018; 159:931-944. [PMID: 29272360 PMCID: PMC5776480 DOI: 10.1210/en.2017-00594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
α7-Nicotinic acetylcholine receptor (α7nAChR) agonists confer protection against a wide variety of cytotoxic insults and suppress oxidative stress and apoptosis in various cell systems, including hepatocytes. We recently demonstrated that nicotine, when combined with a high-fat diet (HFD), triggers oxidative stress, activates hepatocyte apoptosis, and exacerbates HFD-induced hepatic steatosis in male mice. This study evaluates whether PNU-282987 (PNU), a specific α7nAChR agonist, is effective in preventing nicotine plus HFD-induced hepatic steatosis. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice-daily intraperitoneal injections of 0.75 mg/kg body weight (BW) of nicotine, PNU (0.26 mg/kg BW), PNU plus nicotine, or saline for 10 weeks. PNU treatment was effective in attenuating nicotine plus HFD-induced increase in hepatic triglyceride levels, hepatocyte apoptosis, and hepatic steatosis. The preventive effects of PNU on nicotine plus HFD-induced hepatic steatosis were mediated by suppression of oxidative stress and activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) together with inhibition of its downstream target sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-coenzyme A-carboxylase (ACC). We conclude that the α7nAChR agonist PNU protects against nicotine plus HFD-induced hepatic steatosis in obese mice. PNU appears to work at various steps of signaling pathways involving suppression of oxidative stress, activation of AMPK, and inhibition of SREBP1c, FAS, and ACC. α7nAChR agonists may be an effective therapeutic strategy for ameliorating fatty liver disease, especially in obese smokers.
Collapse
Affiliation(s)
- Mohammad Kamrul Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Carl Sims
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Desean L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Adaku Ume
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Victor Chalfant
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Martin L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Indrani Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, California 91766
| | - Yanjun Liu
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Sushil K. Mahata
- Department of Medicine, University of California, San Diego, San Diego, California 92093
- VA San Diego Health Care System, San Diego, California 92161
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
23
|
Indices of insulin resistance and glucotoxicity are not associated with bipolar disorder or major depressive disorder, but are differently associated with inflammatory, oxidative and nitrosative biomarkers. J Affect Disord 2017; 222:185-194. [PMID: 28710952 DOI: 10.1016/j.jad.2017.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Insulin resistance (IR) is a key factor in diabetes mellitus, metabolic syndrome (MetS) and obesity and may occur in mood disorders and tobacco use disorder (TUD), where disturbances of immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways are important shared pathophysiological pathways. METHODS This study aimed to a) examine IR and β-cell function as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity and β cell function (HOMA-B) and glucotoxicity (conceptualized as increased glucose levels versus lowered HOMA-B values) in 74 participants with major depressive disorder (MDD) and bipolar disorder, with and or without MetS and TUD, versus 46 healthy controls, and b) whether IR is associated with IO&NS biomarkers, including nitric oxide metabolites (NOx), lipid hydroperoxides (LOOH), plasma advanced oxidation protein products (AOPP), C-reactive protein (CRP), haptoglobin (Hp) and uric acid. RESULTS Mood disorders are not associated with changes in IR or glucotoxicity, although the number of mood episodes may increase IR. 47.8% of the variance in HOMA-IR is explained by AOPP and body mass index (BMI, both positively) and NOx, Hp and TUD (all inversely). 43.2% of the variance in HOMA-B is explained by NOx, Hp and age (all inversely associated) and higher BMI and sex. The glucotoxic index is strongly associated with NOx, Hp and BMI (positively), male gender and lower education. LIMITATIONS This is a cross-sectional study and therefore we cannot draw firm conclusions on causal associations. CONCLUSIONS Activated IO&NS pathways (especially increased Hp and NOx) increase glucotoxicity and exert very complex effects modulating IR. Mood disorders are not associated with increased IR.
Collapse
|
24
|
A fluorescence method for determination of glucose transport by intestinal BBMV of common carp. Anal Biochem 2017; 537:20-25. [DOI: 10.1016/j.ab.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/18/2017] [Accepted: 08/23/2017] [Indexed: 11/18/2022]
|
25
|
Stojakovic A, Espinosa EP, Farhad OT, Lutfy K. Effects of nicotine on homeostatic and hedonic components of food intake. J Endocrinol 2017; 235:R13-R31. [PMID: 28814527 PMCID: PMC5578410 DOI: 10.1530/joe-17-0166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Mitochondrial Neurobiology and Therapeutics LaboratoryMayo Clinic, Rochester, Minnesota, USA
| | - Enma P Espinosa
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Faculty of MedicineSchool of Clinica Biochemistry, Pontifical Catholic University of Ecuador (PUCE), Quito, Ecuador
| | - Osman T Farhad
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
26
|
Dong G, Chen W, Wang X, Yang X, Xu T, Wang P, Zhang W, Rao Y, Miao C, Sheng C. Small Molecule Inhibitors Simultaneously Targeting Cancer Metabolism and Epigenetics: Discovery of Novel Nicotinamide Phosphoribosyltransferase (NAMPT) and Histone Deacetylase (HDAC) Dual Inhibitors. J Med Chem 2017; 60:7965-7983. [DOI: 10.1021/acs.jmedchem.7b00467] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wei Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xia Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Xinglin Yang
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tianying Xu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences,
School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chaoyu Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
27
|
Zhang Y, Jia Y, Li P, Li H, Xiao D, Wang Y, Ma X. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J Genet Genomics 2017; 44:355-362. [PMID: 28750889 DOI: 10.1016/j.jgg.2017.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
Abstract
Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Yao Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Ping Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Huanjie Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Dongjie Xiao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China.
| |
Collapse
|
28
|
Anti-inflammatory and antithrombotic effects of nicotine exposure in oral contraceptive-induced insulin resistance are glucocorticoid-independent. Pharmacol Rep 2016; 69:512-519. [PMID: 28349880 DOI: 10.1016/j.pharep.2016.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Reports showed that estrogen-progestin oral contraceptive (COC) or tobacco smoking causes increased risk of cardiovascular diseases (CVD) in premenopausal women. Studies also suggest that nicotine, a major tobacco alkaloid, may worsen or improve atherothrombotic CVD. Altered hemorheology, prothrombotic and pro-inflammatory biomarkers, have been implicated in the development of atherothrombotic CVD events. However, the effect of non-smoking nicotine exposure on these biomarkers during COC treatment is not yet established. We therefore sought to determine the effects of nicotine exposure during COC treatment on these biomarkers, and also tested the hypothesis that the nicotine effects would be glucocorticoid-dependent. METHODS Female Sprague-Dawley rats aged 10 weeks were given (po) vehicle, low-dose nicotine (0.1mg/kg) or high-dose nicotine (1.0mg/kg) with or without COC steroids (5.0μg/kg ethinylestradiol and 25.0μg/kg levonorgestrel) daily for 6 weeks. RESULTS COC treatment or nicotine exposure led to increased insulin resistance (IR), hemorheological (blood viscosity, hematocrit and plasma viscosity), prothrombotic (plasminogen activator inhibitor-1), pro-inflammatory (uric acid, C-reactive protein, neutrophil/lymphocyte and platelet/lymphocyte ratios) biomarkers and corticosterone. However, these effects except that on corticosterone were abrogated by nicotine exposure during COC treatment. CONCLUSIONS Our study indicates that nicotine- or COC-induced IR may be mediated via inflammatory/thrombotic pathway. The results imply that nicotine exposure could impact negatively on atherothrombotic biomarkers in COC non-users, whereas the impact in COC users could be positive. The results also suggest that the anti-inflammatory, antithrombotic and blood viscosity-lowering effects of nicotine exposure during COC use is circulating glucocorticoid-independent.
Collapse
|
29
|
Fan BS, Zhang EH, Wu M, Guo JM, Su DF, Liu X, Yu JG. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway. Front Pharmacol 2016; 7:79. [PMID: 27065867 PMCID: PMC4810156 DOI: 10.3389/fphar.2016.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.
Collapse
Affiliation(s)
- Bo-Shi Fan
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - En-Hui Zhang
- Department of Pharmacology, Second Military Medical UniversityShanghai, China; The 406th Hospital of Chinese People's Liberation ArmyDalian, China
| | - Miao Wu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Jin-Min Guo
- Jinan Military General Hospital Jinan, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Xia Liu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacology, Second Military Medical University Shanghai, China
| |
Collapse
|
30
|
O'Dell LE, Nazarian A. Enhanced vulnerability to tobacco use in persons with diabetes: A behavioral and neurobiological framework. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:288-96. [PMID: 26092247 DOI: 10.1016/j.pnpbp.2015.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
Tobacco use significantly magnifies the negative health complications associated with diabetes. Although tobacco use is strongly discouraged in persons with diabetes, clinical evidence suggests that they often continue to smoke and have more difficulty quitting despite serious contraindications. Here, we suggest that a potential reason for enhanced vulnerability to tobacco use in persons with diabetes is greater rewarding effects of nicotine. This review summarizes pre-clinical evidence indicating that the rewarding effects of nicotine are enhanced in rodent models of type 1 and type 2 diabetes. We also provide a framework of neurobiological mechanisms that are posited to promote tobacco use in persons with diabetes. This framework suggests that diabetes induces a disruption in insulin signaling that leads to a suppression of dopamine systems in the mesolimbic reward pathway. Lastly, we consider the clinical implications of enhanced rewarding effects of nicotine that may promote tobacco use in persons with diabetes. The clinical efficacy of smoking cessation medications that enhance dopamine are important to consider, given that persons with diabetes may display disrupted dopaminergic mechanisms. Future work is needed to better understand the complex interaction of dopamine and insulin in order to develop better smoking cessation medications for persons with diabetes.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
31
|
Liu Z, Li P, Zhao ZH, Zhang Y, Ma ZM, Wang SX. Vitamin B6 Prevents Endothelial Dysfunction, Insulin Resistance, and Hepatic Lipid Accumulation in Apoe (-/-) Mice Fed with High-Fat Diet. J Diabetes Res 2016; 2016:1748065. [PMID: 26881239 PMCID: PMC4735993 DOI: 10.1155/2016/1748065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022] Open
Abstract
Backgrounds. VitB6 deficiency has been associated with a number of adverse health effects. However, the effects of VitB6 in metabolic syndrome are poorly understood. Methods. VitB6 (50 mg/kg/day) was given to Apoe (-/-) mice with hkdigh-fat diet (HFD) for 8 weeks. Endothelial dysfunction, insulin resistance, and hepatic lipid contents were determined. Results. VitB6 administration remarkably increased acetylcholine-induced endothelium-dependent relaxation and decreased random blood glucose level in Apoe (-/-) mice fed with HFD. In addition, VitB6 improved the tolerance of glucose and insulin, normalized the histopathology of liver, and reduced hepatic lipid accumulation but did not affect the liver functions. Clinical and biochemical analysis indicated that the levels of VitB6 were decreased in patients with fatty liver. Conclusions. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe (-/-) mice fed with HFD. Supplementation of VitB6 should be considered to prevent metabolic syndrome.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Hong Zhao
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Yu Zhang
- Department of Clinical Nutrition and Gastroenterology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha 430070, China
| | - Zhi-Min Ma
- Division of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou 215000, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, School of Medicine, Shandong University, Jinan 250012, China
- *Shuang-Xi Wang:
| |
Collapse
|
32
|
Sung YT, Hsiao CT, Chang IJ, Lin YC, Yueh CY. Smoking Cessation Carries a Short-Term Rising Risk for Newly Diagnosed Diabetes Mellitus Independently of Weight Gain: A 6-Year Retrospective Cohort Study. J Diabetes Res 2016; 2016:3961756. [PMID: 27478846 PMCID: PMC4960337 DOI: 10.1155/2016/3961756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/17/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Background. The effects of smoking on human metabolism are complex. Although smoking increases risk for diabetes mellitus, smoking cessation was also reported to be associated with weight gain and incident diabetes mellitus. We therefore conducted this study to clarify the association between smoking status and newly diagnosed diabetes mellitus. Methods. An analysis was done using the data of a mass health examination performed annually in an industrial park from 2007 to 2013. The association between smoking status and newly diagnosed diabetes mellitus was analyzed with adjustment for weight gain and other potential confounders. Results. Compared with never-smokers, not only current smokers but also ex-smokers in their first two years of abstinence had higher odds ratios (ORs) for newly diagnosed diabetes mellitus (never-smokers 3.6%, OR as 1; current smokers 5.5%, OR = 1.499, 95% CI = 1.147-1.960, and p = 0.003; ex-smokers in their first year of abstinence 7.5%, OR = 1.829, 95% CI = 0.906-3.694, and p = 0.092; and ex-smokers in their second year of abstinence 9.0%, OR = 2.020, 95% CI = 1.031-3.955, and p = 0.040). Conclusion. Smoking cessation generally decreased risk for newly diagnosed diabetes mellitus. However, increased odds were seen within the first 2 years of abstinence independently of weight gain.
Collapse
Affiliation(s)
- Yi-Ting Sung
- Department of Family Medicine, Chang Gung Memorial Hospital, Putz, Chiayi 613, Taiwan
| | - Cheng-Ting Hsiao
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Putz, Chiayi 613, Taiwan
| | - I-Jen Chang
- Department of Family Medicine, Chang Gung Memorial Hospital, Putz, Chiayi 613, Taiwan
| | - Yu-Chih Lin
- Department of Family Medicine, Chang Gung Memorial Hospital, Putz, Chiayi 613, Taiwan
| | - Chen-Yu Yueh
- Department of Family Medicine, Chang Gung Memorial Hospital, Putz, Chiayi 613, Taiwan
- Chang Gung University of Science and Technology, Putz, Chiayi 613, Taiwan
- *Chen-Yu Yueh:
| |
Collapse
|
33
|
Tsuneki H, Nagata T, Fujita M, Kon K, Wu N, Takatsuki M, Yamaguchi K, Wada T, Nishijo H, Yanagisawa M, Sakurai T, Sasaoka T. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice. Endocrinology 2016; 157:195-206. [PMID: 26492471 DOI: 10.1210/en.2015-1488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Drug Chronotherapy
- Gene Expression Regulation/drug effects
- Gluconeogenesis/drug effects
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/therapeutic use
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Insulin Resistance
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Nicotine/administration & dosage
- Nicotine/therapeutic use
- Nicotinic Agonists/administration & dosage
- Nicotinic Agonists/therapeutic use
- Obesity/complications
- Obesity/etiology
- Orexins/agonists
- Orexins/genetics
- Orexins/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Takashi Nagata
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mikio Fujita
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kanta Kon
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naizhen Wu
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayumi Takatsuki
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Kaoru Yamaguchi
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisao Nishijo
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Masashi Yanagisawa
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Sakurai
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology (H.T., T.N., M.F., K.K., N.W., M.T., K.Y., T.W., T.Sas.) and System Emotional Science (H.N.), University of Toyama, Toyama 930-0194, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS) (M.Y.), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics (M.Y.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Molecular Neuroscience and Integrative Physiology (T.Sak.), Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
34
|
Tsunoda K, Tsujino I, Koshi R, Sugano N, Sato S, Asano M. Nicotine-Mediated Ca(2+)-Influx Induces IL-8 Secretion in Oral Squamous Cell Carcinoma Cell. J Cell Biochem 2015; 117:1009-15. [PMID: 26418512 DOI: 10.1002/jcb.25387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/25/2015] [Indexed: 11/12/2022]
Abstract
Cigarette smoking is one of the most important risk factors for the development of various diseases. Nicotine is the most extensively investigated component of cigarette smoke, and a comprehensive analysis of the genes induced by nicotine stimulation revealed that interleukin-8 (IL-8) was induced in oral squamous cell carcinoma cell (OSCC). Based on this background, the signaling mechanisms of nicotine-mediated IL-8 induction in OSCC was investigated. Augmented IL-8 secretion by Ca9-22 cells was blocked by the NF-κB inhibitor L-1-4'-tosylamino-phenylethyl-chloromethyl ketone (TPCK) and the nicotinic acetylcholine receptor (nAChR)-specific inhibitor α-bungarotoxin (αBtx). The downstream signaling pathway was further examined by pre-incubating the cells with inhibitors against mitogen-activated protein kinase (MEK), protein kinase C (PKC), and Ca(2+)/calmodulin-dependent kinase II (CaMK II). Only the CaMK II inhibitor was found to exert an inhibitory effect on nicotine-mediated IL-8 secretion. Pre-treatment of the Ca9-22 cells with the Ca(2+) chelator BAPTA-AM drastically inhibited IL-8 secretion. Although nicotine stimulation induced the phosphorylation of the NF-κB p65 subunit, pre-treatment with BAPTA-AM was found to inhibit this activity significantly. CaMK II-dependent p65 phosphorylation was confirmed by pre-incubation of the cells with CaMK II inhibitor. The results from this study indicate that the binding of nicotine to nAChR induces Ca(2+) influx, which results in the activation and phosphorylation of CaMK II and NF-κB p65, respectively. Nicotine-mediated IL-8 induction should be a trigger for the initiation of various diseases.
Collapse
Affiliation(s)
- Kou Tsunoda
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Ichiro Tsujino
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ryosuke Koshi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoyuki Sugano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Advanced Dental Treatment, Nihon University School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
35
|
Wu J, Jiao ZY, Zhang Z, Tang ZH, Zhang HH, Lu HL, Cianflone K. Cross-talk between α7 nAChR-mediated cholinergic pathway and acylation stimulating protein signaling in 3T3-L1 adipocytes: role of NFκB and STAT3. Biochem Cell Biol 2015; 93:335-42. [PMID: 25985797 DOI: 10.1139/bcb-2015-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammation is a key feature in adipose tissue, especially in association with obesity comorbidies. The novel adipokine acylation stimulating protein (ASP) is one factor implicated in the inflammatory response. The disruption of the α7 nicotine acetylcholine receptor (α7nAChR), an important component of the endogenous non-neural cholinergic defense system, may exacerbate sustained inflammatory phenotype. We examined cholinergic regulation of ASP-initiated inflammatory response in 3T3-L1 adipocytes. Our results show that preincubation of 3T3-L1 cells with α7nAChR agonist GTS-21 significantly reduces ASP-mediated chemokine MCP-1 secretion, which is regulated though nuclear factor κB (NFκB) and signal transducer and activator of transcription 3 (STAT3). Treatment of 3T3-L1 cells with GTS-21 significantly reduced NFκB activation by DNA binding and STAT3 activation by disturbing post-translational modification.
Collapse
Affiliation(s)
- Jing Wu
- a Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhou-yang Jiao
- b Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Zhang
- c Department of Histology & Embryology, College of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi-hui Tang
- a Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao-hao Zhang
- d Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-ling Lu
- e Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Katherine Cianflone
- f Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V 4G5, Canada
| |
Collapse
|
36
|
Chronic nicotine treatment enhances vascular smooth muscle relaxation in rats. Acta Pharmacol Sin 2015; 36:429-39. [PMID: 25832423 DOI: 10.1038/aps.2015.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
AIM To investigate the effect of chronic nicotine treatment on vascular function and to identify the underlying mechanisms. METHODS Adult rats were treated with nicotine (3 mg·kg(-1)·d(-1), sc) for 6 weeks. After the rats were sacrificed, aortic rings were prepared for detecting vascular reactivity, and thoracic aorta and periaortic fat samples were collected for histological and molecular biology studies. RESULTS Chronic nicotine treatment significantly reduced periaortic fat, and specifically enhanced smooth muscle relaxation without altering the aortic adventitial fat and endothelium function. Pretreatment with the soluble guanylyl cyclase inhibitor ODQ (3 μmol/L) or PKG inhibitor Rp-8-Br-PET-cGMP (30 μmol/L) abolished the nicotine-induced enhancement of smooth muscle relaxation, whereas the cGMP analogue 8-Br-cGMP could mimic the nicotine-induced enhancement of smooth muscle relaxation. However, the chronic nicotine treatment did not alter PKG protein expression and activity in aortic media. CONCLUSION Chronic nicotine treatment enhances vascular smooth muscle relaxation of rats via activation of PKG pathway.
Collapse
|
37
|
Wu Y, Song P, Zhang W, Liu J, Dai X, Liu Z, Lu Q, Ouyang C, Xie Z, Zhao Z, Zhuo X, Viollet B, Foretz M, Wu J, Yuan Z, Zou MH. Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 2015; 21:373-82. [PMID: 25799226 PMCID: PMC4390501 DOI: 10.1038/nm.3826] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.
Collapse
Affiliation(s)
- Yue Wu
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Song
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wencheng Zhang
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Junhui Liu
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyan Dai
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhaoyu Liu
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Qiulun Lu
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Changhan Ouyang
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zhonglin Xie
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhengxing Zhao
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xiaozhen Zhuo
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Benoit Viollet
- 1] INSERM, U1016, Institut Cochin, Paris, France. [2] CNRS, UMR 8104, Paris, France. [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- 1] INSERM, U1016, Institut Cochin, Paris, France. [2] CNRS, UMR 8104, Paris, France. [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jiliang Wu
- Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Zuyi Yuan
- Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ming-Hui Zou
- 1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
38
|
Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y, Su DF, Miao CY. Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res 2014; 104:477-488. [PMID: 25341895 DOI: 10.1093/cvr/cvu220] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Intracellular nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis. This study investigated the role of NAMPT-mediated NAD(+) signalling in post-ischaemic vascular repair. METHODS AND RESULTS Mouse hind-limb ischaemia up-regulated NAMPT expression and NAD(+) level in bone marrow (BM). Pharmacological inhibition of NAMPT by a chemical inhibitor FK866 impaired the mobilization of endothelial progenitor cells (EPCs) from BM upon ischaemic stress. Transgenic mice overexpressing NAMPT (Tg mice), but not H247A-mutant dominant-negative NAMPT (DN-Tg mice), exhibited enhanced capillary density, increased number of proliferating endothelial cells, improved blood flow recovery, and augmented collateral arterioles in the ischaemic limb. In cultured BM-derived EPCs, inhibition of NAMPT suppressed proliferation, migration, and tube formation, whereas overexpression of NAMPT induced opposite effects. The promoting effects of NAMPT on EPCs were abolished by silencing of sirtuin 1 (SIRT1), rather than silencing of SIRT2-7. Overexpression of NAMPT led to a SIRT1-depedent enhancement of Notch-1 intracellular domain deacetylation, which inhibited Delta-like ligand-4 (DLL4)-Notch signalling and thereby up-regulated of VEGFR-2 and VEGFR-3. Injection of recombinant VEGF induced a more pronounced EPC mobilization in Tg, but not in DN-Tg, mice. Furthermore, overexpression of NAMPT down-regulated Fringe family glycosyltransferases in a SIRT1-dependent manner, which rendered Notch more sensitive to the pro-angiogenic ligand Jagged1 rather than the anti-angiogenic ligand DLL4. CONCLUSIONS These results demonstrate that intracellular NAMPT-NAD(+)-SIRT1 cascade improves post-ischaemic neovascularization. The modulation of Notch signalling may contribute to the enhanced post-ischaemic neovascularization.
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Hui Du
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China Department of Pharmacy, General Hospital of Lanzhou Military Region, Lanzhou, China
| | - Can-Can Zhou
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Xingguang Liu
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jawahar L Mehta
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi Shi
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, 325 Guo He Road, Shanghai 200433, China
| |
Collapse
|
39
|
Vu CU, Siddiqui JA, Wadensweiler P, Gayen JR, Avolio E, Bandyopadhyay GK, Biswas N, Chi NW, O'Connor DT, Mahata SK. Nicotinic acetylcholine receptors in glucose homeostasis: the acute hyperglycemic and chronic insulin-sensitive effects of nicotine suggest dual opposing roles of the receptors in male mice. Endocrinology 2014; 155:3793-805. [PMID: 25051446 DOI: 10.1210/en.2014-1320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cigarette smoking causes insulin resistance. However, nicotine induces anti-inflammation and improves glucose tolerance in insulin-resistant animal models. Here, we determined the effects of nicotine on glucose metabolism in insulin-sensitive C57BL/J6 mice. Acute nicotine administration (30 min) caused fasting hyperglycemia and lowered insulin sensitivity acutely, which depended on the activation of nicotinic-acetylcholine receptors (nAChRs) and correlated with increased catecholamine secretion, nitric oxide (NO) production, and glycogenolysis. Chlorisondamine, an inhibitor of nAChRs, reduced acute nicotine-induced hyperglycemia. qRT-PCR analysis revealed that the liver and muscle express predominantly β4 > α10 > α3 > α7 and β4 > α10 > β1 > α1 mRNA for nAChR subunits respectively, whereas the adrenal gland expresses β4 > α3 > α7 > α10 mRNA. Chronic nicotine treatment significantly suppressed expression of α3-nAChR (predominant peripheral α-subunit) in liver. Whereas acute nicotine treatment raised plasma norepinephrine (NE) and epinephrine (Epi) levels, chronic nicotine exposure raised only Epi. Acute nicotine treatment raised both basal and glucose-stimulated insulin secretion (GSIS). After chronic nicotine treatment, basal insulin level was elevated, but GSIS after acute saline or nicotine treatment was blunted. Chronic nicotine exposure caused an increased buildup of NO in plasma and liver, leading to decreased glycogen storage, along with a concomitant suppression of Pepck and G6Pase mRNA, thus preventing hyperglycemia. The insulin-sensitizing effect of chronic nicotine was independent of weight loss. Chronic nicotine treatment enhanced PI-3-kinase activities and increased Akt and glycogen synthase kinase (GSK)-3β phosphorylation in an nAChR-dependent manner coupled with decreased cAMP response element-binding protein (CREB) phosphorylation. The latter effects caused suppression of Pepck and G6Pase gene expression. Thus, nicotine causes both insulin resistance and insulin sensitivity depending on the duration of the treatment.
Collapse
Affiliation(s)
- Christine U Vu
- VA San Diego Healthcare System (C.U.V., P.W., J.R.G., G.K.B., N.-W.C., D.T.O'C., S.K.M.), San Diego, California 92161; and Department of Medicine (J.A.S., E.A., G.K.B., N.B., N.-W.C., S.K.M.), University of California, San Diego, California 92093
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McFadden KL, Cornier MA, Tregellas JR. The role of alpha-7 nicotinic receptors in food intake behaviors. Front Psychol 2014; 5:553. [PMID: 24936193 PMCID: PMC4047526 DOI: 10.3389/fpsyg.2014.00553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022] Open
Abstract
Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.
Collapse
Affiliation(s)
- Kristina L McFadden
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Marc-Andre Cornier
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Jason R Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA ; Research Service, Veterans Affairs Medical Center Denver, CO, USA
| |
Collapse
|
41
|
Somm E, Guérardel A, Maouche K, Toulotte A, Veyrat-Durebex C, Rohner-Jeanrenaud F, Maskos U, Hüppi PS, Schwitzgebel VM. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice. Mol Genet Metab 2014; 112:64-72. [PMID: 24685552 DOI: 10.1016/j.ymgme.2014.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency.
Collapse
Affiliation(s)
- Emmanuel Somm
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Audrey Guérardel
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamel Maouche
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), CNRS UMR 8251, Paris, France
| | - Audrey Toulotte
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie intégrative des systèmes cholinergiques, Paris, France
| | - Petra S Hüppi
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie M Schwitzgebel
- Division of Development and Growth, Department of Paediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PLoS One 2014; 9:e95433. [PMID: 24759941 PMCID: PMC3997366 DOI: 10.1371/journal.pone.0095433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/26/2014] [Indexed: 12/22/2022] Open
Abstract
Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.
Collapse
|
43
|
Guha P, Bandyopadhyaya G, Polumuri SK, Chumsri S, Gade P, Kalvakolanu DV, Ahmed H. Nicotine promotes apoptosis resistance of breast cancer cells and enrichment of side population cells with cancer stem cell-like properties via a signaling cascade involving galectin-3, α9 nicotinic acetylcholine receptor and STAT3. Breast Cancer Res Treat 2014; 145:5-22. [PMID: 24668500 DOI: 10.1007/s10549-014-2912-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Nicotine, a main addictive compound in tobacco smoke, has been linked to promotion and progression of lung, head and neck, pancreatic, and breast cancers, but the detailed mechanisms of cancer progression remain elusive. Here, we show that nicotine induces the expression of galectin-3 (an anti-apoptotic β-galactoside-binding lectin) in breast cancer cell line and in primary tumors from breast cancer patients. Nicotine-induced up regulation of galectin-3 is due to an increased expression of α9 isoform of nicotinic acetylcholine receptor (α9nAChR), which activates transcription factor STAT3 that in turn, physically binds to galectin-3 (LGALS3) promoter and induces transcription of galectin-3. Intracellular galectin-3 increased mitochondrial integrity and suppressed chemotherapeutic-induced apoptosis of breast cancer cell. Moreover, nicotine-induced enrichment of side population cells with cancer stem cell-like properties was modulated by galectin-3 expression and could be significantly reduced by transient knock down of LGALS3 and its upstream signaling molecules STAT3 and α9nAChR. Thus, galectin-3 or its upstream signaling molecule STAT3 or α9nAChR could be a potential target to prevent nicotine-induced chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Prasun Guha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Nicotinic Cholinergic Signaling in Adipose Tissue and Pancreatic Islets Biology: Revisited Function and Therapeutic Perspectives. Arch Immunol Ther Exp (Warsz) 2013; 62:87-101. [DOI: 10.1007/s00005-013-0266-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
|