1
|
Li Y, Luo S, Fu Y, Tang C, Qin X, Shi D, Lan W, Tang Y, Yu F. Phosphate-solubilizing bacteria facilitate rhizospheric processes of Bidens pilosa L. in the phytoremediation of cadmium-contaminated soil: Link between phosphorus availability and cadmium accumulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137997. [PMID: 40120272 DOI: 10.1016/j.jhazmat.2025.137997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Although cadmium (Cd) hyperaccumulators have been widely used in phytoremediation of Cd-contaminated soils, the relationship between soil phosphorus (P) uptake and Cd accumulation during phytoremediation remains unclear. In this study, a phosphate-solubilizing bacterium (PSB), Enterobacter sp., and the Cd hyperaccumulator B. pilosa L. were selected to address this knowledge gap. Our results show that Enterobacter sp. inoculation enhances P cycling processes in the rhizosphere of B. pilosa L., resulting in an increase in soil available phosphorus (AP), by 16.2-84.3 % in low-contaminated soil and by 17.6-64.8 % in high-contaminated soil. Inorganic P solubilization was the primary process driving the increase in AP content, contributing the most to soil P cycling. Moreover, Enterobacter sp. inoculation significantly promoted the growth of B. pilosa L., boosting total phosphorus, phospholipids, primary metabolic phosphorus, and Cd concentrations in plant tissues. Notably, a strong positive correlation was observed between soil AP and Cd concentrations in plant tissues. P-functional microbes in the rhizosphere, encoding genes such as gcd, ppa, and ppx-gppA, predominantly enhance P bioavailability in soils. Furthermore, in P-deficient and heavily contaminated soils, Proteobacteria replaced Actinobacteria as the predominant hosts for key genes involved in soil P cycling. This study provides valuable insights into the critical link between P availability and Cd accumulation, emphasizing the role of P cycling in enhancing Cd accumulation during phytoremediation mediated by PSB.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Shiyu Luo
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yiyun Fu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Chijian Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xiaoxiao Qin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Dongyi Shi
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Wei Lan
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yingxuan Tang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Grüning VK, Lübberstedt T, Frei UK. Doubled Haploid Technology: Opportunities and Challenges for the Rapid Generation of Maize Homozygous Lines. Cold Spring Harb Protoc 2025; 2025:pdb.top108437. [PMID: 39414387 DOI: 10.1101/pdb.top108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Maize is used for multiple purposes, including food, feed, and energy production, and since transitioning to hybrid cultivars at around 1930, maize yield has significantly increased. This is largely due to hybrid vigor, which refers to the superior performance of the progeny from two unrelated inbred parents. Consequently, nearly all maize cultivars grown in the United States are hybrids. Hybrid breeding programs comprise two essential components; namely, inbred line development and hybrid production. Traditionally, developing inbred lines takes a long time, requiring six to 10 generations of self-pollination. The doubled haploid (DH) technology, however, accelerates this process, enabling the derivation of fully homozygous lines within two generations. DH technology is applicable in several crop species and has been most successful in maize due to in vivo maternal haploid induction. Here, we review the origins of the DH technology, and discuss advantages and challenges of the technology as well as applications of DH lines.
Collapse
Affiliation(s)
- Vencke K Grüning
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
3
|
Cai Y, Tao H, Gaballa A, Pi H, Helmann JD. The extracytoplasmic sigma factor σ X supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118. Sci Rep 2025; 15:5315. [PMID: 39939707 PMCID: PMC11822112 DOI: 10.1038/s41598-025-89284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) offer an environmentally friendly and sustainable approach to combat pathogens and enhance crop production. The biocontrol activity of PGPR depends on their ability to colonize plant roots and synthesize antimicrobial compounds that inhibit pathogens. However, the regulatory mechanisms underlying these processes remain unclear. In this study, we isolated and characterized Bacillus velezensis 118, a soil isolate that exhibits potent biocontrol activity against Fusarium wilt of banana. Deletion of sigX, encoding an extracytoplasmic function (ECF) sigma factor previously implicated in controlling biofilm architecture in B. subtilis, reduced biocontrol efficacy. The B. velezensis 118 sigX mutant displayed reduced biofilm formation but had only a minor defect in swarming motility and a negligible impact on lipopeptide production. These findings highlight the importance of regulatory processes important for root colonization in the effectiveness of Bacillus spp. as biocontrol agents against phytopathogens.
Collapse
Affiliation(s)
- Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - Hualiang Pi
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA.
| |
Collapse
|
4
|
Rana MS, Alshehri D, Wang RL, Imran M, Abdellah YAY, Rahman FU, Alatawy M, Ghabban H, Abeed AHA, Hu CX. Effect of molybdenum supply on crop performance through rhizosphere soil microbial diversity and metabolite variation. FRONTIERS IN PLANT SCIENCE 2025; 15:1519540. [PMID: 39935684 PMCID: PMC11811785 DOI: 10.3389/fpls.2024.1519540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Molybdenum (Mo) deficiency is a global problem in acidic soils, limiting plant growth, development, and nutrient availability. To address this, we carried out a field study with two treatments, i.e., Mo applied (+Mo) and without Mo (-Mo) treatment to explore the effects of Mo application on crop growth and development, microbial diversity, and metabolite variations in maize and soybean cropping systems. Our results indicated that the nutrient availability (N, P, K) was higher under Mo supply leading to improved biological yield and nutrient uptake efficiency in both crops. Microbial community analysis revealed that Proteobacteria and Acidobacteria were the dominant phyla in Mo treated (+Mo) soils for both maize and soybean. Both these phyla accounted together 39.43% and 57.74% in -Mo and +Mo, respectively, in soybean rhizosphere soil, while they accounted for 44.51% and 46.64% in maize rhizosphere soil. This indicates more variations among the treatments in soybean soil compared to maize soil. At a lower taxonomic level, the diverse responses of the genera indicated the specific bacterial community adaptations to fertilization. Candidatus Koribacter and Kaistobacter were commonly significantly higher in both crops under Mo-applied conditions in both cropping systems. These taxa, sharing similar functions, could serve as potential markers for nutrient availability and soil fertility. Metabolite profiling revealed 8 and 10 significantly differential metabolites in maize and soybean, respectively, under +Mo treatment, highlighting the critical role of Mo in metabolite variation. Overall, these findings emphasize the importance of Mo in shaping soil microbial diversity by altering metabolite composition, which in turn may enhance the nutrient availability, nutrient uptake, and plant performance.
Collapse
Affiliation(s)
- Muhammad Shoaib Rana
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Faiz Ur Rahman
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany H. A. Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut Universityt, Assiu, Egypt
| | - Cheng-xiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Ramakrishnan DK, Jauernegger F, Hoefle D, Berg C, Berg G, Abdelfattah A. Unravelling the microbiome of wild flowering plants: a comparative study of leaves and flowers in alpine ecosystems. BMC Microbiol 2024; 24:417. [PMID: 39425049 PMCID: PMC11490174 DOI: 10.1186/s12866-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND While substantial research has explored rhizosphere and phyllosphere microbiomes, knowledge on flower microbiome, particularly in wild plants remains limited. This study explores into the diversity, abundance, and composition of bacterial and fungal communities on leaves and flowers of wild flowering plants in their natural alpine habitat, considering the influence of environmental factors. METHODS We investigated 50 wild flowering plants representing 22 families across seven locations in Austria. Sampling sites encompassed varied soil types (carbonate/silicate) and altitudes (450-2760 m). Amplicon sequencing to characterize bacterial and fungal communities and quantitative PCR to assess microbial abundance was applied, and the influence of biotic and abiotic factors assessed. RESULTS Our study revealed distinct bacterial and fungal communities on leaves and flowers, with higher diversity and richness on leaves (228 fungal and 91 bacterial ASVs) than on flowers (163 fungal and 55 bacterial ASVs). In addition, Gammaproteobacteria on flowers and Alphaproteobacteria on leaves suggests niche specialization for plant compartments. Location significantly shaped both community composition and fungal diversity on both plant parts. Notably, soil type influenced community composition but not diversity. Altitude was associated with increased fungal species diversity on leaves and flowers. Furthermore, significant effects of plant family identity emerged within a subset of seven families, impacting bacterial and fungal abundance, fungal Shannon diversity, and bacterial species richness, particularly on flowers. CONCLUSION This study provides novel insights into the specific microbiome of wild flowering plants, highlighting adaptations to local environments and plant-microbe coevolution. The observed specificity indicates a potential role in plant health and resilience, which is crucial for predicting how microbiomes respond to changing environments, ultimately aiding in the conservation of natural ecosystems facing climate change pressures.
Collapse
Affiliation(s)
- Dinesh Kumar Ramakrishnan
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Franziska Jauernegger
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Daniel Hoefle
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Christian Berg
- Institute of Biology, Department of Plant Sciences, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Gabriele Berg
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
6
|
Rice G, Farrelly O, Huang S, Kuri P, Curtis E, Ohman L, Li N, Lengner C, Lee V, Rompolas P. Sox9 marks limbal stem cells and is required for asymmetric cell fate switch in the corneal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588195. [PMID: 38645161 PMCID: PMC11030424 DOI: 10.1101/2024.04.08.588195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adult tissues with high cellular turnover require a balance between stem cell renewal and differentiation, yet the mechanisms underlying this equilibrium are unclear. The cornea exhibits a polarized lateral flow of progenitors from the peripheral stem cell niche to the center; attributed to differences in cellular fate. To identify genes that are critical for regulating the asymmetric fates of limbal stem cells and their transient amplified progeny in the central cornea, we utilized an in vivo cell cycle reporter to isolate proliferating basal cells across the anterior ocular surface epithelium and performed single-cell transcriptional analysis. This strategy greatly increased the resolution and revealed distinct basal cell identities with unique expression profiles of structural genes and transcription factors. We focused on Sox9; a transcription factor implicated in stem cell regulation across various organs. Sox9 was found to be differentially expressed between limbal stem cells and their progeny in the central corneal. Lineage tracing analysis confirmed that Sox9 marks long-lived limbal stem cells and conditional deletion led to abnormal differentiation and squamous metaplasia in the central cornea. These data suggest a requirement for Sox9 for the switch to asymmetric fate and commitment toward differentiation, as transient cells exit the limbal niche. By inhibiting terminal differentiation of corneal progenitors and forcing them into perpetual symmetric divisions, we replicated the Sox9 loss-of-function phenotype. Our findings reveal an essential role for Sox9 for the spatial regulation of asymmetric fate in the corneal epithelium that is required to sustain tissue homeostasis.
Collapse
|
7
|
Weigh KV, Batista BD, Hoang H, Dennis PG. Characterisation of Soil Bacterial Communities That Exhibit Chemotaxis to Root Exudates from Phosphorus-Limited Plants. Microorganisms 2023; 11:2984. [PMID: 38138128 PMCID: PMC10745596 DOI: 10.3390/microorganisms11122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The ability to sense and direct movement along chemical gradients is known as 'chemotaxis' and is a common trait among rhizosphere microorganisms, which are attracted to organic compounds released from plant roots. In response to stress, the compounds released from roots can change and may recruit symbionts that enhance host stress tolerance. Decoding this language of attraction could support the development of microbiome management strategies that would enhance agricultural production and sustainability. In this study, we employ a culture-independent bait-trap chemotaxis assay to capture microbial communities attracted to root exudates from phosphorus (P)-sufficient and P-deficient Arabidopsis thaliana Col-0 plants. The captured populations were then enumerated and characterised using flow cytometry and phylogenetic marker gene sequencing, respectively. Exudates attracted significantly more cells than the control but did not differ between P treatments. Relative to exudates from P-sufficient plants, those collected from P-deficient plants attracted a significantly less diverse bacterial community that was dominated by members of the Paenibacillus, which is a genus known to include powerful phosphate solubilisers and plant growth promoters. These results suggest that in response to P deficiency, Arabidopsis exudates attract organisms that could help to alleviate nutrient stress.
Collapse
Affiliation(s)
| | | | | | - Paul G. Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia (B.D.B.)
| |
Collapse
|
8
|
Fan W, Xiao Y, Dong J, Xing J, Tang F, Shi F. Variety-driven rhizosphere microbiome bestows differential salt tolerance to alfalfa for coping with salinity stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1324333. [PMID: 38179479 PMCID: PMC10766110 DOI: 10.3389/fpls.2023.1324333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Soil salinization is a global environmental issue and a significant abiotic stress that threatens crop production. Root-associated rhizosphere microbiota play a pivotal role in enhancing plant tolerance to abiotic stresses. However, limited information is available concerning the specific variations in rhizosphere microbiota driven by different plant genotypes (varieties) in response to varying levels of salinity stress. In this study, we compared the growth performance of three alfalfa varieties with varying salt tolerance levels in soils with different degrees of salinization. High-throughput 16S rRNA and ITS sequencing were employed to analyze the rhizosphere microbial communities. Undoubtedly, the increasing salinity significantly inhibited alfalfa growth and reduced rhizosphere microbial diversity. However, intriguingly, salt-tolerant varieties exhibited relatively lower susceptibility to salinity, maintaining more stable rhizosphere bacterial community structure, whereas the reverse was observed for salt-sensitive varieties. Bacillus emerged as the dominant species in alfalfa's adaptation to salinity stress, constituting 21.20% of the shared bacterial genera among the three varieties. The higher abundance of Bacillus, Ensifer, and Pseudomonas in the rhizosphere of salt-tolerant alfalfa varieties is crucial in determining their elevated salt tolerance. As salinity levels increased, salt-sensitive varieties gradually accumulated a substantial population of pathogenic fungi, such as Fusarium and Rhizoctonia. Furthermore, rhizosphere bacteria of salt-tolerant varieties exhibited increased activity in various metabolic pathways, including biosynthesis of secondary metabolites, carbon metabolism, and biosynthesis of amino acids. It is suggested that salt-tolerant alfalfa varieties can provide more carbon sources to the rhizosphere, enriching more effective plant growth-promoting bacteria (PGPB) such as Pseudomonas to mitigate salinity stress. In conclusion, our results highlight the variety-mediated enrichment of rhizosphere microbiota in response to salinity stress, confirming that the high-abundance enrichment of specific dominant rhizosphere microbes and their vital roles play a significant role in conferring high salt adaptability to these varieties.
Collapse
Affiliation(s)
- Wenqiang Fan
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
| | - Jiaqi Dong
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fang Tang
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengling Shi
- Key Laboratory of Grassland Resources of the Ministry of Education and Key Laboratory of Forage Cultivation, Processing and High-Efficiency Utilization of the Ministry of Agriculture, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Li W, Hu XY, Zhu CS, Guo SX, Li M. Control effect of root exudates from mycorrhizal watermelon seedlings on Fusarium wilt and the bacterial community in continuously cropped soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1225897. [PMID: 37767292 PMCID: PMC10520283 DOI: 10.3389/fpls.2023.1225897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Watermelon (Citrullus lanatus) is susceptible to wilt disease caused by Fusarium oxysporum f. sp niveum (FON). AMF colonization alleviates watermelon wilt and regulates the composition of root exudates, but the effects of mycorrhizal watermelon root exudates on watermelon Fusarium wilt is not well understood. Root exudates of watermelon inoculated with AMF (Funeliformis mosseae or Glomus versiformme) were collected in this study. Then the root exudates of control plants and mycorrhizal plants were used to irrigate watermelon in continuous cropping soil, respectively. Meanwhile, the watermelon growth, antioxidant enzyme activity, rhizosphere soil enzyme activities and bacterial community composition, as well as the control effect on FON were analyzed. The results indicated that mycorrhizal watermelon root exudates promoted the growth of watermelon seedlings and increased soil enzyme activities, actinomyces, and the quantity of bacteria in rhizosphere soil. The proportion of Proteobacteria and Bacteroides was decreased, and the proportion of Actinobacteria, Firmicutes, and Chloroflexi in rhizosphere soil was increased when the seedlings were watered with high concentrations of mycorrhizal root exudates. The dominant bacterial genera in rhizosphere soil were Kaistobacter, Rhodanobacter, Thermomonas, Devosia, and Bacillus. The root exudates of mycorrhizal watermelon could reduce the disease index of Fusarium wilt by 6.7-30%, and five ml/L of watermelon root exudates inoculated with F. mosseae had the strongest inhibitory effect on watermelon Fusarium wilt. Our results suggest mycorrhizal watermelon root exudates changed the composition of bacteria and soil enzyme activities in rhizosphere soil, which increase the resistance of watermelon to Fusarium wilt and promoted the growth of plants in continuous cropping soil.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xue-Yi Hu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Cheng-Shang Zhu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shao Xia Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Min Li
- Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Abbasi S. Plant-microbe interactions ameliorate phosphate-mediated responses in the rhizosphere: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1074279. [PMID: 37360699 PMCID: PMC10290171 DOI: 10.3389/fpls.2023.1074279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Phosphorus (P) is one of the essential minerals for many biochemical and physiological responses in all biota, especially in plants. P deficiency negatively affects plant performance such as root growth and metabolism and plant yield. Mutualistic interactions with the rhizosphere microbiome can assist plants in accessing the available P in soil and its uptake. Here, we provide a comprehensive overview of plant-microbe interactions that facilitate P uptake by the plant. We focus on the role of soil biodiversity in improved P uptake by the plant, especially under drought conditions. P-dependent responses are regulated by phosphate starvation response (PSR). PSR not only modulates the plant responses to P deficiency in abiotic stresses but also activates valuable soil microbes which provide accessible P. The drought-tolerant P-solubilizing bacteria are appropriate for P mobilization, which would be an eco-friendly manner to promote plant growth and tolerance, especially in extreme environments. This review summarizes plant-microbe interactions that improve P uptake by the plant and brings important insights into the ways to improve P cycling in arid and semi-arid ecosystems.
Collapse
|
11
|
McLaughlin S, Zhalnina K, Kosina S, Northen TR, Sasse J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun 2023; 14:1649. [PMID: 36964135 PMCID: PMC10039077 DOI: 10.1038/s41467-023-37164-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023] Open
Abstract
Root exudates are plant-derived, exported metabolites likely shaping root-associated microbiomes by acting as nutrients and signals. However, root exudation dynamics are unclear and thus also, if changes in exudation are reflected in changes in microbiome structure. Here, we assess commonalities and differences between exudates of different plant species, diurnal exudation dynamics, as well as the accompanying methodological aspects of exudate sampling. We find that exudates should be collected for hours rather than days as many metabolite abundances saturate over time. Plant growth in sterile, nonsterile, or sugar-supplemented environments significantly alters exudate profiles. A comparison of Arabidopsis thaliana, Brachypodium distachyon, and Medicago truncatula shoot, root, and root exudate metabolite profiles reveals clear differences between these species, but also a core metabolome for tissues and exudates. Exudate profiles also exhibit a diurnal signature. These findings add to the methodological and conceptual groundwork for future exudate studies to improve understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Sarah McLaughlin
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kateryna Zhalnina
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Suzanne Kosina
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA
| | - Trent R Northen
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA.
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Joelle Sasse
- Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology, Berkeley, CA, USA.
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute for Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Ding JYM, Ho LS, Ibrahim J, Teh CK, Goh KM. Impact of sterilization and chemical fertilizer on the microbiota of oil palm seedlings. Front Microbiol 2023; 14:1091755. [PMID: 37180248 PMCID: PMC10172575 DOI: 10.3389/fmicb.2023.1091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Soil nutrients and microbiota are known as essential components for healthy plant growth and crop productivity. However, limited studies have been conducted on the importance of soil microbiota in the early growth of oil palm seedlings (Elaeis guineensis Jacq.) under the influence of nitrogen, phosphorus and potassium (NPK) compound fertilizer (nitrogen, phosphorus, and potassium). In this study, we analyzed the root microbial community associated with seedlings grown under normal and sterilized soil conditions to ascertain the microbial strains potentially associated with soil, plant health and chemical fertilizer efficiency. Oil palm seedlings were grown under four treatments: (i) fertilized normal soil (+FN), (ii) unfertilized normal soil (-FN), (iii) fertilized sterilized soil (+FS) and (iv) unfertilized sterilized soil (-FS). Our findings revealed that chemical fertilizer promoted the growth of the copiotrophs Pseudomonadota and Bacteroidota in the control +FN, which are known to degrade complex polysaccharides. After autoclaving, the soil macronutrient content did not change, but soil sterilization reduced microbial diversity in the +FS and -FS treatments and altered the soil microbiota composition. Sterilized soil with a depleted microbial population adversely affected crop growth, which was exacerbated by fertilizer use. In the rhizosphere and rhizoplane compartments, a total of 412 and 868 amplicon sequence variances (ASVs) were found depleted in the +FS and -FS treatments, respectively. Several genera were identified in the ASVs with diminished abundance, including Humibacter, Microbacterium, Mycobacterium, 1921-2, HSB OF53-F07, Mucilaginibacter, Bacillus, Paenibacillus, and several unclassified genera, suggesting their possible roles in promoting the plant growth of oil palm seedlings. Soil sterilization might remove these beneficial microbes from the bulk soil pool, affecting the colonization ability in the rhizocompartments as well as their role in nutrient transformation. Therefore, this study provides useful insights concerning the benefits of a soil microbiome survey before making fertilizer recommendations.
Collapse
Affiliation(s)
- Joyce Yoon Mei Ding
- Biotechnology & Breeding Department, Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Selangor, Malaysia
- *Correspondence: Joyce Yoon Mei Ding,
| | - Li Sim Ho
- Biotechnology & Breeding Department, Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Selangor, Malaysia
| | - Julia Ibrahim
- Biotechnology & Breeding Department, Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Selangor, Malaysia
| | - Chee Keng Teh
- Biotechnology & Breeding Department, Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Selangor, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Kian Mau Goh,
| |
Collapse
|
13
|
la Rosa GMD, García-Oliva F, Ovando-Vázquez C, Celis-García LB, López-Reyes L, López-Lozano NE. Amino Acids in the Root Exudates of Agave lechuguilla Torr. Favor the Recruitment and Enzymatic Activity of Nutrient-Improvement Rhizobacteria. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02162-x. [PMID: 36571608 DOI: 10.1007/s00248-022-02162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Agave lechuguilla is a widely distributed plant in arid ecosystems. It has been suggested that its microbiome is partially responsible for its great adaptability to the oligotrophic environments of the Chihuahuan Desert. To lead the recruitment of beneficial rhizobacteria, the root exudates are essential; however, the amino acids contained within these compounds had been largely overlooked. Thus, we investigated how the variations of amino acids in the rhizosphere at different growth stages of A. lechuguilla affect the rhizobacterial community composition, its functions, and activity of the beneficial bacteria. In this regard, it was found that arginine and tyrosine were related to the composition of the rhizobacterial community associated to A. lechuguilla, where the most abundant genera were from the phylum Proteobacteria and Bacteroidetes. Moreover, Firmicutes was largely represented by Bacillus in the phosphorus-mineralizing bacteria community, which may indicate its great distribution and versatility in the harsh environments of the Chihuahuan Desert. In contrast, we found a high proportion of Unknown taxa of nitrogen-fixing bacteria, reflecting the enormous diversity in the rhizosphere of these types of plants that remains to be explored. This work also reports the influence of micronutrients and the amino acids methionine and arginine over the increased activity of the nitrogen-fixing and phosphorus-mineralizing bacteria in the rhizosphere of lechuguillas. In addition, the results highlight the multiple beneficial functions present in the microbiome that could help the host to tolerate arid conditions and improve nutrient availability.
Collapse
Affiliation(s)
- Guadalupe Medina-de la Rosa
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas Y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, Mich, Mexico
| | - Cesaré Ovando-Vázquez
- CONACyT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., 78216, San Luis Potosí, S.L.P., Mexico
| | - Lourdes B Celis-García
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico
| | - Lucía López-Reyes
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, 72000, Puebla, Pue., Mexico
| | - Nguyen Esmeralda López-Lozano
- CONACyT-División de Ciencias Ambientales, Instituto Potosino de Investigación Científica Y Tecnológica, A.C., Camino a La Presa de San José 2055, Lomas 4Ta Secc, 78216, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
14
|
Martínez-Yáñez MG, Silva-Ortega CO, Hernández-Aranda VA, Vallejo-Pérez MR, Alcalá-Briseño R, Vega-Manriquez DX, Aguilar-Benítez G, Jarquin-Gálvez R, Lara-Ávila JP. Analysis of Bacterial Microbiota of Aerated Compost Teas and Effect on Tomato Growth. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02156-9. [PMID: 36520176 DOI: 10.1007/s00248-022-02156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Mature composts and their water-based extracts, known as aerated compost teas (ACTs), are biofertilizers that share bioactive effects like soil restoration and plant health promotion, widely used for sustainable agriculture. Bioactive effects of compost and ACTs could be associated with their physicochemical and biological characteristics, like carbon/nitrogen (C/N) ratio and microbiota structure respectively. In our study, we elaborated ACTs using mature homemade compost, wheat bran, and grass clippings, following the C/N ratio criteria. Irrigation of tomato plantlets with ACT whose C/N ratio was close to the expected C/N ratio for mature compost evidenced plant growth promotion. Exploring the bacterial microbiota of elaborated ACTs and origin compost revealed significant structural differences, including phyla involved in N mineralization and free-living N-fixing bacteria. Therefore, ACTs harbor diverse bacterial microbiota involved in the N cycle, which would enrich plant and soil bacterial communities at the taxonomic and functional levels. Furthermore, ACTs are considered a part of agroecological and circular economy approaches.
Collapse
Affiliation(s)
| | | | | | - Moisés Roberto Vallejo-Pérez
- CONACYT, Universidad Autónoma de San Luis Potosí. Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, SLP, México
| | | | - Delia Xochil Vega-Manriquez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, México
| | - Gisela Aguilar-Benítez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, México
| | - Ramón Jarquin-Gálvez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, México
| | - José Pablo Lara-Ávila
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, México.
| |
Collapse
|
15
|
Orellana D, Machuca D, Ibeas MA, Estevez JM, Poupin MJ. Plant-growth promotion by proteobacterial strains depends on the availability of phosphorus and iron in Arabidopsis thaliana plants. Front Microbiol 2022; 13:1083270. [PMID: 36583055 PMCID: PMC9792790 DOI: 10.3389/fmicb.2022.1083270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Phosphorus (as phosphate, Pi) and iron (Fe) are critical nutrients in plants that are often poorly available in the soil and can be microbially affected. This work aimed to evaluate how plant-rhizobacteria interaction changes due to different Pi or Fe nutritional scenarios and to study the underlying molecular mechanisms of the microbial modulation of these nutrients in plants. Thus, three proteobacteria (Paraburkholderia phytofirmans PsJN, Azospirillum brasilense Sp7, and Pseudomonas putida KT2440) were used to inoculate Arabidopsis seeds. Additionally, the seeds were exposed to a nutritional factor with the following levels for each nutrient: sufficient (control) or low concentrations of a highly soluble source or sufficient concentrations of a low solubility source. Then, the effects of the combinatorial factors were assessed in plant growth, nutrition, and genetic regulation. Interestingly, some bacterial effects in plants depended on the nutrient source (e.g., increased aerial zones induced by the strains), and others (e.g., decreased primary roots induced by Sp7 or KT2440) occurred regardless of the nutritional treatment. In the short-term, PsJN had detrimental effects on plant growth in the presence of the low-solubility Fe compound, but this was not observed in later stages of plant development. A thorough regulation of the phosphorus content was detected in plants independent of the nutritional treatment. Nevertheless, inoculation with KT2440 increased P content by 29% Pi-deficiency exposed plants. Conversely, the inoculation tended to decrease the Fe content in plants, suggesting a competition for this nutrient in the rhizosphere. The P-source also affected the effects of the PsJN strain in a double mutant of the phosphate starvation response (PSR). Furthermore, depending on the nutrient source, PsJN and Sp7 strains differentially regulated PSR and IAA- associated genes, indicating a role of these pathways in the observed differential phenotypical responses. In the case of iron, PsJN and SP7 regulated iron uptake-related genes regardless of the iron source, which may explain the lower Fe content in inoculated plants. Overall, the plant responses to these proteobacteria were not only influenced by the nutrient concentrations but also by their availabilities, the elapsed time of the interaction, and the specific identities of the beneficial bacteria. Graphical AbstractThe effects of the different nutritional and inoculation treatments are indicated for plant growth parameters (A), gene regulation (B) and phosphorus and iron content (C). Figures created with BioRender.com with an academic license.
Collapse
Affiliation(s)
- Daniela Orellana
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Daniel Machuca
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Miguel Angel Ibeas
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - José Manuel Estevez
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile,Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile,ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile,*Correspondence: María Josefina Poupin,
| |
Collapse
|
16
|
Ulrich DEM, Clendinen CS, Alongi F, Mueller RC, Chu RK, Toyoda J, Gallegos-Graves LV, Goemann HM, Peyton B, Sevanto S, Dunbar J. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Sci Rep 2022; 12:12581. [PMID: 35869127 PMCID: PMC9307599 DOI: 10.1038/s41598-022-16408-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/11/2022] [Indexed: 12/22/2022] Open
Abstract
Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant–microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC–MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.
Collapse
|
17
|
Thongnok S, Siripornadulsil W, Siripornadulsil S. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus taiwanensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:42-54. [PMID: 36182828 DOI: 10.1016/j.plaphy.2022.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As)-contaminated rice paddy fields are spreading globally, and thus, rice grains with low As accumulation at a safe level for consumption is profoundly needed. Rice is highly susceptible to As accumulation, and the responses to As vary among rice varieties. Here, combinations of the AsIII-oxidizing bacteria Pseudomonas stutzeri strains 4.25, 4.27, or 4.44 and Cupriavidus taiwanensis KKU2500-3 were investigated with respect to their responses to As toxicity and rice growth promotion during the early growth stage. All bacterial strains enhanced antioxidant enzyme activities, including SOD, CAT, APX, GPX, and GR, under As stress in vitro. Uninoculated and coinoculated rice seedlings of three rice varieties (KDML105, RD6, RD10) were cultivated in hydroponic solution without and with a combination of toxic AsIII and less toxic AsV for 30 days. Compared with uninoculated seedlings, the inoculated seedlings showed higher growth parameters and lower As contents in roots, shoots and throughout the plants. The bioconcentration factor (BCF) and translocation factor were reduced in inoculated seedlings. The effective response of rice to As toxicity influenced by bacteria was highest in KDML105, followed by RD6 and RD10. The root sulfide content was correlated with As accumulation in roots, shoots, and total seedlings and the BCFs. P. stutzeri 4.44 and C. taiwanensis KKU2500-3 were the most promising combinations for application in KDML105 cultivation under As-contaminated conditions. Understanding the basic response of rice coinoculated with effective bacteria at the early stage will provide guidelines for rice cultivation under As conditions at other scales.
Collapse
Affiliation(s)
- Sarun Thongnok
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
18
|
Sanchez-Mahecha O, Klink S, Heinen R, Rothballer M, Zytynska S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. PLANT, CELL & ENVIRONMENT 2022; 45:3052-3069. [PMID: 35852014 DOI: 10.1111/pce.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Beneficial bacteria interact with plants using signalling molecules, such as N-acyl homoserine-lactones (AHLs). Although there is evidence that these molecules affect plant responses to pathogens, few studies have examined their effect on plant-insect and microbiome interactions, especially under variable soil conditions. We investigated the effect of the AHL-producing rhizobacterium Acidovorax radicis and its AHL-negative mutant (does not produce AHLs) on modulating barley (Hordeum vulgare) plant interactions with cereal aphids (Sitobion avenae) and earthworms (Dendrobaena veneta) across variable nutrient soils. Acidovorax radicis inoculation increased plant growth and suppressed aphids, with stronger effects by the AHL-negative mutant. However, effects varied between barley cultivars and the presence of earthworms altered interaction outcomes. Bacteria-induced plant defences differed between cultivars, and aphid exposure, with pathogenesis-related and WRKY pathways partly explaining the ecological effects in the more resistant cultivars. Additionally, we observed few but specific indirect effects via the wider root microbiome where the AHL-mutant strain influenced rare OTU abundances. We conclude that bacterial AHL-signalling disruption affects plant-microbial interactions by inducing different plant pathways, leading to increased insect resistance, also mediated by the surrounding biotic and abiotic environment. Understanding the mechanisms by which beneficial bacteria can reduce insect pests is a key research area for developing effective insect pest management strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Oriana Sanchez-Mahecha
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Sophia Klink
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Robin Heinen
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Michael Rothballer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Sharon Zytynska
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front Microbiol 2022; 13:966226. [PMID: 36033871 PMCID: PMC9404692 DOI: 10.3389/fmicb.2022.966226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heavy metal contamination in soils endangers humans and the biosphere by reducing agricultural yield and negatively impacting ecosystem health. In recent decades, this issue has been addressed and partially remedied through the use of “green technology,” which employs metal-tolerant plants to clean up polluted soils. Furthermore, the global climate change enhances the negative effects of climatic stressors (particularly drought, salinity, and extreme temperatures), thus reducing the growth and metal accumulation capacity of remediating plants. Plant growth-promoting bacteria (PGPB) have been widely introduced into plants to improve agricultural productivity or the efficiency of phytoremediation of metal-contaminated soils via various mechanisms, including nitrogen fixation, phosphate solubilization, phytohormone production, and biological control. The use of metal-tolerant plants, as well as PGPB inoculants, should hasten the process of moving this technology from the laboratory to the field. Hence, it is critical to understand how PGPB ameliorate environmental stress and metal toxicity while also inducing plant tolerance, as well as the mechanisms involved in such actions. This review attempts to compile the scientific evidence on this topic, with a special emphasis on the mechanism of PGPB involved in the metal bioremediation process [plant growth promotion and metal detoxification/(im)mobilization/bioaccumulation/transformation/translocation] and deciphering combined stress (metal and climatic stresses) tolerance.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma,
| |
Collapse
|
20
|
Sutherland J, Bell T, Trexler RV, Carlson JE, Lasky JR. Host genomic influence on bacterial composition in the switchgrass rhizosphere. Mol Ecol 2022; 31:3934-3950. [PMID: 35621390 PMCID: PMC10150372 DOI: 10.1111/mec.16549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Host genetic variation can shape the diversity and composition of associated microbiomes, which may reciprocally influence host traits and performance. While the genetic basis of phenotypic diversity of plant populations in nature has been studied, comparatively little research has investigated the genetics of host effects on their associated microbiomes. Switchgrass (Panicum virgatum) is a highly outcrossing, perennial, grass species with substantial locally adaptive diversity across its native North American range. Here, we compared 383 switchgrass accessions in a common garden to determine the host genotypic influence on rhizosphere bacterial composition. We hypothesized that the composition and diversity of rhizosphere bacterial assemblages would differentiate due to genotypic differences between hosts (potentially due to root phenotypes and associated life history variation). We observed higher alpha diversity of bacteria associated with upland ecotypes and tetraploids, compared to lowland ecotypes and octoploids, respectively. Alpha diversity correlated negatively with flowering time and plant height, indicating that bacterial composition varies along switchgrass life history axes. Narrow-sense heritability (h2 ) of the relative abundance of twenty-one core bacterial families was observed. Overall compositional differences among tetraploids, due to genetic variation, supports wide-spread genotypic influence on the rhizosphere microbiome. Tetraploids were only considered due to complexities associated with the octoploid genomes. Lastly, a genome-wide association study identified 1,861 single-nucleotide polymorphisms associated with 110 families and genes containing them related to potential regulatory functions. Our findings suggest that switchgrass genomic and life-history variation influences bacterial composition in the rhizosphere, potentially due to host adaptation to local environments.
Collapse
Affiliation(s)
- Jeremy Sutherland
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Terrence Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA
| | - Ryan V Trexler
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - John E Carlson
- Intercollege Graduate Degree Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA.,Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
21
|
Li YH, Yang YY, Wang ZG, Chen Z. Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. Int J Mol Sci 2022; 23:4860. [PMID: 35563250 PMCID: PMC9100151 DOI: 10.3390/ijms23094860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.
Collapse
Affiliation(s)
- Yue-Han Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Yuan-You Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| | - Zhi-Gang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| |
Collapse
|
22
|
De Zutter N, Ameye M, Bekaert B, Verwaeren J, De Gelder L, Audenaert K. Uncovering New Insights and Misconceptions on the Effectiveness of Phosphate Solubilizing Rhizobacteria in Plants: A Meta-Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:858804. [PMID: 35310667 PMCID: PMC8924522 DOI: 10.3389/fpls.2022.858804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
As the awareness on the ecological impact of chemical phosphate fertilizers grows, research turns to sustainable alternatives such as the implementation of phosphate solubilizing bacteria (PSB), which make largely immobile phosphorous reserves in soils available for uptake by plants. In this review, we introduce the mechanisms by which plants facilitate P-uptake and illustrate how PSB improve the bioavailability of this nutrient. Next, the effectiveness of PSB on increasing plant biomass and P-uptake is assessed using a meta-analysis approach. Our review demonstrates that improved P-uptake does not always translate in improved plant height and biomass. We show that the effect of PSB on plants does not provide an added benefit when using bacterial consortia compared to single strains. Moreover, the commonly reported species for P-solubilization, Bacillus spp. and Pseudomonas spp., are outperformed by the scarcely implemented Burkholderia spp. Despite the similar responses to PSB in monocots and eudicots, species responsiveness to PSB varies within both clades. Remarkably, the meta-analysis challenges the common belief that PSB are less effective under field conditions compared to greenhouse conditions. This review provides innovative insights and identifies key questions for future research on PSB to promote their implementation in agriculture.
Collapse
Affiliation(s)
- Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Noémie De Zutter,
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Boris Bekaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan Verwaeren
- Research Unit Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics (LAMP), Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Papp O, Kocsis T, Biró B, Jung T, Ganszky D, Abod É, Tirczka I, Tóthné Bogdányi F, Drexler D. Co-Inoculation of Organic Potato with Fungi and Bacteria at High Disease Severity of Rhizoctonia solani and Streptomyces spp. Increases Beneficial Effects. Microorganisms 2021; 9:microorganisms9102028. [PMID: 34683349 PMCID: PMC8540471 DOI: 10.3390/microorganisms9102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
Rhizobacteria-based technologies may constitute a viable option for biological fertilization and crop protection. The effects of two microbial inoculants (1) PPS: Pseudomonas protegens, P. jessenii and Stenotrophomonas maltophilia biocontrol bacterium strains and (2) TPB: Trichoderma atroviride, Pseudomonas putida, and Bacillus subtilis fungi, bacteria biocontrol, and biofertilizer combinations were examined on potato (Solanum tuberosum L. var. Demon) in three consecutive years in irrigated organic conditions. The number of tubers showing symptoms of Streptomyces sp. and Rhizoctonia sp. was recorded. The severity of symptoms was evaluated based on the damaged tuber surface. There was a large annual variability in both the symptoms caused by soil-borne pathogens, and the effect of bio-inoculants. In the first and second year, with a stronger Rhizoctonia and Streptomyces spp. incidence, the bacterial and fungal combination of TPB inoculums with both the potential plant nutrition and biocontrol ability of the strains seemed to have a better efficiency to control the diseases. This tendency was not supported in the third year, and this may be attributed to the relatively high natural precipitation. Further studies are required to investigate the agronomic benefits of these inoculants and to tailor their application to the soil microbial characteristics and weather conditions.
Collapse
Affiliation(s)
- Orsolya Papp
- Hungarian Research Institute of Organic Agriculture (ÖMKi), 1033 Budapest, Hungary; (D.G.); (F.T.B.); (D.D.)
- Correspondence: (O.P.); (B.B.)
| | - Tamás Kocsis
- Department of Food Microbiology, Hygiene and Safety, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Borbála Biró
- Department of Agri-Environmental Sciences, Faculty of Horticulture, Szent István University, 1118 Budapest, Hungary
- Correspondence: (O.P.); (B.B.)
| | - Timea Jung
- Brightic Research Ltd., 2626 Nagymaros, Hungary;
| | - Daniel Ganszky
- Hungarian Research Institute of Organic Agriculture (ÖMKi), 1033 Budapest, Hungary; (D.G.); (F.T.B.); (D.D.)
| | - Éva Abod
- Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, 540485 Târgu-Mureș, Romania;
| | - Imre Tirczka
- Department of Agroecology and Organic Farming, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Franciska Tóthné Bogdányi
- Hungarian Research Institute of Organic Agriculture (ÖMKi), 1033 Budapest, Hungary; (D.G.); (F.T.B.); (D.D.)
| | - Dóra Drexler
- Hungarian Research Institute of Organic Agriculture (ÖMKi), 1033 Budapest, Hungary; (D.G.); (F.T.B.); (D.D.)
| |
Collapse
|
24
|
Knights HE, Jorrin B, Haskett TL, Poole PS. Deciphering bacterial mechanisms of root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:428-444. [PMID: 33538402 PMCID: PMC8651005 DOI: 10.1111/1758-2229.12934] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Bacterial colonization of the rhizosphere is critical for the establishment of plant-bacteria interactions that represent a key determinant of plant health and productivity. Plants influence bacterial colonization primarily through modulating the composition of their root exudates and mounting an innate immune response. The outcome is a horizontal filtering of bacteria from the surrounding soil, resulting in a gradient of reduced bacterial diversity coupled with a higher degree of bacterial specialization towards the root. Bacteria-bacteria interactions (BBIs) are also prevalent in the rhizosphere, influencing bacterial persistence and root colonization through metabolic exchanges, secretion of antimicrobial compounds and other processes. Traditionally, bacterial colonization has been examined under sterile laboratory conditions that mitigate the influence of BBIs. Using simplified synthetic bacterial communities combined with microfluidic imaging platforms and transposon mutagenesis screening approaches, we are now able to begin unravelling the molecular mechanisms at play during the early stages of root colonization. This review explores the current state of knowledge regarding bacterial root colonization and identifies key tools for future exploration.
Collapse
Affiliation(s)
| | - Beatriz Jorrin
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | | | - Philip S. Poole
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
25
|
Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q, Zhang R. Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root-Microbe Rhizosphere Interactions. Int J Mol Sci 2021; 22:ijms22136655. [PMID: 34206311 PMCID: PMC8269324 DOI: 10.3390/ijms22136655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/28/2022] Open
Abstract
Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant-microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds. Chemotaxis towards root exudates initiates rhizobacteria recruitment and the establishment of bacteria-root interactions. Over the last years, important progress has been made in the identification of root exudate components that play key roles in the colonization process, as well as in the identification of the cognate chemoreceptors. In the first part of this review, we summarized the roles of representative chemoeffectors that induce chemotaxis in typical rhizobacteria and discussed the structure and function of rhizobacterial chemoreceptors. In the second part we reviewed findings on how rhizobacterial chemotaxis and other root-microbe interactions promote the establishment of beneficial rhizobacteria-plant interactions leading to plant growth promotion and protection of plant health. In the last part we identified the existing gaps in the knowledge and discussed future research efforts that are necessary to close them.
Collapse
Affiliation(s)
- Haichao Feng
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruixin Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Xueqin Hou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yu Lv
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; (H.F.); (R.F.); (X.H.); (Y.L.); (N.Z.); (Z.X.); (Y.M.); (Q.S.)
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Correspondence: ; Tel.: +86-025-84396477
| |
Collapse
|
26
|
Perkowska I, Potrykus M, Siwinska J, Siudem D, Lojkowska E, Ihnatowicz A. Interplay between Coumarin Accumulation, Iron Deficiency and Plant Resistance to Dickeya spp. Int J Mol Sci 2021; 22:ijms22126449. [PMID: 34208600 PMCID: PMC8235353 DOI: 10.3390/ijms22126449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023] Open
Abstract
Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution.
Collapse
Affiliation(s)
- Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Marta Potrykus
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Debowa 23 A, 80-204 Gdansk, Poland
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Dominika Siudem
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
| | - Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (I.P.); (M.P.); (J.S.); (D.S.); (E.L.)
- Correspondence: ; Tel.: +48-58-5236330
| |
Collapse
|
27
|
Durr J, Reyt G, Spaepen S, Hilton S, Meehan C, Qi W, Kamiya T, Flis P, Dickinson HG, Feher A, Shivshankar U, Pavagadhi S, Swarup S, Salt D, Bending GD, Gutierrez-Marcos J. A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. PLANT & CELL PHYSIOLOGY 2021; 62:248-261. [PMID: 33475132 PMCID: PMC8112839 DOI: 10.1093/pcp/pcaa170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.
Collapse
Affiliation(s)
- Julius Durr
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Guilhem Reyt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Stijn Spaepen
- Department of Plant Microbe Interactions & Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, K�ln 50829, Germany
- Centre for Microbial and Plant Genetics, Leuven Institute for Beer Research, University of Leuven, Gaston Geenslaan 1 B-3001, Belgium
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Cathal Meehan
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Wu Qi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Paulina Flis
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hugh G Dickinson
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Attila Feher
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesv�ri krt. 62, Szeged H-6726, Hungary
| | - Umashankar Shivshankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shruti Pavagadhi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - David Salt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
28
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
29
|
French E, Kaplan I, Enders L. Foliar Aphid Herbivory Alters the Tomato Rhizosphere Microbiome, but Initial Soil Community Determines the Legacy Effects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.629684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aboveground herbivory can impact the root-associated microbiome, while simultaneously different soil microbial communities influence herbivore performance. It is currently unclear how these reciprocal top-down and bottom-up interactions between plants, insects and microbes vary across different soils and over successive plant generations. In this study, we examined top-down impacts of above-ground herbivory on the rhizosphere microbiome across different soils, assessed bottom-up impacts of soil microbial community variation on herbivore performance, and evaluated their respective contributions to soil legacy effects on herbivore performance. We used Macrosiphum euphorbiae (potato aphid) and Solanum pimpinellifolium (wild tomato) to capture pre-domestication microbiome interactions with a specialist pest. First, using 16S rRNA sequencing we compared bacterial communities associated with rhizospheres of aphid-infested and uninfested control plants grown in three different soils over three time points. High aphid infestation impacted rhizosphere bacterial diversity in a soil-dependent manner, ranging from a 22% decrease to a 21% increase relative to uninfested plants and explained 6–7% of community composition differences in two of three soils. We next investigated bottom-up and soil legacy effects of aphid herbivory by growing wild tomatoes in each of the three soils and a sterilized “no microbiome” soil, infesting with aphids (phase one), then planting a second generation (phase two) of plants in the soil conditioned with aphid-infested or uninfested control plants. In the first phase, aphid performance varied across plants grown in different soil sources, ranging from a 20 to 50% increase in aphid performance compared to the “no microbiome” control soil, demonstrating a bottom-up role for soil microbial community. In the second phase, initial soil community, but not previous aphid infestation, impacted aphid performance on plants. Thus, while herbivory altered the rhizosphere microbiome in a soil community-dependent manner, the bottom-up interaction between the microbial community and the plant, not top-down effects of prior herbivore infestation, affected herbivore performance in the following plant generation. These findings suggest that the bottom-up effects of the soil microbial community play an overriding role in herbivore performance in both current and future plant generations and thus are an important target for sustainable control of herbivory in agroecosystems.
Collapse
|
30
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
31
|
Shahid I, Han J, Hanooq S, Malik KA, Borchers CH, Mehnaz S. Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.605195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacillus spp. are well-characterized as efficient bioinoculants for sustainable plant growth promotion and biocontrol of phytopathogens. Members of this spp. exhibit the multifaceted beneficial traits that are involved in plant nutrition and antimicrobial activities against phytopathogens. Keeping in view their diverse potential, this study targeted the detailed characterization of three root-colonizing Bacillus strains namely B. amyloliquefaciens, B. subtilis, and B. tequilensis, characterized based on 16S rRNA sequencing homology. The strains exhibited better plant growth promotion and potent broad-spectrum antifungal activities and exerted 43–86% in-vitro inhibition of growth of eight fungal pathogens. All strains produced indole acetic acid (IAA) in the range of 0.067–0.147 μM and were positive for the production of extracellular enzymes such as cellulase, lipase, and protease. Ultra-performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UPLC-ESI-MS/MS) analysis revealed the production of antifungal metabolites (AFMs) such as surfactins, iturins, fengycins, macrolactins, bacillomycin-D, and catechol-based siderophore bacillibactin which were further confirmed by amplifying the genes involved in the biosynthesis of these antimicrobial lipopeptides. When compared for the amounts of different cyclic-peptides produced by three Bacillus strains, B. amyloliquefaciens SB-1 showed the most noticeable amounts of all the antifungal compounds. Plant experiment results revealed that inoculation with phytohormone producing Bacillus spp. strains demonstrated substantial growth improvement of wheat biomass, number of spikes, and dry weight of shoots and roots. Results of this study indicate the biocontrol and biofertilizer potential of Bacillus spp. for sustainable plant nutrient management, growth promotion, and effective biocontrol of crop plants, particularly cultivated in the South Asian region.
Collapse
|
32
|
Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production. Curr Microbiol 2021; 78:1069-1085. [PMID: 33611628 DOI: 10.1007/s00284-021-02375-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/05/2021] [Indexed: 01/29/2023]
Abstract
Interactions between microorganisms and host plants determine the growth and development as well as the health of the host plant. Various microbial groups inhabit the rhizosphere, each with its peculiar function. The survival of each microbial group depends to a large extent on its ability to colonize the plant root and outcompete the native organisms. The role of the rhizospheric microbiome in enhancing plant growth has not been fully maximized. An understanding of the complexities of microbial interactions and factors affecting their assembly in the community is necessary to benefit maximally from the cooperations of various microbial communities for sustainable crop production. In this review, we outline the various organisms associated with the plant rhizosphere with emphasis on their interactions and mechanisms used in plant growth promotion.
Collapse
|
33
|
Recovery and Community Succession of the Zostera marina Rhizobiome after Transplantation. Appl Environ Microbiol 2021; 87:AEM.02326-20. [PMID: 33187993 DOI: 10.1128/aem.02326-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Seagrasses can form mutualisms with their microbiomes that facilitate the exchange of energy sources, nutrients, and hormones and ultimately impact plant stress resistance. Little is known about community succession within the belowground seagrass microbiome after disturbance and its potential role in the plant's recovery after transplantation. We transplanted Zostera marina shoots with and without an intact rhizosphere and cultivated plants for 4 weeks while characterizing microbiome recovery and effects on plant traits. Rhizosphere and root microbiomes were compositionally distinct, likely representing discrete microbial niches. Furthermore, microbiomes of washed transplants were initially different from those of sod transplants and recovered to resemble an undisturbed state within 14 days. Conspicuously, changes in the microbial communities of washed transplants corresponded with changes in the rhizosphere sediment mass and root biomass, highlighting the strength and responsive nature of the relationship between plants, their microbiome, and the environment. Potential mutualistic microbes that were enriched over time include those that function in the cycling and turnover of sulfur, nitrogen, and plant-derived carbon in the rhizosphere environment. These findings highlight the importance and resilience of the seagrass microbiome after disturbance. Consideration of the microbiome will have meaningful implications for habitat restoration practices.IMPORTANCE Seagrasses are important coastal species that are declining globally, and transplantation can be used to combat these declines. However, the bacterial communities associated with seagrass rhizospheres and roots (the microbiome) are often disturbed or removed completely prior to transplantation. The seagrass microbiome benefits seagrasses through metabolite, nutrient, and phytohormone exchange and contributes to the ecosystem services of seagrass meadows by cycling sulfur, nitrogen, and carbon. This experiment aimed to characterize the importance and resilience of the seagrass belowground microbiome by transplanting Zostera marina with and without intact rhizospheres and tracking microbiome and plant morphological recovery over 4 weeks. We found the seagrass microbiome to be resilient to transplantation disturbance, recovering after 14 days. Additionally, microbiome recovery was linked with seagrass morphology, coinciding with increases in the rhizosphere sediment mass and root biomass. The results of this study can be used to include microbiome responses in informing future restoration work.
Collapse
|
34
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
35
|
Shakir S, Zaidi SSEA, de Vries FT, Mansoor S. Plant Genetic Networks Shaping Phyllosphere Microbial Community. Trends Genet 2020; 37:306-316. [PMID: 33036802 DOI: 10.1016/j.tig.2020.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Phyllosphere microbial communities inhabit the aerial plant parts, such as leaves and flowers, where they form complex molecular interactions with the host plant. Contrary to the relatively well-studied rhizosphere microbiome, scientists are just starting to understand, and potentially utilize, the phyllosphere microbiome. In this article, we summarize the recent studies that have provided novel insights into the mechanism of the host genotype shaping the phyllosphere microbiome and the possibility to select a stable and well-adapted microbiome. We also discuss the most pressing gaps in our knowledge and identify the most promising research directions and tools for understanding the assembly and function of phyllosphere microbiomes - this understanding is necessary if we are to harness phyllosphere microbiomes for improving plant growth and health in managed systems.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
36
|
Tosi M, Gaiero J, Linton N, Mafa-Attoye T, Castillo A, Dunfield K. Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6125-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Liu H, Brettell LE, Qiu Z, Singh BK. Microbiome-Mediated Stress Resistance in Plants. TRENDS IN PLANT SCIENCE 2020; 25:733-743. [PMID: 32345569 DOI: 10.1016/j.tplants.2020.03.014] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Plants are subjected to diverse biotic and abiotic stresses in life. These can induce changes in transcriptomics and metabolomics, resulting in changes to root and leaf exudates and, in turn, altering the plant-associated microbial community. Emerging evidence demonstrates that changes, especially the increased abundance of commensal microbes following stresses, can be beneficial for plant survival and act as a legacy, enhancing offspring fitness. However, outstanding questions remain regarding the microbial role in plant defense, many of which may now be answered utilizing a novel synthetic community approach. In this article, building on our current understanding on stress-induced changes in plant microbiomes, we propose a 'DefenseBiome' concept that informs the design and construction of beneficial microbial synthetic communities for improving fundamental understanding of plant-microbial interactions and the development of plant probiotics.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia.
| |
Collapse
|
38
|
Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu Rev Microbiol 2020; 74:81-100. [PMID: 32530732 DOI: 10.1146/annurev-micro-022620-014327] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plantmicrobiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments.
Collapse
Affiliation(s)
- Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Isai Salas-González
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jonathan M Conway
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Omri M Finkel
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Sarah Gilbert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Paulo José Pereira Lima Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo (USP), Piracicaba, São Paulo 13418-900, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
39
|
Tian T, Reverdy A, She Q, Sun B, Chai Y. The role of rhizodeposits in shaping rhizomicrobiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:160-172. [PMID: 31858707 DOI: 10.1111/1758-2229.12816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
Rhizomicrobiome, the communities of microorganisms surrounding the root of the plant, plays a vital role in promoting plant growth and health. The composition of rhizomicrobiome is dynamic both temporally and spatially, and is influenced greatly by the plant host and environmental factors. One of the key influencing factors is rhizodeposits, composed of root-released tissue cells, exudates, lysates, volatile compounds, etc. Rhizodeposits are rich in carbon and nitrogen elements, and able to select and fuel the growth of rhizomicrobiome. In this minireview, we overview the generation, composition and dynamics of rhizodeposits, and discuss recent work describing the general and specific impacts of rhizodeposits on rhizomicrobiome. We focus further on root exudates, the most dynamic component of rhizodeposits, and review recent progresses about the influence of specific root exudates in promoting bacterial root colonization, inducing biofilm development, acting as plant defence and shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Tao Tian
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Alicyn Reverdy
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Qianxuan She
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Bingbing Sun
- Tianjin Academy of Agricultural Sciences, Institute of Plant Protection, Tianjin, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
40
|
Fan B, Wang C, Ding X, Zhu B, Song X, Borriss R. AmyloWiki: an integrated database for Bacillus velezensis FZB42, the model strain for plant growth-promoting Bacilli. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5520604. [PMID: 31219564 PMCID: PMC6585148 DOI: 10.1093/database/baz071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Since its isolation 20 years ago, many studies have been devoted to Bacillus velezensis FZB42 (former name Bacillus amyloliquefaciens subsp. plantarum FZB42), which has been gradually accepted as a model organism for Gram-positive rhizobacteria. FZB42 is different from another widely studied bacterial strain, Bacillus subtilis 168, in its many features that are closely associated with plants. FZB42 represents a large group of Bacillus isolates that are beneficial to plants and of great importance in agriculture. In this work a database for FZB42 named 'AmyloWiki' is built to integrate all information of FZB42 available to date. The information includes the genomic, transcriptomic, proteomic, post-translational data as well as FZB42 unique genes, protein regulators, mutant availability, publications and etc. The website is built up with PHP and MySQL with a function of keyword searching, browsing, data-downloading and other functions.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Bingyao Zhu
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, 10115 Berlin, Germany, and Nord Reet UG, Marienstr. 27a, 17489 Greifswald, Germany
| |
Collapse
|
41
|
Cueva-Yesquén LG, Goulart MC, Attili de Angelis D, Nopper Alves M, Fantinatti-Garboggini F. Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower. FRONTIERS IN PLANT SCIENCE 2020; 11:621740. [PMID: 33537051 PMCID: PMC7847900 DOI: 10.3389/fpls.2020.621740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.
Collapse
Affiliation(s)
- Luis Gabriel Cueva-Yesquén
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
- *Correspondence: Luis Gabriel Cueva-Yesquén,
| | - Marcela Cristina Goulart
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Marcos Nopper Alves
- Division of Agrotechnology, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Fabiana Fantinatti-Garboggini
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| |
Collapse
|
42
|
Hartman K, Tringe SG. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem J 2019; 476:2705-2724. [PMID: 31654057 PMCID: PMC6792034 DOI: 10.1042/bcj20180615] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/24/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
Plants growing in soil develop close associations with soil microorganisms, which inhabit the areas around, on, and inside their roots. These microbial communities and their associated genes - collectively termed the root microbiome - are diverse and have been shown to play an important role in conferring abiotic stress tolerance to their plant hosts. In light of growing concerns over the threat of water and nutrient stress facing terrestrial ecosystems, especially those used for agricultural production, increased emphasis has been placed on understanding how abiotic stress conditions influence the composition and functioning of the root microbiome and the ultimate consequences for plant health. However, the composition of the root microbiome under abiotic stress conditions will not only reflect shifts in the greater bulk soil microbial community from which plants recruit their root microbiome but also plant responses to abiotic stress, which include changes in root exudate profiles and morphology. Exploring the relative contributions of these direct and plant-mediated effects on the root microbiome has been the focus of many studies in recent years. Here, we review the impacts of abiotic stress affecting terrestrial ecosystems, specifically flooding, drought, and changes in nitrogen and phosphorus availability, on bulk soil microbial communities and plants that interact to ultimately shape the root microbiome. We conclude with a perspective outlining possible directions for future research needed to advance our understanding of the complex molecular and biochemical interactions between soil, plants, and microbes that ultimately determine the composition of the root microbiome under abiotic stress.
Collapse
Affiliation(s)
- Kyle Hartman
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A
| | - Susannah G. Tringe
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, U.S.A
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| |
Collapse
|
43
|
Vidotti MS, Lyra DH, Morosini JS, Granato ÍSC, Quecine MC, de Azevedo JL, Fritsche-Neto R. Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense. PLoS One 2019; 14:e0222788. [PMID: 31536609 PMCID: PMC6752820 DOI: 10.1371/journal.pone.0222788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers were used for GWAS analyses. For the six root traits with significant inoculation effect, the GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment, in which only two were overlapped with the 22 found for N stress only. Most were found by the heterozygous (dis)advantage model and were more related to exclusive gene ontology terms. Interestingly, the candidate genes around the significant SNPs found for the maize-A. brasilense association were involved in different functions previously described for PGPB in plants (e.g. signaling pathways of the plant's defense system and phytohormone biosynthesis). Our findings are a benchmark in the understanding of the genetic variation among maize hybrids for the association with A. brasilense and reveal the potential for further enhancement of maize through this association.
Collapse
Affiliation(s)
- Miriam Suzane Vidotti
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Júlia Silva Morosini
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Lúcio de Azevedo
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
44
|
Seabloom EW, Condon B, Kinkel L, Komatsu KJ, Lumibao CY, May G, McCulley RL, Borer ET. Effects of nutrient supply, herbivory, and host community on fungal endophyte diversity. Ecology 2019; 100:e02758. [PMID: 31306499 DOI: 10.1002/ecy.2758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
The microbes contained within free-living organisms can alter host growth, reproduction, and interactions with the environment. In turn, processes occurring at larger scales determine the local biotic and abiotic environment of each host that may affect the diversity and composition of the microbiome community. Here, we examine variation in the diversity and composition of the foliar fungal microbiome in the grass host, Andropogon gerardii, across four mesic prairies in the central United States. Composition of fungal endophyte communities differed among sites and among individuals within a site, but was not consistently affected by experimental manipulation of nutrient supply to hosts (A. gerardii) or herbivore reduction via fencing. In contrast, mean fungal diversity was similar among sites but was limited by total plant biomass at the plot scale. Our work demonstrates that distributed experiments motivated by ecological theory are a powerful tool to unravel the multiscale processes governing microbial community composition and diversity.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Bradford Condon
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Kimberly J Komatsu
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Candice Y Lumibao
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Rebecca L McCulley
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky, 40536-0312, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
45
|
Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D. Plant Host-Associated Mechanisms for Microbial Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:862. [PMID: 31333701 PMCID: PMC6618679 DOI: 10.3389/fpls.2019.00862] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 05/18/2023]
Abstract
Plants serve as host to numerous microorganisms. The members of these microbial communities interact among each other and with the plant, and there is increasing evidence to suggest that the microbial community may promote plant growth, improve drought tolerance, facilitate pathogen defense and even assist in environmental remediation. Therefore, it is important to better understand the mechanisms that influence the composition and structure of microbial communities, and what role the host may play in the recruitment and control of its microbiome. In particular, there is a growing body of research to suggest that plant defense systems not only provide a layer of protection against pathogens but may also actively manage the composition of the overall microbiome. In this review, we provide an overview of the current research into mechanisms employed by the plant host to select for and control its microbiome. We specifically review recent research that expands upon the role of keystone microbial species, phytohormones, and abiotic stress, and in how they relate to plant driven dynamic microbial structuring.
Collapse
Affiliation(s)
- Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Benjamin J. Garcia
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Anna Furches
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Daniel Jacobson
| |
Collapse
|
46
|
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol 2018; 9:2491. [PMID: 30386322 PMCID: PMC6198173 DOI: 10.3389/fmicb.2018.02491] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis FZB42, the model strain for Gram-positive plant-growth-promoting and biocontrol rhizobacteria, has been isolated in 1998 and sequenced in 2007. In order to celebrate these anniversaries, we summarize here the recent knowledge about FZB42. In last 20 years, more than 140 articles devoted to FZB42 have been published. At first, research was mainly focused on antimicrobial compounds, apparently responsible for biocontrol effects against plant pathogens, recent research is increasingly directed to expression of genes involved in bacteria–plant interaction, regulatory small RNAs (sRNAs), and on modification of enzymes involved in synthesis of antimicrobial compounds by processes such as acetylation and malonylation. Till now, 13 gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42. These gene clusters cover around 10% of the whole genome. Antimicrobial compounds suppress not only growth of plant pathogenic bacteria and fungi, but could also stimulate induced systemic resistance (ISR) in plants. It has been found that besides secondary metabolites also volatile organic compounds are involved in the biocontrol effect exerted by FZB42 under biotic (plant pathogens) and abiotic stress conditions. In order to facilitate easy access to the genomic data, we have established an integrating data bank ‘AmyloWiki’ containing accumulated information about the genes present in FZB42, available mutant strains, and other aspects of FZB42 research, which is structured similar as the famous SubtiWiki data bank.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.,Nord Reet UG, Greifswald, Germany
| |
Collapse
|
47
|
The Endophytic Bacterial Microbiota Associated with Sweet Sorghum ( Sorghum bicolor) Is Modulated by the Application of Chemical N Fertilizer to the Field. Int J Genomics 2018; 2018:7403670. [PMID: 30363992 PMCID: PMC6186372 DOI: 10.1155/2018/7403670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/16/2018] [Indexed: 11/17/2022] Open
Abstract
Sweet sorghum (Sorghum bicolor) is a multipurpose crop used as a feedstock to produce bioethanol, sugar, energy, and animal feed. However, it requires high levels of N fertilizer application to achieve the optimal growth, which causes environmental degradation. Bacterial endophytes, which live inside plant tissues, play a key role in the health and productivity of their host. This particular community may be influenced by different agronomical practices. The aim of the work was to evaluate the effects of N fertilization on the structure, diversity, abundance, and composition of endophytic and diazotrophic bacterial community associated with field-grown sweet sorghum. PCR-DGGE, quantitative PCR, and high-throughput sequencing were performed based on the amplification of rrs and nifH genes. The level of N fertilization affected the structure and abundance but not the diversity of the endophytic bacterial communities associated with sweet sorghum plants. This effect was pronounced in the roots of both bacterial communities analyzed and may depend on the physiological state of the plants. Specific bacterial classes and genera increased or decreased when the fertilizer was applied. The data obtained here contribute to a better understanding on the effects of agronomical practices on the microbiota associated with this important crop, with the aim to improve its sustainability.
Collapse
|
48
|
Abiotic Stresses Shift Belowground Populus-Associated Bacteria Toward a Core Stress Microbiome. mSystems 2018; 3:mSystems00070-17. [PMID: 29404422 PMCID: PMC5781258 DOI: 10.1128/msystems.00070-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth. Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome of Populus deltoides changes in response to diverse environmental conditions, including water limitation, light limitation (shading), and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress. IMPORTANCE The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.
Collapse
|
49
|
Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? TRENDS IN PLANT SCIENCE 2018; 23:25-41. [PMID: 29050989 DOI: 10.1016/j.tplants.2017.09.003] [Citation(s) in RCA: 841] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
Collapse
Affiliation(s)
- Joelle Sasse
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Genome Institute, Walnut Creek, CA 94958, USA.
| |
Collapse
|
50
|
Yu P, Hochholdinger F. The Role of Host Genetic Signatures on Root-Microbe Interactions in the Rhizosphere and Endosphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1896. [PMID: 30619438 PMCID: PMC6305752 DOI: 10.3389/fpls.2018.01896] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/06/2018] [Indexed: 05/04/2023]
Abstract
Microbiomes inhabiting plants are crucial for plant productivity and well-being. A plethora of interactions between roots, microbiomes, and soil shapes the self-organization of the microbial community associated with the root system. The rhizosphere (i.e., the soil close to the root surface) and endosphere (i.e., all inner root tissues) are critical interfaces for the exchange of resources between roots and the soil environment. In recent years, next-generation sequencing technologies have enabled systemic studies of root-associated microbiomes in the endosphere and interactions between roots and microbes at the root-soil interfaces. Genetic factors such as species and genotype of host plants are the driving force of microbial community differentiation and composition. In this mini-review, we will survey the role of these factors on plant-microbe interactions by highlighting the results of next-generation genomic and transcriptomic studies in the rhizosphere and endosphere of land plants. Moreover, environmental factors such as geography and soil type shape the microbiome. Relationships between the root-associated microbiome, architectural variations and functional switches within the root system determine the health and fitness of the whole plant system. A detailed understanding of plant-microbe interactions is of fundamental agricultural importance and significance for crop improvement by plant breeding.
Collapse
Affiliation(s)
- Peng Yu
- *Correspondence: Peng Yu, Frank Hochholdinger,
| | | |
Collapse
|