1
|
Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, Bao Y. The functions of EF-hand proteins from host and zoonotic pathogens. Microbes Infect 2025; 27:105276. [PMID: 38072184 DOI: 10.1016/j.micinf.2023.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.
Collapse
Affiliation(s)
- Wei Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| |
Collapse
|
2
|
Fu JT, Liu J, Wu WB, Chen YT, Lu GD, Cao Q, Meng HB, Tong J, Zhu JH, Wang XJ, Liu Y, Zhuang C, Sheng C, Shen FM, Liu X, Wang H, Yu Y, Zhang Y, Liang HY, Zhang JB, Li DJ, Li X, Wang ZB, Wang P. Targeting EFHD2 inhibits interferon-γ signaling and ameliorates non-alcoholic steatohepatitis. J Hepatol 2024; 81:389-403. [PMID: 38670321 DOI: 10.1016/j.jhep.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND & AIMS The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.
Collapse
Affiliation(s)
- Jiang-Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jian Liu
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Yi-Ting Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Guo-Dong Lu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Qi Cao
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu-Jie Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunlin Zhuang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingguang Liu
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China
| | - Yuefan Zhang
- School of Medicine, Shanghai University, Shanghai, China
| | - Hai-Yan Liang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jia-Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China.
| | - Zhi-Bin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China.
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China; National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
3
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Lehne F, Bogdan S. Swip-1 promotes exocytosis of glue granules in the exocrine Drosophila salivary gland. J Cell Sci 2023; 136:286884. [PMID: 36727484 PMCID: PMC10038153 DOI: 10.1242/jcs.260366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Exocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved actin-crosslinking protein Swip-1 as a novel regulator controlling exocytosis of glue granules in the Drosophila salivary gland. Real-time imaging revealed that Swip-1 is simultaneously recruited with F-actin onto secreting granules in proximity to the apical membrane. We observed that Swip-1 is rapidly cleared at the point of secretory vesicle fusion and colocalizes with actomyosin network around the fused vesicles. Loss of Swip-1 function impairs secretory cargo expulsion, resulting in strongly delayed secretion. Thus, our results uncover a novel role of Swip-1 in secretory vesicle compression and expulsion of cargo during regulated exocytosis. Remarkably, this function neither requires Ca2+ binding nor dimerization of Swip-1. Our data rather suggest that Swip-1 regulates actomyosin activity upstream of Rho-GTPase signaling to drive proper vesicle membrane crumpling and expulsion of cargo.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
5
|
Mun SA, Park J, Kang JY, Park T, Jin M, Yang J, Eom SH. Structural and biochemical insights into Zn 2+-bound EF-hand proteins, EFhd1 and EFhd2. IUCRJ 2023; 10:233-245. [PMID: 36862489 PMCID: PMC9980392 DOI: 10.1107/s2052252523001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
EF-hand proteins, which contain a Ca2+-binding EF-hand motif, are involved in regulating diverse cellular functions. Ca2+ binding induces conformational changes that modulate the activities of EF-hand proteins. Moreover, these proteins occasionally modify their activities by coordinating metals other than Ca2+, including Mg2+, Pb2+ and Zn2+, within their EF-hands. EFhd1 and EFhd2 are homologous EF-hand proteins with similar structures. Although separately localized within cells, both are actin-binding proteins that modulate F-actin rearrangement through Ca2+-independent actin-binding and Ca2+-dependent actin-bundling activity. Although Ca2+ is known to affect the activities of EFhd1 and EFhd2, it is not known whether their actin-related activities are affected by other metals. Here, the crystal structures of the EFhd1 and EFhd2 core domains coordinating Zn2+ ions within their EF-hands are reported. The presence of Zn2+ within EFhd1 and EFhd2 was confirmed by analyzing anomalous signals and the difference between anomalous signals using data collected at the peak positions as well as low-energy remote positions at the Zn K-edge. EFhd1 and EFhd2 were also found to exhibit Zn2+-independent actin-binding and Zn2+-dependent actin-bundling activity. This suggests the actin-related activities of EFhd1 and EFhd2 could be regulated by Zn2+ as well as Ca2+.
Collapse
Affiliation(s)
- Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Lehne F, Bogdan S. Getting cells into shape by calcium-dependent actin cross-linking proteins. Front Cell Dev Biol 2023; 11:1171930. [PMID: 37025173 PMCID: PMC10070769 DOI: 10.3389/fcell.2023.1171930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
The actin cytoskeleton represents a highly dynamic filament system providing cell structure and mechanical forces to drive a variety of cellular processes. The dynamics of the actin cytoskeleton are controlled by a number of conserved proteins that maintain the pool of actin monomers, promote actin nucleation, restrict the length of actin filaments and cross-link filaments into networks or bundles. Previous work has been established that cytoplasmic calcium is an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we summarize new recent perspectives on how calcium fluxes are transduced to the actin cytoskeleton in a physiological context. In this mini-review we will focus on three calcium-binding EF-hand-containing actin cross-linking proteins, α-actinin, plastin and EFHD2/Swiprosin-1, and how these conserved proteins affect the cell's actin reorganization in the context of cell migration and wound closure in response to calcium.
Collapse
|
7
|
Lehne F, Pokrant T, Parbin S, Salinas G, Großhans J, Rust K, Faix J, Bogdan S. Calcium bursts allow rapid reorganization of EFhD2/Swip-1 cross-linked actin networks in epithelial wound closure. Nat Commun 2022; 13:2492. [PMID: 35524157 PMCID: PMC9076686 DOI: 10.1038/s41467-022-30167-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology require the dynamic remodeling of the actin cytoskeleton. Calcium fluxes have been suggested as an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we identify the EF-hand domain containing protein EFhD2/Swip-1 as a conserved lamellipodial protein strongly upregulated in Drosophila macrophages at the onset of metamorphosis when macrophage behavior shifts from quiescent to migratory state. Loss- and gain-of-function analysis confirm a critical function of EFhD2/Swip-1 in lamellipodial cell migration in fly and mouse melanoma cells. Contrary to previous assumptions, TIRF-analyses unambiguously demonstrate that EFhD2/Swip-1 proteins efficiently cross-link actin filaments in a calcium-dependent manner. Using a single-cell wounding model, we show that EFhD2/Swip-1 promotes wound closure in a calcium-dependent manner. Mechanistically, our data suggest that transient calcium bursts reduce EFhD2/Swip-1 cross-linking activity and thereby promote rapid reorganization of existing actin networks to drive epithelial wound closure.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sabnam Parbin
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Thylur Puttalingaiah R. Role of Swiprosin-1/EFHD2 as a biomarker in the development of chronic diseases. Life Sci 2022; 297:120462. [PMID: 35276221 DOI: 10.1016/j.lfs.2022.120462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Swiprosin-1 or EFHD2, is a Ca2+ binding actin protein and its expression has been shown to be distinct in various cell types. The expression of swiprosin-1 is upregulated during the activation of immune cells, epithelial and endothelial cells. The expression of swiprosin-1 is regulated by diverse signaling pathways that are contingent upon the specific type of cells. The aim of this review is to summarize and provide an overview of the role of swiprosin-1 in pathophysiological conditions of cancers, cardiovascular diseases, diabetic nephropathy, neuropsychiatric diseases, and in the process of inflammation, immune response, and inflammatory diseases. Novel approaches for the targeting of swiprosin-1 as a biomarker in the early detection and prevention of various development of chronic diseases are also explored.
Collapse
Affiliation(s)
- Ramesh Thylur Puttalingaiah
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, Room 945-B1, New Orleans, LA 70112, USA..
| |
Collapse
|
9
|
Tong LC, Wang ZB, Zhang JQ, Wang Y, Liu WY, Yin H, Li JC, Su DF, Cao YB, Zhang LC, Li L. Swiprosin-1 deficiency in macrophages alleviated atherogenesis. Cell Death Discov 2021; 7:344. [PMID: 34759279 PMCID: PMC8580969 DOI: 10.1038/s41420-021-00739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a vital role in the development of atherosclerosis. Previously, we have found that swiprosin-1 was abundantly expressed in macrophages. Here, we investigated the role of swiprosin-1 expressed in macrophages in atherogenesis. Bone marrow transplantation was performed from swiprosin-1-knockout (Swp-/-) mice and age-matched ApoE-/- mice. Atherosclerotic lesion, serum lipid, and interleukin-β (IL-β) levels were detected. In vitro, the peritoneal macrophages isolated from Swp-/- and wild-type mice were stimulated with oxidized low-density lipoprotein (ox-LDL) and the macrophage of foam degree, cellular lipid content, apoptosis, inflammatory factor, migration, and autophagy were determined. Our results showed that swiprosin-1 was mainly expressed in macrophages of atherosclerotic plaques in aorta from ApoE-/- mice fed with high-cholesterol diet (HCD). The expression of swiprosin-1 in the foaming of RAW264.7 macrophages gradually increased with the increase of the concentration and time stimulated with ox-LDL. Atherosclerotic plaques, accumulation of macrophages, collagen content, serum total cholesterol, LDL, and IL-β levels were decreased in Swp-/- → ApoE-/- mice compared with Swp+/+ → ApoE-/- mice fed with HCD for 16 weeks. The macrophage foam cell formation and cellular cholesterol accumulation were reduced, while the lipid uptake and efflux increased in macrophages isolated from Swp-/- compared to wild-type mice treated with ox-LDL. Swiprosin-1 deficiency in macrophages could inhibit apoptosis, inflammation, migration, and promote autophagy. Taken together, our results demonstrated that swiprosin-1 deficiency in macrophages could alleviate the development and progression of AS. The role of swiprosin-1 may provide a promising new target for ameliorating AS.
Collapse
Affiliation(s)
- Ling-Chang Tong
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Cheng Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Soliman AS, Umstead A, Grabinski T, Kanaan NM, Lee A, Ryan J, Lamp J, Vega IE. EFhd2 brain interactome reveals its association with different cellular and molecular processes. J Neurochem 2021; 159:992-1007. [PMID: 34543436 PMCID: PMC9552186 DOI: 10.1111/jnc.15517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
EFhd2 is a conserved calcium-binding protein that is highly expressed in the central nervous system. We have shown that EFhd2 interacts with tau protein, a key pathological hallmark in Alzheimer's disease and related dementias. However, EFhd2's physiological and pathological functions in the brain are still poorly understood. To gain insights into its physiological function, we identified proteins that co-immunoprecipitated with EFhd2 from mouse forebrain and hindbrain, using tandem mass spectrometry (MS). In addition, quantitative mass spectrometry was used to detect protein abundance changes due to the deletion of the Efhd2 gene in mouse forebrain and hindbrain regions. Our data show that mouse EFhd2 is associated with cytoskeleton components, vesicle trafficking modulators, cellular stress response-regulating proteins, and metabolic proteins. Moreover, proteins associated with the cytoskeleton, vesicular transport, calcium signaling, stress response, and metabolic pathways showed differential abundance in Efhd2(-/-) mice. This study presents, for the first time, an EFhd2 brain interactome that it is associated with different cellular and molecular processes. These findings will help prioritize further studies to investigate the mechanisms by which EFhd2 modulates these processes in physiological and pathological conditions of the nervous system.
Collapse
Affiliation(s)
- Ahlam S Soliman
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrew Umstead
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA
| | - Andy Lee
- NeuroInitiatives LLC, Jacksonville, Florida, USA
| | - John Ryan
- NeuroInitiatives LLC, Jacksonville, Florida, USA
| | - Jared Lamp
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA
| | - Irving E Vega
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, Grand Rapids, Michigan, USA.,Integrated Mass Spectrometry Unit, College of Human Medicine, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Reimer D, Meyer-Hermann M, Rakhymzhan A, Steinmetz T, Tripal P, Thomas J, Boettcher M, Mougiakakos D, Schulz SR, Urbanczyk S, Hauser AE, Niesner RA, Mielenz D. B Cell Speed and B-FDC Contacts in Germinal Centers Determine Plasma Cell Output via Swiprosin-1/EFhd2. Cell Rep 2021; 32:108030. [PMID: 32783949 DOI: 10.1016/j.celrep.2020.108030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Plasma cells secreting affinity-matured antibodies develop in germinal centers (GCs), where B cells migrate persistently and directionally over defined periods of time. How modes of GC B cell migration influence plasma cell development remained unclear. Through genetic deletion of the F-actin bundling protein Swiprosin-1/EF-hand domain family member 2 (EFhd2) and by two-photon microscopy, we show that EFhd2 restrains B cell speed in GCs and hapten-specific plasma cell output. Modeling the GC reaction reveals that increasing GC B cell speed promotes plasma cell generation. Lack of EFhd2 also reduces contacts of GC B cells with follicular dendritic cells in vivo. Computational modeling uncovers that both GC output and antibody affinity depend quantitatively on contacts of GC B cells with follicular dendritic cells when B cells migrate more persistently. Collectively, our data explain how GC B cells integrate speed and persistence of cell migration with B cell receptor affinity.
Collapse
Affiliation(s)
- Dorothea Reimer
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig, Integrated Centre of Systems Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Tobit Steinmetz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Center (OICE), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Thomas
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Boettcher
- Department of Internal Medicine V, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine V, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anja E Hauser
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany; Charité - University Medicine, Berlin, Germany
| | - Raluca A Niesner
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany; Dynamic and Functional In Vivo Imaging, Veterinary Medicine, Freie Universität, Berlin, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Universitätsklinikum Erlangen, Nikolaus-Fiebiger-Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Mun SA, Park J, Park KR, Lee Y, Kang JY, Park T, Jin M, Yang J, Jun CD, Eom SH. Structural and Biochemical Characterization of EFhd1/Swiprosin-2, an Actin-Binding Protein in Mitochondria. Front Cell Dev Biol 2021; 8:628222. [PMID: 33537316 PMCID: PMC7848108 DOI: 10.3389/fcell.2020.628222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Ca2+ regulates several cellular functions, including signaling events, energy production, and cell survival. These cellular processes are mediated by Ca2+-binding proteins, such as EF-hand superfamily proteins. Among the EF-hand superfamily proteins, allograft inflammatory factor-1 (AIF-1) and swiprosin-1/EF-hand domain-containing protein 2 (EFhd2) are cytosolic actin-binding proteins. AIF-1 modulates the cytoskeleton and increases the migration of immune cells. EFhd2 is also a cytoskeletal protein implicated in immune cell activation and brain cell functions. EFhd1, a mitochondrial fraternal twin of EFhd2, mediates neuronal and pro-/pre-B cell differentiation and mitoflash activation. Although EFhd1 is important for maintaining mitochondrial morphology and energy synthesis, its mechanism of action remains unclear. Here, we report the crystal structure of the EFhd1 core domain comprising a C-terminus of a proline-rich region, two EF-hand domains, and a ligand mimic helix. Structural comparisons of EFhd1, EFhd2, and AIF-1 revealed similarities in their overall structures. In the structure of the EFhd1 core domain, two Zn2+ ions were observed at the interface of the crystal contact, suggesting the possibility of Zn2+-mediated multimerization. In addition, we found that EFhd1 has Ca2+-independent β-actin-binding and Ca2+-dependent β-actin-bundling activities. These findings suggest that EFhd1, an actin-binding and -bundling protein in the mitochondria, may contribute to the Ca2+-dependent regulation of mitochondrial morphology and energy synthesis.
Collapse
Affiliation(s)
- Sang A Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,NuclixBio, Seoul, South Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Taein Park
- Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Minwoo Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jihyeong Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju, South Korea.,Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
13
|
Gao M, Zeng K, Li Y, Liu YP, Xia X, Xu FL, Yao J, Wang BJ. Association between EFHD2 gene polymorphisms and schizophrenia among the Han population in northern China. J Int Med Res 2020; 48:300060520932801. [PMID: 32567430 PMCID: PMC7309398 DOI: 10.1177/0300060520932801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective Schizophrenia is a severe neurodevelopmental disorder with a complex genetic and environmental etiology. The gene encoding EF-hand domain-containing protein D2 (EFHD2) may be a genetic risk locus for schizophrenia. Methods We genotyped four EFHD2 single-nucleotide polymorphisms (281 schizophrenia cases [SCZ], 321 controls) from northern Chinese Han individuals using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis. Differences existed in genotype, allele, and haplotype frequency distributions between SCZ and control groups. Results The rs2473357 genotype and allele frequency distributions differed between SCZ and controls; however, this difference disappeared after Bonferroni correction. Differences in rs2473357 genotype and allele frequency distributions between SCZ and controls were more pronounced in men than in women. The G allele increased schizophrenia risk (odds ratio = 1.807, 95% confidence interval = 1.164–2.803). Among six haplotypes (G–, A–, G-insC, A-C, G-C, and G-T), the G– haplotype frequency distribution differed between SCZ and controls in women; the A-C and G-C haplotype frequency distributions differed between SCZ and controls in men. Conclusions EFHD2 may be involved in schizophrenia. Sex differences in EFHD2 genotype and allele frequency distributions existed among schizophrenia patients. Further research is needed to determine the role of EFHD2 in schizophrenia.
Collapse
Affiliation(s)
- Meng Gao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Kuo Zeng
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ya Li
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yong-Ping Liu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Skóra MN, Pattij T, Beroun A, Kogias G, Mielenz D, de Vries T, Radwanska K, Müller CP. Personality driven alcohol and drug abuse: New mechanisms revealed. Neurosci Biobehav Rev 2020; 116:64-73. [PMID: 32565173 DOI: 10.1016/j.neubiorev.2020.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
While the majority of the regular consumers of alcohol controls their consumption well over life span and even takes instrumentalization benefits from it, a minority, but yet high total number of users develops an alcohol addiction. It has long been known that particular personality types are more addiction prone than others. Here we review recent progress in the understanding of neurobiological pathways that determine personality and facilitate drug abuse. Novel approaches to characterize personality traits leading to addiction proneness in social settings in mice are discussed. A common genetic and neurobiological base for the behavioural traits of sensation seeking or a depressed phenotype and escalating alcohol consumption are reviewed. Furthermore, recent progress on how social and cognitive factors, including impulsivity and decision making, act at brain level to make an individual more vulnerable to alcohol abuse, are discussed. Altogether, this review provides an update on brain mechanisms underlying a broad spectrum of personality traits that make an individual more prone to alcohol and drug abuse and addiction.
Collapse
Affiliation(s)
- Maria Nalberczak Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Beroun
- BRAINCITY, Nencki Institute, Warsaw 02-093, Poland
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Taco de Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands; Department of Molecular and Cellular Neuroscience, CNCR, VU University, Amsterdam, The Netherlands
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
15
|
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AAB, Namboodiri AM. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD + Synthesis During Inflammation and Infection. Front Immunol 2020; 11:31. [PMID: 32153556 PMCID: PMC7047773 DOI: 10.3389/fimmu.2020.00031] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.
Collapse
Affiliation(s)
- John R. Moffett
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Peethambaran Arun
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Ranjini Vengilote
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - John A. Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, VA, United States
| | | | - Aryan M. Namboodiri
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| |
Collapse
|
16
|
Kogias G, Zheng F, Kalinichenko LS, Kornhuber J, Alzheimer C, Mielenz D, Müller CP. Swiprosin1/EFhd2 is involved in the monoaminergic and locomotor responses of psychostimulant drugs. J Neurochem 2020; 154:424-440. [DOI: 10.1111/jnc.14959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Georgios Kogias
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Liubov S. Kalinichenko
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Dirk Mielenz
- Division of Molecular Immunology Department of Internal Medicine III Nikolaus‐Fiebiger‐Center University Clinic Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Christian P. Müller
- Department of Psychiatry and Psychotherapy Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
17
|
Three-Dimensional Reconstruction Imaging Method to Study the Function of EFHD2 in Invadopodia Formation. Methods Mol Biol 2019; 1929:607-613. [PMID: 30710300 DOI: 10.1007/978-1-4939-9030-6_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Calcium and calcium-binding proteins play crucial roles in the regulation of actin dynamics, which contributes to cancer cell migration and invasion. In this chapter, we have focused on a three-dimensional imaging method to explore the pathophysiological function of EF-hand domain-containing protein D2 (EFHD2), a novel actin-binding protein. To overcome the limitations of two-dimensional imaging on substrate-coated cover glass for examination of invasive protrusions of cancer cells, we suggest three-dimensional reconstruction from optical z-sections of cells cultured on substrate-impregnated membrane filters of Transwell.
Collapse
|
18
|
Fürnrohr BG, Mielenz D. Quantification of Human Swiprosin-1/EFhd2 Expression on Protein and RNA Level. Methods Mol Biol 2019; 1929:595-605. [PMID: 30710299 DOI: 10.1007/978-1-4939-9030-6_37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many Ca2+-binding proteins are differentially regulated under pro-inflammatory conditions in different organs. Specific quantification of RNA and protein expression of those proteins demands validated protocols. Peripheral blood mononuclear cells (PBMC) can mirror an inflammatory status originating from several organs and can therefore be an important diagnostic tool. Swiprosin-1/EFhd2 (EFhd2) is a ~30 kDa Ca2+ and F-actin binding, cytoskeletal protein with two central EF hands and a C-terminal coiled-coil domain. Unbiased gene expression analyses and proteomics revealed that EFhd2 is regulated under pro-inflammatory conditions in several cell types and tissues. Here we describe validated protocols to quantify the expression of the human orthologue of Swiprosin-1/EFhd2 on RNA and protein level in PBMC. Both methods reveal that EFhd2 is stronger expressed in monocytes than in B cells of healthy donors. Thus, initial experiments relying on qPCR are likely to provide results with functional relevance. The higher expression of EFhd2 in monocytes could be related to monocyte migration under inflammatory conditions.
Collapse
Affiliation(s)
- Barbara G Fürnrohr
- Division of Molecular immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
19
|
Conserved Noncoding Sequences Boost ADR1 and SP1 Regulated Human Swiprosin-1 Promoter Activity. Sci Rep 2018; 8:16481. [PMID: 30405162 PMCID: PMC6220333 DOI: 10.1038/s41598-018-34802-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 11/24/2022] Open
Abstract
Swiprosin-1 is expressed in various types of cells or tissues of different species. To investigate the mechanisms underlying Swiprosin-1 expression pattern, we analyzed the promoter activity of 2-kilobase genomic sequences located at 5′ flanking region of the Swiprosin-1 gene. The −2000/+41 bp of 5′ flanking untranslated promoter region of Swiprosin-1 gene was constitutively transactivated without significant effect of PMA, A23187, or PMA/A23187 stimulation in Jurkat T cells. Further, we identified 5′ deletant of proximal promoter region (−100/+41 to −70/+41) plays a pivotal role in activating the Swiprosin-1 gene in Jurkat T cells. Our studies also verified that ADR1 and Sp1 transcription factors were located between −70 and -100 locus of 5′ flanking proximal promoter region, which is critical for the Swiprosin-1 promoter activity. ADR1 and Sp1 were shown to bind the regions of −82, −79, −76, −73 and −70 and; −79, −78 and −77, respectively, within the proximal promoter region of Swiprosin-1. Finally conserved noncoding sequences (CNS) -1, -2 and -3 were located between the exon 1 and exon 2 of Swiprosin-1 gene and synergistically transactivated the Swiprosin-1 promoter. In summary, Swiprosin-1 was constitutively expressed in Jurkat T cells by the coordinate action of ADR1 and SP1 transcription factors at the transcriptional level and CNS further boost the proximal region of Swiprosin-1 promoter activity. Our findings provide novel insights that the transcriptional regulation of Swiprosin-1 by targeting ADR1 and Sp1 binding sites may be helpful in exploring novel therapeutic strategies for advanced immune or other disorders.
Collapse
|
20
|
Peled M, Dragovich MA, Adam K, Strazza M, Tocheva AS, Vega IE, Mor A. EF Hand Domain Family Member D2 Is Required for T Cell Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2824-2831. [PMID: 30275048 PMCID: PMC6200634 DOI: 10.4049/jimmunol.1800839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022]
Abstract
Programmed cell death 1 (PD-1) is a major coinhibitory receptor and a member of the immunological synapse (IS). To uncover proteins that regulate PD-1 recruitment to the IS, we searched for cytoskeleton-related proteins that also interact with PD-1 using affinity purification mass spectrometry. Among these proteins, EF hand domain family member D2 (EFHD2), a calcium binding adaptor protein, was functionally and mechanistically analyzed for its contribution to PD-1 signaling. EFHD2 was required for PD-1 to inhibit cytokine secretion, proliferation, and adhesion of human T cells. Interestingly, EFHD2 was also required for human T cell-mediated cytotoxicity and for mounting an antitumor immune response in a syngeneic murine tumor model. Mechanistically, EFHD2 contributed to IS stability, lytic vesicles trafficking, and granzyme B secretion. Altogether, EFHD2 is an important regulator of T cell cytotoxicity and further studies should evaluate its role in T cell-mediated inflammation.
Collapse
Affiliation(s)
- Michael Peled
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
- Pulmonary Department, The Chaim Sheba Medical Center, Ramat Gan 52620, Israel
| | - Matthew A Dragovich
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Kieran Adam
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Marianne Strazza
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Anna S Tocheva
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503; and
| | - Adam Mor
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016;
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
21
|
EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry 2018; 23:1303-1319. [PMID: 28397836 PMCID: PMC5984092 DOI: 10.1038/mp.2017.63] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022]
Abstract
In many societies, the majority of adults regularly consume alcohol. However, only a small proportion develops alcohol addiction. Individuals at risk often show a high sensation-seeking/low-anxiety behavioural phenotype. Here we asked which role EF hand domain containing 2 (EFhd2; Swiprosin-1) plays in the control of alcohol addiction-associated behaviours. EFhd2 knockout (KO) mice drink more alcohol than controls and spontaneously escalate their consumption. This coincided with a sensation-seeking and low-anxiety phenotype. A reversal of the behavioural phenotype with β-carboline, an anxiogenic inverse benzodiazepine receptor agonist, normalized alcohol preference in EFhd2 KO mice, demonstrating an EFhd2-driven relationship between personality traits and alcohol preference. These findings were confirmed in a human sample where we observed a positive association of the EFhd2 single-nucleotide polymorphism rs112146896 with lifetime drinking and a negative association with anxiety in healthy adolescents. The lack of EFhd2 reduced extracellular dopamine levels in the brain, but enhanced responses to alcohol. In confirmation, gene expression analysis revealed reduced tyrosine hydroxylase expression and the regulation of genes involved in cortex development, Eomes and Pax6, in EFhd2 KO cortices. These findings were corroborated in Xenopus tadpoles by EFhd2 knockdown. Magnetic resonance imaging (MRI) in mice showed that a lack of EFhd2 reduces cortical volume in adults. Moreover, human MRI confirmed the negative association between lifetime alcohol drinking and superior frontal gyrus volume. We propose that EFhd2 is a conserved resilience factor against alcohol consumption and its escalation, working through Pax6/Eomes. Reduced EFhd2 function induces high-risk personality traits of sensation-seeking/low anxiety associated with enhanced alcohol consumption, which may be related to cortex function.
Collapse
|
22
|
TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Sci Rep 2018; 8:5503. [PMID: 29615809 PMCID: PMC5883021 DOI: 10.1038/s41598-018-23816-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2—G-actin polymerization and Arp2/3 complex inhibition—may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types.
Collapse
|
23
|
Zhang S, Tu Y, Sun YM, Li Y, Wang RM, Cao Y, Li L, Zhang LC, Wang ZB. Swiprosin-1 deficiency impairs macrophage immune response of septic mice. JCI Insight 2018; 3:95396. [PMID: 29415882 DOI: 10.1172/jci.insight.95396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023] Open
Abstract
Despite the fact that many therapeutic strategies have been adopted to delay the development of sepsis, sepsis remains one of the leading causes of death in noncoronary intensive care units. Recently, sepsis-3 was defined as life-threatening organ dysfunction due to a dysregulated host response to infection. Here, we report that swiprosin-1 (also known as EFhd2) plays an important role in the macrophage immune response to LPS-induced or cecal ligation and puncture-induced (CLP-induced) sepsis in mice. Swiprosin-1 depletion causes higher mortality, more severe organ dysfunction, restrained macrophage recruitment in the lung and kidney, and attenuated inflammatory cytokine production (including IL-1β, IL-6, TNF-α, IL-10, and IFN-γ). The immunosuppression caused by swiprosin-1 deficiency is manifested by impaired bactericidal capacity and decreased HLA-DR expression in macrophages. Swiprosin-1 affects the activation of the JAK2/STAT1/STAT3 pathway by regulating the expression of IFN-γ receptors in macrophages. Our findings provide a potential target for the regulation of the macrophage immune response in sepsis.
Collapse
Affiliation(s)
- Su Zhang
- College of Pharmacy, Second Military Medical University
| | - Ye Tu
- Department of Medicine, Shanghai East Hospital, Tongji University
| | - Yi-Ming Sun
- College of Pharmacy, Second Military Medical University
| | - Ya Li
- College of Pharmacy, Second Military Medical University
| | - Rong-Mei Wang
- College of Pharmacy, Second Military Medical University
| | - Yongbing Cao
- Shanghai Institute of Vascular Disease, Shanghai University of Traditional Chinese Medicine, and
| | - Ling Li
- Shanghai Institute of Vascular Disease, Shanghai University of Traditional Chinese Medicine, and
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Bin Wang
- College of Pharmacy, Second Military Medical University
| |
Collapse
|
24
|
Regensburger M, Prots I, Reimer D, Brachs S, Loskarn S, Lie DC, Mielenz D, Winner B. Impact of Swiprosin-1/Efhd2 on Adult Hippocampal Neurogenesis. Stem Cell Reports 2018; 10:347-355. [PMID: 29337116 PMCID: PMC5830914 DOI: 10.1016/j.stemcr.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Swiprosin-1/Efhd2 (Efhd2) is highly expressed in the CNS during development and in the adult. EFHD2 is regulated by Ca2+ binding, stabilizes F-actin, and promotes neurite extension. Previous studies indicated a dysregulation of EFHD2 in human Alzheimer's disease brains. We hypothesized a detrimental effect of genetic ablation of Efhd2 on hippocampal integrity and specifically investigated adult hippocampal neurogenesis. Efhd2 was expressed throughout adult neuronal development and in mature neurons. We observed a severe reduction of the survival of adult newborn neurons in Efhd2 knockouts, starting at the early neuroblast stage. Spine formation and dendrite growth of newborn neurons were compromised in full Efhd2 knockouts, but not upon cell-autonomous Efhd2 deletion. Together with our finding of severe hippocampal tauopathy in Efhd2 knockout mice, these data connect Efhd2 to impaired synaptic plasticity as present in Alzheimer's disease and identify a role of Efhd2 in neuronal survival and synaptic integration in the adult hippocampus. Efhd2 is expressed in the dentate gyrus and its loss reduces adult neurogenesis Reduced neurite complexity and spine density in new neurons of Efhd2 knockout mice Role of cell-extrinsic EFHD2 for dendrite morphology of adult newborn neurons Increased levels of pathological TAU in the hippocampus of Efhd2 knockout mice
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dorothea Reimer
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany
| | - Sebastian Brachs
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dieter Chichung Lie
- Emil-Fischer Centre, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dirk Mielenz
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany.
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
25
|
Tu Y, Zhang L, Tong L, Wang Y, Zhang S, Wang R, Li L, Wang Z. EFhd2/swiprosin-1 regulates LPS-induced macrophage recruitment via enhancing actin polymerization and cell migration. Int Immunopharmacol 2017; 55:263-271. [PMID: 29288926 DOI: 10.1016/j.intimp.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/25/2022]
Abstract
Macrophage motility is vital in innate immunity, which contributes strategically to the defensive inflammation process. During bacterial infection, lipopolysaccharide (LPS) potently activates the migration of macrophages via the NF-κB/iNOS/c-Src signaling pathway. However, the downstream region of c-Src that participates in macrophage migration is unclear. EFhd2, a novel actin bundling protein, was evaluated for its role in LPS-stimulated macrophage migration in this study. We found that LPS stimulated the up-regulation, tyrosine phosphorylation and membrane translocation of EFhd2 in macrophages. The absence of EFhd2 inhibited the recruitment of macrophages in the lungs of LPS-induced septic mice. LPS-induced macrophage migration was neutralized by the deletion of EFhd2. EFhd2-mediated up-regulation of NFPs (including Rac1/Cdc42, N-WASP/WAVE2 and Arp2/3 complex) induced by LPS could be used to explain the role of EFhd2 in promoting actin polymerization. Furthermore, the purified EFhd2 could directly promote actin polymerization in vitro. Dasatinib, a c-Src specific inhibitor, inhibited the up-regulation of EFhd2 stimulated by LPS. Therefore, our study demonstrated that EFhd2 might be involved in LPS-stimulated macrophage migration, which provides a potential target for LPS-activated c-Src during macrophage mobilization.
Collapse
Affiliation(s)
- Ye Tu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China; Department of Medical Department, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Lingchang Tong
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Su Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Rongmei Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhibin Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
26
|
EFHD2 promotes epithelial-to-mesenchymal transition and correlates with postsurgical recurrence of stage I lung adenocarcinoma. Sci Rep 2017; 7:14617. [PMID: 29097801 PMCID: PMC5668280 DOI: 10.1038/s41598-017-15186-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
Abstract
Surgery is the only curative treatment for early-stage non-small cell lung cancer (NSCLC) patients. However, approximately one-third of these patients develop recurrence, which remains the main cause of mortality in the postsurgical treatment of NSCLC. Many molecular markers have been proposed to predict recurrence of early-stage disease, but no marker has demonstrated sufficient reliability for clinical application. In the present study, the novel protein EF-hand domain-containing protein D2 (EFHD2) was identified as expressed in highly metastatic tumor cells. EFHD2 increased the formation of protrusive invadopodia structures and cell migration and invasion abilities and promoted the epithelial-to-mesenchymal transition (EMT) character of lung adenocarcinoma cells. We demonstrated that the mechanism of EFHD2 in enhancing EMT occurs partly through inhibition of caveolin-1 (CAV1) for cancer progression. The expression of EFHD2 was significantly correlated with postsurgical recurrence of patients with stage I lung adenocarcinoma in the Kaplan-Meier-plotter cancer database search and our retrospective cohort study (HR, 6.14; 95% CI, 2.40-15.74; P < 0.001). Multivariate Cox regression analysis revealed that EFHD2 expression was an independent clinical predictor for this disease. We conclude that EFHD2 expression is associated with increased metastasis and EMT and could serve as an independent marker to predict postsurgical recurrence of patients with stage I lung adenocarcinoma.
Collapse
|
27
|
Thylur RP, Gowda R, Mishra S, Jun CD. Swiprosin-1: Its Expression and Diverse Biological Functions. J Cell Biochem 2017; 119:150-156. [PMID: 28590012 DOI: 10.1002/jcb.26199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023]
Abstract
Swiprosin-1/EFhd2 is a Ca2+ binding adapter protein involved in the various cellular functions. Swiprosin-1 is significantly upregulated in a number of pathological conditions of inflammation, neurodegeneration, and cancer. Swiprosin-1 associated with actin and its expression level amplifies the production of proinflammatory mediators and modulates the activation of transcription factor during immune cells activation. This review aims at providing an overview of the expression and function of swiprosin-1/EFhd2 in various pathophysiological conditions. We also discussed the key role of swiprosin-1 in immune cell activation, cell migration, apoptosis, humoral immunity, cancer invasion and metastasis, neuronal transport, and major signaling cascades. J. Cell. Biochem. 119: 150-156, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ramesh P Thylur
- School of Life Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Raghavendra Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sumita Mishra
- Department of Pediatrics, Division of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chang-Duk Jun
- School of Life Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
28
|
Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system. Biochem J 2017; 473:2429-37. [PMID: 27515255 DOI: 10.1042/bcj20160168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction and dysregulation of Ca(2+) are linked to neurodegenerative processes and behavioural disorders. Our understanding of the causes and factors involved in behavioural disorders and neurodegeneration, especially Alzheimer's disease (AD), a tau-related disease, is on the one hand limited and on the other hand controversial. Here, we review recent data about the links between the Ca(2+)-binding EF-hand-containing cytoskeletal protein Swiprosin-1/EFhd2 and neurodegeneration. Specifically, we summarize the functional biochemical data obtained in vitro with the use of recombinant EFhd2 protein, and integrated them with in vivo data in order to interpret the emerging role of EFhd2 in synaptic plasticity and in the pathophysiology of neurodegenerative disorders, particularly involving the tauopathies. We also discuss its functions in actin remodelling through cofilin and small GTPases, thereby linking EFhd2, synapses and the actin cytoskeleton. Expression data and functional experiments in mice and in humans have led to the hypothesis that down-regulation of EFhd2, especially in the cortex, is involved in dementia.
Collapse
|
29
|
Wang ZB, Han P, Tong LC, Luo Y, Su WH, Wei X, Yu XH, Liu WY, Zhang XH, Lei H, Li ZZ, Wang F, Chen JG, Ma TH, Su DF, Li L. Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice. Sci Rep 2017; 7:40986. [PMID: 28128226 PMCID: PMC5269593 DOI: 10.1038/srep40986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-1 expression in SMS mouse brains. Inducing MS via rotary stimulation decreased swiprosin-1 in the mouse brains. Swiprosin-1 knockout mice were much more sensitive to motion disturbance. Immunohistochemistry revealed strong swiprosin-1 expression in the vestibular nuclei (VN). Over-expressing swiprosin-1 in the VN of SMS mice decreased MS susceptibility. Down-regulating swiprosin-1 in the VN of RMS mice by RNAi increased MS susceptibility. Additional in vivo experiments revealed decreased swiprosin-1 expression by glutamate via the NMDA receptor. Glutamate increased neuronal excitability in SMS or swiprosin-1 knockout mice more prominently than in RMS or wild-type mice. These results indicate that swiprosin-1 in the VN is a critical determinant of the susceptibility to MS.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ping Han
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ling-Chang Tong
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yi Luo
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-Heng Su
- Basal medical College, Dalian Medical University, Dalian, Liaoning 130041, China
| | - Xin Wei
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xu-Hong Yu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiu-Hua Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhen-Zhen Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tong-Hui Ma
- Basal medical College, Dalian Medical University, Dalian, Liaoning 130041, China
| | - Ding-Feng Su
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
30
|
Nippert F, Schreckenberg R, Hess A, Weber M, Schlüter KD. The Effects of Swiprosin-1 on the Formation of Pseudopodia-Like Structures and β-Adrenoceptor Coupling in Cultured Adult Rat Ventricular Cardiomyocytes. PLoS One 2016; 11:e0167655. [PMID: 27992454 PMCID: PMC5161327 DOI: 10.1371/journal.pone.0167655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/17/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent findings suggest that adult terminally differentiated cardiomyocytes adapt to stress by cellular de- and redifferentiation. In the present study we tested the hypothesis that swiprosin-1 is a key player in this process. Furthermore, the relationship between swiprosin-1 and β-adrenoceptor coupling was analyzed. METHODS In order to study the function of swiprosin-1 in adult rat ventricular cardiomyocytes (ARVC) they were isolated and cultured in a medium containing 20% fetal calf serum (FCS). Changes in cell morphology of ARVC during cultivation were quantified by light and confocal laser scan microscopy. Small interfering RNA (siRNA) was used to reduce the expression of swiprosin-1. The impact of calcium on swiprosin-1 dependent processes was investigated with Bapta-AM. Immunoblot techniques and qRT-PCR were performed to measure mRNA and protein expression. RESULTS In culture, ARVC first lost their contractile elements, which was followed by a formation of pseudopodia-like structures (spreading). Swiprosin-1 was detected in ARVC at all time points. However, swiprosin-1 expression was increased when ARVC started to spread. Reduction of swiprosin-1 expression with siRNA delayed ARVC spreading. Similarly, Bapta-AM attenuated swiprosin-1 expression and spreading of ARVC. Furthermore, swiprosin-1 expression correlated with the expression of G protein-coupled receptor kinase 2 (GRK2). Moreover, silencing of swiprosin-1 was associated with a down regulation of GRK2 and caused a sensitization of β-adrenergic receptors. CONCLUSION Swiprosin-1 is required for ARVC to adapt to culture conditions. Additionally, it seems to be involved in the desensitization of β-adrenergic receptors. Assuming that ARVC adapt to cardiac stress in a similar way, swiprosin-1 may play a key role in cardiac remodeling.
Collapse
Affiliation(s)
| | | | - Antonia Hess
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Martin Weber
- Institute of Physiology, Justus-Liebig-University, Giessen, Germany
| | | |
Collapse
|
31
|
Structural implications of Ca 2+-dependent actin-bundling function of human EFhd2/Swiprosin-1. Sci Rep 2016; 6:39095. [PMID: 27974828 PMCID: PMC5156911 DOI: 10.1038/srep39095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023] Open
Abstract
EFhd2/Swiprosin-1 is a cytoskeletal Ca2+-binding protein implicated in Ca2+-dependent cell spreading and migration in epithelial cells. EFhd2 domain architecture includes an N-terminal disordered region, a PxxP motif, two EF-hands, a ligand mimic helix and a C-terminal coiled-coil domain. We reported previously that EFhd2 displays F-actin bundling activity in the presence of Ca2+ and this activity depends on the coiled-coil domain and direct interaction of the EFhd2 core region. However, the molecular mechanism for the regulation of F-actin binding and bundling by EFhd2 is unknown. Here, the Ca2+-bound crystal structure of the EFhd2 core region is presented and structures of mutants defective for Ca2+-binding are also described. These structures and biochemical analyses reveal that the F-actin bundling activity of EFhd2 depends on the structural rigidity of F-actin binding sites conferred by binding of the EF-hands to Ca2+. In the absence of Ca2+, the EFhd2 core region exhibits local conformational flexibility around the EF-hand domain and C-terminal linker, which retains F-actin binding activity but loses the ability to bundle F-actin. In addition, we establish that dimerisation of EFhd2 via the C-terminal coiled-coil domain, which is necessary for F-actin bundling, occurs through the parallel coiled-coil interaction.
Collapse
|
32
|
Huh YH, Oh S, Yeo YR, Chae IH, Kim SH, Lee JS, Yun SJ, Choi KY, Ryu JH, Jun CD, Song WK. Swiprosin-1 stimulates cancer invasion and metastasis by increasing the Rho family of GTPase signaling. Oncotarget 2016; 6:13060-71. [PMID: 26079945 PMCID: PMC4536999 DOI: 10.18632/oncotarget.3637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
Ectopic expression of Swiprosin-1, an actin-binding protein (also known as EF hand domain containing 2; EFHD2), enhanced motile protrusions associated with actin, such as lamellipodia and membrane ruffles. Swiprosin-1 levels were increased in various human cancer tissues, particularly at highly invasive stages of malignant melanoma. Expression of Swiprosin-1 was correlated with that of epidermal growth factor receptor (EGFR) and induced by EGF. In a mouse metastasis model, Swiprosin-1 overexpression induced pulmonary metastasis whereas its knockdown led to marked inhibition of metastasis of highly invasive melanoma cells. Swiprosin-1 at the lamellipodia and membrane ruffles controlled the direction of cell protrusion and enhanced migration velocity through activating the Rho family of small GTPases, including Rac1, Cdc42 and RhoA. Our collective findings support the potential utility of Swiprosin-1 as a therapeutic target to prevent cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yun Hyun Huh
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sena Oh
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yu Ra Yeo
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - In Hee Chae
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - So Hee Kim
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sook Jung Yun
- Department of Dermatology, Chonnam National University Hospital, Gwangju, Korea
| | - Kyu Yeong Choi
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, Korea
| | - Je-Hwang Ryu
- Dental Science Research Institute and Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
33
|
Vega IE. EFhd2, a Protein Linked to Alzheimer's Disease and Other Neurological Disorders. Front Neurosci 2016; 10:150. [PMID: 27064956 PMCID: PMC4814571 DOI: 10.3389/fnins.2016.00150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/21/2016] [Indexed: 01/20/2023] Open
Abstract
EFhd2 is a conserved calcium binding protein linked to different neurological disorders and types of cancer. Although, EFhd2 is more abundant in neurons, it is also found in other cell types. The physiological function of this novel protein is still unclear, but it has been shown in vitro to play a role in calcium signaling, apoptosis, actin cytoskeleton, and regulation of synapse formation. Recently, EFhd2 was shown to promote cell motility by modulating the activity of Rac1, Cdc42, and RhoA. Although, EFhd2's role in promoting cell invasion and metastasis is of great interest in cancer biology, this review focusses on the evidence that links EFhd2 to Alzheimer's disease (AD) and other neurological disorders. Altered expression of EFhd2 has been documented in AD, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, and schizophrenia, indicating that Efhd2 gene expression is regulated in response to neuropathological processes. However, the specific role that EFhd2 plays in the pathophysiology of neurological disorders is still poorly understood. Recent studies demonstrated that EFhd2 has structural characteristics similar to amyloid proteins found in neurological disorders. Moreover, EFhd2 co-aggregates and interacts with known neuropathological proteins, such as tau, C9orf72, and Lrrk2. These results suggest that EFhd2 may play an important role in the pathophysiology of neurodegenerative diseases. Therefore, the understanding of EFhd2's role in health and disease could lead to decipher molecular mechanisms that become activated in response to neuronal stress and degeneration.
Collapse
Affiliation(s)
- Irving E Vega
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University Grand Rapids, MI, USA
| |
Collapse
|
34
|
Cortés A, Sotillo J, Muñoz-Antoli C, Fried B, Esteban JG, Toledo R. Altered Protein Expression in the Ileum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda). PLoS Negl Trop Dis 2015; 9:e0004082. [PMID: 26390031 PMCID: PMC4577103 DOI: 10.1371/journal.pntd.0004082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022] Open
Abstract
Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. Intestinal helminth infections are among the most prevalent parasitic diseases and about 1 billion people are currently infected with intestinal helminths. Incidence of intestinal helminth infections is high due to both socio-economic factors that facilitates continuous re-infections and the lack of effective vaccines. In this context, further knowledge on the host-parasite relationships is required to elucidate the factors that determine the expulsion of the intestinal helminths or, in contrast, the chronic establishment of the infections. Echinostoma caproni (Trematoda) is an intestinal trematode that has been extensively used as experimental model to investigate these factors. Depending on the host species. E. caproni is rapidly rejected or develops chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in a host in which the parasites develop chronic infections. These data may serve to get a better understanding of the factors determining the development of chronic intestinal infections. A total of 37 spots were identified differentially expressed. These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, mitochondrial and cytoskeletal proteins among others. This suggests that the changes in these processes in the intestinal mucosa may facilitate the development of chronic infections.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Carla Muñoz-Antoli
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Bernard Fried
- Department of Biology, Lafayette College, Easton, Pennsylvania, United States of America
| | - J. Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
35
|
Na BR, Kim HR, Piragyte I, Oh HM, Kwon MS, Akber U, Lee HS, Park DS, Song WK, Park ZY, Im SH, Rho MC, Hyun YM, Kim M, Jun CD. TAGLN2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. ACTA ACUST UNITED AC 2015; 209:143-62. [PMID: 25869671 PMCID: PMC4395477 DOI: 10.1083/jcb.201407130] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
TAGLN2 stabilizes cortical F-actin and thereby maintains F-actin contents at the immunological synapse, which allows T cell activation following T cell receptor stimulation. The formation of an immunological synapse (IS) requires tight regulation of actin dynamics by many actin polymerizing/depolymerizing proteins. However, the significance of actin stabilization at the IS remains largely unknown. In this paper, we identify a novel function of TAGLN2—an actin-binding protein predominantly expressed in T cells—in stabilizing cortical F-actin, thereby maintaining F-actin contents at the IS and acquiring LFA-1 (leukocyte function-associated antigen-1) activation after T cell receptor stimulation. TAGLN2 blocks actin depolymerization and competes with cofilin both in vitro and in vivo. Knockout of TAGLN2 (TAGLN2−/−) reduced F-actin content and destabilized F-actin ring formation, resulting in decreased cell adhesion and spreading. TAGLN2−/− T cells displayed weakened cytokine production and cytotoxic effector function. These findings reveal a novel function of TAGLN2 in enhancing T cell responses by controlling actin stability at the IS.
Collapse
Affiliation(s)
- Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Indre Piragyte
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Hyun-Mee Oh
- Bioindustrial Process Research Center, Korea Research Institute Bioscience and Biotechnology (KRIBB), Jeongeup 580-185, South Korea
| | - Min-Sung Kwon
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Uroos Akber
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Hyun-Su Lee
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Do-Sim Park
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan 570-749, South Korea
| | - Woo Keun Song
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Sin-Hyeog Im
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| | - Mun-Chual Rho
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, Iksan 570-749, South Korea
| | - Young-Min Hyun
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea
| |
Collapse
|
36
|
The calcium-binding protein EFhd2 modulates synapse formation in vitro and is linked to human dementia. J Neuropathol Exp Neurol 2015; 73:1166-82. [PMID: 25383639 PMCID: PMC4238966 DOI: 10.1097/nen.0000000000000138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
EFhd2 is a calcium-binding adaptor protein that has been found to be associated with pathologically aggregated tau in the brain in Alzheimer disease and in a mouse model of frontotemporal dementia. EFhd2 has cell type-specific functions, including the modulation of intracellular calcium responses, actin dynamics, and microtubule transport. Here we report that EFhd2 protein and mRNA levels are reduced in human frontal cortex tissue affected by different types of dementia with and without tau pathology. We show that EFhd2 is mainly a neuronal protein in the brain and is abundant in the forebrain. Using short hairpin RNA-mediated knockdown of EFhd2 expression in cultured cortical neurons, we demonstrate that loss of EFhd2 affects the number of synapses developed in vitro whereas it does not alter neurite outgrowth per se. Our data suggest that EFhd2 is involved in the control of synapse development and maintenance through means other than affecting neurite development. The changes in expression levels observed in human dementias might, therefore, play a significant role in disease onset and progression of dementia, which is characterized by the loss of synapses.
Collapse
|
37
|
The adaptor protein Swiprosin-1/EFhd2 is dispensable for platelet function in mice. PLoS One 2014; 9:e107139. [PMID: 25243606 PMCID: PMC4170979 DOI: 10.1371/journal.pone.0107139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss.
Collapse
|
38
|
The Ca2+ sensor protein swiprosin-1/EFhd2 is present in neurites and involved in kinesin-mediated transport in neurons. PLoS One 2014; 9:e103976. [PMID: 25133820 PMCID: PMC4136728 DOI: 10.1371/journal.pone.0103976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
Swiprosin-1/EFhd2 (EFhd2) is a cytoskeletal Ca2+ sensor protein strongly expressed in the brain. It has been shown to interact with mutant tau, which can promote neurodegeneration, but nothing is known about the physiological function of EFhd2 in the nervous system. To elucidate this question, we analyzed EFhd2−/−/lacZ reporter mice and showed that lacZ was strongly expressed in the cortex, the dentate gyrus, the CA1 and CA2 regions of the hippocampus, the thalamus, and the olfactory bulb. Immunohistochemistry and western blotting confirmed this pattern and revealed expression of EFhd2 during neuronal maturation. In cortical neurons, EFhd2 was detected in neurites marked by MAP2 and co-localized with pre- and post-synaptic markers. Approximately one third of EFhd2 associated with a biochemically isolated synaptosome preparation. There, EFhd2 was mostly confined to the cytosolic and plasma membrane fractions. Both synaptic endocytosis and exocytosis in primary hippocampal EFhd2−/− neurons were unaltered but transport of synaptophysin-GFP containing vesicles was enhanced in EFhd2−/− primary hippocampal neurons, and notably, EFhd2 inhibited kinesin mediated microtubule gliding. Therefore, we found that EFhd2 is a neuronal protein that interferes with kinesin-mediated transport.
Collapse
|
39
|
Vázquez-Rosa E, Rodríguez-Cruz EN, Serrano S, Rodríguez-Laureano L, Vega IE. Cdk5 phosphorylation of EFhd2 at S74 affects its calcium binding activity. Protein Sci 2014; 23:1197-207. [PMID: 24917152 DOI: 10.1002/pro.2499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
Abstract
EFhd2 is a calcium binding protein, which is highly expressed in the central nervous system and associated with pathological forms of tau proteins in tauopathies. Previous phosphoproteomics studies and bioinformatics analysis suggest that EFhd2 may be phosphorylated. Here, we determine whether Cdk5, a hyperactivated kinase in tauopathies, phosphorylates EFhd2 and influence its known molecular activities. The results indicated that EFhd2 is phosphorylated by brain extract of the transgenic mouse CK-p25, which overexpresses the Cdk5 constitutive activator p25. Consistently, in vitro kinase assays demonstrated that Cdk5, but not GSK3β, directly phosphorylates EFhd2. Biomass, tandem mass spectrometry, and mutagenesis analyses indicated that Cdk5 monophosphorylates EFhd2 at S74, but not the adjacent S76. Furthermore, Cdk5-mediated phosphorylation of EFhd2 affected its calcium binding activity. Finally, a phospho-specific antibody was generated against EFhd2 phosphorylated at S74 and was used to detect this phosphorylation event in postmortem brain tissue from Alzheimer's disease and normal-aging control cases. Results demonstrated that EFhd2 is phosphorylated in vivo at S74. These results imply that EFhd2's physiological and/or pathological function could be regulated by its phosphorylation state.
Collapse
Affiliation(s)
- Edwin Vázquez-Rosa
- Department of Chemistry, College of Natural Sciences, University of Puerto Rico-Río Piedras Campus, San Juan, Puerto Rico, 00931; Protein Mass Spectrometry Core Facility, College of Natural Sciences, University of Puerto Rico - Río Piedras Campus, San Juan, Puerto Rico, 00931
| | | | | | | | | |
Collapse
|