1
|
Thimmiraju SR, Adhikari R, Redd JR, Villar MJ, Lee J, Liu Z, Chen YL, Sharma S, Kaur A, Uzcategui NL, Ronca SE, Chen WH, Kimata JT, Zhan B, Strych U, Bottazzi ME, Hotez PJ, Pollet J. A trivalent protein-based pan-Betacoronavirus vaccine elicits cross-neutralizing antibodies against a panel of coronavirus pseudoviruses. NPJ Vaccines 2024; 9:132. [PMID: 39034332 PMCID: PMC11271464 DOI: 10.1038/s41541-024-00924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
The development of broad-spectrum coronavirus vaccines is essential to prepare for future respiratory virus pandemics. We demonstrated broad neutralization by a trivalent subunit vaccine, formulating the receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 XBB.1.5 with Alum and CpG55.2. Vaccinated mice produced cross-neutralizing antibodies against all three human Betacoronaviruses and others currently exclusive to bats, indicating the epitope preservation of the individual antigens during co-formulation and the potential for epitope broadening.
Collapse
Affiliation(s)
- Syamala Rani Thimmiraju
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rakesh Adhikari
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - JeAnna R Redd
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Jose Villar
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jungsoon Lee
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhuyun Liu
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi-Lin Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suman Sharma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amandeep Kaur
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nestor L Uzcategui
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shannon E Ronca
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wen-Hsiang Chen
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Biology, Baylor University, Waco, TX, 76706, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, 77005, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Biology, Baylor University, Waco, TX, 76706, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, 77005, USA
| | - Jeroen Pollet
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, 77030, USA.
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Failayev H, Ganoth A, Tsfadia Y. Molecular insights on the coronavirus MERS-CoV interaction with the CD26 receptor. Virus Res 2024; 342:199330. [PMID: 38272241 PMCID: PMC10862065 DOI: 10.1016/j.virusres.2024.199330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Middle East respiratory syndrome (MERS) is a severe respiratory disease with high fatality rates, caused by the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus initiates infection by binding to the CD26 receptor (also known as dipeptidyl peptidase 4 or DPP4) via its spike protein. Although the receptor-binding domain (RBD) of the viral spike protein and the complex between RBD and the extracellular domain of CD26 have been studied using X-ray crystallography, conflicting studies exist regarding the importance of certain amino acids outside the resolved RBD-CD26 complex interaction interface. To gain atomic-level knowledge of the RBD-CD26 complex, we employed computational simulations to study the complex's dynamic behavior as it evolves from its crystal structure to a conformation stable in solution. Our study revealed previously unidentified interaction regions and interacting amino acids within the complex, determined a novel comprehensive RBD-binding domain of CD26, and by that expanded the current understanding of its structure. Additionally, we examined the impact of a single amino acid substitution, E513A, on the complex's stability. We discovered that this substitution disrupts the complex through an allosteric domino-like mechanism that affects other residues. Since MERS-CoV is a zoonotic virus, we evaluated its potential risk of human infection via animals, and suggest a low likelihood for possible infection by cats or dogs. The molecular structural information gleaned from our insights into the RBD-CD26 complex pre-dissociative states may be proved useful not only from a mechanistic view but also in assessing inter-species transmission and in developing anti-MERS-CoV antiviral therapeutics.
Collapse
Affiliation(s)
- Hila Failayev
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Assaf Ganoth
- Department of Physical Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; The Interdisciplinary Center (IDC), P.O. Box 167, Herzliya 4610101, Israel
| | - Yossi Tsfadia
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Ratswohl C, Vázquez García C, Ahmad AUW, Gonschior H, Lebedin M, Silvis CE, Spatt L, Gerhard C, Lehmann M, Sander LE, Kurth F, Olsson S, de la Rosa K. A design strategy to generate a SARS-CoV-2 RBD vaccine that abrogates ACE2 binding and improves neutralizing antibody responses. Eur J Immunol 2023; 53:e2350408. [PMID: 37435628 DOI: 10.1002/eji.202350408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.
Collapse
Affiliation(s)
- Christoph Ratswohl
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Clara Vázquez García
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Ata Ul Wakeel Ahmad
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Casper Ewijn Silvis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin, Berlin, Germany
| | - Lisa Spatt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cathrin Gerhard
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | | | - Simon Olsson
- Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Västra Götalands län, Sweden
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
4
|
Laotee S, Duangkaew M, Jivapetthai A, Tharakhet K, Kaewpang P, Prompetchara E, Phumiamorn S, Sapsutthipas S, Trisiriwanich S, Somsaard T, Roytrakul S, Duangkhae P, Ongpipattanakul B, Limpikirati P, Pornputtapong N, Arunmanee W. CHO-produced RBD-Fc subunit vaccines with alternative adjuvants generate immune responses against SARS-CoV-2. PLoS One 2023; 18:e0288486. [PMID: 37450510 PMCID: PMC10348575 DOI: 10.1371/journal.pone.0288486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Subunit vaccines feature critical advantages over other vaccine platforms such as stability, price, and minimal adverse effects. To maximize immunological protection of subunit vaccines, adjuvants are considered as main components that are formulated within the subunit vaccine. They can modulate adverse effects and enhance immune outcomes. However, the most suitable formulation providing the best immunological outcomes and safety are still under investigation. In this report, we combined recombinant RBD with human IgG1 Fc to create an RBD dimer. This fusion protein was expressed in CHO and formulated with alternative adjuvants with different immune activation including Montanide ISA51, Poly (I:C), and MPLA/Quil-A® as potential vaccine candidate formulations. Using the murine model, a potent induction of anti-RBD IgG antibodies in immunized mice sera were observed. IgG subclass analyses (IgG1/IgG2a) illustrated that all adjuvanted formulations could stimulate both Th1 and Th2-type immune responses in particular Poly (I:C) and MPLA/Quil-A®, eliciting greater balance. In addition, Montanide ISA51-formulated RBD-Fc vaccination provided a promising level of neutralizing antibodies against live wild-type SARS-CoV-2 in vitro followed by Poly (I:C) and MPLA/Quil-A®, respectively. Also, mice sera from adjuvanted formulations could strongly inhibit RBD:ACE2 interaction. This study offers immunogenicity profiles, forecasted safety based on Vaccine-associated enhanced disease (VAED) caused by Th1-skewed immunity, and neutralizing antibody analysis of candidates of RBD-Fc-based subunit vaccine formulations to obtain an alternative subunit vaccine formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Sedthawut Laotee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Methawee Duangkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Araya Jivapetthai
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sakalin Trisiriwanich
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Thitiporn Somsaard
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathumthani, Thailand
| | - Parichat Duangkhae
- Viral Vaccine Unit, Biologics Research Group, Research and Development Institute, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Chang CC, Algaissi A, Lai CC, Chang CK, Lin JS, Wang YS, Chang BH, Chang YC, Chen WT, Fan YQ, Peng BH, Chao CY, Tzeng SR, Liang PH, Sung WC, Hu AYC, Chang SC, Chang MF. Subunit vaccines with a saponin-based adjuvant boost humoral and cellular immunity to MERS coronavirus. Vaccine 2023; 41:3337-3346. [PMID: 37085450 PMCID: PMC10083212 DOI: 10.1016/j.vaccine.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.
Collapse
Affiliation(s)
- Chi-Chieh Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Disease, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Kai Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Shiang Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bo-Hau Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Wei-Ting Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yong-Qing Fan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bi-Hung Peng
- Department of Neurosciences, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chih-Yu Chao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shin C Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
6
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
7
|
Feitsma EA, Janssen YF, Boersma HH, van Sleen Y, van Baarle D, Alleva DG, Lancaster TM, Sathiyaseelan T, Murikipudi S, Delpero AR, Scully MM, Ragupathy R, Kotha S, Haworth JR, Shah NJ, Rao V, Nagre S, Ronca SE, Green FM, Aminetzah A, Sollie F, Kruijff S, Brom M, van Dam GM, Zion TC. A randomized phase I/II safety and immunogenicity study of the Montanide-adjuvanted SARS-CoV-2 spike protein-RBD-Fc vaccine, AKS-452. Vaccine 2023; 41:2184-2197. [PMID: 36842886 PMCID: PMC9946892 DOI: 10.1016/j.vaccine.2023.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Previous interim data from a phase I study of AKS-452, a subunit vaccine comprising an Fc fusion of the respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (SP/RBD) emulsified in the water-in-oil adjuvant, Montanide™ ISA 720, suggested a good safety and immunogenicity profile in healthy adults. This phase I study was completed and two dosing regimens were further evaluated in this phase II study. METHODS This phase II randomized, open-labelled, parallel group study was conducted at a single site in The Netherlands with 52 healthy adults (18 - 72 years) receiving AKS-452 subcutaneously at one 90 µg dose (cohort 1, 26 subjects) or two 45 µg doses 28 days apart (cohort 2, 26 subjects). Serum samples were collected at the first dose (day 0) and at days 28, 56, 90, and 180. Safety and immunogenicity endpoints were assessed, along with induction of IgG isotypes, cross-reactive immunity against viral variants, and IFN-γ T cell responses. RESULTS All AEs were mild/moderate (grades 1 or 2), and no SAEs were attributable to AKS-452. Seroconversion rates reached 100% in both cohorts, although cohort 2 showed greater geometric mean IgG titers that were stable through day 180 and associated with enhanced potencies of SP/RBD-ACE2 binding inhibition and live virus neutralization. AKS-452-induced IgG titers strongly bound mutant SP/RBD from several SARS-CoV-2 variants (including Omicrons) that were predominantly of the favorable IgG1/3 isotype and IFN-γ-producing T cell phenotype. CONCLUSION These favorable safety and immunogenicity profiles of the candidate vaccine as demonstrated in this phase II study are consistent with those of the phase I study (ClinicalTrials.gov: NCT04681092) and suggest that a total of 90 µg received in 2 doses may offer a greater duration of cross-reactive neutralizing titers than when given in a single dose.
Collapse
Affiliation(s)
- Eline A Feitsma
- Department of Surgery, University Medical Center Groningen (UMCG), Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Yester F Janssen
- Department of Nuclear Medicine and Molecular Imaging, UMCG, the Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, UMCG, the Netherlands; Department of Clinical Pharmacy and Pharmacology, UMCG, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, UMCG, the Netherlands
| | - Debbie van Baarle
- Department of Rheumatology and Clinical Immunology, UMCG, the Netherlands
| | - David G Alleva
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Thomas M Lancaster
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | | | - Sylaja Murikipudi
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Andrea R Delpero
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Melanie M Scully
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Ramya Ragupathy
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Sravya Kotha
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Jeffrey R Haworth
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Nishit J Shah
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Vidhya Rao
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Shashikant Nagre
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Baylor, College of Medicine, 1102 Bates Ave, 300.15, Houston, TX 77030, United States
| | - Freedom M Green
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Baylor, College of Medicine, 1102 Bates Ave, 300.15, Houston, TX 77030, United States
| | - Ari Aminetzah
- TRACER BV, L.J. Zielstraweg 1, 9766 GX Groningen, the Netherlands
| | - Frans Sollie
- ICON, van Swietenlaan 6, 9728 NZ Groningen, the Netherlands
| | - Schelto Kruijff
- Department of Surgery, University Medical Center Groningen (UMCG), Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Nuclear Medicine and Molecular Imaging, UMCG, the Netherlands
| | - Maarten Brom
- TRACER BV, L.J. Zielstraweg 1, 9766 GX Groningen, the Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, UMCG, the Netherlands; TRACER BV, L.J. Zielstraweg 1, 9766 GX Groningen, the Netherlands
| | - Todd C Zion
- Akston Biosciences Corporation., 100 Cummings Center, Suite 454C, Beverly, MA 01915, United States.
| |
Collapse
|
8
|
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023; 24:1701. [PMID: 36675218 PMCID: PMC9863728 DOI: 10.3390/ijms24021701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
9
|
Du L, Kou Z, Ma C, Tao X, Wang L, Zhao G, Chen Y, Yu F, Tseng CTK, Zhou Y, Jiang S. Correction: A Truncated Receptor-Binding Domain of MERS-CoV Spike Protein Potently Inhibits MERS-CoV Infection and Induces Strong Neutralizing Antibody Responses: Implication for Developing Therapeutics and Vaccines. PLoS One 2022; 17:e0278474. [PMID: 36469521 PMCID: PMC9721470 DOI: 10.1371/journal.pone.0278474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0081587.].
Collapse
|
10
|
Han X, Cai Z, Dai Y, Huang H, Cao X, Wang Y, Fang Y, Liu G, Zhang M, Zhang Y, Yang B, Xue W, Zhao G, Tai W, Li M. Re-burying Artificially Exposed Surface of Viral Subunit Vaccines Through Oligomerization Enhances Vaccine Efficacy. Front Cell Infect Microbiol 2022; 12:927674. [PMID: 35846760 PMCID: PMC9278648 DOI: 10.3389/fcimb.2022.927674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Viral subunit vaccines often suffer low efficacy. We recently showed that when taken out of the context of whole virus particles, recombinant subunit vaccines contain artificially exposed surface regions that are non-neutralizing and reduce their efficacy, and thus these regions need to be re-buried in vaccine design. Here we used the envelope protein domain III (EDIII) of Japanese encephalitis virus (JEV), a subunit vaccine candidate, to further validate this important concept for subunit vaccine designs. We constructed monomeric EDIII, dimeric EDIII via a linear space, dimeric EDIII via an Fc tag, and trimeric EDIII via a foldon tag. Compared to monomeric EDIII or linearly linked dimeric EDIII, tightly packed EDIII oligomers via the Fc or foldon tag induce higher neutralizing antibody titers in mice and also protect mice more effectively from lethal JEV challenge. Structural analyses demonstrate that part of the artificially exposed surface areas on recombinant EDIII becomes re-buried in Fc or foldon-mediated oligomers. This study further establishes the artificially exposed surfaces as an intrinsic limitation of subunit vaccines, and suggests that re-burying these surfaces through tightly packed oligomerization is a convenient and effective approach to overcome this limitation.
Collapse
Affiliation(s)
- Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yulong Dai
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, China
| | - He Huang
- Institute of Hemu Biotechnology, Beijing Hemu Biotechnology Co., Ltd, Beijing, China
| | - Xiangwen Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yingying Fang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Gang Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuhang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Binhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wei Xue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.,Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Lin Q, Lu C, Hong Y, Li R, Chen J, Chen W, Chen J. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. Antiviral Res 2022; 203:105345. [PMID: 35605699 PMCID: PMC9122840 DOI: 10.1016/j.antiviral.2022.105345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
In addition to severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has become the third deadly coronavirus that infects humans and causes the new coronavirus disease (COVID-19). COVID-19 has already caused more than six million deaths worldwide and it is likely the biggest pandemic of this century faced by mankind. Although many studies on SARS-CoV-2 have been conducted, a detailed understanding of SARS-CoV-2 and COVID-19 is still lacking. Animal models are indispensable for studying its pathogenesis and developing vaccines and antivirals. In this review, we analyze animal models of coronavirus infections and explore their applications on antivirals and vaccines.
Collapse
Affiliation(s)
- Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia
| | - Yuqi Hong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jinding Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Krasilnikov IV, Kudriavtsev AV, Vakhrusheva AV, Frolova ME, Ivanov AV, Stukova MA, Romanovskaya-Romanko EA, Vasilyev KA, Mushenkova NV, Isaev AA. Design and Immunological Properties of the Novel Subunit Virus-like Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:69. [PMID: 35062730 PMCID: PMC8782008 DOI: 10.3390/vaccines10010069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is ongoing, and the need for safe and effective vaccines to prevent infection and to control spread of the virus remains urgent. Here, we report the development of a SARS-CoV-2 subunit vaccine candidate (Betuvax-CoV-2) based on RBD and SD1 domains of the spike (S) protein fused to a human IgG1 Fc fragment. The antigen is adsorbed on betulin adjuvant, forming spherical particles with a size of 100-180 nm, mimicking the size of viral particles. Here we confirm the potent immunostimulatory activity of betulin adjuvant, and demonstrate that two immunizations of mice with Betuvax-CoV-2 elicited high titers of RBD-specific antibodies. The candidate vaccine was also effective in stimulating a neutralizing antibody response and T cell immunity. The results indicate that Betuvax-CoV-2 has good potential for further development as an effective vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Igor V. Krasilnikov
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | | | | | - Maria E. Frolova
- PJSC Human Stem Cells Institute, 129110 Moscow, Russia; (M.E.F.); or
| | | | - Marina A. Stukova
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | - Ekaterina A. Romanovskaya-Romanko
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | - Kirill A. Vasilyev
- Department of Vaccinology, Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia; (I.V.K.); (M.A.S.); (E.A.R.-R.); (K.A.V.)
| | | | - Artur A. Isaev
- PJSC Human Stem Cells Institute, 129110 Moscow, Russia; (M.E.F.); or
- Center of Genetics and Reproductive Medicine “Genetico”, 119333 Moscow, Russia
| |
Collapse
|
13
|
Jung BK, An Y, Park JE, Chang KS, Jang H. Development of a recombinant vaccine containing a spike S1-Fc fusion protein induced protection against MERS-CoV in human DPP4 knockin transgenic mice. J Virol Methods 2022; 299:114347. [PMID: 34728273 PMCID: PMC8556695 DOI: 10.1016/j.jviromet.2021.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the family Coronaviridae and genus Betacoronavirus, has been recognized as a highly pathogenic virus. Due to the lack of therapeutic or preventive agents against MERS-CoV, developing an effective vaccine is essential for preventing a viral outbreak. To address this, we developed a recombinant S1 subunit of MERS-CoV spike protein fused with the human IgG4 Fc fragment (LV-MS1-Fc) in Chinese hamster ovary (CHO) cells. Thereafter, we identified the baculovirus gp64 signal peptide-directed secretion of LV-MS1-Fc protein in the extracellular fluid. To demonstrate the immunogenicity of the recombinant LV-MS1-Fc proteins, BALB/c mice were inoculated with 2.5 μg of LV-MS1-Fc. The inoculated mice demonstrated a significant humoral immune response, measured via total IgG and neutralizing antibodies. In addition, human dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with LV-MS1-Fc showed the protective capacity of LV-MS1-Fc against MERS-CoV with no inflammatory cell infiltration. These data showed that the S1 and Fc fusion protein induced potent humoral immunity and antigen-specific neutralizing antibodies in mice, and conferred protection against coronavirus viral challenge, indicating that LV-MS1-Fc is an effective vaccine candidate against MERS-CoV infection.
Collapse
Affiliation(s)
| | - YongHee An
- Libentech Co., Ltd., Daejeon, Republic of Korea
| | - Jung-Eun Park
- Department of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, Republic of Korea
| | - Hyun Jang
- Libentech Co., Ltd., Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses 2021; 13:2106. [PMID: 34696536 PMCID: PMC8537525 DOI: 10.3390/v13102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Collapse
Affiliation(s)
- Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Shannon R. Esswein
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA;
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| |
Collapse
|
15
|
Mazumder S, Rastogi R, Undale A, Arora K, Arora NM, Pratim B, Kumar D, Joseph A, Mali B, Arya VB, Kalyanaraman S, Mukherjee A, Gupta A, Potdar S, Roy SS, Parashar D, Paliwal J, Singh SK, Naqvi A, Srivastava A, Singh MK, Kumar D, Bansal S, Rautray S, Saini M, Jain K, Gupta R, Kundu PK. PRAK-03202: A triple antigen virus-like particle vaccine candidate against SARS CoV-2. Heliyon 2021; 7:e08124. [PMID: 34632131 PMCID: PMC8487870 DOI: 10.1016/j.heliyon.2021.e08124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022] Open
Abstract
The rapid development of safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is a necessary response to coronavirus outbreak. Here, we developed PRAK-03202, the world's first triple antigen virus-like particle vaccine candidate, by cloning and transforming SARS-CoV-2 gene segments into a highly characterized S. cerevisiae-based D-Crypt™ platform, which induced SARS CoV-2 specific neutralizing antibodies in BALB/c mice. Immunization using three different doses of PRAK-03202 induced an antigen-specific (spike, envelope, and membrane proteins) humoral response and neutralizing potential. Peripheral blood mononuclear cells from convalescent patients showed lymphocyte proliferation and elevated interferon levels suggestive of epitope conservation and induction of T helper 1-biased cellular immune response when exposed to PRAK-03202. These data support further clinical development and testing of PRAK-03202 for use in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Biswa Pratim
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Dilip Kumar
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Abyson Joseph
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Bhupesh Mali
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | | | | | | - Aditi Gupta
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Swaroop Potdar
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | | | | - Jeny Paliwal
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | | - Aelia Naqvi
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | | | | - Devanand Kumar
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Sarthi Bansal
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | | - Manish Saini
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Kshipra Jain
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | - Reeshu Gupta
- Premas Biotech Private Limited, Manesar, Gurugram, India
| | | |
Collapse
|
16
|
Shin HJ, Ku KB, Kim HS, Moon HW, Jeong GU, Hwang I, Yoon GY, Lee S, Lee S, Ahn DG, Kim KD, Kwon YC, Kim BT, Kim SJ, Kim C. Receptor-binding domain of SARS-CoV-2 spike protein efficiently inhibits SARS-CoV-2 infection and attachment to mouse lung. Int J Biol Sci 2021; 17:3786-3794. [PMID: 34671199 PMCID: PMC8495392 DOI: 10.7150/ijbs.61320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| |
Collapse
|
17
|
Alnuqaydan AM, Almutary AG, Sukamaran A, Yang BTW, Lee XT, Lim WX, Ng YM, Ibrahim R, Darmarajan T, Nanjappan S, Chellian J, Candasamy M, Madheswaran T, Sharma A, Dureja H, Prasher P, Verma N, Kumar D, Palaniveloo K, Bisht D, Gupta G, Madan JR, Singh SK, Jha NK, Dua K, Chellappan DK. Middle East Respiratory Syndrome (MERS) Virus-Pathophysiological Axis and the Current Treatment Strategies. AAPS PharmSciTech 2021; 22:173. [PMID: 34105037 PMCID: PMC8186825 DOI: 10.1208/s12249-021-02062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arulmalar Sukamaran
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Brian Tay Wei Yang
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Xiao Ting Lee
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Wei Xuan Lim
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yee Min Ng
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rania Ibrahim
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiviya Darmarajan
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Satheeshkumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala, Kolkata, West Bengal, 700054, India
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park, Uttar Pradesh, 201310, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University, Atal Shiksha Kunj, Atal Nagar, Himachal Pradesh, 174103, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dheeraj Bisht
- Department of Pharmaceutical Sciences Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CTK, Liu WR. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci U S A 2021; 118:e2012201118. [PMID: 33597253 PMCID: PMC7958448 DOI: 10.1073/pnas.2012201118] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Guided by a computational docking analysis, about 30 Food and Drug Administration/European Medicines Agency (FDA/EMA)-approved small-molecule medicines were characterized on their inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Of these small molecules tested, six displayed a concentration that inhibits response by 50% (IC50) value below 100 μM in inhibiting Mpro, and, importantly, three, that is, pimozide, ebastine, and bepridil, are basic molecules that potentiate dual functions by both raising endosomal pH to interfere with SARS-CoV-2 entry into the human cell host and inhibiting Mpro in infected cells. A live virus-based modified microneutralization assay revealed that bepridil possesses significant anti-SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration, 50% (EC50) values. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.
Collapse
Affiliation(s)
- Erol C Vatansever
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Kai S Yang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Aleksandra K Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kaci C Kratch
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chia-Chuan Cho
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - Jason C Hsu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555;
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843
| |
Collapse
|
19
|
Jeong H, Choi YM, Seo H, Kim BJ. A Novel DNA Vaccine Against SARS-CoV-2 Encoding a Chimeric Protein of Its Receptor-Binding Domain (RBD) Fused to the Amino-Terminal Region of Hepatitis B Virus preS1 With a W4P Mutation. Front Immunol 2021; 12:637654. [PMID: 33732258 PMCID: PMC7959807 DOI: 10.3389/fimmu.2021.637654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
A coronavirus SARS-CoV-2, which has caused the pandemic viral pneumonia disease COVID-19, significantly threatens global public health, highlighting the need to develop effective and safe vaccines against its infection. In this study, we developed a novel DNA vaccine candidate against SARS-CoV-2 by expressing a chimeric protein of its receptor-binding domain (RBD) fused to a 33-bp sequence (11 aa) from the hepatitis B virus (HBV) preS1 region with a W4P mutation (W4P-RBD) at the N-terminal region and evaluated its immunogenicity. In vitro transfection experiments in multiple cell lines demonstrated that W4P-RBD vs. wild-type RBD protein (W-RBD) led to enhanced production of IL-6 and TNFα at the transcription and translation levels, suggesting the adjuvant potential of N-terminal HBV preS1 sequences for DNA vaccines against SARS-CoV-2. W4P-RBD also led to enhanced production of IgG and IgA, which can neutralize and block SARS-CoV-2 infection in both blood sera and bronchoalveolar lavage (BAL) fluid from the lung in vaccinated mice. Additionally, W4P-RBD led to an enhanced T-cell-mediated cellular immune response under S1 protein stimulation. In summary, W4P-RBD led to robust humoral and cell-mediated immune responses against SARS-CoV-2 in vaccinated mice, highlighting its feasibility as a novel DNA vaccine to protect against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Bum-Joon Kim
- Department of Biomedical Sciences, College of Medicine, Microbiology and Immunology and Liver Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Park BK, Kim J, Park S, Kim D, Kim M, Baek K, Bae JY, Park MS, Kim WK, Lee Y, Kwon HJ. MERS-CoV and SARS-CoV-2 replication can be inhibited by targeting the interaction between the viral spike protein and the nucleocapsid protein. Theranostics 2021; 11:3853-3867. [PMID: 33664866 PMCID: PMC7914343 DOI: 10.7150/thno.55647] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The molecular interactions between viral proteins form the basis of virus production and can be used to develop strategies against virus infection. The interactions of the envelope proteins and the viral RNA-binding nucleocapsid (N) protein are essential for the assembly of coronaviruses including the Middle East respiratory syndrome coronavirus (MERS-CoV). Methods: Using co-immunoprecipitation, immunostaining, and proteomics analysis, we identified a protein interacting with the spike (S) protein in the cells infected with MERS-CoV or SARS-CoV-2. To confirm the interaction, synthetic peptides corresponding to the C-terminal domain of the S protein (Spike CD) were produced and their effect on the interaction was investigated in vitro. In vivo effect of the Spike CD peptides after cell penetration was further investigated using viral plaque formation assay. Phylogeographic analyses were conducted to deduce homology of Spike CDs and N proteins. Results: We identified a direct interaction between the S protein and the N protein of MERS-CoV that takes place during virus assembly in infected cells. Spike CD peptides of MERS-CoV inhibited the interaction between the S and N proteins in vitro. Furthermore, cell penetration by the synthetic Spike CD peptides inhibited viral plaque formation in MERS-CoV-infected cells. Phylogeographic analyses of Spike CDs and N proteins showed high homology among betacoronavirus lineage C strains. To determine if Spike CD peptides can inhibit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we used the same strategy and found that the SARS-CoV-2 Spike CD peptide inhibited virus replication in SARS-CoV-2-infected cells. Conclusions: We suggest that the interaction between the S protein and the N protein can be targeted to design new therapeutics against emerging coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Won-Keun Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
21
|
Daou A. COVID-19 Vaccination: From Interesting Agent to the Patient. Vaccines (Basel) 2021; 9:120. [PMID: 33546347 PMCID: PMC7913564 DOI: 10.3390/vaccines9020120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
The vaccination for the novel Coronavirus (COVID-19) is undergoing its final stages of analysis and testing. It is an impressive feat under the circumstances that we are on the verge of a potential breakthrough vaccination. This will help reduce the stress for millions of people around the globe, helping to restore worldwide normalcy. In this review, the analysis looks into how the new branch of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) came into the forefront of the world like a pandemic. This review will break down the details of what COVID-19 is, the viral family it belongs to and its background of how this family of viruses alters bodily functions by attacking vital human respiratory organs, the circulatory system, the central nervous system and the gastrointestinal tract. This review also looks at the process a new drug analogue undergoes, from (i) being a promising lead compound to (ii) being released into the market, from the drug development and discovery stage right through to FDA approval and aftermarket research. This review also addresses viable reasoning as to why the SARS-CoV-2 vaccine may have taken much less time than normal in order for it to be released for use.
Collapse
Affiliation(s)
- Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
22
|
Abstract
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.
Collapse
Affiliation(s)
- Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines 2021; 20:23-44. [PMID: 33435774 PMCID: PMC7898300 DOI: 10.1080/14760584.2021.1875824] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/11/2021] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has currently caused the pandemic with a high progressive speed and has been considered as the global public health crisis in 2020. This new member of the coronavirus family has created a potentially fatal disease, called coronavirus disease-2019 (COVID-19). Despite the continuous efforts of researchers to find effective vaccines and drugs for COVID-19, there is still no success in this matter. AREAS COVERED Here, the literature regarding the COVID-19 vaccine candidates currently in the clinical trials, as well as main candidates in pre-clinical stages for development and research, were reviewed. These candidates have been developed under five different major platforms, including live-attenuated vaccine, mRNA-based vaccine, DNA vaccines, inactivated virus, and viral-vector-based vaccine. EXPERT OPINION There are several limitations in the field of the rapid vaccine development against SARS-CoV-2, and other members of the coronavirus family such as SARS-CoV and MERS-CoV. The key challenges of designing an effective vaccine within a short time include finding the virulence ability of an emerging virus and potential antigen, choosing suitable experimental models and efficient route of administration, the immune-response study, designing the clinical trials, and determining the safety, as well as efficacy.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Mann R, Perisetti A, Gajendran M, Gandhi Z, Umapathy C, Goyal H. Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks. Front Med (Lausanne) 2020; 7:581521. [PMID: 33282890 PMCID: PMC7691433 DOI: 10.3389/fmed.2020.581521] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Human coronavirus infections have been known to cause mild respiratory illness. It changed in the last two decades as three global outbreaks by coronaviruses led to significant mortality and morbidity. SARS CoV-1 led to the first epidemic of the twenty first century due to coronavirus. SARS COV-1 infection had a broad array of symptoms with respiratory and gastrointestinal as most frequent. The last known case was reported in 2004. Middle East respiratory syndrome coronavirus (MERS-CoV) led to the second outbreak in 2012, and case fatality was much higher than SARS. MERS-CoV has a wide array of clinical presentations from mild, moderate to severe, and some patients end up with acute respiratory distress syndrome (ARDS). The third and recent outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) started in December 2019, which lead to a global pandemic. Patients with SARS-CoV2 infection can be asymptomatic or have a range of symptoms with fever, cough, and shortness of breath being most common. Reverse transcriptase-Polymerase chain reaction (RT-PCR) is a diagnostic test of choice for SARS CoV-1, MERS-CoV, and SARS CoV-2 infections. This review aims to discuss epidemiological, clinical features, diagnosis, and management of human coronaviruses with a focus on SARS CoV-1, MERS-CoV, and SARS CoV-2.
Collapse
Affiliation(s)
- Rupinder Mann
- Department of Internal Medicine, Saint Agnes Medical Center, Fresno, CA, United States
| | - Abhilash Perisetti
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mahesh Gajendran
- Department of Internal Medicine, Paul L Foster School of Medicine, Texas Tech University, El Paso, TX, United States
| | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medicine Center, Scranton, PA, United States
| | - Chandraprakash Umapathy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hemant Goyal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Wright Center of Graduate Medical Education, Scranton, PA, United States
| |
Collapse
|
25
|
Abbas AT, El-Kafrawy SA, Sohrab SS, Tabll AA, Hassan AM, Iwata-Yoshikawa N, Nagata N, Azhar EI. Anti-S1 MERS-COV IgY Specific Antibodies Decreases Lung Inflammation and Viral Antigen Positive Cells in the Human Transgenic Mouse Model. Vaccines (Basel) 2020; 8:634. [PMID: 33139631 PMCID: PMC7712919 DOI: 10.3390/vaccines8040634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Aymn T. Abbas
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biotechnology Research Laboratories, Gastroenterology, Surgery Centre, Mansoura University, Mansoura 35511, Egypt
| | - Sherif A. El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Clinical Pathology, National Liver Institute, Menoufiya University, Shebin El-Kom 32511, Egypt
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf A. Tabll
- Genetic Engineering and Biotechnology Division, Microbial Biotechnology Department (Biomedical Technology Group), National Research Centre, Dokki 12622, Egypt;
- Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Ahmed M. Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (N.I.-Y.); (N.N.)
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.E.-K.); (S.S.S.); (A.M.H.); (E.I.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications. Hypertension 2020; 76:1339-1349. [PMID: 32851855 PMCID: PMC7480804 DOI: 10.1161/hypertensionaha.120.15256] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 originated from Wuhan, China, in December 2019 and rapidly spread to other areas worldwide. Since then, coronavirus disease 2019 (COVID-19) has reached pandemic proportions with >570 000 deaths globally by mid-July 2020. The magnitude of the outbreak and the potentially severe clinical course of COVID-19 has led to a burst of scientific research on this novel coronavirus and its host receptor ACE (angiotensin-converting enzyme)-2. ACE2 is a homolog of the ACE that acts on several substrates in the renin-Ang (angiotensin) system. With unprecedented speed, scientific research has solved the structure of SARS-CoV-2 and imaged its binding with the ACE2 receptor. In SARS-CoV-2 infection, the viral S (spike) protein receptor-binding domain binds to ACE2 to enter the host cell. ACE2 expression in the lungs is relatively low, but it is present in type II pneumocytes-a cell type also endowed with TMPRSS2 (transmembrane protease serine 2). This protease is critical for priming the SARS-CoV-2 S protein to complex with ACE2 and enter the cells. Herein, we review the current understanding of the interaction of SARS-CoV-2 with ACE2 as it has rapidly unfolded over the last months. While it should not be assumed that we have a complete picture of SARS-CoV-2 mechanism of infection and its interaction with ACE2, much has been learned with clear therapeutic implications. Potential therapies aimed at intercepting SARS-CoV-2 from reaching the full-length membrane-bound ACE2 receptor using soluble ACE2 protein and other potential approaches are briefly discussed as well.
Collapse
Affiliation(s)
- Anne M. Davidson
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jan Wysocki
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Daniel Batlle
- From the Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
27
|
Mirzaei R, Mohammadzadeh R, Mahdavi F, Badrzadeh F, Kazemi S, Ebrahimi M, Soltani F, Kazemi S, Jeda AS, Darvishmotevalli M, Yousefimashouf R, Keyvani H, Karampoor S. Overview of the current promising approaches for the development of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Int Immunopharmacol 2020; 88:106928. [PMID: 32862110 PMCID: PMC7444935 DOI: 10.1016/j.intimp.2020.106928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic infectious disease caused by the novel coronavirus called SARS-CoV-2. There is a gap in our understanding regarding the immunopathogenesis of COVID-19. However, many clinical trials are underway across the world for screening effective drugs against COVID-19. Nevertheless, currently, no proven effective therapies for this virus exists. The vaccines are deemed as a significant part of disease prevention for emerging viral diseases, since, in several cases, other therapeutic choices are limited or non-existent, or that diseases result in such an accelerated clinical worsening that the efficacy of treatments is restricted. Therefore, effective vaccines against COVID-19 are urgently required to overcome the tremendous burden of mortality and morbidity correlated with SARS-CoV-2. In this review, we will describe the latest evidence regarding outstanding vaccine approaches and the challenges for vaccine production.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Mahdavi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariba Badrzadeh
- Faculty of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Sheida Kazemi
- Students' Seientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Environmental Health, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soltani
- Health Safety and Environment Management Department, Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishmotevalli
- Research Center For Health, Safety And Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Anti-S1 MERS-COV IgY Specific Antibodies Decreases Lung Inflammation and Viral Antigen Positive Cells in the Human Transgenic Mouse Model. Vaccines (Basel) 2020. [PMID: 33139631 DOI: 10.3390/vaccines8040634.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in 2012 and causes severe and often fatal acute respiratory illness in humans. No approved prophylactic and therapeutic interventions are currently available. In this study, we have developed egg yolk antibodies (immunoglobulin Y (IgY)) specific for MERS-CoV spike protein (S1) in order to evaluate their neutralizing efficiency against MERS-CoV infection. S1-specific immunoglobulins were produced by injecting chickens with purified recombinant S1 protein of MERS-CoV at a high titer (5.7 mg/mL egg yolk) at week 7 post immunization. Western blotting and immune-dot blot assays demonstrated that the IgY antibody specifically bound to the MERS-CoV S1 protein. Anti-S1 antibodies were also able to recognize MERS-COV inside cells, as demonstrated by an immunofluorescence assay. Plaque reduction and microneutralization assays showed the neutralization of MERS-COV in Vero cells by anti-S1 IgY antibodies and non-significantly reduced virus titers in the lungs of MERS-CoV-infected mice during early infection, with a nonsignificant decrease in weight loss. However, a statistically significant (p = 0.0196) quantitative reduction in viral antigen expression and marked reduction in inflammation were observed in lung tissue. Collectively, our data suggest that the anti-MERS-CoV S1 IgY could serve as a potential candidate for the passive treatment of MERS-CoV infection.
Collapse
|
29
|
Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 2020; 288:198141. [PMID: 32846196 PMCID: PMC7443330 DOI: 10.1016/j.virusres.2020.198141] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died. SARS-CoV-2 has shown a higher infectivity rate and a more extended incubation period as compared to previous coronaviruses. SARS-CoV-2 binds much more strongly than SARS-CoV to the same host receptor, angiotensin-converting enzyme 2 (ACE2). Previously, several methods to develop a vaccine against SARS-CoV or MERS-CoV have been tried with limited success. Since SARS-CoV-2 uses the spike (S) protein for entry to the host cell, it is one of the most preferred targets for making vaccines or therapeutics against SARS-CoV-2. In this review, we have summarised the characteristics of the S protein, as well as the different approaches being used for the development of vaccines and/or therapeutics based on the S protein.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Antibodies, Viral/biosynthesis
- Antibody-Dependent Enhancement/drug effects
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Clinical Trials as Topic
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunogenicity, Vaccine
- Pandemics/prevention & control
- Patient Safety
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vaccines, Attenuated
- Vaccines, DNA
- Vaccines, Subunit
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/biosynthesis
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Anil M Tharappel
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, 1 University Place, Rensselaer, NY 12144, USA.
| |
Collapse
|
30
|
Krishna G, Pillai VS, Veettil MV. Approaches and advances in the development of potential therapeutic targets and antiviral agents for the management of SARS-CoV-2 infection. Eur J Pharmacol 2020; 885:173450. [PMID: 32739174 PMCID: PMC7834013 DOI: 10.1016/j.ejphar.2020.173450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
Virus onslaughts continue to spread fear and cause rampage across the world every now and then. The twenty first century is yet again witnessing a gross global pandemic, Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Globally no vaccines or drug specific to COVID-19 is available. Corona viruses have been in mutual relationship with humans and other hosts over many decades though aggressive zoonotic strains have caused havoc. Zoonotic emergent corona viruses prior to SARS-COV-2 included severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), with the former leading to aggressive infectious spread and the later with high mortality rate. Although they emerged in the early period of the twenty first century, resilient biomedical and expertise in pharmaceutical domain could not appropriate any proprietary therapeutics. Studies envisaged towards curtailing their spread employed different stages of the virus life cycle with all zoonotic coronaviruses (CoVs) sharing genomic and structural similarities. Hence the strategies against SARS-CoV and MERS-CoV could prove effective against the recent outbreak of SAR-CoV-2. The review unravels key events involved in the lifecycle of SARS-CoV-2 while highlighting the possible avenues of therapy. The review also holds the scope in better understanding a broad-spectrum antivirals, monoclonal antibodies and small molecule inhibitors against viral glycoproteins, host cell receptor, viral mRNA synthesis, RNA-dependent RNA polymerase (RdRp) and viral proteases in order to design and develop antiviral drugs for SARS-CoV-2.
Collapse
|
31
|
Lokman SM, Rasheduzzaman M, Salauddin A, Barua R, Tanzina AY, Rumi MH, Hossain MI, Siddiki AMAMZ, Mannan A, Hasan MM. Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104389. [PMID: 32502733 PMCID: PMC7266584 DOI: 10.1016/j.meegid.2020.104389] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
The newly identified SARS-CoV-2 has now been reported from around 185 countries with more than a million confirmed human cases including more than 120,000 deaths. The genomes of SARS-COV-2 strains isolated from different parts of the world are now available and the unique features of constituent genes and proteins need to be explored to understand the biology of the virus. Spike glycoprotein is one of the major targets to be explored because of its role during the entry of coronaviruses into host cells. We analyzed 320 whole-genome sequences and 320 spike protein sequences of SARS-CoV-2 using multiple sequence alignment. In this study, 483 unique variations have been identified among the genomes of SARS-CoV-2 including 25 nonsynonymous mutations and one deletion in the spike (S) protein. Among the 26 variations detected in S, 12 variations were located at the N-terminal domain (NTD) and 6 variations at the receptor-binding domain (RBD) which might alter the interaction of S protein with the host receptor angiotensin-converting enzyme 2 (ACE2). Besides, 22 amino acid insertions were identified in the spike protein of SARS-CoV-2 in comparison with that of SARS-CoV. Phylogenetic analyses of spike protein revealed that Bat coronavirus have a close evolutionary relationship with circulating SARS-CoV-2. The genetic variation analysis data presented in this study can help a better understanding of SARS-CoV-2 pathogenesis. Based on results reported herein, potential inhibitors against S protein can be designed by considering these variations and their impact on protein structure.
Collapse
Affiliation(s)
- Syed Mohammad Lokman
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Rasheduzzaman
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Asma Salauddin
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Rocktim Barua
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Afsana Yeasmin Tanzina
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Meheadi Hasan Rumi
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Imran Hossain
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - A M A M Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chattogram 4202, Bangladesh
| | - Adnan Mannan
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh.
| | - Md Mahbub Hasan
- Department of Genetic Engineering & Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh; Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
32
|
Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 Vaccine Development: Current Status. Mayo Clin Proc 2020; 95:2172-2188. [PMID: 33012348 PMCID: PMC7392072 DOI: 10.1016/j.mayocp.2020.07.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
In the midst of the severe acute respiratory syndrome coronavirus 2 pandemic and its attendant morbidity and mortality, safe and efficacious vaccines are needed that induce protective and long-lived immune responses. More than 120 vaccine candidates worldwide are in various preclinical and phase 1 to 3 clinical trials that include inactivated, live-attenuated, viral-vectored replicating and nonreplicating, protein- and peptide-based, and nucleic acid approaches. Vaccines will be necessary both for individual protection and for the safe development of population-level herd immunity. Public-private partnership collaborative efforts, such as the Accelerating COVID-19 Therapeutic Interventions and Vaccines mechanism, are key to rapidly identifying safe and effective vaccine candidates as quickly and efficiently as possible. In this article, we review the major vaccine approaches being taken and issues that must be resolved in the quest for vaccines to prevent coronavirus disease 2019. For this study, we scanned the PubMed database from 1963 to 2020 for all publications using the following search terms in various combinations: SARS, MERS, COVID-19, SARS-CoV-2, vaccine, clinical trial, coronavirus, pandemic, and vaccine development. We also did a Web search for these same terms. In addition, we examined the World Health Organization, Centers for Disease Control and Prevention, and other public health authority websites. We excluded abstracts and all articles that were not written in English.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- ade, antibody-dependent enhancement
- covid-19, coronavirus disease 2019
- il, interleukin
- mers, middle east respiratory syndrome
- mva, modified vaccinia virus ankara
- nih, national institutes of health
- rbd, receptor-binding domain
- s, spike
- sars, severe acute respiratory syndrome
- sars-cov, sars coronavirus
- tlr, toll-like receptor
- vlp, virus-like particle
- who, world health organization
Collapse
|
33
|
Lundstrom K. Coronavirus pandemic: treatment and future prevention. Future Microbiol 2020; 15:1507-1521. [PMID: 33140657 PMCID: PMC7675013 DOI: 10.2217/fmb-2020-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid spread of SARS-CoV-2 leading to the COVID-19 pandemic with more than 400,000 deaths worldwide and the global economy shut down has substantially accelerated the research and development of novel and efficient COVID-19 antiviral drugs and vaccines. In the short term, antiviral and other drugs have been subjected to repurposing against COVID-19 demonstrating some success, but some excessively hasty conclusions drawn from significantly suboptimal clinical evaluations have provided false hope. On the other hand, more than 300 potential therapies and at least 150 vaccine studies are in progress at various stages of preclinical or clinical research. The aim here is to provide a timely update of the development, which, due to the intense activities, moves forward with unprecedented speed.
Collapse
|
34
|
Zhang N, Shang J, Li C, Zhou K, Du L. An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Expert Rev Vaccines 2020; 19:817-829. [PMID: 32842811 DOI: 10.1080/14760584.2020.1813574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) causes high mortality in humans. No vaccines are approved for use in humans; therefore, a consistent effort to develop safe and effective MERS vaccines is needed. AREAS COVERED This review describes the structure of MERS-CoV and the function of its proteins, summarizes MERS vaccine candidates under preclinical study (based on spike and non-spike structural proteins, inactivated virus, and live-attenuated virus), and highlights potential problems that could prevent these vaccines entering clinical trials. It provides guidance for the development of safe and effective MERS-CoV vaccines. EXPERT OPINION Although many MERS-CoV vaccines have been developed, most remain at the preclinical stage. Some vaccines demonstrate immunogenicity and efficacy in animal models, while others have potential adverse effects or low efficacy against high-dose or divergent virus strains. Novel strategies are needed to design safe and effective MERS vaccines to induce broad-spectrum immune responses and improve protective efficacy against multiple strains of MERS-CoV and MERS-like coronaviruses with pandemic potential. More funds should be invested to move vaccine candidates into human clinical trials.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN, USA
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Kehui Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center , New York, NY, USA
| |
Collapse
|
35
|
Li W, Schäfer A, Kulkarni SS, Liu X, Martinez DR, Chen C, Sun Z, Leist SR, Drelich A, Zhang L, Ura ML, Berezuk A, Chittori S, Leopold K, Mannar D, Srivastava SS, Zhu X, Peterson EC, Tseng CT, Mellors JW, Falzarano D, Subramaniam S, Baric RS, Dimitrov DS. High Potency of a Bivalent Human V H Domain in SARS-CoV-2 Animal Models. Cell 2020; 183:429-441.e16. [PMID: 32941803 PMCID: PMC7473018 DOI: 10.1016/j.cell.2020.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Swarali S Kulkarni
- Vaccine and Infectious Disease Organization-International Vaccine Centre, and the Department of Veterinary Microbiology, University of Saskatchewan, 117 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, 301 University Blvd., Galveston, TX 77550, USA
| | - Liyong Zhang
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Marcin L Ura
- Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA
| | - Alison Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sagar Chittori
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Karoline Leopold
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - Chien-Te Tseng
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, 301 University Blvd., Galveston, TX 77550, USA
| | - John W Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA; Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization-International Vaccine Centre, and the Department of Veterinary Microbiology, University of Saskatchewan, 117 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA; Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA.
| |
Collapse
|
36
|
Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F, Paul A, Shahriar A, Tareq AM, Emon NU, Chakraborty S, Shil S, Mily SJ, Ben Hadda T, Almalki FA, Emran TB. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med 2020; 124:103967. [PMID: 32828069 PMCID: PMC7423576 DOI: 10.1016/j.compbiomed.2020.103967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
AIMS With a large number of fatalities, coronavirus disease-2019 (COVID-19) has greatly affected human health worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19. The World Health Organization has declared a global pandemic of this contagious disease. Researchers across the world are collaborating in a quest for remedies to combat this deadly virus. It has recently been demonstrated that the spike glycoprotein (SGP) of SARS-CoV-2 is the mediator by which the virus enters host cells. MAIN METHODS Our group comprehensibly analyzed the SGP of SARS-CoV-2 through multiple sequence analysis and a phylogenetic analysis. We predicted the strongest immunogenic epitopes of the SGP for both B cells and T cells. KEY FINDINGS We focused on predicting peptides that would bind major histocompatibility complex class I. Two optimal epitopes were identified, WTAGAAAYY and GAAAYYVGY. They interact with the HLA-B*15:01 allele, which was further validated by molecular docking simulation. This study also found that the selected epitopes are able to be recognized in a large percentage of the world's population. Furthermore, we predicted CD4+ T-cell epitopes and B-cell epitopes. SIGNIFICANCE Our study provides a strong basis for designing vaccine candidates against SARS-CoV-2. However, laboratory work is required to validate our theoretical results, which would lay the foundation for the appropriate vaccine manufacturing and testing processes.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Computational Biology
- Coronavirus Infections/epidemiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- HLA-B15 Antigen/chemistry
- HLA-B15 Antigen/metabolism
- HLA-DRB1 Chains/chemistry
- HLA-DRB1 Chains/metabolism
- Humans
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Nusrat Jahan Mimi
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan, 90245, Indonesia
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Sajal Chakraborty
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sagar Shil
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Sabrina Jahan Mily
- Department of Gynaecology and Obstetrics, Banshkhali Upazila Health Complex, Jaldi Union, Chittagong, 4390, Bangladesh
| | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, University Mohammed the First, BP 524, 60000, Oujda, Morocco; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia.
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, 21955, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
37
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
38
|
Tong PBV, Lin LY, Tran TH. Coronaviruses pandemics: Can neutralizing antibodies help? Life Sci 2020; 255:117836. [PMID: 32450171 PMCID: PMC7243778 DOI: 10.1016/j.lfs.2020.117836] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
For the first time in Homo sapiens history, possibly, most of human activities is stopped by coronavirus disease 2019 (COVID-19). Nearly eight billion people of this world are facing a great challenge, maybe not "to be or not to be" yet, but unpredictable. What happens to other major pandemics in the past, and how human beings went through these hurdles? The human body is equipped with the immune system that can recognize, respond and fight against pathogens such as viruses. Following the innate response, immune system processes the adaptive response by which each pathogen is encoded and recorded in memory system. The humoral reaction containing cytokines and antibodies is expected to activate when the pathogens come back. Exploiting this nature of body protection, neutralizing antibodies have been investigated. Learning from past, in parallel to SARS-CoV-2, other coronaviruses SARS-CoV and MERS-CoV who caused previous pandemics, are recalled in this review. We here propose insights of origin and characteristics and perspective for the future of antibodies development.
Collapse
Affiliation(s)
- Phuoc-Bao-Viet Tong
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Li-Yun Lin
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
39
|
Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine 2020; 38:5742-5746. [PMID: 32684497 PMCID: PMC7837099 DOI: 10.1016/j.vaccine.2020.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in virus-like nanoparticles against Middle East respiratory syndrome-related coronavirus (MERS-CoV) can initiate vaccine production faster for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), while ensuring the safety, easy administration, and long-term effects. Patients with this viral pathogen suffer from excess mortality. MERS-CoV can spread through bioaerosol transmission from animal or human sources. The appearance of an outbreak in South Korea sparked off a strong urge to design strategies for developing an effective vaccine since the emergence of MERS-CoV in 2012. Well unfortunately, this is an important fact in virus risk management. The studies showed that virus-like nanoparticles (VLPs) could be effective in its goal of stopping the symptoms of MERS-CoV infection. Besides, due to the genetic similarities in the DNA sequencing of SARS-CoV-2 with MERS-CoV and the first identified severe acute respiratory syndrome (SARS-CoV) in China since 2002/2003, strategic approaches could be used to manage SARS-CoV 2. Gathering the vital piece of information obtained so far could lead to a breakthrough in the development of an effective vaccine against SARS-CoV-2, which is prioritized and focussed by the World Health Organization (WHO). This review focuses on the virus-like nanoparticle that got successful results in animal models of MERS-CoV.
Collapse
|
40
|
Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF. A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell 2020; 182:722-733.e11. [PMID: 32645327 PMCID: PMC7321023 DOI: 10.1016/j.cell.2020.06.035] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.
Collapse
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan 571199, China.
| | - Tianyi Zheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan 571199, China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lili Xu
- Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100032, China
| | - Enqi Huang
- Anhui Zhifei Longcom Biopharmaceutical Co. Ltd, Anhui 230088, China
| | - Yaling An
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingjie Cheng
- Anhui Zhifei Longcom Biopharmaceutical Co. Ltd, Anhui 230088, China
| | - Shihua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mi Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijun Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Department of Microbiology-Infectiology and Immunology, Laval University, Quebec City, QC G1V 4G2, Canada
| | - Jianxun Qi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Qin
- Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100032, China.
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| |
Collapse
|
41
|
Lee P, Kim DJ. Newly Emerging Human Coronaviruses: Animal Models and Vaccine Research for SARS, MERS, and COVID-19. Immune Netw 2020; 20:e28. [PMID: 32895615 PMCID: PMC7458800 DOI: 10.4110/in.2020.20.e28] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
The recent emergence of the novel coronavirus (CoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a global threat to human health and economy. As of June 26, 2020, over 9.4 million cases of infection, including 482,730 deaths, had been confirmed across 216 countries. To combat a devastating virus pandemic, numerous studies on vaccine development are urgently being accelerated. In this review article, we take a brief look at the characteristics of SARS-CoV-2 in comparison to SARS and Middle East respiratory syndrome (MERS)-CoVs and discuss recent approaches to coronavirus disease-2019 (COVID-19) vaccine development.
Collapse
Affiliation(s)
- Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- University of Science and Technology (UST), Daejeon 34113, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
42
|
Otto DP, de Villiers MM. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Molecules 2020; 25:E3415. [PMID: 32731428 PMCID: PMC7435837 DOI: 10.3390/molecules25153415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
In 2020, the world is being ravaged by the coronavirus, SARS-CoV-2, which causes a severe respiratory disease, Covid-19. Hundreds of thousands of people have succumbed to the disease. Efforts at curing the disease are aimed at finding a vaccine and/or developing antiviral drugs. Despite these efforts, the WHO warned that the virus might never be eradicated. Countries around the world have instated non-pharmaceutical interventions such as social distancing and wearing of masks in public to curb the spreading of the disease. Antiviral polysaccharides provide the ideal opportunity to combat the pathogen via pharmacotherapeutic applications. However, a layer-by-layer nanocoating approach is also envisioned to coat surfaces to which humans are exposed that could harbor pathogenic coronaviruses. By coating masks, clothing, and work surfaces in wet markets among others, these antiviral polysaccharides can ensure passive prevention of the spreading of the virus. It poses a so-called "eradicate-in-place" measure against the virus. Antiviral polysaccharides also provide a green chemistry pathway to virus eradication since these molecules are primarily of biological origin and can be modified by minimal synthetic approaches. They are biocompatible as well as biodegradable. This surface passivation approach could provide a powerful measure against the spreading of coronaviruses.
Collapse
Affiliation(s)
- Daniel P. Otto
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Analytical Services, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Melgardt M. de Villiers
- Division of Pharmaceutical Sciences–Drug Delivery, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA;
| |
Collapse
|
43
|
Vatansever EC, Yang K, Kratch KC, Drelich A, Cho CC, Mellott DM, Xu S, Tseng CTK, Liu WR. Bepridil is potent against SARS-CoV-2 In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511370 PMCID: PMC7263498 DOI: 10.1101/2020.05.23.112235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Guided by a computational docking analysis, about 30 FDA/EMA-approved small molecule medicines were characterized on their inhibition of the SARS-CoV-2 main protease (MPro). Of these tested small molecule medicines, six displayed an IC50 value in inhibiting MPro below 100 μM. Three medicines pimozide, ebastine, and bepridil are basic small molecules. Their uses in COVID-19 patients potentiate dual functions by both raising endosomal pH to slow SARS-CoV-2 entry into the human cell host and inhibiting MPro in infected cells. A live virus-based microneutralization assay showed that bepridil inhibited cytopathogenic effect induced by SARS-CoV-2 in Vero E6 cells completely at and dose-dependently below 5 μM and in A549 cells completely at and dose-dependently below 6.25 μM. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.
Collapse
Affiliation(s)
- Erol C Vatansever
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kai Yang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kaci C Kratch
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chia-Chuan Cho
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
44
|
Mostafa A, Kandeil A, Shehata M, El Shesheny R, Samy AM, Kayali G, Ali MA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): State of the Science. Microorganisms 2020; 8:E991. [PMID: 32630780 PMCID: PMC7409282 DOI: 10.3390/microorganisms8070991] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses belong to a large family of viruses that can cause disease outbreaks ranging from the common cold to acute respiratory syndrome. Since 2003, three zoonotic members of this family evolved to cross species barriers infecting humans and resulting in relatively high case fatality rates (CFR). Compared to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV, CFR = 10%) and pandemic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CFR = 6%), the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has scored the highest CFR (approximately 35%). In this review, we systematically summarize the current state of scientific knowledge about MERS-CoV, including virology and origin, epidemiology, zoonotic mode of transmission, and potential therapeutic or prophylactic intervention modalities.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| | - Rabeh El Shesheny
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Human Link, Baabda 1109, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo 12622, Egypt; (A.M.); (A.K.); (M.S.); (R.E.S.)
| |
Collapse
|
45
|
Conte C, Sogni F, Affanni P, Veronesi L, Argentiero A, Esposito S. Vaccines against Coronaviruses: The State of the Art. Vaccines (Basel) 2020; 8:E309. [PMID: 32560340 PMCID: PMC7350246 DOI: 10.3390/vaccines8020309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The emerging epidemic caused by the new coronavirus SARS-CoV-2 represents the most important socio-health threat of the 21st century. The high contagiousness of the virus, the strong impact on the health system of the various countries and the absence to date of treatments able to improve the prognosis of the disease make the introduction of a vaccine indispensable, even though there are currently no approved human coronavirus vaccines. The aim of the study is to carry out a review of the medical literature concerning vaccine candidates for the main coronaviruses responsible for human epidemics, including recent advances in the development of a vaccine against COVID-19. This extensive review carried out on the vaccine candidates of the main epidemic coronaviruses of the past has shown that the studies in animal models suggest a high efficacy of potential vaccines in providing protection against viral challenges. Similar human studies have not yet been carried out, as the main trials are aimed at assessing mainly vaccine safety and immunogenicity. Whereas the severe acute respiratory syndrome (SARS-CoV) epidemic ended almost two decades ago and the Middle East respiratory syndrome (MERS-CoV) epidemic is now better controlled, as it is less contagious due to the high lethality of the virus, the current SARS-CoV-2 pandemic represents a problem that is certainly more compelling, which pushes us to accelerate the studies not only for the production of vaccines but also for innovative pharmacological treatments. SARS-CoV-2 vaccines might come too late to affect the first wave of this pandemic, but they might be useful if additional subsequent waves occur or in a post-pandemic perspective in which the virus continues to circulate as a seasonal virus.
Collapse
Affiliation(s)
- Cristiano Conte
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Francesco Sogni
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Paola Affanni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.A.); (L.V.)
| | - Licia Veronesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.A.); (L.V.)
| | - Alberto Argentiero
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| |
Collapse
|
46
|
Li W, Drelich A, Martinez DR, Gralinski L, Chen C, Sun Z, Schäfer A, Leist SR, Liu X, Zhelev D, Zhang L, Peterson EC, Conard A, Mellors JW, Tseng CT, Baric RS, Dimitrov DS. Rapid selection of a human monoclonal antibody that potently neutralizes SARS-CoV-2 in two animal models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511413 DOI: 10.1101/2020.05.13.093088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effective therapies are urgently needed for the SARS-CoV-2/COVID19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from eight large phage-displayed Fab, scFv and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. One high affinity mAb, IgG1 ab1, specifically neutralized replication competent SARS-CoV-2 with exceptional potency as measured by two different assays. There was no enhancement of pseudovirus infection in cells expressing Fcγ receptors at any concentration. It competed with human angiotensin-converting enzyme 2 (hACE2) for binding to RBD suggesting a competitive mechanism of virus neutralization. IgG1 ab1 potently neutralized mouse ACE2 adapted SARS-CoV-2 in wild type BALB/c mice and native virus in hACE2 expressing transgenic mice. The ab1 sequence has relatively low number of somatic mutations indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 does not have developability liabilities, and thus has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 days) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.
Collapse
|
47
|
Abstract
This review provides an overview regarding the main aspects of candidate COVID-19 vaccines and pathophysiology of disease. The types of biotechnological candidate vaccines to be developed against COVID-19, their degree of protection and the pathophysiological mechanism of the disease were analyzed in this review article. The literature data on which cruxes for the development of biotechnological candidate vaccines to be wended are based was researched. Data that could give reference to various biotechnological candidate vaccines were reviewed. For this purpose, up-to-date literature data was utilized. The ways to succeed in the development of a vaccine requiring a technological infrastructure are to synthesize the data obtained from long term trials and to put them into practice subsequently. The vaccines to be developed by means of recombinant DNA technology will be a source of inspiration to people for further studies. After a rapid process of vaccine development, the use of COVID-19 vaccine can be mainstreamed among people to prevent the disease. As a result of these practices, the evaluation of which vaccine will be more safe, reliable and effective will be performed after phase studies.
Collapse
|
48
|
Tse LV, Meganck RM, Graham RL, Baric RS. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Front Microbiol 2020; 11:658. [PMID: 32390971 PMCID: PMC7193113 DOI: 10.3389/fmicb.2020.00658] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging coronaviruses (CoV) are constant global public health threats to society. Multiple ongoing clinical trials for vaccines and antivirals against CoVs showcase the availability of medical interventions to both prevent and treat the future emergence of highly pathogenic CoVs in human. However, given the diverse nature of CoVs and our close interactions with wild, domestic and companion animals, the next epidemic zoonotic CoV could resist the existing vaccines and antivirals developed, which are primarily focused on Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS CoV). In late 2019, the novel CoV (SARS-CoV-2) emerged in Wuhan, China, causing global public health concern. In this review, we will summarize the key advancements of current vaccines and antivirals against SARS-CoV and MERS-CoV as well as discuss the challenge and opportunity in the current SARS-CoV-2 crisis. At the end, we advocate the development of a "plug-and-play" platform technologies that could allow quick manufacturing and administration of broad-spectrum countermeasures in an outbreak setting. We will discuss the potential of AAV-based gene therapy technology for in vivo therapeutic antibody delivery to combat SARS-CoV-2 outbreak and the future emergence of severe CoVs.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita M. Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
49
|
Zolfaghari Emameh R, Nosrati H, Taheri RA. Combination of Biodata Mining and Computational Modelling in Identification and Characterization of ORF1ab Polyprotein of SARS-CoV-2 Isolated from Oronasopharynx of an Iranian Patient. Biol Proced Online 2020; 22:8. [PMID: 32336957 PMCID: PMC7171442 DOI: 10.1186/s12575-020-00121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an emerging zoonotic viral infection, which was started in Wuhan, China, in December 2019 and transmitted to other countries worldwide as a pandemic outbreak. Iran is one of the top ranked countries in the tables of COVID-19-infected and -mortality cases that make the Iranian patients as the potential targets for diversity of studies including epidemiology, biomedical, biodata, and viral proteins computational modelling studies. Results In this study, we applied bioinformatic biodata mining methods to detect CDS and protein sequences of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Then through the computational modelling and antigenicity prediction approaches, the identified polyprotein sequence was analyzed. The results revealed that the identified ORF1ab polyprotein belongs to a part of nonstructural protein 1 (nsp1) with the high antigenicity residues in a glycine-proline or hydrophobic amino acid rich domain. Conclusions The results revealed that nsp1 as a virulence factor and crucial agent in spreading of the COVID-19 among the society can be a potential target for the future epidemiology, drug, and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- 1Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- 2Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ramezan Ali Taheri
- 3Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Wang N, Shang J, Jiang S, Du L. Subunit Vaccines Against Emerging Pathogenic Human Coronaviruses. Front Microbiol 2020; 11:298. [PMID: 32265848 PMCID: PMC7105881 DOI: 10.3389/fmicb.2020.00298] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Seven coronaviruses (CoVs) have been isolated from humans so far. Among them, three emerging pathogenic CoVs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and a newly identified CoV (2019-nCoV), once caused or continue to cause severe infections in humans, posing significant threats to global public health. SARS-CoV infection in humans (with about 10% case fatality rate) was first reported from China in 2002, while MERS-CoV infection in humans (with about 34.4% case fatality rate) was first reported from Saudi Arabia in June 2012. 2019-nCoV was first reported from China in December 2019, and is currently infecting more than 70000 people (with about 2.7% case fatality rate). Both SARS-CoV and MERS-CoV are zoonotic viruses, using bats as their natural reservoirs, and then transmitting through intermediate hosts, leading to human infections. Nevertheless, the intermediate host for 2019-nCoV is still under investigation and the vaccines against this new CoV have not been available. Although a variety of vaccines have been developed against infections of SARS-CoV and MERS-CoV, none of them has been approved for use in humans. In this review, we have described the structure and function of key proteins of emerging human CoVs, overviewed the current vaccine types to be developed against SARS-CoV and MERS-CoV, and summarized recent advances in subunit vaccines against these two pathogenic human CoVs. These subunit vaccines are introduced on the basis of full-length spike (S) protein, receptor-binding domain (RBD), non-RBD S protein fragments, and non-S structural proteins, and the potential factors affecting these subunit vaccines are also illustrated. Overall, this review will be helpful for rapid design and development of vaccines against the new 2019-nCoV and any future CoVs with pandemic potential. This review was written for the topic of Antivirals for Emerging Viruses: Vaccines and Therapeutics in the Virology section of Frontiers in Microbiology.
Collapse
Affiliation(s)
- Ning Wang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|