1
|
Govindan G, Harini P, Alphonse V, Parani M. From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance. Mol Biol Rep 2024; 51:598. [PMID: 38683409 DOI: 10.1007/s11033-024-09539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Salinity stress is a critical challenge in crop production and requires innovative strategies to enhance the salt tolerance of plants. Insights from mangrove species, which are renowned for their adaptability to high-salinity environments, provides valuable genetic targets and resources for improving crops. A significant hurdle in salinity stress is the excessive uptake of sodium ions (Na+) by plant roots, causing disruptions in cellular balance, nutrient deficiencies, and hampered growth. Specific ion transporters and channels play crucial roles in maintaining a low Na+/K+ ratio in root cells which is pivotal for salt tolerance. The family of high-affinity potassium transporters, recently characterized in Avicennia officinalis, contributes to K+ homeostasis in transgenic Arabidopsis plants even under high-salt conditions. The salt overly sensitive pathway and genes related to vacuolar-type H+-ATPases hold promise for expelling cytosolic Na+ and sequestering Na+ in transgenic plants, respectively. Aquaporins contribute to mangroves' adaptation to saline environments by regulating water uptake, transpiration, and osmotic balance. Antioxidant enzymes mitigate oxidative damage, whereas genes regulating osmolytes, such as glycine betaine and proline, provide osmoprotection. Mangroves exhibit increased expression of stress-responsive transcription factors such as MYB, NAC, and CBFs under high salinity. Moreover, genes involved in various metabolic pathways, including jasmonate synthesis, triterpenoid production, and protein stability under salt stress, have been identified. This review highlights the potential of mangrove genes to enhance salt tolerance of crops. Further research is imperative to fully comprehend and apply these genes to crop breeding to improve salinity resilience.
Collapse
Affiliation(s)
- Ganesan Govindan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India
| | - Prakash Harini
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India
| | - Vinoth Alphonse
- Department of Botany, St. Xavier's College (Autonomous), Palayamkottai, TN, 627 002, India
| | - Madasamy Parani
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India.
| |
Collapse
|
2
|
Guo Z, Ma D, Li J, Wei M, Zhang L, Zhou L, Zhou X, He S, Wang L, Shen Y, Li QQ, Zheng HL. Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. PLANT, CELL & ENVIRONMENT 2022; 45:1698-1718. [PMID: 35141923 DOI: 10.1111/pce.14286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 05/26/2023]
Abstract
Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lichun Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaoxuan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, USA
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
The interaction effects of NaCl stress and sodium nitroprusside on growth, physiological and biochemical responses of Calendula officinalis L. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Hannachi S, Steppe K, Eloudi M, Mechi L, Bahrini I, Van Labeke MC. Salt Stress Induced Changes in Photosynthesis and Metabolic Profiles of One Tolerant ('Bonica') and One Sensitive ('Black Beauty') Eggplant Cultivars ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050590. [PMID: 35270060 PMCID: PMC8912544 DOI: 10.3390/plants11050590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 05/05/2023]
Abstract
The impact of salinity on the physiological and biochemical parameters of tolerant (‘Bonica’) and susceptible (‘Black Beauty’) eggplant varieties (Solanum melongena L.) was determined. The results revealed that the increase in salinity contributes to a significant decline in net photosynthesis (An) in both varieties; however, at the highest salt concentration (160 mM NaCl), the decrease in photorespiration (Rl) was less pronounced in the tolerant cultivar ‘Bonica’. Stomatal conductance (gs) was significantly reduced in ‘Black Beauty’ following exposure to 40 mM NaCl. However, gs of ‘Bonica’ was only substantially reduced at the highest level of NaCl (160 mM). In addition, a significant decrease in Chla, Chlb, total Chl, Chla/b and carotenoids (p > 0.05) was found in ‘Black Beauty’, and soluble carbohydrates accumulation and electrolyte leakage (EL) were more pronounced in ‘Black Beauty’ than in ‘Bonica’. The total phenols increase in ‘Bonica’ was 65% higher than in ‘Black Beauty’. In ‘Bonica’, the roots displayed the highest enzyme scavenging activity compared to the leaves. Salt stress contributes to a significant augmentation of root catalase and guaiacol peroxidase activities. In ‘Bonica’, the Na concentration was higher in roots than in leaves, whereas in ‘Black Beauty‘, the leaves accumulated more Na. Salt stress significantly boosted the Na/K ratio in ‘Black Beauty’, while no significant change occurred in ‘Bonica’. ACC deaminase activity was significantly higher in ‘Bonica’ than in ‘Black Beauty’.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
- Correspondence: ; Tel.: +966-54-380-76-37
| | - Kathy Steppe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
| | - Mabrouka Eloudi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 8145, Saudi Arabia; (M.E.); (L.M.)
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 8145, Saudi Arabia; (M.E.); (L.M.)
| | - Insaf Bahrini
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
| | - Marie-Christine Van Labeke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, 9000 Ghent, Belgium; (K.S.); (M.-C.V.L.)
| |
Collapse
|
5
|
The Absence of the AtSYT1 Function Elevates the Adverse Effect of Salt Stress on Photosynthesis in Arabidopsis. Int J Mol Sci 2022; 23:ijms23031751. [PMID: 35163669 PMCID: PMC8836111 DOI: 10.3390/ijms23031751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m−2 s−1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.
Collapse
|
6
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Elnaggar A, Mosa KA, Ramamoorthy K, El-Keblawy A, Navarro T, Soliman SSM. De novo transcriptome sequencing, assembly, and gene expression profiling of a salt-stressed halophyte (Salsola drummondii) from a saline habitat. PHYSIOLOGIA PLANTARUM 2021; 173:1695-1714. [PMID: 34741316 DOI: 10.1111/ppl.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Salsola drummondii is a perennial habitat-indifferent halophyte growing in saline and nonsaline habitats of the Arabian hyperarid deserts. It offers an invaluable opportunity to examine the molecular mechanisms of salt tolerance. The present study was conducted to elucidate these mechanisms through transcriptome profiling of seedlings grown from seeds collected in a saline habitat. The Illumina Hiseq 2500 platform was employed to sequence cDNA libraries prepared from shoots and roots of nonsaline-treated plants (controls) and plants treated with 1200 mM NaCl. Transcriptomic comparison between salt-treated and control samples resulted in 17,363 differentially expressed genes (DEGs), including 12,000 upregulated genes (7870 in roots, 4130 in shoots) and 5363 downregulated genes (4258 in roots and 1105 in shoots). The majority of identified DEGs are known to be involved in transcription regulation (79), signal transduction (82), defense metabolism (101), transportation (410), cell wall metabolism (27), regulatory processes (392), respiration (85), chaperoning (9), and ubiquitination (98) during salt tolerance. This study identified potential genes associated with the salt tolerance of S. drummondii and demonstrated that this tolerance may depend on the induction of certain genes in shoot and root tissues. These gene expressions were validated using reverse-transcription quantitative PCR, the results of which were consistent with transcriptomics results. To the best of our knowledge, this is the first study providing genetic information on salt tolerance mechanisms in S. drummondii.
Collapse
Affiliation(s)
- Attiat Elnaggar
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Kareem A Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kalidoss Ramamoorthy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Department of Biology, Faculty of Science, Al-Arish University, Egypt
| | - Teresa Navarro
- Departmento de Botanica y Fisiologia Vegetal, Universidad de Málaga, Málaga, Spain
| | - Sameh S M Soliman
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
8
|
Azri W, Jardak R, Cosette P, Guillou C, Riahi J, Mliki A. Physiological and proteomic analyses of Tunisian local grapevine (Vitis vinifera) cultivar Razegui in response to drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:25-39. [PMID: 34794542 DOI: 10.1071/fp21026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Drought is one of the major environmental constraints threatening viticulture worldwide. Therefore, it is critical to reveal the molecular mechanisms underlying grapevine (Vitis vinifera L.) drought stress tolerance useful to select new species with higher tolerance/resilience potentials. Drought-tolerant Tunisian local grapevine cultivar Razegui was exposed to water deficit for 16days. Subsequent proteomic analysis revealed 49 differentially accumulated proteins in leaves harvested on the drought-stressed vines. These proteins were mainly involved in photosynthesis, stress defence, energy and carbohydrate metabolism, protein synthesis/turnover and amino acid metabolism. Physiological analysis revealed that reduction of photosynthesis under drought stress was attributed to the downregulation of the light-dependent reactions, Calvin cycle and key enzymes of the photorespiration pathway. The accumulation of proteins involved in energy and carbohydrate metabolism indicate enhanced need of energy during active stress acclimation. Accumulation of protein amino acids seems to play a protective role under drought stress due to their osmoprotectant and ROS scavenging potential. Reduced protein synthesis and turnover help plants preserving energy to fight drought stress. Proteins related to stress defence might scavenge ROS and transmit the ROS signal as an oxidative signal transducer in drought-stress signalling. All of these original results represent valuable information towards improving drought tolerance of grapevine and promoting sustainable viticulture under climate change conditions.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Rahma Jardak
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Pascal Cosette
- Laboratory of Polymers Biopolymers Surfaces, UMR 6270 CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France; and Proteomic Platform PISSARO, University of Rouen, 76821 Mont-Saint-Aigan, France
| | - Clément Guillou
- Laboratory of Polymers Biopolymers Surfaces, UMR 6270 CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France; and Proteomic Platform PISSARO, University of Rouen, 76821 Mont-Saint-Aigan, France
| | - Jawaher Riahi
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
9
|
Fei J, Wang YS, Cheng H, Su YB. An efficient protein extraction method applied to mangrove plant Kandelia obovata leaves for proteomic analysis. PLANT METHODS 2021; 17:100. [PMID: 34587982 PMCID: PMC8482605 DOI: 10.1186/s13007-021-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mangroves plants, an important wetland system in the intertidal shores, play a vital role in estuarine ecosystems. However, there is a lack of a very effective method for extracting protein from mangrove plants for proteomic analysis. Here, we evaluated the efficiency of three different protein extraction methods for proteomic analysis of total proteins obtained from mangrove plant Kandelia obovata leaves. RESULTS The protein yield of the phenol-based (Phe-B) method (4.47 mg/g) was significantly higher than the yields of the traditional phenol (Phe) method (2.38 mg/g) and trichloroacetic acid-acetone (TCA-A) method (1.15 mg/g). The Phe-B method produced better two-dimensional electrophoresis (2-DE) protein patterns with high reproducibility regarding the number, abundance and coverage of protein spots. The 2-DE gels showed that 847, 650 and 213 unique protein spots were separated from the total K. obovata leaf proteins extracted by the Phe-B, Phe and TCA-A methods, respectively. Fourteen pairs of protein spots were randomly selected from 2-DE gels of Phe- and Phe-B- extracted proteins for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) technique, and the results of three pairs were consistent. Further, oxygen evolving enhancer protein and elongation factor Tu could be observed in the 2-DE gels of Phe and Phe-B methods, but could only be detected in the results of the Phe-B methods, showing that Phe-B method might be the optimized choice for proteomic analysis. CONCLUSION Our data provides an improved Phe-B method for protein extraction of K. obovata and other mangrove plant tissues which is rich in polysaccharides and polyphenols. This study might be expected to be used for proteomic analysis in other recalcitrant plants.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Bin Su
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
10
|
Na 2CO 3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:271-288. [PMID: 32683046 PMCID: PMC7801222 DOI: 10.1016/j.gpb.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/08/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022]
Abstract
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phosphoproteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloroplasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction, and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of photosystem (PS) II, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, which help to improve our understanding of the Na2CO3-responsive mechanisms in halophytes.
Collapse
|
11
|
Xing J, Pan D, Wang L, Tan F, Chen W. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress. ACTA ACUST UNITED AC 2019; 43:314-325. [PMID: 31768104 PMCID: PMC6823913 DOI: 10.3906/biy-1906-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kandelia candel is one of the mangrove species that are most resistant to environmental stress. As a typical nonsalt-secreting mangrove plant, K. candel is an ideal biological material to analyze the molecular mechanism of salt tolerance in woody plants. In this study, changes in protein abundance and expression profile in K. candel roots under high-salinity stress of 600 mmol L-1 NaCl were analyzed using isobaric tags for relative and absolute quantification (iTRAQ) assay. Moreover, the physiological parameters associated with metabolic pathways in which the differentially abundant proteins (DAPs) are involved were determined. A total of 5577 proteins were identified by iTRAQ analysis of the K. candel root proteins, of which 227 were DAPs with a fold change ratio >1.2 or a fold change ratio <0.83 and a P-value <0.05. A total of 227 DAPs consisting of 110 up-regulated and 117 down-regulated proteins were identified. Our Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the DAPs were primarily involved in biological processes including carbohydrate and energy metabolisms, stress response and defense, cell wall structure, and secondary metabolism. The results of the physiological parameters showed that their profile changes were consistent with those of the proteome analysis. The results of the proteome and physiological parameters showed that K. candel roots could resist high-salinity stress by maintaining a normal Embden-Meyerhof-Parnas and tricarboxylic acid (EMP-TCA) pathway, increasing the activities of various antioxidant enzymes and antioxidant contents, stabilizing the cell wall structure, and accumulating secondary metabolites such as triterpenoids.
Collapse
Affiliation(s)
- Jianhong Xing
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China.,College of Resources and Chemical Engineering, Sanming University, Sanming, Fujian China
| | - Dezhuo Pan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Lingxia Wang
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia China
| | - Fanglin Tan
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian China
| | - Wei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| |
Collapse
|
12
|
Kholghi M, Toorchi M, Bandehagh A, Ostendorp A, Ostendorp S, Hanhart P, Kehr J. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:227-236. [PMID: 30611781 DOI: 10.1016/j.bbapap.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.
Collapse
Affiliation(s)
- Maryam Kholghi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahmoud Toorchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Bandehagh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anna Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Steffen Ostendorp
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Patrizia Hanhart
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Julia Kehr
- Molecular Plant Genetics, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany.
| |
Collapse
|
13
|
Chen S. Proteomics reveal both photochemical and biochemical limitations involved in salt-induced suppression of photosynthesis in trees. TREE PHYSIOLOGY 2018; 38:1599-1604. [PMID: 30476264 DOI: 10.1093/treephys/tpy129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University (Box 162), Beijing, People's Republic of China
| |
Collapse
|
14
|
Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves. J Proteome Res 2018; 18:191-203. [PMID: 30359026 DOI: 10.1021/acs.jproteome.8b00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Hao Sun
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Xiao Li
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
15
|
Li LJ, Lu XC, Ma HY, Lyu DG. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. JOURNAL OF PLANT RESEARCH 2018; 131:865-878. [PMID: 29855747 DOI: 10.1007/s10265-018-1045-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/10/2018] [Indexed: 05/16/2023]
Abstract
Soil temperature is known to affect plant growth and productivity. In this study we found that low root-zone temperature (LRT) inhibited the growth of apple (Malus baccata Borkh.) seedlings. To elucidate the molecular mechanism of LRT response, we performed comparative proteome analysis of the apple roots under LRT for 6 days. Total proteins of roots were extracted and separated by two-dimensional gel electrophoresis (2-DE) and 29 differentially accumulated proteins were successfully identified by MALDI-TOF/TOF mass spectrometry. They were involved in protein transport/processing/degradation (21%), glycometabolism (20%), response to stress (14%), oxidoreductase activity (14%), protein binding (7%), RNA metabolism (7%), amino acid biosynthesis (3%) and others (14%). The results revealed that LRT inhibited glycometabolism and RNA metabolism. The up-regulated proteins which were associated with oxidoreductase activity, protein metabolism and defense response, might be involved in protection mechanisms against LRT stress in the apple seedlings. Subsequently, 8 proteins were selected for the mRNA quantification analysis, and we found 6 of them were consistently regulated between protein and mRNA levels. In addition, the enzyme activities in ascorbate-glutathione (AsA-GSH) cycle were determined, and APX activity was increased and GR activity was decreased under LRT, in consistent with the protein levels. This study provides new insights into the molecular mechanisms of M. baccata in responding to LRT.
Collapse
Affiliation(s)
- Li-Jie Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Chen Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huai-Yu Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| | - De-Guo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China.
| |
Collapse
|
16
|
Das P, Majumder AL. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct Integr Genomics 2018; 19:61-73. [PMID: 30046943 DOI: 10.1007/s10142-018-0628-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/04/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
The negative effects of soil salinity towards grape yield depend upon salt concentration, cultivar type, developmental stage, and rootstock. Thompson Seedless variety of grape plant is considered moderately sensitive to salinity when grown upon its own root stock. In recent epoch, identification of key genes responsive to salinity offers hope to generate salinity-tolerant crop plants by their overexpression through genetic manipulation. In the present report, salt responsive transcriptome analysis of Thompson Seedless grape variety was done to identify vital genes involved in salinity tolerance which could be used further to generate salt liberal grape plant or other crop plants. Transcriptome libraries for control and 150-mM-NaCl-treated grape leaves were sequenced on Illumina platform where 714 genes were found to be differentially expressed. Gene ontology analysis indicated that under salinity conditions, the genes involved in metabolic process were highly enriched. Keto Encyclopedia of Genes and Genomes analysis revealed that, among the top 22 enriched pathways for the salt stress upregulated genes, the carbohydrate metabolism, signal transduction, energy metabolism, amino acid metabolism, biosynthesis of secondary metabolite, and lipid metabolism pathways possessed the largest number of transcripts. Key salinity-induced genes were selected and validated through qRT-PCR analysis which was comparable to RNA-seq results. Real-time PCR analysis also revealed that after 24 days of salinity, the expression of most of the selected key genes was highest. These salinity-induced genes will be characterized further in a model plant and also in Vitis vinifera through transgenic approach to disclose their role towards salt tolerance.
Collapse
Affiliation(s)
- Priyanka Das
- Division of Plant Biology, Bose Institute, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
17
|
Li LQ, Liu L, Zhuo W, Chen Q, Hu S, Peng S, Wang XY, Lu YF, Lu LM. Physiological and quantitative proteomic analyses unraveling potassium deficiency stress response in alligator weed (Alternanthera philoxeroides L.) root. PLANT MOLECULAR BIOLOGY 2018; 97:265-278. [PMID: 29777486 DOI: 10.1007/s11103-018-0738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Physiological and iTRAQ based proteomic analysis provided new insights into potassium deficiency stress response in alligator weed root. Alligator weed (Alternanthera philoxeroides) has a strong ability to adapt to potassium deficiency (LK) stress. Proteomic changes in response to this stress are largely unknown in alligator weed. In this study, we investigated physiological and molecular mechanisms under LK using isobaric tags for relative and absolute quantitation to characterize proteome-level changes in this plant. First, root physiology, 2, 3, 5-Triphenyl-trazolium chloride (TTC) assay and peroxidase activity were significantly altered after 10 and 15 days of LK treatment. The comparative proteomic analysis suggested a total of 375 proteins were differential abundance proteins. The proteomic results were verified by western blot assays and quantitative real-time PCR. Correlation analysis of transcription and proteomics suggested protein processing in the endoplasmic reticulum, endocytosis, and spliceosome pathways were significantly enriched. The protein responsible for energy metabolism, signal sensing and transduction and protein degradation played crucial roles in this stress. Twelve ubiquitin pathway related proteins were identified in our study, among them 11 proteins were up-regulated. All protein ubiquitination of lysine using pan antibodies were also increased after LK treatment. Our study provide a valuable insights of molecular mechanism underlying LK stress response in alligator weed roots and afford a vital basis to further study potassium nutrition molecular breeding of other plant species.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhuo
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Peng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Shokri-Gharelo R, Noparvar PM. Molecular response of canola to salt stress: insights on tolerance mechanisms. PeerJ 2018; 6:e4822. [PMID: 29844974 PMCID: PMC5969047 DOI: 10.7717/peerj.4822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.
Collapse
Affiliation(s)
- Reza Shokri-Gharelo
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Pouya Motie Noparvar
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran.,Young Researchers and Elite Club, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
19
|
Carrera DÁ, Oddsson S, Grossmann J, Trachsel C, Streb S. Comparative Proteomic Analysis of Plant Acclimation to Six Different Long-Term Environmental Changes. PLANT & CELL PHYSIOLOGY 2018; 59:510-526. [PMID: 29300930 DOI: 10.1093/pcp/pcx206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Plants are constantly challenged in their natural environment by a range of changing conditions. We investigated the acclimation processes and adaptive plant responses to various long-term mild changes and compared them directly within one experimental set-up. Arabidopsis thaliana plants were grown in hydroponic culture for 10 d under controlled abiotic stress (15°C, 25°C, salt and osmotic) and in nutrient deficiency (nitrate and phosphate). Plant growth was monitored and proteomic experiments were performed. Resource allocation between tissues altered during the plants' response. The growth patterns and induced changes of the proteomes indicated that the underlying mechanisms of the adaptation processes are highly specific to the respective environmental condition. Our results indicated differential regulation of response to salt and osmotic treatment, while the proteins in the changed temperature regime showed an inverse, temperature-sensitive control. There was a high correlation of protein level between the nutrient-deficient treatments, but the enriched pathways varied greatly. The proteomic analysis also revealed new insights into the regulation of proteins specific to the shoot and the root. Our investigation revealed unique strategies of plant acclimation to the different applied treatments on a physiological and proteome level, and these strategies are quite distinct in tissues below and above ground.
Collapse
Affiliation(s)
- Dániel Á Carrera
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Sebastian Oddsson
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, CH-8057 Zürich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, CH-8057 Zürich, Switzerland
| | - Sebastian Streb
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
20
|
Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One 2017; 12:e0183615. [PMID: 28846722 PMCID: PMC5573290 DOI: 10.1371/journal.pone.0183615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Salt stress is becoming an increasing threat to global agriculture. In this study, physiological and proteomics analysis were performed using a salt-tolerant grass species, Leymus chinensis (L. chinensis). The aim of this study is to understand the potential mechanism of salt tolerance in L. chinensis that used for crop molecular breeding. A series of short-term (<48 h) NaCl treatments (0 ~ 700 mM) were conducted. Physiological data indicated that the root and leaves growth were inhibited, chlorophyll contents decreased, while hydraulic conductivity, proline, sugar and sucrose were accumulated under salt stress. For proteomic analysis, we obtained 274 differentially expressed proteins in response to NaCl treatments. GO analysis revealed that 44 out of 274 proteins are involved in the biosynthesis of amino acids and carbon metabolism. Our findings suggested that L. chinensis copes with salt stress by stimulating the activities of POD, SOD and CAT enzymes, speeding up the reactions of later steps of citrate cycle, and synthesis of proline and sugar. In agreement with our physiological data, proteomic analysis also showed that salt stress depress the expression of photosystem relevant proteins, Calvin cycle, and chloroplast biosynthesis.
Collapse
|
21
|
Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 2017; 7:1777. [PMID: 28496135 PMCID: PMC5431837 DOI: 10.1038/s41598-017-01940-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) may trigger tolerance against biotic/abiotic stresses and growth enhancement in plants. In this study, an endophytic bacterial strain from rapeseed was isolated to assess its role in enhancing plant growth and tolerance to abiotic stresses, as well as banded leaf and sheath blight disease in maize. Based on 16S rDNA and BIOLOG test analysis, the 330-2 strain was identified as Bacillus subtilis. The strain produced indole-3-acetic acid, siderophores, lytic enzymes and solubilized different sources of organic/inorganic phosphates and zinc. Furthermore, the strain strongly suppressed the in vitro growth of Rhizoctonia solani AG1-IA, Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus heterostrophus, and Nigrospora oryzae. The strain also significantly increased the seedling growth (ranging 14–37%) of rice and maize. Removing PCR analysis indicated that 114 genes were differentially expressed, among which 10%, 32% and 10% were involved in antibiotic production (e.g., srfAA, bae, fen, mln, and dfnI), metabolism (e.g., gltA, pabA, and ggt) and transportation of nutrients (e.g., fhu, glpT, and gltT), respectively. In summary, these results clearly indicate the effectiveness and mechanisms of B. subtilis strain 330-2 in enhancing plant growth, as well as tolerance to biotic/abiotic stresses, which suggests that the strain has great potential for commercialization as a vital biological control agent.
Collapse
|
22
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
23
|
Yousuf PY, Ahmad A, Aref IM, Ozturk M, Ganie AH, Iqbal M. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis. PROTOPLASMA 2016; 253:1565-1575. [PMID: 26638208 DOI: 10.1007/s00709-015-0917-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/23/2015] [Indexed: 05/21/2023]
Abstract
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.
Collapse
Affiliation(s)
- Peerzada Yasir Yousuf
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ibrahim M Aref
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Post Box 2460, Riyadh, 11451, Saudi Arabia
| | - Munir Ozturk
- Department of Biology, Ege University, Izmir, 350000, Turkey
| | - Arshid Hussain Ganie
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India
| | - Muhammad Iqbal
- Department of Botany, Molecular Ecology Laboratory, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Ahmad P, Abdel Latef AAH, Rasool S, Akram NA, Ashraf M, Gucel S. Role of Proteomics in Crop Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1336. [PMID: 27660631 PMCID: PMC5014855 DOI: 10.3389/fpls.2016.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in physiological, molecular and biochemical processes operating in plants. It is now widely reported that several proteins respond to these stresses at pre- and post-transcriptional and translational levels. By knowing the role of these stress inducible proteins, it would be easy to comprehensively expound the processes of stress tolerance in plants. The proteomics study offers a new approach to discover proteins and pathways associated with crop physiological and stress responses. Thus, studying the plants at proteomic levels could help understand the pathways involved in stress tolerance. Furthermore, improving the understanding of the identified key metabolic proteins involved in tolerance can be implemented into biotechnological applications, regarding recombinant/transgenic formation. Additionally, the investigation of identified metabolic processes ultimately supports the development of antistress strategies. In this review, we discussed the role of proteomics in crop stress tolerance. We also discussed different abiotic stresses and their effects on plants, particularly with reference to stress-induced expression of proteins, and how proteomics could act as vital biotechnological tools for improving stress tolerance in plants.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, Sri Pratap CollegeSrinagar, India
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
| | - Arafat A. H. Abdel Latef
- Department of Botany, Faculty of Science, South Valley UniversityQena, Egypt
- Department of Biology, College of Applied Medical Sciences, Taif UniversityTurubah, Saudi Arabia
| | | | - Nudrat A. Akram
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
25
|
Maršálová L, Vítámvás P, Hynek R, Prášil IT, Kosová K. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:1154. [PMID: 27536311 PMCID: PMC4971088 DOI: 10.3389/fpls.2016.01154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/19/2016] [Indexed: 05/29/2023]
Abstract
Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley H. marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defense-related proteins from late-embryogenesis abundant family, several chaperones from heat shock protein family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper and nascent polypeptide-associated complex families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H. vulgare indicate plant tissue damage as revealed by enhanced levels of proteins involved in proteasome-dependent protein degradation and proteins related to apoptosis. The results of proteomic analysis clearly indicate differential responses to high salinity and provide more profound insight into biological mechanisms underlying salinity response between two barley species with contrasting salinity tolerance.
Collapse
Affiliation(s)
- Lucie Maršálová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czech Republic
| | - Ilja T. Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| | - Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czech Republic
| |
Collapse
|
26
|
Huang Y, Ma HY, Huang W, Wang F, Xu ZS, Xiong AS. Comparative proteomic analysis provides novel insight into the interaction between resistant vs susceptible tomato cultivars and TYLCV infection. BMC PLANT BIOLOGY 2016; 16:162. [PMID: 27436092 PMCID: PMC4952150 DOI: 10.1186/s12870-016-0819-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) is a member of the family Geminiviridae, genus Begomovirus. The virus is a widespread plant virus that causes important economic losses in tomatoes. Genetic engineering strategies have increasingly been adopted to improve the resistance of tomatoes to TYLCV. RESULTS In this study, a proteomic approach was used to investigate the molecular mechanisms involved in tomato leaf defense against TYLCV infection. Proteins extracted from leaves of resistant tomato cultivar 'Zheza-301' and susceptible cultivar 'Jinpeng-1' after TYLCV infection were analyzed using two-dimensional gel electrophoresis. Eighty-six differentially expressed proteins were identified and classified into seven groups based on their functions. For several of the proteins, including CDC48, CHI and HSC70, expression patterns measured using quantitative real-time PCR differed from the results of the proteomic analysis. A putative interaction network between tomato leaves and TYLCV infection provides us with important information about the cellular activities that are involved in the response to TYLCV infection. CONCLUSIONS We conducted a comparative proteomic study of TYLCV infection in resistant and susceptible tomato cultivars. The proteins identified in our work show a variety of functions and expression patterns in the process of tomato-TYLCV interaction, and these results contribute to our understanding of the mechanism underlying TYLCV resistance in tomatoes at the protein level.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
27
|
Xi Y, Cheng D, Zeng X, Cao J, Jiang W. Evidences for Chlorogenic Acid--A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit. PLoS One 2016; 11:e0146940. [PMID: 26756813 PMCID: PMC4710503 DOI: 10.1371/journal.pone.0146940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/26/2015] [Indexed: 12/22/2022] Open
Abstract
To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple ('Golden Delicious') pulp discs prepared from pre-climacteric fruit were treated with 50 mg L(-1) CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence.
Collapse
Affiliation(s)
- Yu Xi
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
| | - Dai Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, PR China
- * E-mail:
| |
Collapse
|
28
|
Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J. Comparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:573. [PMID: 27200046 PMCID: PMC4850148 DOI: 10.3389/fpls.2016.00573] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/13/2016] [Indexed: 05/21/2023]
Abstract
Salinity severely threatens land use capability and crop yields worldwide. Understanding the mechanisms that protect soybeans from salt stress will help in the development of salt-stress tolerant leguminous plants. Here we initially analyzed the changes in malondialdehyde levels, the activities of superoxide dismutase and peroxidases, chlorophyll content, and Na(+)/K(+) ratios in leaves and roots from soybean seedlings treated with 200 mM NaCl at different time points. We found that the 200 mM NaCl treated for 12 h was optimal for undertaking a proteomic analysis on soybean seedlings. An iTRAQ-based proteomic approach was used to investigate the proteomes of soybean leaves and roots under salt treatment. These data are available via ProteomeXchange with the identifier PXD002851. In total, 278 and 440 proteins with significantly altered abundances were identified in leaves and roots of soybean, respectively. From these data, a total of 50 proteins were identified in the both tissues. These differentially expressed proteins (DEPs) were from 13 biological processes. Moreover, protein-protein interaction analysis revealed that proteins involved in metabolism, carbohydrate and energy metabolism, protein synthesis and redox homeostasis could be assigned to four high salt stress response networks. Furthermore, semi-quantitative RT-PCR analysis revealed that some of the proteins, such as a 14-3-3, MMK2, PP1, TRX-h, were also regulated by salt stress at the level of transcription. These results indicated that effective regulatory protein expression related to signaling, membrane and transport, stress defense and metabolism all played important roles in the short-term salt response of soybean seedlings.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Ru Cong
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Sheng Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Rui Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Zhiwei Qin
- Department of Vegetables, College of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yanjun Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Xiaolin Zhou
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Jing Li
- Department of Plant Biotechnology, College of Life Science, Northeast Agricultural UniversityHarbin, China
- *Correspondence: Jing Li
| |
Collapse
|
29
|
Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves. PLoS One 2015; 10:e0144808. [PMID: 26691228 PMCID: PMC4686907 DOI: 10.1371/journal.pone.0144808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/24/2015] [Indexed: 11/29/2022] Open
Abstract
Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.
Collapse
|
30
|
Polle A, Chen S. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. PLANT, CELL & ENVIRONMENT 2015; 38:1794-816. [PMID: 25159181 DOI: 10.1111/pce.12440] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/11/2014] [Accepted: 08/17/2014] [Indexed: 05/04/2023]
Abstract
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed.
Collapse
Affiliation(s)
- Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August Universität Göttingen, Göttingen, 37077, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
31
|
Kumari A, Das P, Parida AK, Agarwal PK. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. FRONTIERS IN PLANT SCIENCE 2015; 6:537. [PMID: 26284080 PMCID: PMC4518276 DOI: 10.3389/fpls.2015.00537] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Paromita Das
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Asish Kumar Parida
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Pradeep K. Agarwal
- Division of Wasteland Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| |
Collapse
|
32
|
Tan WK, Lim TK, Loh CS, Kumar P, Lin Q. Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis. PLoS One 2015; 10:e0133386. [PMID: 26193361 PMCID: PMC4508094 DOI: 10.1371/journal.pone.0133386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/26/2015] [Indexed: 11/26/2022] Open
Abstract
Plant salt glands are nature’s desalination devices that harbour potentially useful information pertaining to salt and water transport during secretion. As part of the program toward deciphering secretion mechanisms in salt glands, we used shotgun proteomics to compare the protein profiles of salt gland-enriched (isolated epidermal peels) and salt gland-deprived (mesophyll) tissues of the mangrove species Avicennia officinalis. The purpose of the work is to identify proteins that are present in the salt gland-enriched tissues. An average of 2189 and 977 proteins were identified from the epidermal peel and mesophyll tissues, respectively. Among these, 2188 proteins were identified in salt gland-enriched tissues and a total of 1032 selected proteins were categorized by Gene Ontology (GO) analysis. This paper reports for the first time the proteomic analysis of salt gland-enriched tissues of a mangrove tree species. Candidate proteins that may play a role in the desalination process of the mangrove salt glands and their potential localization were identified. Information obtained from this study paves the way for future proteomic research aiming at elucidating the molecular mechanism underlying secretion in plant salt glands. The data have been deposited to the ProteomeXchange with identifier PXD000771.
Collapse
Affiliation(s)
- Wee-Kee Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
| | - Teck-Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
| | - Chiang-Shiong Loh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
| | - Prakash Kumar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Singapore, 117543
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, T-Lab, #02–01, Singapore, Singapore, 117411
- * E-mail:
| |
Collapse
|
33
|
Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period. Food Chem 2015; 176:388-95. [PMID: 25624247 DOI: 10.1016/j.foodchem.2014.12.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/28/2014] [Accepted: 12/18/2014] [Indexed: 11/20/2022]
Abstract
The objective of this work was to investigate why loquat fruit peels are more sensitive to high temperature and strong sunlight, making them highly susceptible to sunburn, during the color changing period (CCP). Two dimensional gel electrophoresis (2-DE) of the fruit peel proteins was performed over three developmental periods, namely green fruit period (GFP), color changing period and yellow ripening period (YRP). Fifty-five protein spots with at least 2-fold differences in abundance were successfully identified by MALDI-TOF-TOF/MS. The identified proteins were divided into categories related to heat-shock response, stress response and defense, energy metabolism, photosynthesis and protein biosynthesis. The results showed that expression of proteins related to anaerobic respiration and photorespiration were increased while the proteins related to ROS scavenging, polyamine biosynthesis, defense pathogens and photosynthesis were decreased during CCP under heat stress. Our findings provide new insights into the molecular mechanism of loquat fruit susceptible to sunburn during CCP.
Collapse
|
34
|
Kamal AHM, Komatsu S. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress. J Proteome Res 2015; 14:2219-36. [PMID: 25806999 DOI: 10.1021/acs.jproteome.5b00007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan
| |
Collapse
|
35
|
Wang L, Pan D, Li J, Tan F, Hoffmann-Benning S, Liang W, Chen W. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:159-72. [PMID: 25576001 DOI: 10.1016/j.plantsci.2014.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/07/2023]
Abstract
The plant chloroplast is one of the most sensitive organelles in response to salt stress. Chloroplast proteins extracted from seedling leaves were separated by two-dimensional gel electrophoresis (2-DE). More than 600 protein spots could be distinguished on each gel. Fifty-eight differentially expressed protein spots were detected, of which 46 could be identified through matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). These proteins were found to be involved in multiple aspects of chloroplast metabolism pathways such as photosynthesis, ATP synthesis, detoxification and antioxidation processes, nitrogen assimilation and fixation, protein metabolism, and tetrapyrrole biosynthesis. The results indicated that K. candel could withstand up to 500 mM NaCl stress for a measured period of 3 days, by maintaining normal or high photosynthetic electron transfer efficiency and an only slightly stimulated Calvin cycle. Meanwhile, we found that ROS scavenging, nitrogen assimilation, protein degradation and chaperone function in chloroplasts were also of importance for salt tolerance of K. candel. The ultrastructural and physiological data agree with chloroplast proteome results. These findings allow further exploration of our knowledge on salt adaptation in woody halophytes and may contribute to the development of more salt-tolerant plants in the future.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dezhuo Pan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jian Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fanglin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Susanne Hoffmann-Benning
- The Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750000, PR China
| | - Wei Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Corps, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
36
|
Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R, Sun J, Wang Y, Han Y, Lang T, Ding M, Shen X, Chen S. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. FRONTIERS IN PLANT SCIENCE 2015; 6:23. [PMID: 25657655 PMCID: PMC4302849 DOI: 10.3389/fpls.2015.00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/16/2014] [Indexed: 05/25/2023]
Abstract
Na(+) uptake and transport in Kandelia candel and antioxidative defense were investigated under rising NaCl stress from 100 to 300 mM. Salinized K. candel roots had a net Na(+) efflux with a declined flux rate during an extended NaCl exposure. Na(+) buildup in leaves enhanced H2O2 levels, superoxide dismutase (SOD) activity, and increased transcription of CSD gene encoding a Cu/Zn SOD. Sequence and subcellular localization analyses have revealed that KcCSD is a typical Cu/Zn SOD in chloroplast. The transgenic tobacco experimental system was used as a functional genetics model to test the effect of KcCSD on salinity tolerance. KcCSD-transgenic lines were more Na(+) tolerant than wild-type (WT) tobacco in terms of lipid peroxidation, root growth, and survival rate. In the latter, 100 mM NaCl led to a remarkable reduction in chlorophyll content and a/b ratio, decreased maximal chlorophyll a fluorescence, and photochemical efficiency of photosystem II. NaCl stress in WT resulted from H2O2 burst in chloroplast. Na(+) injury to chloroplast was less pronounced in KcCSD-transgenic plants due to upregulated antioxidant defense. KcCSD-transgenic tobacco enhanced SOD activity by an increment in SOD isoenzymes under 100 mM NaCl stress from 24 h to 7 day. Catalase activity rose in KcCSD overexpressing tobacco plants. KcCSD-transgenic plants better scavenged NaCl-elicited reactive oxygen species (ROS) compared to WT ones. In conclusion, K. candel effectively excluded Na(+) in roots during a short exposure; and increased CSD expression to reduce ROS in chloroplast in a long-term and high saline environment.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Peichen Hou
- Department of Bio-Instruments, National Engineering Research Center for Information Technology in AgricultureBeijing, China
| | - Yanjun Lu
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shurong Deng
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal UniversityHaikou, China
| | - Rui Zhao
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jian Sun
- Department of Plant Science, College of Life Science, Jiangsu Normal UniversityXuzhou, China
| | - Yang Wang
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yansha Han
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Tao Lang
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingquan Ding
- Department of Crop Science, College of Agricultural and Food Science, Zhejiang Agricultural and Forestry UniversityHangzhou, China
| | - Xin Shen
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shaoliang Chen
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
37
|
Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. FRONTIERS IN PLANT SCIENCE 2015; 6:241. [PMID: 25954282 PMCID: PMC4404951 DOI: 10.3389/fpls.2015.00241] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/26/2015] [Indexed: 05/06/2023]
Abstract
The turf grass Sporobolus virginicus is halophyte and has high salinity tolerance. To investigate the molecular basis of its remarkable tolerance, we performed Illumina high-throughput RNA sequencing on roots and shoots of a S. virginicus genotype under normal and saline conditions. The 130 million short reads were assembled into 444,242 unigenes. A comparative analysis of the transcriptome with rice and Arabidopsis transcriptome revealed six turf grass-specific unigenes encoding transcription factors. Interestingly, all of them showed root specific expression and five of them encode bZIP type transcription factors. Another remarkable transcriptional feature of S. virginicus was activation of specific pathways under salinity stress. Pathway enrichment analysis suggested transcriptional activation of amino acid, pyruvate, and phospholipid metabolism. Up-regulation of several unigenes, previously shown to respond to salt stress in other halophytes was also observed. Gene Ontology enrichment analysis revealed that unigenes assigned as proteins in response to water stress, such as dehydrin and aquaporin, and transporters such as cation, amino acid, and citrate transporters, and H(+)-ATPase, were up-regulated in both shoots and roots under salinity. A correspondence analysis of the enriched pathways in turf grass cells, but not in rice cells, revealed two groups of unigenes similarly up-regulated in the turf grass in response to salt stress; one of the groups, showing excessive up-regulation under salinity, included unigenes homologos to salinity responsive genes in other halophytes. Thus, the present study identified candidate genes involved in salt tolerance of S. virginicus. This genetic resource should be valuable for understanding the mechanisms underlying high salt tolerance in S. virginicus. This information can also provide insight into salt tolerance in other halophytes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji UniversityTama-ku, Kawasaki, Japan
| | - Tomoyuki Takano
- Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji UniversityTama-ku, Kawasaki, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Taichiro Ishige
- NODAI Genome Research Center, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Shin Terashima
- Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji UniversityTama-ku, Kawasaki, Japan
| | - Chisato Endo
- School of Bioscience and Biotechnology, Tokyo University of TechnologyHachioji, Japan
| | - Takamitsu Kurusu
- School of Bioscience and Biotechnology, Tokyo University of TechnologyHachioji, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of AgricultureSetagaya-ku, Japan
- Department of Bioscience, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji UniversityTama-ku, Kawasaki, Japan
- *Correspondence: Kentaro Yano, Bioinformatics Laboratory, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of TechnologyHachioji, Japan
- Yuichi Tada, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
38
|
Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 2014; 15:21803-24. [PMID: 25431925 PMCID: PMC4284679 DOI: 10.3390/ijms151221803] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression after silicon supplementation.
Collapse
Affiliation(s)
- Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 660-701, Korea.
| | - Yoo Gyeong Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 660-701, Korea.
| | - Abinaya Manivannan
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 660-701, Korea.
| | | | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
39
|
Yuan XY, Liang F, Jiang SH, Wan MF, Ma J, Zhang XY, Cui B. Differential protein expression in Phalaenopsis under low temperature. Appl Biochem Biotechnol 2014; 175:909-24. [PMID: 25349090 DOI: 10.1007/s12010-014-1345-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022]
Abstract
A comparative proteomic analysis was carried out to explore the molecular mechanisms of responses to cold stress in Phalaenopsis after treated by low temperature (13/8 °C day/night) for 15 days. Differentially expressed proteins were examined using two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-TOF/MS). Among 85 differentially expressed proteins, 73 distinct proteins were identified. Comparative analysis revealed that the identified proteins mainly participate in photosynthesis, protein synthesis, folding and degradation, respiration, defense response, amino acid metabolism, energy pathway, cytoskeleton, transcription regulation, signal transduction, and seed storage protein, while the functional classification of the remaining four proteins was not determined. These data suggested that the proteins might work cooperatively to establish a new homeostasis under cold stress; 37 % of the identified cold-responsive proteins were associated with various aspects of chloroplast physiology, and 56 % of them were predicted to be located in the chloroplasts, implying that the cold stress tolerance of Phalaenopsis was achieved, at least partly, by regulation of chloroplast function. Moreover, the protein destination control, which was mediated by chaperones and proteases, plays an important role in tolerance to cold stress.
Collapse
Affiliation(s)
- Xiu-Yun Yuan
- Institute of Bioengineering, Zhengzhou Normal University, Zhengzhou, 450044, China,
| | | | | | | | | | | | | |
Collapse
|