1
|
Meng C, Chen G, Liu Y, Wen D, Cui J, Dong L, Yang Z, Meng H, Gao Y, Feng J, Cui X, Wu C. miR-4687-5p Affects Intracellular Survival of Mycobacterium tuberculosis through Its Regulation of NRAMP1 Expression in A549 Cells. Microorganisms 2024; 12:227. [PMID: 38276212 PMCID: PMC10818500 DOI: 10.3390/microorganisms12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Tuberculosis (TB), as one of the leading causes of death, poses a serious predicament to the world. MicroRNAs (miRNAs) play a role in the post-transcriptional regulation of gene expression. It has been reported that the expression of miRNAs changes upon mycobacterial infection; the screening and identification of miRNAs regulating the expression of genes could benefit our understanding of TB pathogenesis and generate effective strategies for its control and prevention. In this study, luciferase assays showed that miR-4687-5p is bound to the 3'-untranslated region of natural resistance-associated macrophage protein 1 (NRAMP1). Additionally, we found a significant increase in miR-4687-5p expression in Mycobacterium tuberculosis (Mtb)-infected A549 cells. Concomitantly, we detected a reduced level of NRAMP1 expression, suggesting that NRAMP1 is one of the targets of miR-4687-5p. Infection experiments evidenced that the transfection of miR-4687-5p induced a decrease in NRAMP1 expression and increased intracellular Mtb loads post-infection, indicating that miR-4687-5p promotes the intracellular survival of Mtb through its downregulation of the NRAMP1 protein level. We also found that the transfection of miR-4687-5p induced increased apoptosis and decreased cell proliferation post-infection with Mtb. The results presented in our study suggest that miR-4687-5p may be indicative of the susceptibility of Mtb infection to humans and could act as a potential therapeutic target for tuberculosis treatment.
Collapse
Affiliation(s)
- Chaoqun Meng
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Guangxin Chen
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yue Liu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Da Wen
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jia Cui
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Li Dong
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhiqiang Yang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Hangting Meng
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Yuanting Gao
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jiao Feng
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xiaogang Cui
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; (C.M.); (G.C.); (Y.L.); (D.W.); (J.C.); (L.D.); (Z.Y.); (H.M.); (Y.G.); (J.F.)
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
- The Key Laboratory of the Prevention and Control of Major Infectious Disease of Shanxi Province, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
2
|
Ma X, Wang F, Zhen L, Cai Q. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosis via TLR4/NF-κB signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:132-139. [PMID: 36048566 DOI: 10.1111/1440-1681.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Circular RNAs (circRNAs) play a vital role in the regulation of Mycobacterium tuberculosis (M.tb) by macrophages. In this project, the potential role of hsa_circ_0001204 in M.tb-infected macrophages is explored. Hsa_circ_0001204 was determined in the patients with tuberculosis (TB) and M.tb-infected macrophages. Its effect on the survival of M.tb and the apoptosis and inflammation of M.tb-infected macrophages was evaluated. Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling was detected by western blotting and immunofluorescence. TB patients and M.tb-infected THP-1 cells showed the significant downregulation of hsa_circ_0001204. Upregulating hsa_circ_0001204 reduced M.tb survival and suppressed the apoptosis and inflammatory response of THP-1 cells. The TLR4/NF-κB signalling pathway could be inhibited by hsa_circ_0001204 overexpression, which was activated by M.tb-infection. Hsa_circ_0001204 confers protective effects in M.tb-infected THP-1 cells, at least partly via the inhibition of TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Fang Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Libo Zhen
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Qingshan Cai
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| |
Collapse
|
3
|
de Waal AM, Hiemstra PS, Ottenhoff TH, Joosten SA, van der Does AM. Lung epithelial cells interact with immune cells and bacteria to shape the microenvironment in tuberculosis. Thorax 2022; 77:408-416. [PMID: 35017314 PMCID: PMC8938665 DOI: 10.1136/thoraxjnl-2021-217997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022]
Abstract
The lung epithelium has long been overlooked as a key player in tuberculosis disease. In addition to acting as a direct barrier to Mycobacterium tuberculosis (Mtb), epithelial cells (EC) of the airways and alveoli act as first responders during Mtb infections; they directly sense and respond to Mtb by producing mediators such as cytokines, chemokines and antimicrobials. Interactions of EC with innate and adaptive immune cells further shape the immune response against Mtb. These three essential components, epithelium, immune cells and Mtb, are rarely studied in conjunction, owing in part to difficulties in coculturing them. Recent advances in cell culture technologies offer the opportunity to model the lung microenvironment more closely. Herein, we discuss the interplay between lung EC, immune cells and Mtb and argue that modelling these interactions is of key importance to unravel early events during Mtb infection.
Collapse
Affiliation(s)
- Amy M de Waal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Taghavi S, Abdullah S, Duchesne J, Pociask D, Kolls J, Jackson-Weaver O. Interleukin 22 mitigates endothelial glycocalyx shedding after lipopolysaccharide injury. J Trauma Acute Care Surg 2021; 90:337-345. [PMID: 33502147 PMCID: PMC7872437 DOI: 10.1097/ta.0000000000003019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The endothelial glycocalyx (EG) on the luminal surface of endothelial cells contributes to the permeability barrier of vessels and prevents activation of the coagulation cascade. Endothelial glycocalyx damage, which occurs in the shock state, results in endotheliopathy. Interleukin (IL)-22 is a cytokine with both proinflammatory and anti-inflammatory properties, and how IL-22 affects the EG has not been studied. We hypothesized that IL-22:Fc, a recombinant fusion protein with human IL-22 and the Fc portion of human immunoglobulin G1 (which extends the protein half-life), would not affect EG shedding in endothelium after injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). Lipopolysaccharide-injured cells (n = 284) were compared with HUVECs with LPS injury plus 0.375 μg/mL of IL-22:Fc treatment (n = 293) for 12 hours. These two cohorts were compared with control HUVECs (n = 286) and HUVECs exposed to IL-22:Fc alone (n = 269). Cells were fixed and stained with fluorescein isothiocyanate-labeled wheat germ agglutinin to quantify EG. Total RNA was collected, and select messenger RNAs were quantified by real time - quantitative polymerase chain reaction (RT-qPCR) using SYBR green fluorescence. RESULTS Exposure of HUVECs to LPS resulted in degradation of the EG compared with control (5.86 vs. 6.09 arbitrary unit [AU], p = 0.01). Interleukin-22:Fc alone also resulted in degradation of EG (5.08 vs. 6.09 AU, p = 0.01). Treatment with IL-22:Fc after LPS injury resulted in less degradation of EG compared with LPS injury alone (5.86 vs. 5.08 AU, p = 0.002). Expression of the IL-22Ra1 receptor was not different for IL-22:Fc treated compared with LPS injury only (0.69 vs. 0.86 relative expression, p = 0.10). Treatment with IL-22:Fc after LPS injury resulted in less matrix metalloproteinase 2 (0.79 vs. 1.70 relative expression, p = 0.005) and matrix metalloproteinase 14 (0.94 vs. 2.04 relative expression, p = 0.02). CONCLUSIONS Interleukin-22:Fc alone induces EG degradation. However, IL-22:Fc treatment after LPS injury appears to mitigate EG degradation. This protective effect appears to be mediated via reduced expression of metalloproteinases.
Collapse
Affiliation(s)
- Sharven Taghavi
- From the Department of Surgery (S.T., S.A., J.D., O.J.-W.), and Center for Translational Research in Infection and Inflammation (D.P., J.K.), Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
5
|
The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed Pharmacother 2020; 132:110874. [PMID: 33080467 DOI: 10.1016/j.biopha.2020.110874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to progressive neurological disability due to axonal deterioration. Although MS presents profound heterogeneity in the clinical course, its underlying central mechanism is active demyelination and neurodegeneration associated with inflammation. Multiple autoimmune and neuroinflammatory pathways are involved in the demyelination process of MS. Analysis of MS lesions has shown that inflammatory genes are upregulated. Glycogen synthase kinase-3 (GSK-3) is part of the mitogen-activated protein kinase (MAPK) family and has important roles in many signaling cascades. GSK-3 is a highly conserved serine/threonine protein kinase expressed in both the central and the peripheral nervous systems. GSK-3 modulates several biological processes through phosphorylation of protein kinases, including cell signaling, neuronal growth, apoptosis and production of pro-inflammatory cytokines and interleukins, allowing adaptive changes in events such as cellular proliferation, migration, inflammation, and immunity. GSK-3 occurs in mammals in two isoforms GSK-3α and GSK-3β, both of which are common in the brain, although GSK-3α is found particularly in the cerebral cortex, cerebellum, striated hippocampus and Purkinje cells, while GSK-3β is found in all brain regions. In patients with chronic progressive MS, expression of GSK-3β is elevated in several brain regions such as the corpus callosum and cerebral cortex. GSK-3β inhibition may play a role in glial cell activation, reducing pathological pain induced by nerve injury by formalin injection. According to the role of GSK-3β in pathological conditions, the aim of this article is review of the role of GSK-3β in multiple sclerosis and inflammation of neurons.
Collapse
|
6
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Rodrigues TS, Alvarez ARP, Gembre AF, Forni MFPDAD, de Melo BMS, Alves Filho JCF, Câmara NOS, Bonato VLD. Mycobacterium tuberculosis-infected alveolar epithelial cells modulate dendritic cell function through the HIF-1α-NOS2 axis. J Leukoc Biol 2020; 108:1225-1238. [PMID: 32557929 DOI: 10.1002/jlb.3ma0520-113r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis kills more than 1 million people every year, and its control depends on the effective mechanisms of innate immunity, with or without induction of adaptive immune response. We investigated the interaction of type II alveolar epithelial cells (AEC-II) infected by Mycobacterium tuberculosis with dendritic cells (DCs). We hypothesized that the microenvironment generated by this interaction is critical for the early innate response against mycobacteria. We found that AEC-II infected by M. tuberculosis induced DC maturation, which was negatively regulated by HIF-1α-inducible NOS2 axis, and switched DC metabolism from an early and short peak of glycolysis to a low energetic status. However, the infection of DCs by M. tuberculosis up-regulated NOS2 expression and inhibited AEC-II-induced DC maturation. Our study demonstrated, for the first time, that HIF-1α-NOS2 axis plays a negative role in the maturation of DCs during M. tuberculosis infection. Such modulation might be useful for the exploitation of molecular targets to develop new therapeutic strategies against tuberculosis.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Bruno Marcel Silva de Melo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Transplantation Immunology Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Pelst MP, Höbart C, Wallaeys C, De Rooster H, Gansemans Y, Van Nieuwerburgh F, Devriendt B, Cox E. Adjuvanting Allergen Extracts for Sublingual Immunotherapy: Calcitriol Downregulates CXCL8 Production in Primary Sublingual Epithelial Cells. Front Immunol 2020; 11:1033. [PMID: 32582164 PMCID: PMC7295906 DOI: 10.3389/fimmu.2020.01033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Application of allergens onto the sublingual epithelium is used to desensitize allergic individuals, a treatment known as sublingual immunotherapy. However, the response of sublingual epithelial cells to house dust mite allergen and potential tolerance-promoting adjuvants such as Toll-like receptor (TLR) ligands and calcitriol has not been investigated. In order to study this, primary sublingual epithelial cells were isolated from dogs and cultured in vitro. After 24-h incubation with a Dermatophagoides farinae extract, a Dermatophagoides pteronyssinus extract, TLR2 ligands (FSL-1, heat-killed Listeria monocytogenes, Pam3CSK4), a TLR3 ligand (poly I:C), a TLR4 ligand [lipopolysaccharide (LPS)], and calcitriol (1,25-dihydroxyvitamin D3), viability of the cells was analyzed using an MTT test, and their secretion of interleukin 6 (IL-6), IL-10, CXCL8, and transforming growth factor β1 (TGF-β1) was measured by enzyme-linked immunosorbent assay. Additionally, to evaluate its potential effect as an adjuvant, sublingual epithelial cells were incubated with calcitriol in combination with a D. farinae extract followed by measurement of CXCL8 secretion. Furthermore, the effect of D. farinae and calcitriol on the transcriptome was assessed by RNA sequencing. The viability of the sublingual epithelial cells was significantly decreased by poly I:C, but not by the other stimuli. CXCL8 secretion was significantly increased by D. farinae extract and all TLR ligands apart from LPS. Calcitriol significantly decreased CXCL8 secretion, and coadministration with D. farinae extract reduced CXCL8 concentrations to levels seen in unstimulated sublingual epithelial cells. Although detectable, TGF-β1 secretion could not be modulated by any of the stimuli. Interleukin 6 and IL-10 could not be detected at the protein or at the mRNA level. It can be concluded that a D. farinae extract and TLR ligands augment the secretion of the proinflammatory chemokine CXCL8, which might interfere with sublingual desensitization. On the other hand, CXCL8 secretion was reduced by coapplication of calcitriol and a D. farinae extract. Calcitriol therefore seems to be a suitable candidate to be used as adjuvant during sublingual immunotherapy.
Collapse
Affiliation(s)
- Michael P Pelst
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Clara Höbart
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Charlotte Wallaeys
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hilde De Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
GSK3: A Kinase Balancing Promotion and Resolution of Inflammation. Cells 2020; 9:cells9040820. [PMID: 32231133 PMCID: PMC7226814 DOI: 10.3390/cells9040820] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
GSK3 has been implicated for years in the regulation of inflammation and addressed in a plethora of scientific reports using a variety of experimental (disease) models and approaches. However, the specific role of GSK3 in the inflammatory process is still not fully understood and controversially discussed. Following a detailed overview of structure, function, and various regulatory levels, this review focusses on the immunoregulatory functions of GSK3, including the current knowledge obtained from animal models. Its impact on pro-inflammatory cytokine/chemokine profiles, bacterial/viral infections, and the modulation of associated pro-inflammatory transcriptional and signaling pathways is discussed. Moreover, GSK3 contributes to the resolution of inflammation on multiple levels, e.g., via the regulation of pro-resolving mediators, the clearance of apoptotic immune cells, and tissue repair processes. The influence of GSK3 on the development of different forms of stimulation tolerance is also addressed. Collectively, the role of GSK3 as a kinase balancing the initiation/perpetuation and the amelioration/resolution of inflammation is highlighted.
Collapse
|
11
|
The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Vet Res 2019; 15:223. [PMID: 31266499 PMCID: PMC6604481 DOI: 10.1186/s12917-019-1972-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background The role played by the humoral immune response in animals vaccinated against a mycobacterial disease such as paratuberculosis, is not well understood. Sheep vaccinated against Mycobacterium avium subsp. paratuberculosis (MAP) can still become infected and in some cases succumb to clinical disease. The strength and location of the humoral immune response following vaccination could contribute to the ability of sheep to clear MAP infection. We examined the peripheral antibody response along with the localised humoral response at the site of paratuberculosis infection, the ileum, to better understand how this contributes to MAP infection of sheep following vaccination and exposure. Results Through assessing MAP specific serum IgG1 and IgG levels we show that the timing and strength of the humoral immune response directly relates to prevention of infection following vaccination. Vaccinated sheep that subsequently became infected had significantly reduced levels of MAP specific serum IgG1 early after vaccination. In contrast, vaccinated sheep that did not subsequently become infected had significantly elevated MAP specific serum IgG1 following vaccination. Furthermore, at 12 months post MAP exposure, vaccinated and subsequently uninfected sheep had downregulated expression of genes related to the humoral response in contrast to vaccinated infected sheep where expression levels were upregulated. Conclusions The timing and strength of the humoral immune response following vaccination against paratuberculosis in sheep directly relates to subsequent infection status. An initial strong IgG1 response following vaccination was crucial to prevent infection. Additionally, vaccinated uninfected sheep were able to modulate that response following apparent MAP clearance, unlike vaccinated infected animals where there was apparent dysregulation of the humoral response, which is associated with progression to clinical disease.
Collapse
|
12
|
Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med 2019; 50:117-129. [PMID: 30124945 DOI: 10.1093/labmed/lmy047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review the main Mycobacterium tuberculosis (Mtb) pathogen-associated molecular patterns (PAMPs) and the roles played by toll-like receptor (TLR)4 in determination of Mtb infection outcome. METHODS Several scientific databases, including Scopus, PubMed, and Google Scholar, were used for searching appropriate research articles from the literature for information on our topic. RESULTS TLR4 plays positive roles in induction of immune responses against Mtb and participates in eradication of the infection. Some limited investigations approved the roles of TLR4 in induction of apoptosis in macrophages during tuberculosis (TB) and attenuation of immune responses in some situations. CONCLUSIONS TB outcome appears to be dependent on TLR4/Mtb interaction and several factors, including bacterial load and immune or nonimmune cells, as hosts. Also, other TLR/Mtb interactions can affect TLR4 responses.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran and Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Kohan
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Wang L, Li X, Wang Y. GSK3β inhibition attenuates LPS-induced IL-6 expression in porcine adipocytes. Sci Rep 2018; 8:15967. [PMID: 30374048 PMCID: PMC6206029 DOI: 10.1038/s41598-018-34186-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
IL-6 is not only a proinflammatory cytokine associated with inflammatory responses but also a regulator on the energy and glucose metabolism in adipose tissue. Glycogen synthase kinase 3β (GSK3β) has fundamental roles in the regulation of pro- and anti-inflammatory cytokines production. However, the regulatory role for GSK3β in the pig inflammatory response in adipocytes remains unknown. We show here that SB216763 and LPS increased the phosphorylation of GSK3β (Ser9), and decreased the phosphorylation of GS (Ser641) in adipocytes. The activity of porcine GSK3β was inhibited by SB216763, an inhibitor of GSK3β, attenuated the production of IL-6 in LPS-stimulated adipocytes. Additionally, the essential core region of the pig IL-6 promoter located at -191 bp to -59 bp, and an NF-κBp65 element in this region was responsible for IL-6 promoter activity. The transcription activity of NF-κBp65 was activated by LPS stimulation, and the GSK3β inhibition repressed LPS-induced luciferase activity of the IL-6 promoter. Furthermore, LPS increased p65 binding to the NF-κB site, and GSK3β inhibition had no effect on the association of NF-κBp65 with IL-6 gene promoter after LPS treatment. These results demonstrate that GSK3β has important regulatory roles in the LPS-induced inflammatory response of IL-6 production in pig adipocytes.
Collapse
Affiliation(s)
- Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Xueying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China. .,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
14
|
Epithelial Cells Attenuate Toll-Like Receptor-Mediated Inflammatory Responses in Monocyte-Derived Macrophage-Like Cells to Mycobacterium tuberculosis by Modulating the PI3K/Akt/mTOR Signaling Pathway. Mediators Inflamm 2018; 2018:3685948. [PMID: 30356420 PMCID: PMC6178170 DOI: 10.1155/2018/3685948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Both alveolar macrophages (AMs) and alveolar epithelial cells (AECs) are main targets of Mycobacterium tuberculosis (M. tuberculosis (Mtb)). Intercellular communications between mucosal AECs and AMs have important implications in cellular responses to exogenous insults. However, molecular mechanisms underpinning interactions responding to Mtb remain largely unknown. In this study, impacts of AECs on Toll-like receptor- (TLR-) mediated inflammatory responses of AMs to Mtb virulent strain H37Rv were interrogated using an air-liquid interface (ALI) coculture model of epithelial A549 cells and U937 monocyte-derived macrophage-like cells. Results showed that Mtb-activated TLR-mediated inflammatory responses in U937 cells were significantly alleviated when A549 cells were coinfected with H37Rv, in comparison with the infection of U937 cells alone. Mechanistically, PI3K/Akt/mTOR signaling was involved in the epithelial cell-modulated Mtb-activated TLR signaling. The epithelial cell-attenuated TLR signaling in U937s could be reversed by PI3K inhibitor LY294002 and mTOR inhibitor rapamycin, but not glycogen synthase kinase 3β inhibitor LiCl, suggesting that the epithelially modulated-TLR signaling in macrophages was in part caused by inhibiting the TLR-triggered PI3K/Akt/mTOR signaling pathway. Together, this study demonstrates that mucosal AEC-derived signals play an important role in modulating inflammatory responses of AMs to Mtb, which thus also offers an insight into cellular communications between AECs and AMs to Mtb infections.
Collapse
|
15
|
Targeting CREB-binding protein overrides LPS induced radioresistance in non-small cell lung cancer cell lines. Oncotarget 2018; 9:28976-28988. [PMID: 29989005 PMCID: PMC6034744 DOI: 10.18632/oncotarget.25665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a very poor prognosis even when treated with the best therapies available today often including radiation. NSCLC is frequently complicated by pulmonary infections which appear to impair prognosis as well as therapy, whereby the underlying mechanisms are still not known. It was investigated here, whether the bacterial lipopolysaccharides (LPS) might alter the tumor cell radiosensitivity. LPS were found to induce a radioresistance but solely in cells with an active TLR-4 pathway. Proteome profiling array revealed that LPS combined with irradiation resulted in a strong phosphorylation of cAMP response element-binding protein (CREB). Inhibition of CREB binding protein (CBP) by the specific inhibitor ICG-001 not only abrogated the LPS-induced radioresistance but even led to an increase in radiosensitivity. The sensitization caused by ICG-001 could be attributed to a reduction of DNA double-strand break (DSB) repair. It is shown that in NSCLC cells LPS leads to a CREB dependent radioresistance which is, however, reversible through CBP inhibition by the specific inhibitor ICG-001. These findings indicate that the combined treatment with radiation and CBP inhibition may improve survival of NSCLC patients suffering from pulmonary infections.
Collapse
|
16
|
Kiser JN, Neupane M, White SN, Neibergs HL. Identification of genes associated with susceptibility to Mycobacterium avium ssp. paratuberculosis (Map) tissue infection in Holstein cattle using gene set enrichment analysis-SNP. Mamm Genome 2017; 29:539-549. [PMID: 29185027 DOI: 10.1007/s00335-017-9725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Multiple genome-wide association analyses have investigated susceptibility to bovine paratuberculosis, but few loci have been identified across independent cattle populations. A SNP-based gene set enrichment analysis (GSEA-SNP) allows expanded identification of genes with moderate effects on a trait through the enrichment of gene sets instead of identifying only few loci with large effects. Therefore, the objective of this study was to identify genes that were moderately associated with Mycobacterium avium ssp. paratuberculosis (Map) tissue infection using GSEA-SNP in Holstein cattle from the Pacific Northwest (PNW; n = 205) and from the PNW and Northeast (PNW+NE; n = 245) which were previously genotyped with the Illumina BovineSNP50 BeadChip. The GSEA-SNP utilized 4389 gene sets from five databases. For each annotated gene in the UMD3.1 assembly (n = 19,723), the most significant SNP within each gene and its surrounding region (10 kb up- and downstream) was selected as a proxy for that gene. Any gene set with a normalized enrichment score > 2.5 was considered enriched. Thirteen gene sets (8 PNW GSEA-SNP; 5 PNW+NE) were enriched in these analyses and all have functions that relate to nuclear factor kappa beta. Nuclear factor kappa beta is critical to gut immune responses, implicated in host immune responses to other mycobacterial diseases, and has established roles in inflammation as well as cancer. Gene sets and genes moderately associated with Map infection could be used in genomic selection to allow producers to select for less susceptible cattle, lower the prevalence of the disease, and reduce economic losses.
Collapse
Affiliation(s)
- J N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - M Neupane
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - S N White
- USDA-ARS Animal Disease Research Unit, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - H L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 2017; 15:216-225. [PMID: 29176747 DOI: 10.1038/cmi.2017.128] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.
Collapse
|
18
|
Song OR, Queval CJ, Iantomasi R, Delorme V, Marion S, Veyron-Churlet R, Werkmeister E, Popoff M, Ricard I, Jouny S, Deboosere N, Lafont F, Baulard A, Yeramian E, Marsollier L, Hoffmann E, Brodin P. ArfGAP1 restricts Mycobacterium tuberculosis entry by controlling the actin cytoskeleton. EMBO Rep 2017; 19:29-42. [PMID: 29141986 DOI: 10.15252/embr.201744371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with pulmonary epithelial cells is critical for early stages of bacillus colonization and during the progression of tuberculosis. Entry of Mtb into epithelial cells has been shown to depend on F-actin polymerization, though the molecular mechanisms are still unclear. Here, we demonstrate that mycobacterial uptake into epithelial cells requires rearrangements of the actin cytoskeleton, which are regulated by ADP-ribosylation factor 1 (Arf1) and phospholipase D1 (PLD1), and is dependent on the M3 muscarinic receptor (M3R). We show that this pathway is controlled by Arf GTPase-activating protein 1 (ArfGAP1), as its silencing has an impact on actin cytoskeleton reorganization leading to uncontrolled uptake and replication of Mtb. Furthermore, we provide evidence that this pathway is critical for mycobacterial entry, while the cellular infection with other pathogens, such as Shigella flexneri and Yersinia pseudotuberculosis, is not affected. Altogether, these results reveal how cortical actin plays the role of a barrier to prevent mycobacterial entry into epithelial cells and indicate a novel role for ArfGAP1 as a restriction factor of host-pathogen interactions.
Collapse
Affiliation(s)
- Ok-Ryul Song
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Christophe J Queval
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Raffaella Iantomasi
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Vincent Delorme
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| | - Sabrina Marion
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Romain Veyron-Churlet
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Elisabeth Werkmeister
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Michka Popoff
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France.,CNRS, UMR8520, Institut d'électronique, de microélectronique et de nanotechnologie, Villeneuve d'Ascq, France
| | - Isabelle Ricard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Samuel Jouny
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Nathalie Deboosere
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Alain Baulard
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Univ. Lille, Lille, France .,Institute Pasteur Korea, Seongnam-si Gyeonggi-do, South Korea
| |
Collapse
|
19
|
Mvubu NE, Pillay B, McKinnon LR, Pillay M. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. Cytokine 2017; 104:53-64. [PMID: 29032986 DOI: 10.1016/j.cyto.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023]
Abstract
M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, South Africa.
| |
Collapse
|
20
|
Steinbach G, Hockenbery DM, Huls G, Furlong T, Myerson D, Loeb KR, Fann JR, Castilla-Llorente C, McDonald GB, Martin PJ. Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease. PLoS One 2017; 12:e0183284. [PMID: 28817727 PMCID: PMC5560707 DOI: 10.1371/journal.pone.0183284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
Severe intestinal graft-vs-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT) causes mucosal ulceration and induces innate and adaptive immune responses that amplify and perpetuate GVHD and the associated barrier dysfunction. Pharmacological agents to target mucosal barrier dysfunction in GVHD are needed. We hypothesized that induction of Wnt signaling by lithium, an inhibitor of glycogen synthase kinase (GSK3), would potentiate intestinal crypt proliferation and mucosal repair and that inhibition of GSK3 in inflammatory cells would attenuate the deregulated inflammatory response to mucosal injury. We conducted an observational pilot study to provide data for the potential design of a randomized study of lithium. Twenty patients with steroid refractory intestinal GVHD meeting enrollment criteria were given oral lithium carbonate. GVHD was otherwise treated per current practice, including 2 mg/kg per day of prednisone equivalent. Seventeen patients had extensive mucosal denudation (extreme endoscopic grade 3) in the duodenum or colon. We observed that 8 of 12 patients (67%) had a complete remission (CR) of GVHD and survived more than 1 year (median 5 years) when lithium administration was started promptly within 3 days of endoscopic diagnosis of denuded mucosa. When lithium was started promptly and less than 7 days from salvage therapy for refractory GVHD, 8 of 10 patients (80%) had a CR and survived more than 1 year. In perspective, a review of 1447 consecutive adult HCT patients in the preceding 6 years at our cancer center showed 0% one-year survival in 27 patients with stage 3-4 intestinal GVHD and grade 3 endoscopic appearance in the duodenum or colon. Toxicities included fatigue, somnolence, confusion or blunted affect in 50% of the patients. The favorable outcomes in patients who received prompt lithium therapy appear to support the future conduct of a randomized study of lithium for management of severe GVHD with extensive mucosal injury. TRIAL REGISTRATION ClinicalTrials.gov NCT00408681.
Collapse
Affiliation(s)
- Gideon Steinbach
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - David M. Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gerwin Huls
- Department of Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Terry Furlong
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David Myerson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Keith R. Loeb
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jesse R. Fann
- Department of Psychiatry, University of Washington, Seattle, Washington, United States of America
| | - Christina Castilla-Llorente
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - George B. McDonald
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
21
|
Chen SS, Yin ZF, Chen T, Qiu H, Wei YR, Du SS, Jin YP, Zhao MM, Wu Q, Weng D, Li HP. Development of a non-infectious rat model of acute exacerbation of idiopathic pulmonary fibrosis. J Thorac Dis 2017; 9:96-105. [PMID: 28203411 DOI: 10.21037/jtd.2017.01.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with severe pulmonary fibrosis. The main cause of IPF-associated death is acute exacerbation of IPF (AE-IPF). This study aims to develop a rat model of AE-IPF by two intratracheal perfusions with bleomycin (BLM). METHODS Ninety male Sprague Dawley (SD) rats were randomized into three groups: an AE-IPF model group (BLM + BLM group), an IPF model group (BLM group), and a normal control group. Rats in the BLM + BLM group underwent a second perfusion with BLM on day 28 after the first perfusion with BLM. Rats in the other two groups received saline as the second perfusion. Six rats in each group were sacrificed on day 31, day 35, and day 42 after the first perfusion, respectively. Additional 18 rats in each group were observed for survival. RESULTS Rats in the BLM + BLM group had significantly worse pulmonary alveolar inflammation and fibrosis than rats in the BLM group. Rats in the BLM + BLM group also developed large amounts of hyaline membrane, showed high levels of albumin (ALB) and various inflammatory factors in the bronchoalveolar lavage fluid (BALF), and had markedly increased lung water content. Furthermore, rat survival was reduced in the BLM + BLM group. The pathophysiological characteristics of rats in the BLM + BLM group resemble those of patients with AE-IPF. CONCLUSIONS A second perfusion with BLM appears to induce acute exacerbation of pulmonary fibrosis and may be used to model AE-IPF in rats.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Soochow University, School of Medicine, Suzhou 215006, China
| | - Zhao-Fang Yin
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Soochow University, School of Medicine, Suzhou 215006, China
| | - Tao Chen
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Hui Qiu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Ya-Ru Wei
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Shan-Shan Du
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Yue-Ping Jin
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Meng-Meng Zhao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Qin Wu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| | - Hui-Ping Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai 200433, China
| |
Collapse
|
22
|
Alaridah N, Lutay N, Tenland E, Rönnholm A, Hallgren O, Puthia M, Westergren-Thorsson G, Godaly G. Mycobacteria Manipulate G-Protein-Coupled Receptors to Increase Mucosal Rac1 Expression in the Lungs. J Innate Immun 2016; 9:318-329. [PMID: 28013312 DOI: 10.1159/000453454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB). BCG mimics M. tuberculosis (Mtb) in its persistence in the body and is used as a benchmark to compare new vaccine candidates. BCG was originally designed for mucosal vaccination, but comprehensive knowledge about its interaction with epithelium is currently lacking. We used primary airway epithelial cells (AECs) and a murine model to investigate the initial events of mucosal BCG interactions. Furthermore, we analysed the impact of the G-protein-coupled receptors (GPCRs), CXCR1 and CXCR2, in this process, as these receptors were previously shown to be important during TB infection. BCG infection of AECs induced GPCR-dependent Rac1 up-regulation, resulting in actin redistribution. The altered distribution of the actin cytoskeleton involved the MAPK signalling pathway. Blocking of the CXCR1 or CXCR2 prior to infection decreased Rac1 expression, and increased epithelial transcriptional activity and epithelial cytokine production. BCG infection did not result in epithelial cell death as measured by p53 phosphorylation and annexin. This study demonstrated that BCG infection of AECs manipulated the GPCRs to suppress epithelial signalling pathways. Future vaccine strategies could thus be improved by targeting GPCRs.
Collapse
Affiliation(s)
- Nader Alaridah
- Division of Laboratory Medicine, Department of MIG, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jayashankar L, Hafner R. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Front Immunol 2016; 7:577. [PMID: 28018344 PMCID: PMC5159487 DOI: 10.3389/fimmu.2016.00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on “immuno-oncology” are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.
Collapse
Affiliation(s)
- Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
24
|
Konowich J, Gopalakrishnan A, Dietzold J, Verma S, Bhatt K, Rafi W, Salgame P. Divergent Functions of TLR2 on Hematopoietic and Nonhematopoietic Cells during Chronic Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:741-748. [PMID: 27920273 DOI: 10.4049/jimmunol.1601651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/06/2016] [Indexed: 11/19/2022]
Abstract
We have reported that TLR2 is crucial for host resistance against chronic Mycobacterium tuberculosis infection; however, which cell types are key players in this response remain unknown. This led us to decipher the relative contribution of TLR2 on nonhematopoietic and hematopoietic cells in resistance against chronic M. tuberculosis infection in mice infected with M. tuberculosis Erdman. Consistent with our previous report, at 8 wk of infection, TLR2 knockout (TLR2KO)→TLR2KO bone marrow chimeric mice exhibited increased bacterial burden, disorganized accumulation of lymphocytes and mononuclear cells, and extensive pulmonary immunopathology compared with wild-type (WT)→WT chimeric mice. Bacterial burden and pulmonary immunopathology of chimeric mice lacking TLR2 in the hematopoietic compartment (TLR2KO→WT) was comparable to TLR2KO mice. In contrast, chimeric mice deficient in TLR2 in the nonhematopoietic compartment (WT→TLR2KO) exhibited a marked attenuation in granulomatous inflammation compared with WT mice. Although the latter mice did not exhibit improved pulmonary bacterial control, significant reductions in bacterial burden in the draining lymph nodes, spleen, and liver were observed. These findings establish that the TLR2-mediated hematopoietic response promotes stable control of pulmonary bacterial burden and granuloma integrity, whereas TLR2 signaling on nonhematopoietic cells may partly facilitate granulomatous inflammation and bacterial dissemination.
Collapse
Affiliation(s)
- Jill Konowich
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Archana Gopalakrishnan
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Jillian Dietzold
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Sheetal Verma
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Kamlesh Bhatt
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | | | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| |
Collapse
|
25
|
Abdalla AE, Lambert N, Duan X, Xie J. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci 2016; 12:710-7. [PMID: 27194948 PMCID: PMC4870714 DOI: 10.7150/ijbs.13881] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Nzungize Lambert
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangke Duan
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
26
|
Yu Y, Yu Y, Liu M, Yu P, Liu G, Liu Y, Su Y, Jiang H, Chen R. Ethyl pyruvate attenuated coxsackievirus B3-induced acute viral myocarditis by suppression of HMGB1/RAGE/NF-ΚB pathway. SPRINGERPLUS 2016; 5:215. [PMID: 27026909 PMCID: PMC4771665 DOI: 10.1186/s40064-016-1857-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
Abstract
Inflammation plays important roles in the pathogenesis of coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). Ethyl pyruvate (EP) has been shown to be an anti-inflammatory agent. High mobility group box 1 (HMGB1)/receptor for advanced glycation end product (RAGE)/nuclear factor (NF)-ΚB pathway has close relation with inflammatory responses. Here, we investigated the effects of EP on CVB3-induced AVMC and potential mechanisms. The mice with AVMC were treated with EP (40 or 80 mg/kg/day) from day 5 to day 7 post-infection. EP significantly decreased the mortality of mice with AVMC. H&E staining and immunohistochemistry for HMGB1 demonstrated less inflammatory lesions and fewer abnormal location of HMGB1 in the hearts of AVMC mice receiving EP. Immuoblot showed that EP significantly inhibited the levels of HMGB1, RAGE, phospho(p)-NF-ΚB and p-I-ΚBα, and raised I-ΚBα expression in the hearts of AVMC mice. Furthermore, real-time PCR and Elisa displayed decreased levels of HMGB1, TNF-α, IL-1β, IL-17 and increased levels of IL-10 in the hearts and serum of AVMC mice treated with EP. Our findings suggest that EP protects against CVB3-induced AVMC that is associated with inhibition of HMGB1/RAGE/NF-ΚB pathway.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, 200032 China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Yong Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, 200032 China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Ming Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Peng Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Guijian Liu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, 200032 China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Yuxi Liu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, 200032 China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Yangang Su
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| | - Ruizhen Chen
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai, 200032 China.,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032 China
| |
Collapse
|
27
|
Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species. Sci Rep 2016; 6:21526. [PMID: 26876331 PMCID: PMC4753491 DOI: 10.1038/srep21526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/22/2016] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.
Collapse
|
28
|
Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K, Kumar RA. Mycobacterium tuberculosis Infection Induces HDAC1-Mediated Suppression of IL-12B Gene Expression in Macrophages. Front Cell Infect Microbiol 2015; 5:90. [PMID: 26697414 PMCID: PMC4667035 DOI: 10.3389/fcimb.2015.00090] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/17/2015] [Indexed: 11/13/2022] Open
Abstract
Downregulation of host gene expression is one of the many strategies employed by intracellular pathogens such as Mycobacterium tuberculosis (MTB) to survive inside the macrophages and cause disease. The underlying molecular mechanism behind the downregulation of host defense gene expression is largely unknown. In this study we explored the role of histone deacetylation in macrophages in response to infection by virulent MTB H37Rv in manipulating host gene expression. We show a significant increase in the levels of HDAC1 with a concomitant and marked reduction in the levels of histone H3-acetylation in macrophages containing live, but not killed, virulent MTB. Additionally, we show that HDAC1 is recruited to the promoter of IL-12B in macrophages infected with live, virulent MTB, and the subsequent hypoacetylation of histone H3 suppresses the expression of this gene which plays a key role in initiating Th1 responses. By inhibiting immunologically relevant kinases, and by knockdown of crucial transcriptional regulators, we demonstrate that protein kinase-A (PKA), CREB, and c-Jun play an important role in regulating HDAC1 level in live MTB-infected macrophages. By chromatin immunoprecipitation (ChIP) analysis, we prove that HDAC1 expression is positively regulated by the recruitment of c-Jun to its promoter. Knockdown of HDAC1 in macrophages significantly reduced the survival of intracellular MTB. These observations indicate a novel HDAC1-mediated epigenetic modification induced by live, virulent MTB to subvert the immune system to survive and replicate in the host.
Collapse
Affiliation(s)
- Aneesh Chandran
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Cecil Antony
- Infectious Diseases Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| | - Leny Jose
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Sathish Mundayoor
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Krishnamurthy Natarajan
- Infectious Diseases Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| | - R Ajay Kumar
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| |
Collapse
|
29
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|
30
|
Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Martins MA, Carvalho CRF. Exercise reverses OVA-induced inhibition of glucocorticoid receptor and increases anti-inflammatory cytokines in asthma. Scand J Med Sci Sports 2015; 26:82-92. [DOI: 10.1111/sms.12411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 01/01/2023]
Affiliation(s)
- R. A. Silva
- Department of Physical Therapy; School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - F. M. Almeida
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - C. R. Olivo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - B. M. Saraiva-Romanholo
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- University City of São Paulo (UNICID); São Paulo SP Brazil
| | - M. A. Martins
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| | - C. R. F. Carvalho
- Department of Physical Therapy; School of Medicine; University of Sao Paulo; São Paulo SP Brazil
- Department of Clinical Medicine (LIM-20); School of Medicine; University of Sao Paulo; São Paulo SP Brazil
| |
Collapse
|
31
|
Nazareth N, Magro F, Silva J, Duro M, Gracio D, Coelho R, Appelberg R, Macedo G, Sarmento A. Infliximab therapy increases the frequency of circulating CD16(+) monocytes and modifies macrophage cytokine response to bacterial infection. Clin Exp Immunol 2014; 177:703-11. [PMID: 24816497 DOI: 10.1111/cei.12375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 12/30/2022] Open
Abstract
Crohn's disease (CD) has been correlated with altered macrophage response to microorganisms. Considering the efficacy of infliximab treatment on CD remission, we investigated infliximab effects on circulating monocyte subsets and on macrophage cytokine response to bacteria. Human peripheral blood monocyte-derived macrophages were obtained from CD patients, treated or not with infliximab. Macrophages were infected with Escherichia coli, Enterococcus faecalis, Mycobacterium avium subsp. paratuberculosis (MAP) or M. avium subsp avium, and cytokine levels [tumour necrosis factor (TNF) and interleukin (IL)-10] were evaluated at different time-points. To evaluate infliximab-dependent effects on monocyte subsets, we studied CD14 and CD16 expression by peripheral blood monocytes before and after different infliximab administrations. We also investigated TNF secretion by macrophages obtained from CD16(+) and CD16(-) monocytes and the frequency of TNF(+) cells among CD16(+) and CD16(-) monocyte-derived macrophages from CD patients. Infliximab treatment resulted in elevated TNF and IL-10 macrophage response to bacteria. An infliximab-dependent increase in the frequency of circulating CD16(+) monocytes (particularly the CD14(++) CD16(+) subset) was also observed (before infliximab: 4·65 ± 0·58%; after three administrations: 10·68 ± 2·23%). In response to MAP infection, macrophages obtained from CD16(+) monocytes were higher TNF producers and CD16(+) macrophages from infliximab-treated CD patients showed increased frequency of TNF(+) cells. In conclusion, infliximab treatment increased the TNF production of CD macrophages in response to bacteria, which seemed to depend upon enrichment of CD16(+) circulating monocytes, particularly of the CD14(++) CD16(+) subset. Infliximab treatment of CD patients also resulted in increased macrophage IL-10 production in response to bacteria, suggesting an infliximab-induced shift to M2 macrophages.
Collapse
Affiliation(s)
- N Nazareth
- CEBIMED - Biomedicine Research Center, Health Sciences Faculty, University Fernando Pessoa, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|