1
|
Mathieu M, Isomursu A, Ivaska J. Positive and negative durotaxis - mechanisms and emerging concepts. J Cell Sci 2024; 137:jcs261919. [PMID: 38647525 DOI: 10.1242/jcs.261919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Cell migration is controlled by the coordinated action of cell adhesion, cytoskeletal dynamics, contractility and cell extrinsic cues. Integrins are the main adhesion receptors to ligands of the extracellular matrix (ECM), linking the actin cytoskeleton to the ECM and enabling cells to sense matrix rigidity and mount a directional cell migration response to stiffness gradients. Most models studied show preferred migration of single cells or cell clusters towards increasing rigidity. This is referred to as durotaxis, and since its initial discovery in 2000, technical advances and elegant computational models have provided molecular level details of stiffness sensing in cell migration. However, modeling has long predicted that, depending on cell intrinsic factors, such as the balance of cell adhesion molecules (clutches) and the motor proteins pulling on them, cells might also prefer adhesion to intermediate rigidity. Recently, experimental evidence has supported this notion and demonstrated the ability of cells to migrate towards lower rigidity, in a process called negative durotaxis. In this Review, we discuss the significant conceptual advances that have been made in our appreciation of cell plasticity and context dependency in stiffness-guided directional cell migration.
Collapse
Affiliation(s)
- Mathilde Mathieu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Aleksi Isomursu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku, FI-20520 Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
2
|
Han S, Lee G, Kim D, Kim J, Kim I, Kim H, Kim D. Selective Suppression of Integrin-Ligand Binding by Single Molecular Tension Probes Mediates Directional Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306497. [PMID: 38311584 PMCID: PMC11005741 DOI: 10.1002/advs.202306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvβ3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.
Collapse
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Daesan Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science in College of Dentistry & Department of Nanobiomedical Science in Graduate SchoolDankook UniversityCheonan31116Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
3
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
4
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biomaterials reprogram collective cell migration and cell cycling by forcing homeostatic conditions. Cell Rep 2024; 43:113743. [PMID: 38358889 PMCID: PMC12053533 DOI: 10.1016/j.celrep.2024.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Cells attach to the world through either cell-extracellular matrix adhesion or cell-cell adhesion, and traditional biomaterials imitate the matrix for integrin-based adhesion. However, materials incorporating cadherin proteins that mimic cell-cell adhesion offer an alternative to program cell behavior and integrate into living tissues. We investigated how cadherin substrates affect collective cell migration and cell cycling in epithelia. Our approach involved biomaterials with matrix proteins on one-half and E-cadherin proteins on the other, forming a "Janus" interface across which we grew a single sheet of cells. Tissue regions over the matrix side exhibited normal collective dynamics, but an abrupt behavior shift occurred across the Janus boundary onto the E-cadherin side, where cells attached to the substrate via E-cadherin adhesions, resulting in stalled migration and slowing of the cell cycle. E-cadherin surfaces disrupted long-range mechanical coordination and nearly doubled the length of the G0/G1 phase of the cell cycle, linked to the lack of integrin focal adhesions on the E-cadherin surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
5
|
Yang F, Chen P, Jiang H, Xie T, Shao Y, Kim DH, Li B, Sun Y. Directional Cell Migration Guided by a Strain Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302404. [PMID: 37735983 PMCID: PMC11467785 DOI: 10.1002/smll.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well-established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor-clutch model is developed to demonstrate that the strain-introduced traction force determines integrin fibronectin pairs' catch-release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.
Collapse
Affiliation(s)
- Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengcheng Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Han Jiang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bo Li
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
6
|
Suh K, Cho YK, Breinyn IB, Cohen DJ. E-cadherin biointerfaces reprogram collective cell migration and cell cycling by forcing homeostatic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550505. [PMID: 37546933 PMCID: PMC10402016 DOI: 10.1101/2023.07.25.550505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cells attach to the world around them in two ways-cell:extracellular-matrix adhesion and cell:cell adhesion-and conventional biomaterials are made to resemble the matrix to encourage integrin-based cell adhesion. However, interest is growing for cell-mimetic interfaces that mimic cell-cell interactions using cadherin proteins, as this offers a new way to program cell behavior and design synthetic implants and objects that can integrate directly into living tissues. Here, we explore how these cadherin-based materials affect collective cell behaviors, focusing specifically on collective migration and cell cycle regulation in cm-scale epithelia. We built culture substrates where half of the culture area was functionalized with matrix proteins and the contiguous half was functionalized with E-cadherin proteins, and we grew large epithelia across this 'Janus' interface. Parts of the tissues in contact with the matrix side of the Janus interface exhibited normal collective dynamics, but an abrupt shift in behaviors happened immediately across the Janus boundary onto the E-cadherin side, where cells formed hybrid E-cadherin junctions with the substrate, migration effectively froze in place, and cell-cycling significantly decreased. E-cadherin materials suppressed long-range mechanical correlations in the tissue and mechanical information reflected off the substrate interface. These effects could not be explained by conventional density, shape index, or contact inhibition explanations. E-cadherin surfaces nearly doubled the length of the G0/G1 phase of the cell cycle, which we ultimately connected to the exclusion of matrix focal adhesions induced by the E-cadherin culture surface.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Youn Kyoung Cho
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA, 08544
| | - Isaac B Breinyn
- Department of Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA, 08544
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA, 08544
| |
Collapse
|
7
|
Esser L, Springer R, Dreissen G, Lövenich L, Konrad J, Hampe N, Merkel R, Hoffmann B, Noetzel E. Elastomeric Pillar Cages Modulate Actomyosin Contractility of Epithelial Microtissues by Substrate Stiffness and Topography. Cells 2023; 12:cells12091256. [PMID: 37174659 PMCID: PMC10177551 DOI: 10.3390/cells12091256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cell contractility regulates epithelial tissue geometry development and homeostasis. The underlying mechanobiological regulation circuits are poorly understood and experimentally challenging. We developed an elastomeric pillar cage (EPC) array to quantify cell contractility as a mechanoresponse of epithelial microtissues to substrate stiffness and topography. The spatially confined EPC geometry consisted of 24 circularly arranged slender pillars (1.2 MPa, height: 50 µm; diameter: 10 µm, distance: 5 µm). These high-aspect-ratio pillars were confined at both ends by planar substrates with different stiffness (0.15-1.2 MPa). Analytical modeling and finite elements simulation retrieved cell forces from pillar displacements. For evaluation, highly contractile myofibroblasts and cardiomyocytes were assessed to demonstrate that the EPC device can resolve static and dynamic cellular force modes. Human breast (MCF10A) and skin (HaCaT) cells grew as adherence junction-stabilized 3D microtissues within the EPC geometry. Planar substrate areas triggered the spread of monolayered clusters with substrate stiffness-dependent actin stress fiber (SF)-formation and substantial single-cell actomyosin contractility (150-200 nN). Within the same continuous microtissues, the pillar-ring topography induced the growth of bilayered cell tubes. The low effective pillar stiffness overwrote cellular sensing of the high substrate stiffness and induced SF-lacking roundish cell shapes with extremely low cortical actin tension (11-15 nN). This work introduced a versatile biophysical tool to explore mechanobiological regulation circuits driving low- and high-tensional states during microtissue development and homeostasis. EPC arrays facilitate simultaneously analyzing the impact of planar substrate stiffness and topography on microtissue contractility, hence microtissue geometry and function.
Collapse
Affiliation(s)
- Lisann Esser
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Georg Dreissen
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lukas Lövenich
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Jens Konrad
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nico Hampe
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Erik Noetzel
- Institute of Biological Information Processing 2 (IBI-2): Mechanobiology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
8
|
Cao J, Li H, Tang H, Gu X, Wang Y, Guan D, Du J, Fan Y. Stiff Extracellular Matrix Promotes Invasive Behaviors of Trophoblast Cells. Bioengineering (Basel) 2023; 10:bioengineering10030384. [PMID: 36978775 PMCID: PMC10045595 DOI: 10.3390/bioengineering10030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The effect of extracellular matrix (ECM) stiffness on embryonic trophoblast cells invasion during mammalian embryo implantation remains largely unknown. In this study, we investigated the effects of ECM stiffness on various aspects of human trophoblast cell behaviors during cell-ECM interactions. The mechanical microenvironment of the uterus was simulated by fabricating polyacrylamide (PA) hydrogels with different levels of stiffness. The human choriocarcinoma (JAR) cell lineage was used as the trophoblast model. We found that the spreading area of JAR cells, the formation of focal adhesions, and the polymerization of the F-actin cytoskeleton were all facilitated with increased ECM stiffness. Significantly, JAR cells also exhibited durotactic behavior on ECM with a gradient stiffness. Meanwhile, stiffness of the ECM affects the invasion of multicellular JAR spheroids. These results demonstrated that human trophoblast cells are mechanically sensitive, while the mechanical properties of the uterine microenvironment could play an important role in the implantation process.
Collapse
Affiliation(s)
- Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Sino-French Engineer School, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Tang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Institute of Nanotechnology for Single Cell Analysis, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
9
|
Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023; 159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Mechanical cues in the cell microenvironment such as those from extracellular matrix properties, stretching, compression and shear stress, play a critical role in maintaining homeostasis. Upon sensing mechanical stimuli, cells can translate these external forces into intracellular biochemical signals to regulate their cellular behaviors, but the specific mechanisms of mechanotransduction at the molecular level remain elusive. As a subfamily of the Ras superfamily, Rho GTPases have been recognized as key intracellular mechanotransduction mediators that can regulate multiple cell activities such as proliferation, migration and differentiation as well as biological processes such as cytoskeletal dynamics, metabolism, and organ development. However, the upstream mechanosensors for Rho proteins and downstream effectors that respond to Rho signal activation have not been well illustrated. Moreover, Rho-mediated mechanical signals in previous studies are highly context-dependent. In this review, we systematically summarize the types of mechanical cues in the cell microenvironment and provide recent advances on the roles of the Rho-based mechanotransduction in various cell activities, physiological processes and diseases. Comprehensive insights into the mechanical roles of Rho GTPase partners would open a new paradigm of mechanomedicine for a variety of diseases. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical role of Rho GTPases as signal mediators to respond to physical cues in microenvironment. This article will add a distinct contribution to this set of knowledge by intensively addressing the relationship between Rho signaling and mechanobiology/mechanotransduction/mechanomedcine. This topic has not been discussed by the journal, nor has it yet been developed by the field. The comprehensive picture that will develop, from molecular mechanisms and engineering methods to disease treatment strategies, represents an important and distinct contribution to the field. We hope that this review would help researchers in various fields, especially clinicians, oncologists and bioengineers, who study Rho signal pathway and mechanobiology/mechanotransduction, understand the critical role of Rho GTPase in mechanotransduction.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runxin Xue
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi 710049, China.
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
10
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
11
|
Qu M, Yu K, Rehman Aziz AU, Zhang H, Zhang Z, Li N, Liu B. The role of Actopaxin in tumor metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:90-102. [PMID: 36150525 DOI: 10.1016/j.pbiomolbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Actopaxin is a newly discovered focal adhesions (FAs) protein, actin-binding protein and pseudopodia-enriched molecule. It can not only bind to a variety of FAs proteins (such as Paxillin, ILK and PINCH) and non-FAs proteins (such as TESK1, CdGAP, β2-adaptin, G3BP2, ADAR1 and CD29), but also participates in multiple signaling pathways. Thus, it plays a crucial role in regulating important processes of tumor metastasis, including matrix degradation, migration, and invasion, etc. This review covers the latest progress in the structure and function of Actopaxin, its interaction with other proteins as well as its involvement in regulating tumor development and metastasis. Additionally, the current limitations for Actopaxin related studies and the possible research directions on it in the future are also discussed. It is hoped that this review can assist relevant researchers to obtain a deep understanding of the role that Actopaxin plays in tumor progression, and also enlighten further research and development of therapeutic approaches for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Manrong Qu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Kehui Yu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| |
Collapse
|
12
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
13
|
Yip AK, Zhang S, Chong LH, Cheruba E, Woon JYX, Chua TX, Goh CJH, Yang H, Tay CY, Koh CG, Chiam KH. Zyxin Is Involved in Fibroblast Rigidity Sensing and Durotaxis. Front Cell Dev Biol 2021; 9:735298. [PMID: 34869319 PMCID: PMC8637444 DOI: 10.3389/fcell.2021.735298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast's ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.
Collapse
Affiliation(s)
- Ai Kia Yip
- Bioinformatics Institute ASTAR, Singapore, Singapore
| | - Songjing Zhang
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute ASTAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Haibo Yang
- Mechanobiology Institute, Singapore, Singapore
| | - Chor Yong Tay
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore.,Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | |
Collapse
|
14
|
Matsuzaki S. Mechanobiology of the female reproductive system. Reprod Med Biol 2021; 20:371-401. [PMID: 34646066 PMCID: PMC8499606 DOI: 10.1002/rmb2.12404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mechanobiology in the field of human female reproduction has been extremely challenging technically and ethically. METHODS The present review provides the current knowledge on mechanobiology of the female reproductive system. This review focuses on the early phases of reproduction from oocyte development to early embryonic development, with an emphasis on current progress. MAIN FINDINGS RESULTS Optimal, well-controlled mechanical cues are required for female reproductive system physiology. Many important questions remain unanswered; whether and how mechanical imbalances among the embryo, decidua, and uterine muscle contractions affect early human embryonic development, whether the biomechanical properties of oocytes/embryos are potential biomarkers for selecting high-quality oocytes/embryos, whether mechanical properties differ between the two major compartments of the ovary (cortex and medulla) in normally ovulating human ovaries, whether durotaxis is involved in several processes in addition to embryonic development. Progress in mechanobiology is dependent on development of technologies that enable precise physical measurements. CONCLUSION More studies are needed to understand the roles of forces and changes in the mechanical properties of female reproductive system physiology. Recent and future technological advancements in mechanobiology research will help us understand the role of mechanical forces in female reproductive system disorders/diseases.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont‐FerrandChirurgie GynécologiqueClermont‐FerrandFrance
- Université Clermont AuvergneInstitut Pascal, UMR6602, CNRS/UCA/SIGMAClermont‐FerrandFrance
| |
Collapse
|
15
|
CdGAP promotes prostate cancer metastasis by regulating epithelial-to-mesenchymal transition, cell cycle progression, and apoptosis. Commun Biol 2021; 4:1042. [PMID: 34493786 PMCID: PMC8423782 DOI: 10.1038/s42003-021-02520-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
High mortality of prostate cancer patients is primarily due to metastasis. Understanding the mechanisms controlling metastatic processes remains essential to develop novel therapies designed to prevent the progression from localized disease to metastasis. CdGAP plays important roles in the control of cell adhesion, migration, and proliferation, which are central to cancer progression. Here we show that elevated CdGAP expression is associated with early biochemical recurrence and bone metastasis in prostate cancer patients. Knockdown of CdGAP in metastatic castration-resistant prostate cancer (CRPC) PC-3 and 22Rv1 cells reduces cell motility, invasion, and proliferation while inducing apoptosis in CdGAP-depleted PC-3 cells. Conversely, overexpression of CdGAP in DU-145, 22Rv1, and LNCaP cells increases cell migration and invasion. Using global gene expression approaches, we found that CdGAP regulates the expression of genes involved in epithelial-to-mesenchymal transition, apoptosis and cell cycle progression. Subcutaneous injection of CdGAP-depleted PC-3 cells into mice shows a delayed tumor initiation and attenuated tumor growth. Orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastasic burden. Collectively, these findings support a pro-oncogenic role of CdGAP in prostate tumorigenesis and unveil CdGAP as a potential biomarker and target for prostate cancer treatments. Mehra et al. investigate the role of CdGAP in early biochemical recurrence and bone metastasis in prostate cancer. The authors find that knocking down CdGAP leads to reduced cell motility, invasion and proliferation in PC-3 and 22Rv1 cells while orthotopic injection of CdGAP-depleted PC-3 cells reduces distant metastatic burden.
Collapse
|
16
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
17
|
Wang Y, Zhang C, Yang W, Shao S, Xu X, Sun Y, Li P, Liang L, Wu C. LIMD1 phase separation contributes to cellular mechanics and durotaxis by regulating focal adhesion dynamics in response to force. Dev Cell 2021; 56:1313-1325.e7. [PMID: 33891898 DOI: 10.1016/j.devcel.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/25/2020] [Accepted: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Cells sense and respond to extracellular mechanical cues through cell-matrix adhesions. Interestingly, the maturation of focal adhesions (FAs) is reciprocally force dependent. How biomechanical cues dictate the status of cell motility and how FAs spatial temporally coordinate force sensing and self-organization remain enigmatic. Here, we identify that LIMD1, a member of the LIM domain scaffolding proteins, undergoes force-sensitive condensation at the FAs. We also unveil that the multivalent interactions of LIMD1 intrinsically disordered region (IDR) and the LIM domains concertedly drive this phase transition under the regulation of phosphorylation. Intriguingly, formation of condensed LIMD1 protein compartments is sufficient to specifically enrich and localize late FA proteins. We further discover that LIMD1 regulates cell spreading, maintains FA dynamics and cellular contractility, and is critical for durotaxis-the ability of cells to crawl along gradients of substrate stiffness. Our results suggest a model that recruitment of LIMD1 to the FAs, via mechanical force triggered inter-molecular interaction, serves as a phase separation hub to assemble and organize matured FAs, thus allowing for efficient mechano-transduction and cell migration.
Collapse
Affiliation(s)
- Yuan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing 100191, China
| | - Chunlei Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing 100191, China
| | - Wenzhong Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing 100191, China
| | - ShiPeng Shao
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China; Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xinmin Xu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing 100191, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Liang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Tumor Systems Biology, Beijing 100191, China.
| |
Collapse
|
18
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
19
|
Rong Y, Yang W, Hao H, Wang W, Lin S, Shi P, Huang Y, Li B, Sun Y, Liu Z, Wu C. The Golgi microtubules regulate single cell durotaxis. EMBO Rep 2021; 22:e51094. [PMID: 33559938 PMCID: PMC7926246 DOI: 10.15252/embr.202051094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Current understandings on cell motility and directionality rely heavily on accumulated investigations of the adhesion-actin cytoskeleton-actomyosin contractility cycles, while microtubules have been understudied in this context. Durotaxis, the ability of cells to migrate up gradients of substrate stiffness, plays a critical part in development and disease. Here, we identify the pivotal role of Golgi microtubules in durotactic migration of single cells. Using high-throughput analysis of microtubule plus ends/focal adhesion interactions, we uncover that these non-centrosomal microtubules actively impart leading edge focal adhesion (FA) dynamics. Furthermore, we designed a new system where islands of higher stiffness were patterned within RGD peptide coated polyacrylamide gels. We revealed that the positioning of the Golgi apparatus is responsive to external mechanical cues and that the Golgi-nucleus axis aligns with the stiffness gradient in durotaxis. Together, our work unveils the cytoskeletal underpinning for single cell durotaxis. We propose a model in which the Golgi-nucleus axis serves both as a compass and as a steering wheel for durotactic migration, dictating cell directionality through the interaction between non-centrosomal microtubules and the FA dynamics.
Collapse
Affiliation(s)
- Yingxue Rong
- Institute of Systems BiomedicineSchool of Basic Medical SciencePeking University Health Science CenterBeijingChina
| | - Wenzhong Yang
- Institute of Systems BiomedicineSchool of Basic Medical SciencePeking University Health Science CenterBeijingChina
| | - Huiwen Hao
- State Key Laboratory of Membrane BiologyBiomedical Pioneer Innovation Center (BIOPIC)School of Life SciencesPeking UniversityBeijingChina
| | - Wenxu Wang
- The Institute for Advanced StudiesWuhan UniversityWuhanChina
| | - Shaozhen Lin
- Applied Mechanics LaboratoryDepartment of Engineering MechanicsInstitute of Biomechanics and Medical EngineeringTsinghua UniversityBeijingChina
| | - Peng Shi
- Institute of Systems BiomedicineSchool of Basic Medical SciencePeking University Health Science CenterBeijingChina
| | - Yuxing Huang
- Institute of Systems BiomedicineSchool of Basic Medical SciencePeking University Health Science CenterBeijingChina
| | - Bo Li
- Applied Mechanics LaboratoryDepartment of Engineering MechanicsInstitute of Biomechanics and Medical EngineeringTsinghua UniversityBeijingChina
| | - Yujie Sun
- State Key Laboratory of Membrane BiologyBiomedical Pioneer Innovation Center (BIOPIC)School of Life SciencesPeking UniversityBeijingChina
| | - Zheng Liu
- The Institute for Advanced StudiesWuhan UniversityWuhanChina
| | - Congying Wu
- Institute of Systems BiomedicineSchool of Basic Medical SciencePeking University Health Science CenterBeijingChina
| |
Collapse
|
20
|
Shellard A, Mayor R. Durotaxis: The Hard Path from In Vitro to In Vivo. Dev Cell 2020; 56:227-239. [PMID: 33290722 DOI: 10.1016/j.devcel.2020.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Durotaxis, the process by which cells follow gradients of extracellular mechanical stiffness, has been proposed as a mechanism driving directed migration. Despite the lack of evidence for its existence in vivo, durotaxis has become an active field of research, focusing on the mechanism by which cells respond to mechanical stimuli from the environment. In this review, we describe the technical and conceptual advances in the study of durotaxis in vitro, discuss to what extent the evidence suggests durotaxis may occur in vivo, and emphasize the urgent need for in vivo demonstration of durotaxis.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Rens EG, Merks RM. Cell Shape and Durotaxis Explained from Cell-Extracellular Matrix Forces and Focal Adhesion Dynamics. iScience 2020; 23:101488. [PMID: 32896767 PMCID: PMC7482025 DOI: 10.1016/j.isci.2020.101488] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Many cells are small and rounded on soft extracellular matrices (ECM), elongated on stiffer ECMs, and flattened on hard ECMs. Cells also migrate up stiffness gradients (durotaxis). Using a hybrid cellular Potts and finite-element model extended with ODE-based models of focal adhesion (FA) turnover, we show that the full range of cell shape and durotaxis can be explained in unison from dynamics of FAs, in contrast to previous mathematical models. In our 2D cell-shape model, FAs grow due to cell traction forces. Forces develop faster on stiff ECMs, causing FAs to stabilize and, consequently, cells to spread on stiff ECMs. If ECM stress further stabilizes FAs, cells elongate on substrates of intermediate stiffness. We show that durotaxis follows from the same set of assumptions. Our model contributes to the understanding of the basic responses of cells to ECM stiffness, paving the way for future modeling of more complex cell-ECM interactions.
Collapse
Affiliation(s)
- Elisabeth G. Rens
- Scientific Computing, CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
- Mathematics Department, University of British Columbia, Mathematics Road 1984, Vancouver, BC V6T 1Z2, Canada
| | - Roeland M.H. Merks
- Scientific Computing, CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands
| |
Collapse
|
22
|
All Roads Lead to Directional Cell Migration. Trends Cell Biol 2020; 30:852-868. [PMID: 32873438 DOI: 10.1016/j.tcb.2020.08.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
Directional cell migration normally relies on a variety of external signals, such as chemical, mechanical, or electrical, which instruct cells in which direction to move. Many of the major molecular and physical effects derived from these cues are now understood, leading to questions about whether directional cell migration is alike or distinct under these different signals, and how cells might be directed by multiple simultaneous cues, which would be expected in complex in vivo environments. In this review, we compare how different stimuli are spatially distributed, often as gradients, to direct cell movement and the mechanisms by which they steer cells. A comparison of the downstream effectors of directional cues suggests that different external signals regulate a common set of components: small GTPases and the actin cytoskeleton, which implies that the mechanisms downstream of different signals are likely to be closely related and underlies the idea that cell migration operates by a common set of physical principles, irrespective of the input.
Collapse
|
23
|
Zhang Z, Rosakis P, Hou TY, Ravichandran G. A minimal mechanosensing model predicts keratocyte evolution on flexible substrates. J R Soc Interface 2020; 17:20200175. [PMID: 32370690 DOI: 10.1098/rsif.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Phoebus Rosakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013 Crete, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Voutes 70013 Crete, Greece
| | - Thomas Y Hou
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
25
|
Lin FY, Lin JY, Lo KY, Sun YS. Use Microfluidic Chips to Study the Phototaxis of Lung Cancer Cells. Int J Mol Sci 2019; 20:ijms20184515. [PMID: 31547262 PMCID: PMC6769873 DOI: 10.3390/ijms20184515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Cell migration is an important process involved in wound healing, tissue development, and so on. Many studies have been conducted to explore how certain chemicals and electric fields induce cell movements in specific directions, which are phenomena termed chemotaxis and electrotaxis, respectively. However, phototaxis, the directional migration of cells or organisms toward or away from light, is rarely investigated due to the difficulty of generating a precise and controllable light gradient. In this study, we designed and fabricated a microfluidic chip for simultaneously culturing cells and generating a blue light gradient for guiding cell migration. A concentration gradient was first established inside this chip, and by illuminating it with a blue light-emitting diode (LED), a blue light gradient was generated underneath. Cell migration in response to this light stimulus was observed. It was found that lung cancer cells migrated to the dark side of the gradient, and the intracellular reactive oxygen species (ROS) was proportional to the intensity of the blue light.
Collapse
Affiliation(s)
- Fong-Yi Lin
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Jin-Young Lin
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
26
|
Abstract
Cell migration is a fundamental process in biological systems, playing an important role for diverse physiological processes. Cells often exhibit directed migration in a specific direction in response to various types of cues. In particular, cells are able to sense the rigidity of surrounding environments and then migrate toward stiffer regions. To understand this mechanosensitive behavior called durotaxis, several computational models have been developed. However, most of the models employed cell decision making to recapitulate durotactic behaviors, significantly limiting insights provided from these studies. In this study, we developed a computational biomechanical model without any cell decision making to illuminate intrinsic mechanisms of durotactic behaviors of cells migrating on a two-dimensional substrate. The model consists of a simplified cell generating contractile forces and a deformable substrate coarse-grained into an irregular triangulated mesh. Using the model, we demonstrated that durotactic behaviors emerge from purely mechanical interactions between the cell and the underlying substrate. We investigated how durotactic migration is regulated by biophysical properties of the substrate, including elasticity, viscosity, and stiffness profile.
Collapse
Affiliation(s)
- Abdel-Rahman Hassan
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Thomas Biel
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
DuChez BJ, Doyle AD, Dimitriadis EK, Yamada KM. Durotaxis by Human Cancer Cells. Biophys J 2019; 116:670-683. [PMID: 30709621 PMCID: PMC6382956 DOI: 10.1016/j.bpj.2019.01.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023] Open
Abstract
Durotaxis is a type of directed cell migration in which cells respond to a gradient of extracellular stiffness. Using automated tracking of positional data for large sample sizes of single migrating cells, we investigated 1) whether cancer cells can undergo durotaxis; 2) whether cell durotactic efficiency varies depending on the regional compliance of stiffness gradients; 3) whether a specific cell migration parameter such as speed or time of migration correlates with durotaxis; and 4) whether Arp2/3, previously implicated in leading edge dynamics and migration, contributes to cancer cell durotaxis. Although durotaxis has been characterized primarily in nonmalignant mesenchymal cells, little is known about its role in cancer cell migration. Diffusible factors are known to affect cancer cell migration and metastasis. However, because many tumor microenvironments gradually stiffen, we hypothesized that durotaxis might also govern migration of cancer cells. We evaluated the durotactic potential of multiple cancer cell lines by employing substrate stiffness gradients mirroring the physiological stiffness encountered by cells in a variety of tissues. Automated cell tracking permitted rapid acquisition of positional data and robust statistical analyses for migrating cells. These durotaxis assays demonstrated that all cancer cell lines tested (two glioblastoma, metastatic breast cancer, and fibrosarcoma) migrated directionally in response to changes in extracellular stiffness. Unexpectedly, all cancer cell lines tested, as well as noninvasive human fibroblasts, displayed the strongest durotactic migratory response when migrating on the softest regions of stiffness gradients (2-7 kPa), with decreased responsiveness on stiff regions of gradients. Focusing on glioblastoma cells, durotactic forward migration index and displacement rates were relatively stable over time. Correlation analyses showed the expected correlation with displacement along the gradient but much less with persistence and none with cell speed. Finally, we found that inhibition of Arp2/3, an actin-nucleating protein necessary for lamellipodial protrusion, impaired durotactic migration.
Collapse
Affiliation(s)
- Brian J DuChez
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Andrew D Doyle
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Emilios K Dimitriadis
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
28
|
Goriainov V, Cook RB, Murray JW, Walker JC, Dunlop DG, Clare AT, Oreffo ROC. Human Skeletal Stem Cell Response to Multiscale Topography Induced by Large Area Electron Beam Irradiation Surface Treatment. Front Bioeng Biotechnol 2018; 6:91. [PMID: 30087890 PMCID: PMC6066554 DOI: 10.3389/fbioe.2018.00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022] Open
Abstract
The healthcare socio-economic environment is irreversibly changing as a consequence of an increasing aging population, consequent functional impairment, and patient quality of life expectations. The increasing complexity of ensuing clinical scenarios compels a critical search for novel musculoskeletal regenerative and replacement strategies. While joint arthroplasty is a highly effective treatment for arthritis and osteoporosis, further innovation and refinement of uncemented implants are essential in order to improve implant integration and reduce implant revision rate. This is critical given financial restraints and the drive to improve cost-effectiveness and quality of life outcomes. Multi-scale modulation of implant surfaces, offers an innovative approach to enhancement in implant performance. In the current study, we have examined the potential of large area electron beam melting to alter the surface nanotopography in titanium alloy (Ti6Al4V). We evaluated the in vitro osteogenic response of human skeletal stem cells to the resultant nanotopography, providing evidence of the relationship between the biological response, particularly Collagen type I and Osteocalcin gene activation, and surface nanoroughness. The current studies demonstrate osteogenic gene induction and morphological cell changes to be significantly enhanced on a topography Ra of ~40 nm with clinical implications therein for implant surface treatment and generation.
Collapse
Affiliation(s)
- Vitali Goriainov
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
| | - Richard B. Cook
- Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - James W. Murray
- Manufacturing Engineering, University of Nottingham, Nottingham, United Kingdom
| | - John C. Walker
- Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Douglas G. Dunlop
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
| | - Adam T. Clare
- Manufacturing Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Richard O. C. Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
29
|
McKenzie AJ, Hicks SR, Svec KV, Naughton H, Edmunds ZL, Howe AK. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci Rep 2018; 8:7228. [PMID: 29740072 PMCID: PMC5940803 DOI: 10.1038/s41598-018-25589-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
There is growing appreciation of the importance of the mechanical properties of the tumor microenvironment on disease progression. However, the role of extracellular matrix (ECM) stiffness and cellular mechanotransduction in epithelial ovarian cancer (EOC) is largely unknown. Here, we investigated the effect of substrate rigidity on various aspects of SKOV3 human EOC cell morphology and migration. Young’s modulus values of normal mouse peritoneum, a principal target tissue for EOC metastasis, were determined by atomic force microscopy (AFM) and hydrogels were fabricated to mimic these values. We find that cell spreading, focal adhesion formation, myosin light chain phosphorylation, and cellular traction forces all increase on stiffer matrices. Substrate rigidity also positively regulates random cell migration and, importantly, directional increases in matrix tension promote SKOV3 cell durotaxis. Matrix rigidity also promotes nuclear translocation of YAP1, an oncogenic transcription factor associated with aggressive metastatic EOC. Furthermore, disaggregation of multicellular EOC spheroids, a behavior associated with dissemination and metastasis, is enhanced by matrix stiffness through a mechanotransduction pathway involving ROCK, actomyosin contractility, and FAK. Finally, this pattern of mechanosensitivity is maintained in highly metastatic SKOV3ip.1 cells. These results establish that the mechanical properties of the tumor microenvironment may play a role in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J McKenzie
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Stephanie R Hicks
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Kathryn V Svec
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Hannah Naughton
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Zöe L Edmunds
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Alan K Howe
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States.
| |
Collapse
|
30
|
Goriainov V, Hulsart-Billstrom G, Sjostrom T, Dunlop DG, Su B, Oreffo ROC. Harnessing Nanotopography to Enhance Osseointegration of Clinical Orthopedic Titanium Implants-An in Vitro and in Vivo Analysis. Front Bioeng Biotechnol 2018; 6:44. [PMID: 29696140 PMCID: PMC5905351 DOI: 10.3389/fbioe.2018.00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 01/30/2023] Open
Abstract
Despite technological advancements, further innovations in the field of orthopedics and bone regeneration are essential to meet the rising demands of an increasing aging population and associated issues of disease, injury and trauma. Nanotopography provides new opportunities for novel implant surface modifications and promises to deliver further improvements in implant performance. However, the technical complexities of nanotopography fabrication and surface analysis have precluded identification of the optimal surface features to trigger osteogenesis. We herein detail the osteoinductive potential of discrete nanodot and nanowire nanotopographies. We have examined the ability of modified titanium and titanium alloy (Ti64) surfaces to induce bone-specific gene activation and extracellular matrix protein expression in human skeletal stem cells (SSCs) in vitro, and de novo osteogenic response within a murine calvarial model in vivo. This study provides evidence of enhanced osteogenic response to nanowires 300 surface modifications, with important implications for clinical orthopedic application.
Collapse
Affiliation(s)
- Vitali Goriainov
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Gry Hulsart-Billstrom
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Terje Sjostrom
- Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Douglas G Dunlop
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Bo Su
- Oral and Dental Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
31
|
Goreczny GJ, Forsythe IJ, Turner CE. Hic-5 regulates fibrillar adhesion formation to control tumor extracellular matrix remodeling through interaction with tensin1. Oncogene 2018; 37:1699-1713. [PMID: 29348458 PMCID: PMC5876083 DOI: 10.1038/s41388-017-0074-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/02/2017] [Accepted: 11/19/2017] [Indexed: 01/26/2023]
Abstract
The linearization of the stromal extracellular matrix (ECM) by cancer associated fibroblasts (CAFs) facilitates tumor cell growth and metastasis. However, the mechanism by which the ECM is remodeled is not fully understood. Hic-5 (TGFβ1i1), a focal adhesion scaffold protein, has previously been reported to be crucial for stromal ECM deposition and remodeling in vivo. Herein we show that CAFs lacking Hic-5 exhibit a significant reduction in the ability to form fibrillar adhesions, a specialized form of focal adhesion that promote fibronectin fibrillogenesis. Hic-5 was found to promote fibrillar adhesion formation through a newly characterized interaction with tensin1. Furthermore, Src dependent phosphorylation of Hic-5 facilitated the interaction with tensin1 to prevent β1 integrin internalization and trafficking to the lysosome. The interaction between Hic-5 and tensin1 was mechanosensitive, promoting fibrillar adhesion formation and fibronectin fibrillogenesis in a rigidity dependent fashion. Importantly, this Src dependent mechanism was conserved in three-dimensional (3D) ECM environments. Immunohistochemistry of tensin1 showed enrichment in CAFs in vivo, which was abrogated upon deletion of Hic-5. Interestingly, elevated Hic-5 expression correlates with reduced distant metastasis free survival in patients with basal-like, HER2+ and grade 3 tumors. Thus, we have identified Hic-5 as a crucial regulator of ECM remodeling in CAFs by promoting fibrillar adhesion formation through a novel interaction with tensin1.
Collapse
Affiliation(s)
- Gregory J Goreczny
- Department of Cell & Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Ian J Forsythe
- Department of Cell & Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher E Turner
- Department of Cell & Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
32
|
Ben Djoudi Ouadda A, He Y, Calabrese V, Ishii H, Chidiac R, Gratton JP, Roux PP, Lamarche-Vane N. CdGAP/ARHGAP31 is regulated by RSK phosphorylation and binding to 14-3-3β adaptor protein. Oncotarget 2018; 9:11646-11664. [PMID: 29545927 PMCID: PMC5837747 DOI: 10.18632/oncotarget.24126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/03/2017] [Indexed: 12/29/2022] Open
Abstract
Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a negative regulator of the GTPases Rac1 and Cdc42. Associated with the rare developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for embryonic vascular development and VEGF-mediated angiogenesis. Moreover, CdGAP is an essential component in the synergistic interaction between TGFβ and ErbB-2 signaling pathways during breast cancer cell migration and invasion, and is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. CdGAP is highly phosphorylated on serine and threonine residues in response to growth factors and is a substrate of ERK1/2 and GSK-3. Here, we identified Ser1093 and Ser1163 in the C-terminal region of CdGAP, which are phosphorylated by RSK in response to phorbol ester. These phospho-residues create docking sites for binding to 14-3-3 adaptor proteins. The interaction between CdGAP and 14-3-3 proteins inhibits the GAP activity of CdGAP and sequesters CdGAP into the cytoplasm. Consequently, the nucleocytoplasmic shuttling of CdGAP is inhibited and CdGAP-induced cell rounding is abolished. In addition, 14-3-3β inhibits the ability of CdGAP to repress the E-cadherin promoter and to induce cell migration. Finally, we show that 14-3-3β is unable to regulate the activity and subcellular localization of the AOS-related mutant proteins lacking these phospho-residues. Altogether, we provide a novel mechanism of regulation of CdGAP activity and localization, which impacts directly on a better understanding of the role of CdGAP as a promoter of breast cancer and in the molecular causes of AOS.
Collapse
Affiliation(s)
- Ali Ben Djoudi Ouadda
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Yi He
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Viviane Calabrese
- Institute for Research in Immunology and Cancer (IRIC), Montreal, Quebec, H3T 1J4, Canada
| | - Hidetaka Ishii
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| | - Rony Chidiac
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Department of pharmacology, Montreal, Quebec, H3T 1J4, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Department of pharmacology, Montreal, Quebec, H3T 1J4, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Montreal, Quebec, H3T 1J4, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, Quebec, H4A 3J1, Canada.,McGill University, Department of Anatomy and Cell Biology, Montreal, Quebec, H3A 2B2, Canada
| |
Collapse
|
33
|
Bazellières E, Aksenova V, Barthélémy-Requin M, Massey-Harroche D, Le Bivic A. Role of the Crumbs proteins in ciliogenesis, cell migration and actin organization. Semin Cell Dev Biol 2017; 81:13-20. [PMID: 29056580 DOI: 10.1016/j.semcdb.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.
Collapse
Affiliation(s)
- Elsa Bazellières
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | - Veronika Aksenova
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | | | | | - André Le Bivic
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France.
| |
Collapse
|
34
|
Solanki HS, Babu N, Jain AP, Bhat MY, Puttamallesh VN, Advani J, Raja R, Mangalaparthi KK, Kumar MM, Prasad TSK, Mathur PP, Sidransky D, Gowda H, Chatterjee A. Cigarette smoke induces mitochondrial metabolic reprogramming in lung cells. Mitochondrion 2017; 40:58-70. [PMID: 29042306 DOI: 10.1016/j.mito.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
Abstract
Cellular transformation owing to cigarette smoking is due to chronic exposure and not acute. However, systematic studies to understand the molecular alterations in lung cells due to cigarette smoke are lacking. To understand these molecular alterations induced by chronic cigarette smoke exposure, we carried out tandem mass tag (TMT) based temporal proteomic profiling of lung cells exposed to cigarette smoke for upto 12months. We identified 2620 proteins in total, of which 671 proteins were differentially expressed (1.5-fold) after 12months of exposure. Prolonged exposure of lung cells to smoke for 12months revealed dysregulation of oxidative phosphorylation and overexpression of enzymes involved in TCA cycle. In addition, we also observed overexpression of enzymes involved in glutamine metabolism, fatty acid degradation and lactate synthesis. This could possibly explain the availability of alternative source of carbon to TCA cycle apart from glycolytic pyruvate. Our data indicates that chronic exposure to cigarette smoke induces mitochondrial metabolic reprogramming in cells to support growth and survival.
Collapse
Affiliation(s)
- Hitendra S Solanki
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Niraj Babu
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Ankit P Jain
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Vinuth N Puttamallesh
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Manipal University, Madhav Nagar, Manipal 576104, India
| | - Remya Raja
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; Amrita School of Biotechnology, Amrita University, Kollam 690 525, India
| | - Mahesh M Kumar
- Department of Neuro-Virology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India; NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India; YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore 575018, India
| | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore 560 066, India.
| |
Collapse
|
35
|
Dettman RW, Simon HG. Rebooting the collagen gel: Artificial hydrogels for the study of epithelial mesenchymal transformation. Dev Dyn 2017; 247:332-339. [PMID: 28786157 DOI: 10.1002/dvdy.24560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
The collagen gel has been used to study epithelial-mesenchymal transformation (EMT) for over 30 years. With advances in the field of materials sciences, new options are available to design optically clear, three-dimensional nature-inspired matrix mimetics to study EMT. Here, we review the history of the collagen gel assay, discuss its current use and how newer artificial matrices can be built to simulate in vivo extracellular environments and investigate important current questions in the EMT field. We suggest that further collaborations between materials scientists and biologists will be critical to move the field of EMT forward. Developmental Dynamics 247:332-339, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert W Dettman
- Department of Urology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
36
|
McCormack JJ, Bruche S, Ouadda ABD, Ishii H, Lu H, Garcia-Cattaneo A, Chávez-Olórtegui C, Lamarche-Vane N, Braga VMM. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep 2017; 7:9249. [PMID: 28835688 PMCID: PMC5569031 DOI: 10.1038/s41598-017-09024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba provides a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies.
Collapse
Affiliation(s)
- J J McCormack
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - S Bruche
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - A B D Ouadda
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Ishii
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Lu
- Cancer Division, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - A Garcia-Cattaneo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - C Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - V M M Braga
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
37
|
Hickey R, Pelling AE. The rotation of mouse myoblast nuclei is dependent on substrate elasticity. Cytoskeleton (Hoboken) 2017; 74:184-194. [PMID: 28236372 DOI: 10.1002/cm.21357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
The complex interplay of biochemical signaling and mechanical traction forces regulate the position of cellular nuclei. Although the phenomenon of nuclear rotation has been observed for many years, the influence of substrate elasticity was unknown. We discovered another layer of complexity to this phenomenon: nuclear rotation is dependent on substrate elasticity. Nuclear rotation is drastically reduced on physiologically relevant stiffnesses. Here, we studied nuclear rotation in mouse C2C12 myoblasts cultured on soft substrates designed to mimic resting tissue (∼26 kPa) and on hard glass substrates. We examined the roles of the actin and microtubule cytoskeleton on the presence and dynamics of nuclear rotation in these two different microenvironments. We demonstrated the clear dependence of nuclear rotation dynamics on matrix stiffness. These results will have important implications for the design of future studies of nuclear rotation and our understanding of the phenomenon as a whole. Unnaturally, hard substrates do not only fail to mimic the in vivo microenvironment, but can also induce cellular processes that would not normally occur in the natural cellular environment.
Collapse
Affiliation(s)
- Ryan Hickey
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, ON, K1N5N5, Canada
| | - Andrew E Pelling
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, ON, K1N5N5, Canada.,Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON, K1N5N5, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, 6009
| |
Collapse
|
38
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
39
|
Maki K, Nakao N, Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem Biophys Res Commun 2017; 484:372-377. [PMID: 28131835 DOI: 10.1016/j.bbrc.2017.01.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Abstract
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Nobuhiko Nakao
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
40
|
CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci Rep 2016; 6:27485. [PMID: 27270835 PMCID: PMC4895392 DOI: 10.1038/srep27485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP(-/-) mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction.
Collapse
|
41
|
Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016; 5:cells5020017. [PMID: 27058559 PMCID: PMC4931666 DOI: 10.3390/cells5020017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli.
Collapse
Affiliation(s)
- Jing Ling Hoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Mei Hua Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Mechanobiology Institute, Singapore 117411, Singapore.
| |
Collapse
|
42
|
Wang K, Bruce A, Mezan R, Kadiyala A, Wang L, Dawson J, Rojanasakul Y, Yang Y. Nanotopographical Modulation of Cell Function through Nuclear Deformation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5082-92. [PMID: 26844365 PMCID: PMC4804753 DOI: 10.1021/acsami.5b10531] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell-substrate interfaces of implants and medical devices.
Collapse
Affiliation(s)
- Kai Wang
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Allison Bruce
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ryan Mezan
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Anand Kadiyala
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying Wang
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jeremy Dawson
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yong Yang
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
- Corresponding Author Y. Yang.
| |
Collapse
|
43
|
Wu SY, Hou HS, Sun YS, Cheng JY, Lo KY. Correlation between cell migration and reactive oxygen species under electric field stimulation. BIOMICROFLUIDICS 2015; 9:054120. [PMID: 26487906 PMCID: PMC4600077 DOI: 10.1063/1.4932662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 05/04/2023]
Abstract
Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate.
Collapse
Affiliation(s)
- Shang-Ying Wu
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Hsien-San Hou
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University , New Taipei City 24205, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
44
|
Goreczny GJ, Wormer DB, Turner CE. A Simplified System for Evaluating Cell Mechanosensing and Durotaxis In Vitro. J Vis Exp 2015:e52949. [PMID: 26381826 DOI: 10.3791/52949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The composition and mechanical properties of the extracellular matrix are highly variable between tissue types. This connective tissue stroma diversity greatly impacts cell behavior to regulate normal and pathologic processes including cell proliferation, differentiation, adhesion signaling and directional migration. In this regard, the innate ability of certain cell types to migrate towards a stiffer, or less compliant matrix substrate is referred to as durotaxis. This phenomenon plays an important role during embryonic development, wound repair and cancer cell invasion. Here, we describe a straightforward assay to study durotaxis, in vitro, using polydimethylsiloxane (PDMS) substrates. Preparation of the described durotaxis chambers creates a rigidity interface between the relatively soft PDMS gel and a rigid glass coverslip. In the example provided, we have used these durotaxis chambers to demonstrate a role for the cdc42/Rac1 GTPase activating protein, cdGAP, in mechanosensing and durotaxis regulation in human U2OS osteosarcoma cells. This assay is readily adaptable to other cell types and/or knockdown of other proteins of interests to explore their respective roles in mechanosignaling and durotaxis.
Collapse
Affiliation(s)
- Gregory J Goreczny
- Department of Cell & Developmental Biology, SUNY Upstate Medical University
| | - Duncan B Wormer
- Department of Cell & Developmental Biology, SUNY Upstate Medical University
| | | |
Collapse
|