1
|
Reinhold WC, Marangoni E, Elloumi F, Montagne R, Varma S, Wang Y, Rezai K, Morriset L, Dahmani A, El Botty R, Huguet L, Mizunuma M, Takebe N, Huguet S, Luna A, Pommier Y. Acetalax and Bisacodyl for the Treatment of Triple-Negative Breast Cancer: A Combined Molecular and Preclinical Study. CANCER RESEARCH COMMUNICATIONS 2025; 5:375-388. [PMID: 39932272 PMCID: PMC11869203 DOI: 10.1158/2767-9764.crc-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
SIGNIFICANCE Acetalax and bisacodyl represent a prospective novel drug mechanism-of-action type, affect mitochondrial function and affect tumor growth in vivo. Their activity may be predicted by TRPM4 but with more accuracy adding other genes in multivariate analysis for triple negative breast cancer (TNBC). Acetalax has a biphasic mean half-life of 5.8 hours.
Collapse
Affiliation(s)
- William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Remi Montagne
- CBIO-Centre for Computational Biology, Institut Curie, INSERM, Mines ParisTech, Paris, France
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- HiThru Analytics LLC, Princeton, New Jersey
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- ICF International Inc., Fairfax, Virginia
| | - Keyvan Rezai
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Ludivine Morriset
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Ahmed Dahmani
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Rania El Botty
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Léa Huguet
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | - Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Samuel Huguet
- Institut Curie, Département de Radio-Pharmacologie, Saint-Cloud, France
| | - Augustin Luna
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Computational Biology Branch, National Library of Medicine, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Wang YW, Tuan YL, Wang JY, Chang HY, Chu CA, Chen YL, Chen HW, Ho CL, Lee CT, Chow NH. Potential of epithelial membrane protein 3 as a novel therapeutic target for human breast cancer. Oncol Rep 2025; 53:16. [PMID: 39611484 PMCID: PMC11632653 DOI: 10.3892/or.2024.8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024] Open
Abstract
Amplification of human epidermal growth factor 2 receptor (HER2) and overexpression of estrogen receptor (ER) and/or progesterone receptor (PR) are key determinants in the treatment planning for human breast cancer (BC). Currently, targeted therapies for BC are focused mainly on these biomarkers. However, development of resistance to targeted drugs is almost unavoidable, emphasizing the importance of biochemical and pharmaceutical advances to improve treatment outcomes. To the best of our knowledge, the present study is the first to show functional crosstalk in vitro between HER2 and epithelial membrane protein 3 (EMP3), a tetraspan membrane protein, in human BC. EMP3 overexpression significantly promoted BC cell proliferation, invasion and migration by Transwell assays via epithelial-mesenchymal transition and transactivated the HER family, resulting in increased ER and PR expression in vitro. Knocking down EMP3 notably suppressed cell proliferation and migration and was accompanied by decreased expression of HER1‑HER3 and p‑SRC proteins. Suppression of EMP3 expression enhanced sensitivity of BC cells to trastuzumab in vitro. Xenograft experiments revealed decreased expression of HER1 and HER2 in stable EMP3‑knockdown cells, resulting in decreased tumor weight and size. In patients with BC, EMP3 overexpression was detected in 72 of 166 cases (43.4%), with 18 of 43 (41.9%) HER2‑amplified BC samples co‑expressing EMP3. Co‑expression of EMP3 and HER2 was positively associated with ER expression (P=0.028) and tended to be associated with nodal metastasis (P=0.085), however this was not significant. Taken together, the present results supported the potential of targeting EMP3 as a novel therapeutic strategy for human BC via co‑expression of HER2 and EMP3.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Yih-Lin Tuan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
- Department of Allergy, Immunology, and Rheumatology, China Medical University Children's Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan, R.O.C
| | - Chien-An Chu
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 701401, Taiwan, R.O.C
| | - Hui-Wen Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 701401, Taiwan, R.O.C
| | - Chung-Liang Ho
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 701401, Taiwan, R.O.C
| | - Chung-Ta Lee
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Department of Pathology, National Cheng Kung University Hospital, Tainan 701401, Taiwan, R.O.C
| | - Nan-Haw Chow
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
- Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
3
|
Prasad H, Bv H, Subbalakshmi AR, Mandal S, Jolly MK, Visweswariah SS. Endosomal pH is an evolutionarily conserved driver of phenotypic plasticity in colorectal cancer. NPJ Syst Biol Appl 2024; 10:149. [PMID: 39702657 DOI: 10.1038/s41540-024-00463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Dysregulated pH is now recognised as a hallmark of cancer. Recent evidence has revealed that the endosomal pH regulator Na+/H+ exchanger NHE9 is upregulated in colorectal cancer to impose a pseudo-starvation state associated with invasion, highlighting an underexplored mechanistic link between adaptive endosomal reprogramming and malignant transformation. In this study, we use a model that quantitatively captures the dynamics of the core regulatory network governing epithelial mesenchymal plasticity. The model recapitulated NHE9-induced calcium signalling and the emergence of migratory phenotypes in colorectal cancer cells. Model predictions were compared with patient data and experimental results from RNA sequencing analysis of colorectal cancer cells with stable NHE9 expression. Mathematical analyses identified that tumours leverage elevated NHE9 levels to delay the transition of cells to a mesenchymal state and allow for metastatic progression. Ectopic expression of NHE9 is sufficient to induce loss of epithelial nature but does not fully couple with gain of mesenchymal state, resulting in a hybrid epithelial-mesenchymal population with increased aggressiveness and metastatic competence. Higher NHE9 expression is associated with cancer cell migration, and the effect appears to be independent of hypoxia status. Our data suggests that alterations in endosomal pH, an evolutionarily conserved starvation response, may be hijacked by colorectal cancer cells to drive phenotypic plasticity and invasion. We propose that cancer cells rewire their endosomal pH not only to meet the demands of rapid cell proliferation, but also to enable invasion, metastasis, and cell survival. Endosomal pH may be an attractive therapeutic target for halting tumour progression.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India.
- Centre for Brain Research, Indian Institute of Science, Bengaluru, 560012, India.
| | - Harshavardhan Bv
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, 560012, India
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
4
|
Mizunuma M, Redon CE, Saha LK, Tran AD, Dhall A, Sebastian R, Taniyama D, Kruhlak MJ, Reinhold WC, Takebe N, Pommier Y. Acetalax (Oxyphenisatin Acetate, NSC 59687) and Bisacodyl Cause Oncosis in Triple-Negative Breast Cancer Cell Lines by Poisoning the Ion Exchange Membrane Protein TRPM4. CANCER RESEARCH COMMUNICATIONS 2024; 4:2101-2111. [PMID: 39041239 PMCID: PMC11322923 DOI: 10.1158/2767-9764.crc-24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is clinically aggressive and relatively unresponsive to current therapies. Therefore, the development of new anticancer agents is needed to satisfy clinical needs. Oxyphenisatin acetate (Acetalax), which had been used as a laxative, has recently been reported to have anticancer activity in murine models. In this study, we demonstrate that Acetalax and its diphenolic laxative structural analogue bisacodyl (Dulcolax) exhibit potent antiproliferative activity in TNBC cell lines and cause oncosis, a nonapoptotic cell death characterized by cellular and nuclear swelling and cell membrane blebbing, leading to mitochondrial dysfunction, ATP depletion, and enhanced immune and inflammatory responses. Mechanistically, we provide evidence that transient receptor potential melastatin member 4 (TRPM4) is poisoned by Acetalax and bisacodyl in MDA-MB468, BT549, and HS578T TNBC cells. MDA-MB231 and MDA-MB436 TNBC cells without endogenous TRPM4 expression as well as TRPM4-knockout TNBC cells were found to be Acetalax- and bisacodyl-resistant. Conversely, ectopic expression of TRPM4 sensitized MDA-MB231 and MDA-MB436 cells to Acetalax. TRPM4 was also lost in cells with acquired Acetalax resistance. Moreover, TRPM4 is rapidly degraded by the ubiquitin-proteasome system upon acute exposure to Acetalax and bisacodyl. Together, these results demonstrate that TRPM4 is a previously unknown target of Acetalax and bisacodyl and that TRPM4 expression in cancer cells is a predictor of Acetalax and bisacodyl efficacy and could be used for the clinical development of these drugs as anticancer agents. SIGNIFICANCE Acetalax and bisacodyl kill cancer cells by causing oncosis following poisoning of the plasma membrane sodium transporter TRPM4 and represent a new therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daiki Taniyama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Nemes K, Benő A, Topolcsányi P, Magó É, Fűr GM, Pongor LŐS. Predicting drug response of small cell lung cancer cell lines based on enrichment analysis of complex gene signatures. J Biotechnol 2024; 383:86-93. [PMID: 38280466 DOI: 10.1016/j.jbiotec.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Advances in the field of genomics and transcriptomics have enabled researchers to identify gene signatures related to development and treatment of Small Cell Lung Cancer. In most cases, complex gene expression patterns are identified, comprising of genes with differential behavior. Most tools use single-genes as predictors of drug response, with only limited options for multi-gene use. Here we examine the potential of predicting drug response using these complex gene expression signatures by employing clustering and signal enrichment in Small Cell Lung Cancer. Our results demonstrate clustering genes from complex expression patterns helps identify differential activity of gene groups with alternate function which can then be used to predict drug response.
Collapse
Affiliation(s)
- Kolos Nemes
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Alexandra Benő
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Petronella Topolcsányi
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Éva Magó
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Gabriella Mihalekné Fűr
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - L Őrinc S Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Center of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
| |
Collapse
|
6
|
Kovács D, Gay AS, Debayle D, Abélanet S, Patel A, Mesmin B, Luton F, Antonny B. Lipid exchange at ER-trans-Golgi contact sites governs polarized cargo sorting. J Cell Biol 2024; 223:e202307051. [PMID: 37991810 PMCID: PMC10664280 DOI: 10.1083/jcb.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Oxysterol binding protein (OSBP) extracts cholesterol from the ER to deliver it to the TGN via counter exchange and subsequent hydrolysis of the phosphoinositide PI(4)P. Here, we show that this pathway is essential in polarized epithelial cells where it contributes not only to the proper subcellular distribution of cholesterol but also to the trans-Golgi sorting and trafficking of numerous plasma membrane cargo proteins with apical or basolateral localization. Reducing the expression of OSBP, blocking its activity, or inhibiting a PI4Kinase that fuels OSBP with PI(4)P abolishes the epithelial phenotype. Waves of cargo enrichment in the TGN in phase with OSBP and PI(4)P dynamics suggest that OSBP promotes the formation of lipid gradients along the TGN, which helps cargo sorting. During their transient passage through the trans-Golgi, polarized plasma membrane proteins get close to OSBP but fail to be sorted when OSBP is silenced. Thus, OSBP lipid exchange activity is decisive for polarized cargo sorting and distribution in epithelial cells.
Collapse
Affiliation(s)
- Dávid Kovács
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Sophie Abélanet
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Amanda Patel
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Mesmin
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Frédéric Luton
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Bruno Antonny
- Université Côte d’Azur and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
7
|
Rushing BR. Unlocking the Molecular Secrets of Antifolate Drug Resistance: A Multi-Omics Investigation of the NCI-60 Cell Line Panel. Biomedicines 2023; 11:2532. [PMID: 37760973 PMCID: PMC10526174 DOI: 10.3390/biomedicines11092532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Drug resistance continues to be a significant problem in cancer therapy, leading to relapse and associated mortality. Although substantial progress has been made in understanding drug resistance, significant knowledge gaps remain concerning the molecular underpinnings that drive drug resistance and which processes are unique to certain drug classes. The NCI-60 cell line panel program has evaluated the activity of numerous anticancer agents against many common cancer cell line models and represents a highly valuable resource to study intrinsic drug resistance. Furthermore, great efforts have been undertaken to collect high-quality omics datasets to characterize these cell lines. The current study takes these two sources of data-drug response and omics profiles-and uses a multi-omics investigation to uncover molecular networks that differentiate cancer cells that are sensitive or resistant to antifolates, which is a commonly used class of anticancer drugs. Results from a combination of univariate and multivariate analyses showed numerous metabolic processes that differentiate sensitive and resistant cells, including differences in glycolysis and gluconeogenesis, arginine and proline metabolism, beta-alanine metabolism, purine metabolism, and pyrimidine metabolism. Further analysis using multivariate and integrated pathway analysis indicated purine metabolism as the major metabolic process separating cancer cells sensitive or resistant to antifolates. Additional pathways differentiating sensitive and resistant cells included autophagy-related processes (e.g., phagosome, lysosome, autophagy, mitophagy) and adhesion/cytoskeleton-related pathways (e.g., focal adhesion, regulation of actin cytoskeleton, tight junction). Volcano plot analysis and the receiver operating characteristic (ROC) curves of top selected variables differentiating Q1 and Q4 revealed the importance of genes involved in the regulation of the cytoskeleton and extracellular matrix (ECM). These results provide novel insights toward mechanisms of intrinsic antifolate resistance as it relates to interactions between nucleotide metabolism, autophagy, and the cytoskeleton. These processes should be evaluated in future studies to potentially derive novel therapeutic strategies and personalized treatment approaches to improve antifolate response.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Rushing BR. Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents. Int J Mol Sci 2023; 24:13242. [PMID: 37686047 PMCID: PMC10487847 DOI: 10.3390/ijms241713242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA;
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Wang Z, Coban B, Wu H, Chouaref J, Daxinger L, Paulsen MT, Ljungman M, Smid M, Martens JWM, Danen EHJ. GRHL2-controlled gene expression networks in luminal breast cancer. Cell Commun Signal 2023; 21:15. [PMID: 36691073 PMCID: PMC9869538 DOI: 10.1186/s12964-022-01029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023] Open
Abstract
Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Zi Wang
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
SAKURAI KOUHEI, NAGAI AKIRA, ANDO TATSUYA, SAKAI YASUHIRO, IDETA YUKA, HAYASHI YUICHIRO, BABA JUNICHI, MITSUDO KENJI, AKITA MASAHARU, YAMAMICHI NOBUTAKE, FUJIGAKI HIDETSUGU, KATO TAKU, ITO HIROYASU. Cytomorphology and Gene Expression Signatures of Anchorage-independent Aggregations of Oral Cancer Cells. Cancer Genomics Proteomics 2023; 20:64-74. [PMID: 36581338 PMCID: PMC9806669 DOI: 10.21873/cgp.20365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Cancer cells with high anchorage independence can survive and proliferate in the absence of adhesion to the extracellular matrix. Under anchorage-independent conditions, cancer cells adhere to each other and form aggregates to overcome various stresses. In this study, we investigated the cytomorphology and gene expression signatures of oral cancer cell aggregates. MATERIALS AND METHODS Two oral cancer-derived cell lines, SAS and HSC-3 cells, were cultured in a low-attachment plate and their cytomorphologies were observed. The transcriptome between attached and detached SAS cells was examined using gene expression microarrays. Subsequently, gene enrichment analysis and Ingenuity Pathway Analysis were performed. Gene expression changes under attached, detached, and re-attached conditions were measured via RT-qPCR. RESULTS While SAS cells formed multiple round-shaped aggregates, HSC-3 cells, which had lower anchorage independence, did not form aggregates efficiently. Each SAS cell in the aggregate was linked by desmosomes and tight junctions. Comparative transcriptomic analysis revealed 1,698 differentially expressed genes (DEGs) between attached and detached SAS cells. The DEGs were associated with various functions and processes, including cell adhesion. Moreover, under the detached condition, the expression of some epithelial genes (DSC3, DSP, CLDN1 and OCLN) were up-regulated. The changes in both cytomorphology and epithelial gene expression under the detached condition overall returned to their original ones when cells re-attached. CONCLUSION The results suggest specific cytomorphological and gene expression changes in oral cancer cell aggregates. Our findings provide insights into the mechanisms underlying anchorage-independent oral cancer cell aggregation and reveal previously unknown potential diagnostic and therapeutic molecules.
Collapse
Affiliation(s)
- KOUHEI SAKURAI
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - AKIRA NAGAI
- Student Researcher Program, School of Medicine, Fujita Health University, Aichi, Japan
| | - TATSUYA ANDO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - YASUHIRO SAKAI
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - YUKA IDETA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - YUICHIRO HAYASHI
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan,Department of Oral and Maxillofacial Surgery, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - JUNICHI BABA
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan,Department of Oral and Maxillofacial Surgery, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - KENJI MITSUDO
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - MASAHARU AKITA
- Department of Nutrition and Dietetics, School of Family and Consumer Sciences, Kamakura Women’s University, Kanagawa, Japan
| | - NOBUTAKE YAMAMICHI
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan,Department of Gastroenterology, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - HIDETSUGU FUJIGAKI
- Department of Advanced Diagnostic System Development, Graduate School of Health Sciences, Fujita Health University, Aichi, Japan
| | - TAKU KATO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| | - HIROYASU ITO
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, Aichi, Japan
| |
Collapse
|
11
|
Huang K, Meng Y, Lu J, Xu L, Wang S, Wang H, Xu Z. High expression of MARVELD3 as a potential prognostic biomarker for oral squamous cell carcinoma. Front Genet 2022; 13:1050402. [PMID: 36353110 PMCID: PMC9638071 DOI: 10.3389/fgene.2022.1050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives: Tight junction-associated marvel proteins (TAMP) is a transmembrane protein whose members are associated with tight junctions between cells and epithelial remodeling. MARVEL domain containing 3 (MARVELD3) is one of the members of the TAMP. MARVELD3, as a novel tight junction protein involved in bicellular tight junction assembly, has attracted growing attention in the field of oncology. This study aimed to investigate the prognostic role of MARVELD3 and to determine how it functions in tumorigenesis in oral squamous cell carcinoma (OSCC), thus providing additional data to help the guidance of clinical practice. Materials and Methods: RNA-seq data and relevant clinical information were obtained from TCGA. Bioinformatics means used in this study included differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, methylation level analysis, gene function enrichment analysis, and immune cell infiltration analysis. Results:MARVELD3 was significantly higher expressed in OSCC tissue than in normal tissue, and the overall survival of the high expression group was significantly lower than that of the normal group. Univariate and multivariate Cox regression analyses showed that MARVELD3 could serve as an independent contributing factor to poor OSCC prognosis. The nomograms and ROC curves supported the results above. Its expression was negatively correlated with DNA methylation sites. Analysis of PPI networking and gene functional enrichment showed that MARVELD3 was involved in the functional activities of DNA and RNA and was associated with immune cell infiltration. Conclusion: The high expression of MARVELD3 is associated with poor prognosis in OSCC, and MARVELD3 could be recognized as a novel independent prognostic factor for OSCC.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Gansu, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
| | - Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
| | - Jiyuan Lu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
| | - Lingdan Xu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
| | - Huihui Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Gansu, China
- *Correspondence: Zhaoqing Xu, ; Huihui Wang,
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Gansu, China
- *Correspondence: Zhaoqing Xu, ; Huihui Wang,
| |
Collapse
|
12
|
Heumos S, Dehn S, Bräutigam K, Codrea MC, Schürch CM, Lauer UM, Nahnsen S, Schindler M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int 2022; 22:311. [PMID: 36221114 PMCID: PMC9555072 DOI: 10.1186/s12935-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Dehn
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius C Codrea
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Szeitz B, Megyesfalvi Z, Woldmar N, Valkó Z, Schwendenwein A, Bárány N, Paku S, László V, Kiss H, Bugyik E, Lang C, Szász AM, Pizzatti L, Bogos K, Hoda MA, Hoetzenecker K, Marko-Varga G, Horvatovich P, Döme B, Schelch K, Rezeli M. In-depth proteomic analysis reveals unique subtype-specific signatures in human small-cell lung cancer. Clin Transl Med 2022; 12:e1060. [PMID: 36149789 PMCID: PMC9506422 DOI: 10.1002/ctm2.1060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Small‐cell lung cancer (SCLC) molecular subtypes have been primarily characterized based on the expression pattern of the following key transcription regulators: ASCL1 (SCLC‐A), NEUROD1 (SCLC‐N), POU2F3 (SCLC‐P) and YAP1 (SCLC‐Y). Here, we investigated the proteomic landscape of these molecular subsets with the aim to identify novel subtype‐specific proteins of diagnostic and therapeutic relevance. Methods Pellets and cell media of 26 human SCLC cell lines were subjected to label‐free shotgun proteomics for large‐scale protein identification and quantitation, followed by in‐depth bioinformatic analyses. Proteomic data were correlated with the cell lines’ phenotypic characteristics and with public transcriptomic data of SCLC cell lines and tissues. Results Our quantitative proteomic data highlighted that four molecular subtypes are clearly distinguishable at the protein level. The cell lines exhibited diverse neuroendocrine and epithelial–mesenchymal characteristics that varied by subtype. A total of 367 proteins were identified in the cell pellet and 34 in the culture media that showed significant up‐ or downregulation in one subtype, including known druggable proteins and potential blood‐based markers. Pathway enrichment analysis and parallel investigation of transcriptomics from SCLC cell lines outlined unique signatures for each subtype, such as upregulated oxidative phosphorylation in SCLC‐A, DNA replication in SCLC‐N, neurotrophin signalling in SCLC‐P and epithelial–mesenchymal transition in SCLC‐Y. Importantly, we identified the YAP1‐driven subtype as the most distinct SCLC subgroup. Using sparse partial least squares discriminant analysis, we identified proteins that clearly distinguish four SCLC subtypes based on their expression pattern, including potential diagnostic markers for SCLC‐Y (e.g. GPX8, PKD2 and UFO). Conclusions We report for the first time, the protein expression differences among SCLC subtypes. By shedding light on potential subtype‐specific therapeutic vulnerabilities and diagnostic biomarkers, our results may contribute to a better understanding of SCLC biology and the development of novel therapies.
Collapse
Affiliation(s)
- Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
| | - Nicole Woldmar
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden.,Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zsuzsanna Valkó
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Nándor Bárány
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Viktória László
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Helga Kiss
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary.,University of Pécs, Pécs, Hungary
| | - Edina Bugyik
- National Korányi Institute of Pulmonology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Marcell Szász
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Proteomics of Blood/LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Krisztina Bogos
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - György Marko-Varga
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Balázs Döme
- National Korányi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary.,Department of Translational Medicine, Lund University, Lund, Sweden
| | - Karin Schelch
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melinda Rezeli
- Division of Clinical Protein Science, & Imaging, Department of Clinical Sciences (Lund) and Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Wu J, Luo D, Li S. Ovo Like Zinc Finger 2 (OVOL2) Suppresses Breast Cancer Stem Cell Traits and Correlates with Immune Cells Infiltration. BREAST CANCER: TARGETS AND THERAPY 2022; 14:211-227. [PMID: 35996562 PMCID: PMC9391936 DOI: 10.2147/bctt.s363114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Jiafa Wu
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
- Correspondence: Jiafa Wu, School of Food and Bioengineering, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, People’s Republic of China, Email
| | - Dongping Luo
- The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, People’s Republic of China
| |
Collapse
|
15
|
Fessart D, Villamor I, Chevet E, Delom F, Robert J. Integrative analysis of genomic and transcriptomic alterations of AGR2 and AGR3 in cancer. Open Biol 2022; 12:220068. [PMID: 35857928 PMCID: PMC9277299 DOI: 10.1098/rsob.220068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The AGR2 and AGR3 genes have been shown by numerous groups to be functionally associated with adenocarcinoma progression and metastasis. In this paper, we explore the data available in databases concerning genomic and transcriptomic features of these two genes: the NCBI dbSNP database was used to explore the presence and roles of constitutional SNPs, and the NCI, Cancer Cell Line Encyclopedia (CCLE) and TCGA databases were used to explore somatic mutations and copy number variations (CNVs), as well as mRNA expression of these genes in human cancer cell lines and tumours. Relationships of AGR2/3 expression with whole-genome mRNA expression and cancer features (i.e. mutations and CNVs of oncogenes and tumour suppressor genes (TSG)) were established using the CCLE and TCGA databases. In addition, the CCLE data concerning CRISPR gene extinction screens (Achilles project) of these two genes and a panel of oncogenes and TSG were explored. We observed that no functional polymorphism or recurrent mutation could be detected in AGR2 or AGR3. The expression of these genes was positively correlated with the expression of epithelial genes and inversely correlated with that of mesenchymal genes. It was also significantly associated with several cancer features, such as TP53 or SMAD4 mutations, depending on the gene and the cancer type. In addition, the CRISPR screens revealed the absence of cell fitness modification upon gene extinction, in contrast with oncogenes (cell fitness decrease) and TSG (cell fitness increase). Overall, these explorations revealed that AGR2 and AGR3 proteins appear as common non-genetic evolutionary factors in the process of human tumorigenesis.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt, University Bordeaux, INSERM U1312, Bordeaux F-33000, France,POETIC, University Bordeaux, INSERM U1312, Bordeaux F-33000, France
| | - Ines Villamor
- POETIC, University Bordeaux, INSERM U1312, Bordeaux F-33000, France
| | - Eric Chevet
- INSERM U1242, ‘Chemistry, Oncogenesis Stress Signaling’, Université Rennes 1, Rennes, France,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Frederic Delom
- ARTiSt, University Bordeaux, INSERM U1312, Bordeaux F-33000, France
| | - Jacques Robert
- ARTiSt, University Bordeaux, INSERM U1312, Bordeaux F-33000, France
| |
Collapse
|
16
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
17
|
Wu Q, Li Q, Zhu W, Zhang X, Li H. Epsin 3 potentiates the NF‑κB signaling pathway to regulate apoptosis in breast cancer. Mol Med Rep 2021; 25:15. [PMID: 34779498 PMCID: PMC8600415 DOI: 10.3892/mmr.2021.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Endocrine drug resistance is common in some patients with estrogen receptor (ER)-positive breast cancer, so it is necessary to identify potential therapeutic targets. The aim of the present study was to investigate the regulatory effect and mechanism of epsin 3 (EPN3) expression level changes on the proliferation and apoptosis of ER-positive breast cancer. Online GEPIA was used to analyze the expression level of EPN3 in breast cancer. The online Kaplan-Meier plotter tool was used to analyze the relationship between EPN3 expression and the prognosis of patients with breast cancer. Reverse transcription-quantitative PCR, immunohistochemistry and western blotting were performed to detect the mRNA and protein expression levels of EPN3 in breast cancer tissues and cells. A lentiviral infection system was used to knockdown the expression of EPN3 in breast cancer cell lines. Cell Counting Kit-8 and flow cytometry assays were conducted to detect the effect of EPN3 knockdown on breast cancer cell proliferation and apoptosis. Western blotting was used to detect the regulation of EPN3 expression on NF-κB, and immunofluorescence was performed to detect the effect of EPN3 expression on NF-κB nuclear translocation. The results demonstrated that the expression level of EPN3 in breast cancer tissues was higher compared with that in adjacent tissues (P<0.05). The expression level of EPN3 in the ER-positive breast cancer cell line, MCF7, was higher compared with that in the other cell lines (MCF10A, ZR75-1, MDA-MB-231, BT549 and SK-BR-3). After knocking down the expression of EPN3 in MCF7 cells, the proliferative ability of the cells was decreased, and the apoptosis rate was increased (P<0.05). After EPN3 knockdown in MCF7 cells, the phosphorylation of NF-κB was decreased (P<0.05), and the nuclear translocation signal was weakened. Thus, it was suggested that EPN3 promoted cell proliferation and inhibited cell apoptosis by regulating the NF-κB signaling pathway in ER-positive breast cancer.
Collapse
Affiliation(s)
- Qianxue Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenming Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongyuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: https:/doi.org/10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
19
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: 10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
20
|
Guerra E, Trerotola M, Relli V, Lattanzio R, Tripaldi R, Vacca G, Ceci M, Boujnah K, Garbo V, Moschella A, Zappacosta R, Simeone P, de Lange R, Weidle UH, Rotelli MT, Picciariello A, Depalo R, Querzoli P, Pedriali M, Bianchini E, Angelucci D, Pizzicannella G, Di Loreto C, Piantelli M, Antolini L, Sun XF, Altomare DF, Alberti S. Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer. Neoplasia 2021; 23:898-911. [PMID: 34320447 PMCID: PMC8334386 DOI: 10.1016/j.neo.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022] Open
Abstract
We recently reported that activation of Trop-2 through its cleavage at R87-T88 by ADAM10 underlies Trop-2–driven progression of colon cancer. However, the mechanism of action and pathological impact of Trop-2 in metastatic diffusion remain unexplored. Through searches for molecular determinants of cancer metastasis, we identified TROP2 as unique in its up-regulation across independent colon cancer metastasis models. Overexpression of wild-type Trop-2 in KM12SM human colon cancer cells increased liver metastasis rates in vivo in immunosuppressed mice. Metastatic growth was further enhanced by a tail-less, activated ΔcytoTrop-2 mutant, indicating the Trop-2 tail as a pivotal inhibitory signaling element. In primary tumors and metastases, transcriptome analysis showed no down-regulation of CDH1 by transcription factors for epithelial-to-mesenchymal transition, thus suggesting that the pro-metastatic activity of Trop-2 is through alternative mechanisms. Trop-2 can tightly interact with ADAM10. Here, Trop-2 bound E-cadherin and stimulated ADAM10-mediated proteolytic cleavage of E-cadherin intracellular domain. This induced detachment of E-cadherin from β-actin, and loss of cell-cell adhesion, acquisition of invasive capability, and membrane-driven activation of β-catenin signaling, which were further enhanced by the ΔcytoTrop-2 mutant. This Trop-2/E-cadherin/β-catenin program led to anti-apoptotic signaling, increased cell migration, and enhanced cancer-cell survival. In patients with colon cancer, activation of this Trop-2–centered program led to significantly reduced relapse-free and overall survival, indicating a major impact on progression to metastatic disease. Recently, the anti-Trop-2 mAb Sacituzumab govitecan-hziy was shown to be active against metastatic breast cancer. Our findings define the key relevance of Trop-2 as a target in metastatic colon cancer.
Collapse
Affiliation(s)
- Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Relli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Oncoxx Biotech, 66034 Lanciano (Chieti), Italy
| | - Rossano Lattanzio
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine & Dentistry, 'G. d'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Romina Tripaldi
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Vacca
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Martina Ceci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Khouloud Boujnah
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Valeria Garbo
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy
| | - Romina Zappacosta
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Robert de Lange
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany
| | - Ulrich H Weidle
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany
| | - Maria Teresa Rotelli
- General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | - Arcangelo Picciariello
- General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | | | - Patrizia Querzoli
- Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Pedriali
- Operative Unit of Surgical Pathology, University Hospital, 44124 Ferrara, Italy
| | - Enzo Bianchini
- Operative Unit of Surgical Pathology, University Hospital, 44124 Ferrara, Italy
| | | | | | - Carla Di Loreto
- Department of Pathology, University of Udine, 33100 Udine, Italy
| | - Mauro Piantelli
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Antolini
- Department of Clinical Medicine,Center for Biostatistics, Prevention and Biotechnology, University of Milano-Bicocca, 20900 Monza, Italy
| | - Xiao-Feng Sun
- Department of Oncology, and Department of Biomedical and Clinical Sciences Linköping University, SE-581 85 Linköping, Sweden
| | - Donato F Altomare
- Roche Diagnostics GmbH, Pharma Research, D-82372 Penzberg, Germany; General Surgery and Liver Transplantation Unit, Department of Emergency and Organ Transplantation, University 'Aldo Moro', 70124 Bari, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d' Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy; Oncoxx Biotech, 66034 Lanciano (Chieti), Italy; Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
21
|
Leiva MC, Garre E, Gustafsson A, Svanström A, Bogestål Y, Håkansson J, Ståhlberg A, Landberg G. Breast cancer patient-derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments. J Cell Physiol 2021; 236:4709-4724. [PMID: 33368325 PMCID: PMC8049042 DOI: 10.1002/jcp.30191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer is a heterogeneous disease where the tumor microenvironment, including extracellular components, plays a crucial role in tumor progression, potentially modulating treatment response. Different approaches have been used to develop three-dimensional models able to recapitulate the complexity of the extracellular matrix. Here, we use cell-free patient-derived scaffolds (PDSs) generated from breast cancer samples that were recellularized with cancer cell lines as an in vivo-like culture system for drug testing. We show that PDS cultured MCF7 cancer cells increased their resistance against the front-line chemotherapy drugs 5-fluorouracil, doxorubicin and paclitaxel in comparison to traditional two-dimensional cell cultures. The gene expression of the environmentally adapted cancer cells was modulated in different ways depending on the drug and the concentration used. High doses of doxorubicin reduced cancer stem cell features, whereas 5-fluorouracil increased stemness and decreased the proliferative phenotype. By using PDSs repopulated with other breast cancer cell lines, T-47D and MDA-MB-231, we observed both general and cell line specific drug responses. In summary, PDSs can be used to examine the extracellular matrix influence on cancer drug responses and for testing novel compounds in in vivo-like microenvironments.
Collapse
Affiliation(s)
- Maria Carmen Leiva
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Elena Garre
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Andreas Svanström
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Yalda Bogestål
- Department of Biological FunctionRISE Research Institutes of SwedenBoråsSweden
| | - Joakim Håkansson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Biological FunctionRISE Research Institutes of SwedenBoråsSweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical Genetics and GenomicsSahlgrenska University HospitalGothenburgSweden
| | - Göran Landberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
22
|
Matsuoka S, Suzuki H, Kato C, Kamikawa-Tokai M, Kamikawa A, Okamatsu-Ogura Y, Kimura K. Expression of Grainyhead-like 2 in the Process of Ductal Development of Mouse Mammary Gland. J Histochem Cytochem 2021; 69:373-388. [PMID: 33985378 PMCID: PMC8182637 DOI: 10.1369/00221554211013715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 11/22/2022] Open
Abstract
Grainyhead-like 2 (Grhl2) is a transcription factor regulating cell adhesion genes. Grhl2 acts as an epithelial-mesenchymal transition suppressor, and it is a proto-oncogene involved in estrogen-stimulated breast cancer proliferation. However, its expression during ovarian hormone-dependent mammary ductal development remains obscure. We here examined Grhl2 expression in the mammary gland of normal and steroid-replaced ovariectomized mice. Grhl2 protein signals were detected in both the mammary luminal epithelial and myoepithelial nuclei. The ratio and density of Grhl2-positive nuclei increased after the onset of puberty and progressed with age, whereas Grhl2-negative epithelial cells were detected in mature ducts. Claudin 3, claudin 4, claudin 7, and E-cadherin gene expression in the mammary gland was upregulated, and their expression was highly correlated with Grhl2 gene expression. Furthermore, Grhl2 mRNA expression and ductal lumen width were significantly increased by the combined treatment of estrogen and progesterone compared with estrogen alone. These results suggest that Grhl2 expressed in the luminal epithelial and myoepithelial cells from the early phase of ductal development, controlling the expression of cell adhesion molecules to establish functional ducts.
Collapse
Affiliation(s)
- Shinya Matsuoka
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyoshi Suzuki
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Chieko Kato
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Kamikawa-Tokai
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Kamikawa
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Kimura
- Department of Biomedical Sciences, Graduate
School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Luna A, Elloumi F, Varma S, Wang Y, Rajapakse V, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res 2021; 49:D1083-D1093. [PMID: 33196823 PMCID: PMC7779001 DOI: 10.1093/nar/gkaa968] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
CellMiner Cross-Database (CellMinerCDB, discover.nci.nih.gov/cellminercdb) allows integration and analysis of molecular and pharmacological data within and across cancer cell line datasets from the National Cancer Institute (NCI), Broad Institute, Sanger/MGH and MD Anderson Cancer Center (MDACC). We present CellMinerCDB 1.2 with updates to datasets from NCI-60, Broad Cancer Cell Line Encyclopedia and Sanger/MGH, and the addition of new datasets, including NCI-ALMANAC drug combination, MDACC Cell Line Project proteomic, NCI-SCLC DNA copy number and methylation data, and Broad methylation, genetic dependency and metabolomic datasets. CellMinerCDB (v1.2) includes several improvements over the previously published version: (i) new and updated datasets; (ii) support for pattern comparisons and multivariate analyses across data sources; (iii) updated annotations with drug mechanism of action information and biologically relevant multigene signatures; (iv) analysis speedups via caching; (v) a new dataset download feature; (vi) improved visualization of subsets of multiple tissue types; (vii) breakdown of univariate associations by tissue type; and (viii) enhanced help information. The curation and common annotations (e.g. tissues of origin and identifiers) provided here across pharmacogenomic datasets increase the utility of the individual datasets to address multiple researcher question types, including data reproducibility, biomarker discovery and multivariate analysis of drug activity.
Collapse
Affiliation(s)
- Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacques Robert
- Inserm unité 1218, Université de Bordeaux, Bordeaux 33076, France
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
25
|
Gao S, Cheng QC, Hu YG, Tan ZZ, Chen L, Liu SW, Kang QY, Wei T. LncRNA AK148321 alleviates neuroinflammation in LPS-stimulated BV2 microglial cell through regulating microRNA-1199-5p/HSPA5 axis. Life Sci 2020; 266:118863. [PMID: 33301806 DOI: 10.1016/j.lfs.2020.118863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
AIMS Dysregulated long non-coding RNA (lncRNA) expression is closely related to neuroinflammation, leading to multiple neurodegenerative diseases. In this study, we investigated the function and regulation of lncRNA AK148321 in neuroinflammation using an in vitro lipopolysaccharide (LPS)-stimulated BV2 microglial cell system. METHODS Expression of AK148321 was analyzed by qPCR. Inflammatory cytokine expression levels were determined by ELISA assay. The interaction between AK148321, microRNA (miRNA), and its target gene was validated by luciferase reporter assay and RNA immunoprecipitation (RIP). Cell apoptosis was analyzed by Annexin V/PI staining. RESULTS LPS treatment suppressed AK148321 expression in BV2 cells. Overexpression of AK148321 inhibited LPS-induced BV2 microglial cell activation and decreased the expression of inflammatory cytokine TNF-α and IL-1β. AK148321 function as a competing endogenous RNA (ceRNA) by sponging microRNA-1199-5p (MiR-1199-5p). In LPS-stimulated BV2 cells, AK148321 exerted its inhibitory function via negatively modulating miR-1199-5p expression. Moreover, we identified that Heat Shock Protein Family A Member 5 (HSPA5) was a direct target of miR-1199-5p. RIP assay using the anti-Ago2 antibody further validated the relationship among AK148321, miR-1199-5p and HSPA5. The AK148321/miR-1199-5p/HSPA5 axis regulated the neuroinflammation in LPS-induced BV2 microglial cells. Microglial cell culture supernatant from LPS-stimulated, AK148321-overexpressing BV2 cells suppressed the cell apoptosis of mouse hippocampal neuronal cell HT22, while HSPA5 knockdown abrogated the suppression effect. CONCLUSION Our findings suggest that AK148321 alleviates neuroinflammation in LPS-stimulated BV2 microglial cells through miR-1199-5p/HSPA5 axis.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Qiao-Chu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Ya-Guang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Zi-Zhu Tan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Li Chen
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Si-Wei Liu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Qian-Yan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
26
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
27
|
Tlemsani C, Pongor L, Elloumi F, Girard L, Huffman KE, Roper N, Varma S, Luna A, Rajapakse VN, Sebastian R, Kohn KW, Krushkal J, Aladjem MI, Teicher BA, Meltzer PS, Reinhold WC, Minna JD, Thomas A, Pommier Y. SCLC-CellMiner: A Resource for Small Cell Lung Cancer Cell Line Genomics and Pharmacology Based on Genomic Signatures. Cell Rep 2020; 33:108296. [PMID: 33086069 PMCID: PMC7643325 DOI: 10.1016/j.celrep.2020.108296] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 01/23/2023] Open
Abstract
CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic data, including high-resolution methylome and transcriptome from 118 patient-derived small cell lung cancer (SCLC) cell lines, providing a resource for research into this "recalcitrant cancer." We demonstrate the reproducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway, epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future investigations into subtype-specific SCLC vulnerabilities.
Collapse
Affiliation(s)
- Camille Tlemsani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth E Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Augustin Luna
- cBio Center, Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Saxena K, Srikrishnan S, Celia-Terrassa T, Jolly MK. OVOL1/2: Drivers of Epithelial Differentiation in Development, Disease, and Reprogramming. Cells Tissues Organs 2020; 211:183-192. [PMID: 32932250 DOI: 10.1159/000511383] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
OVOL proteins (OVOL1 and OVOL2), vertebrate homologs of Drosophila OVO, are critical regulators of epithelial lineage determination and differentiation during embryonic development in tissues such as kidney, skin, mammary epithelia, and testis. OVOL can inhibit epithelial-mesenchymal transition and/or can promote mesenchymal-epithelial transition. Moreover, they can regulate the stemness of cancer cells, thus playing an important role during cancer cell metastasis. Due to their central role in differentiation and maintenance of epithelial lineage, OVOL overexpression has been shown to be capable of reprogramming fibroblasts to epithelial cells. Here, we review the roles of OVOL-mediated epithelial differentiation across multiple contexts, including embryonic development, cancer progression, and cellular reprogramming.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Toni Celia-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
29
|
Morvan VL, Richard É, Cadars M, Fessart D, Broca-Brisson L, Auzanneau C, Pasquies A, Modesto A, Lusque A, Mathoulin-Pélissier S, Lansiaux A, Robert J. Cytochrome P450 1B1 polymorphism drives cancer cell stemness and patient outcome in head-and-neck carcinoma. Br J Cancer 2020; 123:772-784. [PMID: 32565541 PMCID: PMC7462978 DOI: 10.1038/s41416-020-0932-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cytochrome P450 1B1 (CYP1B1) is mostly expressed in tumours and displays unusual properties. Its two polymorphic forms were differently associated with anticancer drug sensitivity. We decipher here the role of this polymorphism in anticancer drug efficacy in vitro, in vivo and in the clinical setting. Methods From head-and-neck squamous cell carcinoma cell lines not expressing CYP1B1, we generated isogenic derivatives expressing the two forms. Proliferation, invasiveness, stem cell characteristics, sensitivity to anticancer agents and transcriptome were analysed. Tumour growth and chemosensitivity were studied in vivo. A prospective clinical trial on 121 patients with advanced head-and-neck cancers was conducted, and a validation-retrospective study was conducted. Results Cell lines expressing the variant form displayed high rates of in vitro proliferation and invasiveness, stemness features and resistance to DNA-damaging agents. In vivo, tumours expressing the variant CYP1B1 had higher growth rates and were markedly drug-resistant. In the clinical study, overall survival was significantly associated with the genotypes, wild-type patients presenting a longer median survival (13.5 months) than the variant patients (6.3 months) (p = 0.0166). Conclusions This frequent CYP1B1 polymorphism is crucial for cancer cell proliferation, migration, resistance to chemotherapy and stemness properties, and strongly influences head-and-neck cancer patients’ survival.
Collapse
Affiliation(s)
| | - Élodie Richard
- INSERM Unit 1218, Université de Bordeaux, Bordeaux, France
| | - Maud Cadars
- INSERM Unit 1218, Université de Bordeaux, Bordeaux, France
| | | | | | | | - Alban Pasquies
- INSERM Unit 1218, Université de Bordeaux, Bordeaux, France
| | | | - Amélie Lusque
- Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | | | - Jacques Robert
- INSERM Unit 1218, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
30
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
31
|
Chen PH, Wu J, Ding CKC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B, Chi JT. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 2020; 27:1008-1022. [PMID: 31320750 PMCID: PMC7206124 DOI: 10.1038/s41418-019-0393-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/22/2019] [Accepted: 07/01/2019] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a specialized iron-dependent cell death that is associated with lethal lipid peroxidation. Modulation of ferroptosis may have therapeutic potential since it has been implicated in various human diseases as well as potential antitumor activities. However, much remains unknown about the underlying mechanisms and genetic determinants of ferroptosis. Given the critical role of kinases in most biological processes and the availability of various kinase inhibitors, we sought to systemically identify kinases essential for ferroptosis. We performed a forward genetic-based kinome screen against ferroptosis in MDA-MB-231 cells triggered by cystine deprivation. This screen identified 34 essential kinases involved in TNFα and NF-kB signaling. Unexpectedly, the DNA damage response serine/threonine kinase ATM (mutated in Ataxia-Telangiectasia) was found to be essential for ferroptosis. The pharmacological or genetic inhibition of ATM consistently rescued multiple cancer cells from ferroptosis triggered by cystine deprivation or erastin. Instead of the canonical DNA damage pathways, ATM inhibition rescued ferroptosis by increasing the expression of iron regulators involved in iron storage (ferritin heavy and light chain, FTH1 and FTL) and export (ferroportin, FPN1). The coordinated changes of these iron regulators during ATM inhibition resulted in a lowering of labile iron and prevented the iron-dependent ferroptosis. Furthermore, we found that ATM inhibition enhanced the nuclear translocation of metal-regulatory transcription factor 1 (MTF1), responsible for regulating expression of Ferritin/FPN1 and ferroptosis protection. Genetic depletion of MTF-1 abolished the regulation of iron-regulatory elements by ATM and resensitized the cells to ferroptosis. Together, we have identified an unexpected ATM-MTF1-Ferritin/FPN1 regulatory axis as novel determinants of ferroptosis through regulating labile iron levels.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Samuel Pan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Nathan Bossa
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Yitong Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Bernard Mathey-Prevot
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA. .,Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Navas T, Kinders RJ, Lawrence SM, Ferry-Galow KV, Borgel S, Hollingshead MG, Srivastava AK, Alcoser SY, Makhlouf HR, Chuaqui R, Wilsker DF, Konaté MM, Miller SB, Voth AR, Chen L, Vilimas T, Subramanian J, Rubinstein L, Kummar S, Chen AP, Bottaro DP, Doroshow JH, Parchment RE. Clinical Evolution of Epithelial-Mesenchymal Transition in Human Carcinomas. Cancer Res 2020; 80:304-318. [PMID: 31732654 PMCID: PMC8170833 DOI: 10.1158/0008-5472.can-18-3539] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates β-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of β-catenin+ cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes. Treatment of carcinoma models with anticancer drugs that differ in their mechanism of action (the tyrosine kinase inhibitor pazopanib in MKN45 gastric carcinoma xenografts and the combination of tubulin-targeting agent paclitaxel with the BCR-ABL inhibitor nilotinib in MDA-MB-468 breast cancer xenografts) caused changes in the tumor epithelial-mesenchymal character. Moreover, the appearance of partial EMT or mesenchymal-like carcinoma cells in MDA-MB-468 tumors treated with the paclitaxel-nilotinib combination resulted in upregulation of cancer stem cell (CSC) markers and susceptibility to FAK inhibitor. A metastatic prostate cancer patient treated with the PARP inhibitor talazoparib exhibited similar CSC marker upregulation. Therefore, the phenotypic plasticity conferred on carcinoma cells by EMT allows for rapid adaptation to cytotoxic or molecularly targeted therapy and could create a form of acquired drug resistance that is transient in nature. SIGNIFICANCE: Despite the role of EMT in metastasis and drug resistance, no standardized assessment of EMT phenotypic heterogeneity in human carcinomas exists; the EMT-IFA allows for clinical monitoring of tumor adaptation to therapy.
Collapse
Affiliation(s)
- Tony Navas
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Scott M Lawrence
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Katherine V Ferry-Galow
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Suzanne Borgel
- In Vivo Evaluation Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Apurva K Srivastava
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sergio Y Alcoser
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Rodrigo Chuaqui
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Deborah F Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Andrea Regier Voth
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Li Chen
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tomas Vilimas
- Molecular Characterization and Clinical Assay Development Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jyothi Subramanian
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | | | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
33
|
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11:153-167. [PMID: 31892982 PMCID: PMC6930396 DOI: 10.7150/jca.34693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (ANGPT2) are key mediators in angiogenesis. The expression and clinical significance of VEGFA and ANGPT2 have been investigated in lung cancer, but the results are controversial. The specific roles of VEGFA and ANGPT2 in adenocarcinoma (ADC) and squamous cell carcinoma (SQC) are still not fully understood. To characterize it, we conducted the current study. Materials and Methods: The relationships between clinic-pathological characteristics and the protein expressions of VEGFA and ANGPT2 were analyzed on tissue microarrays by immunohistochemistry (IHC) staining. Then public databases were used to evaluate the association of VEGFA and ANGPT2 mRNA expressions with clinic-pathological parameters and prognosis. Cobalt chloride (CoCl2) was adopted to mimic a hypoxic microenvironment and western blot was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA and ANGPT2 in lung cancer cell lines. Results: IHC staining revealed that the expressions of VEGFA and ANGPT2 were enriched in lung cancer tissues compared with normal tissues. Additionally, both VEGFA and ANGPT2 protein levels were significantly associated with the tumor size and lymph node metastasis only in ADC, not SQC. More importantly, increased VEGFA and ANGPT2 protein levels were negatively correlated with overall survival (OS) of ADC individuals. Meta-analyses of 22 gene expression omnibus (GEO) databases of lung cancer implicated that patients with higher VEGFA and ANGPT2 mRNA expressions tended to have advanced stage in ADC rather than SQC. Kaplan-Meier plot analyses further verified that high levels of VEGFA and ANGPT2 mRNA were associated with poor survival only in ADC. Moreover, the combination of VEGFA and ANGPT2 could more precisely predict prognosis in ADC. In hypoxia-mimicking conditions, induced expression of HIF-1α unregulated VEGFA and ANGPT2 proteins abundance. Conclusion: Our results showed hypoxia upregulated the protein levels of VEGFA and ANGPT2 in lung cancer cell lines, and the roles of VEGFA and ANGPT2 were distinct in ADC and SQC. Combined detections of VEGFA and ANGPT2 may be valuable prognostic biomarkers for ADC and double block of VEGFA and ANGPT2 may improve therapeutic outcome.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
34
|
Min DJ, Zhao Y, Monks A, Palmisano A, Hose C, Teicher BA, Doroshow JH, Simon RM. Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines. Cancer Chemother Pharmacol 2019; 84:771-780. [PMID: 31367787 PMCID: PMC8127867 DOI: 10.1007/s00280-019-03898-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genotoxic agents (GAs) including cisplatin, doxorubicin, gemcitabine, and topotecan are often used in cancer treatment. However, the response to GAs is variable among patients and predictive biomarkers are inadequate to select patients for treatment. Accurate and rapid pharmacodynamics measures of response can, thus, be useful for monitoring therapy and improve clinical outcomes. METHODS This study focuses on integrating a database of genome-wide response to treatment (The NCI Transcriptional Pharmacodynamics Workbench) with a database of baseline gene expression (GSE32474) for the NCI-60 cell lines to identify mechanisms of response and pharmacodynamic (PD) biomarkers. RESULTS AND CONCLUSIONS Our analysis suggests that GA-induced endoplasmic reticulum (ER) stress may signal for GA-induced cell death. Reducing the uptake of GA, activating DNA repair, and blocking ER-stress induction cooperate to prevent GA-induced cell death in the GA-resistant cells. ATF3, DDIT3, CARS, and PPP1R15A appear as possible candidate PD biomarkers for monitoring the progress of GA treatment. Further validation studies on the proposed intrinsic drug-resistant mechanism and candidate genes are needed using in vivo data from either patient-derived xenograft models or clinical chemotherapy trials.
Collapse
Affiliation(s)
- Dong-Joon Min
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Anne Monks
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Beverly A Teicher
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard M Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
35
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
36
|
Spinal neural tube closure depends on regulation of surface ectoderm identity and biomechanics by Grhl2. Nat Commun 2019; 10:2487. [PMID: 31171776 PMCID: PMC6554357 DOI: 10.1038/s41467-019-10164-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Lack or excess expression of the surface ectoderm-expressed transcription factor Grainyhead-like2 (Grhl2), each prevent spinal neural tube closure. Here we investigate the causative mechanisms and find reciprocal dysregulation of epithelial genes, cell junction components and actomyosin properties in Grhl2 null and over-expressing embryos. Grhl2 null surface ectoderm shows a shift from epithelial to neuroepithelial identity (with ectopic expression of N-cadherin and Sox2), actomyosin disorganisation, cell shape changes and diminished resistance to neural fold recoil upon ablation of the closure point. In contrast, excessive abundance of Grhl2 generates a super-epithelial surface ectoderm, in which up-regulation of cell-cell junction proteins is associated with an actomyosin-dependent increase in local mechanical stress. This is compatible with apposition of the neural folds but not with progression of closure, unless myosin activity is inhibited. Overall, our findings suggest that Grhl2 plays a crucial role in regulating biomechanical properties of the surface ectoderm that are essential for spinal neurulation. Loss or over-expression of Grainyhead-like transcription factors (Grhl) prevents closure of the neural tube but the mechanism underlying this is unclear. Here, the authors show that Grhl2 regulates murine posterior-neuropore closure via changes in the identity and biomechanics of the non-neural, surface ectoderm cells.
Collapse
|
37
|
Dang DK, Makena MR, Llongueras JP, Prasad H, Ko M, Bandral M, Rao R. A Ca 2+-ATPase Regulates E-cadherin Biogenesis and Epithelial-Mesenchymal Transition in Breast Cancer Cells. Mol Cancer Res 2019; 17:1735-1747. [PMID: 31076498 DOI: 10.1158/1541-7786.mcr-19-0070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Progression of benign tumors to invasive, metastatic cancer is accompanied by the epithelial-to-mesenchymal transition (EMT), characterized by loss of the cell-adhesion protein E-cadherin. Although silencing mutations and transcriptional repression of the E-cadherin gene have been widely studied, not much is known about posttranslational regulation of E-cadherin in tumors. We show that E-cadherin is tightly coexpressed with the secretory pathway Ca2+-ATPase isoform 2, SPCA2 (ATP2C2), in breast tumors. Loss of SPCA2 impairs surface expression of E-cadherin and elicits mesenchymal gene expression through disruption of cell adhesion in tumorspheres and downstream Hippo-YAP signaling. Conversely, ectopic expression of SPCA2 in triple-negative breast cancer elevates baseline Ca2+ and YAP phosphorylation, enhances posttranslational expression of E-cadherin, and suppresses mesenchymal gene expression. Thus, loss of SPCA2 phenocopies loss of E-cadherin in the Hippo signaling pathway and EMT-MET transitions, consistent with a functional role for SPCA2 in E-cadherin biogenesis. Furthermore, we show that SPCA2 suppresses invasive phenotypes, including cell migration in vitro and tumor metastasis in vivo. Based on these findings, we propose that SPCA2 functions as a key regulator of EMT and may be a potential therapeutic target for treatment of metastatic cancer. IMPLICATIONS: Posttranslational control of E-cadherin and the Hippo pathway by calcium signaling regulates EMT in breast cancer cells.
Collapse
Affiliation(s)
- Donna K Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monish Ram Makena
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - José P Llongueras
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myungjun Ko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manuj Bandral
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
38
|
Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, Iorio F, Sousa FG, Elloumi F, Aladjem MI, Thomas A, Sander C, Kohn KW, Benes CH, Garnett M, Reinhold WC, Pommier Y. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience 2018; 10:247-264. [PMID: 30553813 PMCID: PMC6302245 DOI: 10.1016/j.isci.2018.11.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
CellMinerCDB provides a web-based resource (https://discover.nci.nih.gov/cellminercdb/) for integrating multiple forms of pharmacological and genomic analyses, and unifying the richest cancer cell line datasets (the NCI-60, NCI-SCLC, Sanger/MGH GDSC, and Broad CCLE/CTRP). CellMinerCDB enables data queries for genomics and gene regulatory network analyses, and exploration of pharmacogenomic determinants and drug signatures. It leverages overlaps of cell lines and drugs across databases to examine reproducibility and expand pathway analyses. We illustrate the value of CellMinerCDB for elucidating gene expression determinants, such as DNA methylation and copy number variations, and highlight complexities in assessing mutational burden. We demonstrate the value of CellMinerCDB in selecting drugs with reproducible activity, expand on the dominant role of SLFN11 for drug response, and present novel response determinants and genomic signatures for topoisomerase inhibitors and schweinfurthins. We also introduce LIX1L as a gene associated with mesenchymal signature and regulation of cellular migration and invasiveness.
Collapse
Affiliation(s)
- Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Lisa Loman
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margot Sunshine
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Francesco Iorio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fabricio G Sousa
- Centro De Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica, Programa De Pós-Graduação Em Farmácia, Universidade Federal De Mato Grosso Do Sul, Campo Grande, MS 79070-900, Brazil
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Skrypek N, Bruneel K, Vandewalle C, De Smedt E, Soen B, Loret N, Taminau J, Goossens S, Vandamme N, Berx G. ZEB2 stably represses RAB25 expression through epigenetic regulation by SIRT1 and DNMTs during epithelial-to-mesenchymal transition. Epigenetics Chromatin 2018; 11:70. [PMID: 30445998 PMCID: PMC6240308 DOI: 10.1186/s13072-018-0239-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is tightly regulated by a network of transcription factors (EMT-TFs). Among them is the nuclear factor ZEB2, a member of the zinc-finger E-box binding homeobox family. ZEB2 nuclear localization has been identified in several cancer types, and its overexpression is correlated with the malignant progression. ZEB2 transcriptionally represses epithelial genes, such as E-cadherin (CDH1), by directly binding to the promoter of the genes it regulates and activating mesenchymal genes by a mechanism in which there is no full agreement. Recent studies showed that EMT-TFs interact with epigenetic regulatory enzymes that alter the epigenome, thereby providing another level of control. The role of epigenetic regulation on ZEB2 function is not well understood. In this study, we aimed to characterize the epigenetic effect of ZEB2 repressive function on the regulation of a small Rab GTPase RAB25. Results Using cellular models with conditional ZEB2 expression, we show a clear transcriptional repression of RAB25 and CDH1. RAB25 contributes to the partial suppression of ZEB2-mediated cell migration. Furthermore, a highly significant reverse correlation between RAB25 and ZEB2 expression in several human cancer types could be identified. Mechanistically, ZEB2 binds specifically to E-box sequences on the RAB25 promoter. ZEB2 binding is associated with the local increase in DNA methylation requiring DNA methyltransferases as well as histone deacetylation (H3K9Ac) depending on the activity of SIRT1. Surprisingly, SIRT1 and DNMTs did not interact directly with ZEB2, and while SIRT1 inhibition decreased the stability of long-term repression, it did not prevent down-regulation of RAB25 and CDH1 by ZEB2. Conclusions ZEB2 expression is resulting in drastic changes at the chromatin level with both clear DNA hypermethylation and histone modifications. Here, we revealed that SIRT1-mediated H3K9 deacetylation helps to maintain gene repression but is not required for the direct ZEB2 repressive function. Targeting epigenetic enzymes to prevent EMT is an appealing approach to limit cancer dissemination, but inhibiting SIRT1 activity alone might have limited effect and will require drug combination to efficiently prevent EMT. Electronic supplementary material The online version of this article (10.1186/s13072-018-0239-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Skrypek
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kenneth Bruneel
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Cindy Vandewalle
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva De Smedt
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bieke Soen
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nele Loret
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joachim Taminau
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Centre for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
| | - Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Data Mining and Modeling for Biomedicine, VIB Inflammation Research Center, Ghent, Belgium.,VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
40
|
Scott CM, Wong EM, Joo JE, Dugué PA, Jung CH, O'Callaghan N, Dowty J, Giles GG, Hopper JL, Southey MC. Genome-wide DNA methylation assessment of 'BRCA1-like' early-onset breast cancer: Data from the Australian Breast Cancer Family Registry. Exp Mol Pathol 2018; 105:404-410. [PMID: 30423315 DOI: 10.1016/j.yexmp.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 02/04/2023]
Abstract
Breast cancers arising in women carrying a germline mutation in BRCA1 are typically high-grade, early-onset and have distinct morphological features (BRCA1-like). However, the majority of early-onset breast cancers of this morphological type are not associated with germline BRCA1 mutations or constitutional BRCA1 promoter methylation. We aimed to assess DNA methylation across the genome for associations with the "BRCA1-like" morphology. Genome-wide methylation in blood-derived DNA was measured using the Infinium HumanMethylation450K BeadChip assay for women under the age of 40 years participating in the Australian Breast Cancer Family Study (ABCFS) diagnosed with: i) BRCA1-like breast cancer (n = 30); and ii) breast cancer without BRCA1-like morphological features (non BRCA1-like; n = 30), and age-matched unaffected women (controls; n = 30). Corresponding tumour-derived DNA from 43 of the affected women was also assessed. Methylation of blood-derived DNA was found to be elevated across 17 consecutive marks in the BRCA1 promoter region and decreased at several other genomic regions (including TWIST2 and CTBP1) for 7 women (23%) diagnosed with BRCA1-like breast cancer compared with women in the other groups. Corresponding tumour-derived DNA available from 5 of these 7 women had elevated methylation within the BRCA1 and SPHK2 promoter region and decreased methylation within the ADAP1, IGF2BP3 and SPATA13 promoter region when compared with the other breast tumours. These methylation marks could be biomarkers of risk for BRCA1-like breast cancer, and could be responsible in part for their distinctive morphological features and biology. As such, they may assist with prevention and targeted therapies for this cancer subtype.
Collapse
Affiliation(s)
- Cameron M Scott
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, VIC 3010, Australia; Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia.
| | - Ee Ming Wong
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia.
| | - JiHoon Eric Joo
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, VIC 3010, Australia; Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne Centre for Cancer Research, The University of Melbourne, Australia.
| | - Pierre-Antoine Dugué
- Centre for Epidemiology and Biostatistics, The University of Melbourne, VIC 3010, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, VIC 3004, Australia.
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia.
| | - Neil O'Callaghan
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, VIC 3010, Australia.
| | - James Dowty
- Centre for Epidemiology and Biostatistics, The University of Melbourne, VIC 3010, Australia.
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, The University of Melbourne, VIC 3010, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, VIC 3004, Australia.
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, VIC 3010, Australia.
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, VIC 3010, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, VIC 3004, Australia.
| |
Collapse
|
41
|
Yue Z, Neylon MT, Nguyen T, Ratliff T, Chen JY. "Super Gene Set" Causal Relationship Discovery from Functional Genomics Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1991-1998. [PMID: 30040650 PMCID: PMC6380687 DOI: 10.1109/tcbb.2018.2858755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, we present a computational framework to identify "causal relationships" among super gene sets. For "causal relationships," we refer to both stimulatory and inhibitory regulatory relationships, regardless of through direct or indirect mechanisms. For super gene sets, we refer to "pathways, annotated lists, and gene signatures," or PAGs. To identify causal relationships among PAGs, we extend the previous work on identifying PAG-to-PAG regulatory relationships by further requiring them to be significantly enriched with gene-to-gene co-expression pairs across the two PAGs involved. This is achieved by developing a quantitative metric based on PAG-to-PAG Co-expressions (PPC), which we use to infer the likelihood that PAG-to-PAG relationships under examination are causal-either stimulatory or inhibitory. Since true causal relationships are unknown, we approximate the overall performance of inferring causal relationships with the performance of recalling known r-type PAG-to-PAG relationships from causal PAG-to-PAG inference, using a functional genomics benchmark dataset from the GEO database. We report the area-under-curve (AUC) performance for both precision and recall being 0.81. By applying our framework to a myeloid-derived suppressor cells (MDSC) dataset, we further demonstrate that this framework is effective in helping build multi-scale biomolecular systems models with new insights on regulatory and causal links for downstream biological interpretations.
Collapse
Affiliation(s)
- Zongliang Yue
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35233, US.
| | - Michael T. Neylon
- School of Informatics and Computing, Indiana University, Indianapolis, IN 46202, US.
| | - Thanh Nguyen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35233, US.
| | - Timothy Ratliff
- Purdue University Center for Cancer Research, West Lafayette, IN 47906, US.
| | - Jake Y. Chen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35233, US.
| |
Collapse
|
42
|
LNX1/LNX2 proteins: functions in neuronal signalling and beyond. Neuronal Signal 2018; 2:NS20170191. [PMID: 32714586 PMCID: PMC7373230 DOI: 10.1042/ns20170191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Ligand of NUMB Protein X1 and X2 (LNX1 and LNX2) are E3 ubiquitin ligases, named for their ability to interact with and promote the degradation of the cell fate determinant protein NUMB. On this basis they are thought to play a role in modulating NUMB/NOTCH signalling during processes such as cortical neurogenesis. However, LNX1/2 proteins can bind, via their four PDZ (PSD95, DLGA, ZO-1) domains, to an extraordinarily large number of other proteins besides NUMB. Many of these interactions suggest additional roles for LNX1/2 proteins in the nervous system in areas such as synapse formation, neurotransmission and regulating neuroglial function. Twenty years on from their initial discovery, I discuss here the putative neuronal functions of LNX1/2 proteins in light of the anxiety-related phenotype of double knockout mice lacking LNX1 and LNX2 in the central nervous system (CNS). I also review what is known about non-neuronal roles of LNX1/2 proteins, including their roles in embryonic patterning and pancreas development in zebrafish and their possible involvement in colorectal cancer (CRC), osteoclast differentiation and immune function in mammals. The emerging picture places LNX1/2 proteins as potential regulators of multiple cellular signalling processes, but in many cases the physiological significance of such roles remains only partly validated and needs to be considered in the context of the tight control of LNX1/2 protein levels in vivo.
Collapse
|
43
|
p53-Dependent and -Independent Epithelial Integrity: Beyond miRNAs and Metabolic Fluctuations. Cancers (Basel) 2018; 10:cancers10060162. [PMID: 29799511 PMCID: PMC6024951 DOI: 10.3390/cancers10060162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to its classical roles as a tumor suppressor, p53 has also been shown to act as a guardian of epithelial integrity by inducing the microRNAs that target transcriptional factors driving epithelial⁻mesenchymal transition. On the other hand, the ENCODE project demonstrated an enrichment of putative motifs for the binding of p53 in epithelial-specific enhancers, such as CDH1 (encoding E-cadherin) enhancers although its biological significance remained unknown. Recently, we identified two novel modes of epithelial integrity (i.e., maintenance of CDH1 expression): one involves the binding of p53 to a CDH1 enhancer region and the other does not. In the former, the binding of p53 is necessary to maintain permissive histone modifications around the CDH1 transcription start site, whereas in the latter, p53 does not bind to this region nor affect histone modifications. Furthermore, these mechanisms likely coexisted within the same tissue. Thus, the mechanisms involved in epithelial integrity appear to be much more complex than previously thought. In this review, we describe our findings, which may instigate further experimental scrutiny towards understanding the whole picture of epithelial integrity as well as the related complex asymmetrical functions of p53. Such understanding will be important not only for cancer biology but also for the safety of regenerative medicine.
Collapse
|
44
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
45
|
Procházková J, Strapáčová S, Svržková L, Andrysík Z, Hýžďalová M, Hrubá E, Pěnčíková K, Líbalová H, Topinka J, Kléma J, Espinosa JM, Vondráček J, Machala M. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett 2018; 292:162-174. [PMID: 29704546 DOI: 10.1016/j.toxlet.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdeněk Andrysík
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Joaquín M Espinosa
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
46
|
Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 2018; 7:86999-87015. [PMID: 27894104 PMCID: PMC5341331 DOI: 10.18632/oncotarget.13569] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Packed with biological information, extracellular vesicles (EVs) offer exciting promise for biomarker discovery and applications in therapeutics and non-invasive diagnostics. Currently, our understanding of EV contents is confined by the limited cells from which vesicles have been characterized utilizing the same enrichment method. Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide the largest proteomic profile of EVs in a single study, identifying 6,071 proteins with 213 common to all isolates. Proteins included established EV markers, and vesicular trafficking proteins such as Rab GTPases and tetraspanins. Differentially-expressed proteins offer potential for cancer diagnosis and prognosis. Network analysis of vesicle quantity and proteomes identified EV components associated with vesicle secretion, including CD81, CD63, syntenin-1, VAMP3, Rab GTPases, and integrins. Integration of vesicle proteomes with whole-cell molecular profiles revealed similarities, suggesting EVs provide a reliable reflection of their progenitor cell content, and are therefore excellent indicators of disease.
Collapse
Affiliation(s)
- Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mark A Rider
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Joseph L Bundy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Xia Liu
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Rakesh K Singh
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| |
Collapse
|
47
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
48
|
Walser TC, Jing Z, Tran LM, Lin YQ, Yakobian N, Wang G, Krysan K, Zhu LX, Sharma S, Lee MH, Belperio JA, Ooi AT, Gomperts BN, Shay JW, Larsen JE, Minna JD, Hong LS, Fishbein MC, Dubinett SM. Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 2018; 78:1986-1999. [PMID: 29431637 DOI: 10.1158/0008-5472.can-17-0315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is organized in cancer cells by a set of key transcription factors, but the significance of this process is still debated, including in non-small cell lung cancer (NSCLC). Here, we report increased expression of the EMT-inducing transcription factor Snail in premalignant pulmonary lesions, relative to histologically normal pulmonary epithelium. In immortalized human pulmonary epithelial cells and isogenic derivatives, we documented Snail-dependent anchorage-independent growth in vitro and primary tumor growth and metastatic behavior in vivo Snail-mediated transformation relied upon silencing of the tumor-suppressive RNA splicing regulatory protein ESRP1. In clinical specimens of NSCLC, ESRP1 loss was documented in Snail-expressing premalignant pulmonary lesions. Mechanistic investigations showed that Snail drives malignant progression in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing microRNAs are inhibited. Collectively, our results show how ESRP1 loss is a critical event in lung carcinogenesis, and they identify new candidate directions for targeted therapy of NSCLC.Significance: This study defines a Snail-ESRP1 cancer axis that is crucial for human lung carcinogenesis, with implications for new intervention strategies and translational opportunities. Cancer Res; 78(8); 1986-99. ©2018 AACR.
Collapse
Affiliation(s)
- Tonya C Walser
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Zhe Jing
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Linh M Tran
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Ying Q Lin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Natalie Yakobian
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Gerald Wang
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Kostyantyn Krysan
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Li X Zhu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Sherven Sharma
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Mi-Heon Lee
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Aik T Ooi
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Brigitte N Gomperts
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California.,Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Long-Sheng Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Lung Cancer Research Program, Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
49
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
50
|
Przybyla T, Wesserling M, Sakowicz-Burkiewicz M, Maciejewska I, Pawelczyk T. The Level of TWIST1 expression determines the response of colon cancer cells to mitogen-activated protein kinases inhibitors. Saudi J Gastroenterol 2018; 24:37-45. [PMID: 29451183 PMCID: PMC5848323 DOI: 10.4103/sjg.sjg_270_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Currently, it has been proposed that combination of 5-fluorouracil (5FU) with inhibitors of the mitogen-activated protein kinases (MAPKs) signaling pathway might enhance the efficacy of 5FU-based chemotherapy in colon cancer. Our study aimed to investigate an impact of TWIST1 silencing on the sensitivity of cancer cells to 5FU and selected MAPK inhibitors. MATERIALS AND METHODS The suppression of TWIST1 expression in human colon cancer HT29 and HCT116 cell lines was achieved by transduction with lentiviral vector carrying the TWIST1 silencing sequence (pLL3.7-sh TWIST1). The statistical calculation was performed with analysis of variance or Dunnett's test for comparison to control group. Paired Student's t-test was performed when two groups were analyzed. RESULTS Suppression of TWIST1 reduced the proliferation rate of colon cancer cells and enhanced their sensitivity to 5FU and MAPKs inhibitors. The sensitivity of HT29 cells to examined compounds was more dependent on TWIST1 expression level compared to HCT116 cells. The most noticeable effect of TWIST1 suppression on sensitivity of both colon cancer cell lines to combined treatment of 5FU and the MAPKs inhibitors was observed for inhibitors of p38α/β and JNK1-3. We also noted that the suppression of TWIST1 significantly sensitized both cell lines to combined treatment of 5FU and Rac inhibitor. CONCLUSIONS Our observations point to TWIST1 expression level as a marker of colon cancer sensitivity to combined treatment of 5FU and MAPKs inhibitors.
Collapse
Affiliation(s)
- Tomasz Przybyla
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland,Address for correspondence: Dr. Tomasz Przybyla, Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland. E-mail:
| | - Martyna Wesserling
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Izabela Maciejewska
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|