1
|
Qin B, Xue H, Wang X, Kim H, Jin LH. Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. FEBS J 2025; 292:294-312. [PMID: 39513270 DOI: 10.1111/febs.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The hematopoietic system of Drosophila is a well-established genetic model for studying hematopoiesis mechanisms, which are strictly regulated by multiple signaling pathways. Autophagy-related 2 (Atg2) protein is involved in autophagosome formation through its lipid transfer function; however, other functions in animal development, especially the role of Atg2 in maintaining hematopoietic homeostasis, are unclear. Here, we show that Atg2 knockdown in the cortical zone (CZ) induced the proliferation and differentiation of mature plasmatocytes and disrupted progenitor maintenance in the medullary zone (MZ). We also observed the differentiation of lamellocytes among circulating hemocytes and in the lymph gland, which is rarely observed in healthy larvae. The above results on hematopoiesis disorders are due to Atg2 regulating the Drosophila PDGF/VEGF receptor (PVR) and target of rapamycin (TOR) in the CZ of lymph gland. In conclusion, we identified Atg2 as a previously undescribed regulator of hematopoiesis. Understanding the mechanism of maintenance of hematopoietic homeostasis in Drosophila will help us better evaluate human blood disorder-related diseases.
Collapse
Affiliation(s)
- Bo Qin
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Xue
- Peking University People's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, China
| | - Xiaoran Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim Il Sung University, Pyongyang, Korea
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler TK, MacDonald J, Pallanck LJ. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. PLoS Genet 2024; 20:e1011105. [PMID: 39527642 PMCID: PMC11581407 DOI: 10.1371/journal.pgen.1011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Tran DB, Le NKN, Duong MT, Yuna K, Pham LAT, Nguyen QCT, Tragoolpua Y, Kaewkod T, Kamei K. Drosophila models of the anti-inflammatory and anti-obesity mechanisms of kombucha tea produced by Camellia sinensis leaf fermentation. Food Sci Nutr 2024; 12:5722-5733. [PMID: 39139927 PMCID: PMC11317715 DOI: 10.1002/fsn3.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024] Open
Abstract
Kombucha tea is a traditional beverage originating from China and has recently gained popularity worldwide. Kombucha tea is produced by the fermentation of tea leaves and is characterized by its beneficial properties and varied chemical content produced during the fermentation process, which includes organic acids, amino acids, vitamins, minerals, and other biologically active compounds. Kombucha tea is often consumed as a health drink to combat obesity and inflammation; however, the bioactive effects of kombucha tea have not been thoroughly researched. In this study, we reveal the underlying mechanisms of the beneficial properties of kombucha tea and how they protect against obesity and inflammation by studying Drosophila models. We established an inflammatory Drosophila model by knocking down the lipid storage droplet-1 gene, a human perilipin-1 ortholog. In this model, dysfunction of lipid storage droplet-1 induces inflammation by enhancing the infiltration of hemocytes into adipose tissues, increasing reactive oxygen species production, elevating levels of proinflammatory cytokines, and promoting the differentiation of hemocytes into macrophages. These processes are regulated by the c-Jun N-terminal Kinase (JNK) pathway. Using this unique Drosophila model that mimics mammalian inflammation, we verified the beneficial effects of kombucha tea on reducing tissue inflammation. Our data confirms that kombucha tea effectively improves inflammatory conditions by suppressing the expression of cytokines and proinflammatory responses induced by lipid storage droplet-1 dysfunction. It was found that kombucha tea consumption alleviated the production of reactive oxygen species and activated the JNK signaling pathway, signifying its potential as an anti-inflammatory agent against systemic inflammatory responses connected to the JNK pathway. Kombucha tea reduced triglyceride accumulation by increasing the activity of Brummer (a lipase), thereby promoting lipolysis in third-instar larvae. Therefore, kombucha tea could be developed as a novel, functional beverage to protect against obesity and inflammation. Our study also highlights the potential use of this innovative model to evaluate the effects of bioactive compounds derived from natural products.
Collapse
Affiliation(s)
- Duy Binh Tran
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Surgery, College of MedicineUniversity of IllinoisChicagoIllinoisUSA
| | | | - Minh Tue Duong
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - Kamo Yuna
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| | - L. A. Tuan Pham
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Molecular PathologyHanoi Medical UniversityHanoiVietnam
| | - Q. C. Thanh Nguyen
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
- Department of Chemistry, College of Natural SciencesCantho UniversityCantho CityVietnam
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Thida Kaewkod
- Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
- Research Center of Deep Technology in Beekeeping and bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of ScienceChiang Mai UniversityChiang MaiThailand
| | - Kaeko Kamei
- Department of Functional ChemistryKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
4
|
Hu D, Xu F, Gao Z, Chen K, Guo W, Wang Z, Li S, Feng C. Pleiotropic immunoregulation by growth-blocking peptide in Ostrinia furnacalis. INSECT MOLECULAR BIOLOGY 2024; 33:270-282. [PMID: 38329162 DOI: 10.1111/imb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.
Collapse
Affiliation(s)
- Dongchun Hu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuqiang Xu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zupeng Gao
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenlong Guo
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zitian Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Zhang P, Catterson JH, Grönke S, Partridge L. Inhibition of S6K lowers age-related inflammation and increases lifespan through the endolysosomal system. NATURE AGING 2024; 4:491-509. [PMID: 38413780 PMCID: PMC11031405 DOI: 10.1038/s43587-024-00578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Suppression of target of rapamycin complex 1 (TORC1) by rapamycin ameliorates aging in diverse species. S6 kinase (S6K) is an essential mediator, but the mechanisms involved are unclear. Here we show that activation of S6K specifically in Drosophila fat-body blocked extension of lifespan by rapamycin, induced accumulation of multilamellar lysosomes and blocked age-associated hyperactivation of the NF-κB-like immune deficiency (IMD) pathway, indicative of reduced inflammaging. Syntaxin 13 mediated the effects of TORC1-S6K signaling on lysosome morphology and inflammaging, suggesting they may be linked. Inflammaging depended on the IMD receptor regulatory isoform PGRP-LC, and repression of the IMD pathway from midlife extended lifespan. Age-related inflammaging was higher in females than in males and was not lowered in males by rapamycin treatment or lowered S6K. Rapamycin treatment also elevated Syntaxin 12/13 levels in mouse liver and prevented age-related increase in noncanonical NF-κB signaling, suggesting that the effect of TORC1 on inflammaging is conserved from flies to mammals.
Collapse
Affiliation(s)
- Pingze Zhang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - James H Catterson
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
6
|
Vesala L, Basikhina Y, Tuomela T, Nurminen A, Siukola E, Vale PF, Salminen TS. Mitochondrial perturbation in immune cells enhances cell-mediated innate immunity in Drosophila. BMC Biol 2024; 22:60. [PMID: 38475850 DOI: 10.1186/s12915-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Mitochondria participate in various cellular processes including energy metabolism, apoptosis, autophagy, production of reactive oxygen species, stress responses, inflammation and immunity. However, the role of mitochondrial metabolism in immune cells and tissues shaping the innate immune responses are not yet fully understood. We investigated the effects of tissue-specific mitochondrial perturbation on the immune responses at the organismal level. Genes for oxidative phosphorylation (OXPHOS) complexes cI-cV were knocked down in the fruit fly Drosophila melanogaster, targeting the two main immune tissues, the fat body and the immune cells (hemocytes). RESULTS While OXPHOS perturbation in the fat body was detrimental, hemocyte-specific perturbation led to an enhanced immunocompetence. This was accompanied by the formation of melanized hemocyte aggregates (melanotic nodules), a sign of activation of cell-mediated innate immunity. Furthermore, the hemocyte-specific OXPHOS perturbation induced immune activation of hemocytes, resulting in an infection-like hemocyte profile and an enhanced immune response against parasitoid wasp infection. In addition, OXPHOS perturbation in hemocytes resulted in mitochondrial membrane depolarization and upregulation of genes associated with the mitochondrial unfolded protein response. CONCLUSIONS Overall, we show that while the effects of mitochondrial perturbation on immune responses are highly tissue-specific, mild mitochondrial dysfunction can be beneficial in immune-challenged individuals and contributes to variation in infection outcomes among individuals.
Collapse
Affiliation(s)
- Laura Vesala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Yuliya Basikhina
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Siukola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tiina S Salminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
7
|
Vincow ES, Thomas RE, Milstein G, Pareek G, Bammler T, MacDonald J, Pallanck L. Glucocerebrosidase deficiency leads to neuropathology via cellular immune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571406. [PMID: 38168223 PMCID: PMC10760128 DOI: 10.1101/2023.12.13.571406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency. We identified target immune factors via RNA-Seq and proteomics on heads from GCase-deficient flies, which revealed both increased abundance of humoral factors and increased macrophage activation. We then manipulated the identified immune factors and measured their effect on head protein aggregates, a hallmark of neurodegenerative disease. Genetic ablation of humoral (secreted) immune factors did not suppress the development of protein aggregation. By contrast, re-expressing Gba1b in activated macrophages suppressed head protein aggregation in Gba1b mutants and rescued their lifespan and behavioral deficits. Moreover, reducing the GCase substrate glucosylceramide in activated macrophages also ameliorated Gba1b mutant phenotypes. Taken together, our findings show that glucosylceramide accumulation due to GCase deficiency leads to macrophage activation, which in turn promotes the development of neuropathology.
Collapse
Affiliation(s)
- Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Leo Pallanck
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol 2023; 14:1330312. [PMID: 38124757 PMCID: PMC10730662 DOI: 10.3389/fimmu.2023.1330312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
Collapse
Affiliation(s)
- Tomas Dolezal
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
9
|
Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, Wheeler NJ, Zamanian M, Bartholomay LC, Kimber MJ. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep 2023; 13:8778. [PMID: 37258694 PMCID: PMC10232515 DOI: 10.1038/s41598-023-35940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.
Collapse
Affiliation(s)
- Hannah J Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Hyeogsun Kwon
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Ryan C Smith
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, USA
| | - Noelle A Sondjaja
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sarah J Minkler
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Sophie Young
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Nicolas J Wheeler
- Department of Biology, College of Arts and Sciences, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael J Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Bland ML. Regulating metabolism to shape immune function: Lessons from Drosophila. Semin Cell Dev Biol 2023; 138:128-141. [PMID: 35440411 PMCID: PMC10617008 DOI: 10.1016/j.semcdb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 04/03/2022] [Indexed: 12/14/2022]
Abstract
Infection with pathogenic microbes is a severe threat that hosts manage by activating the innate immune response. In Drosophila melanogaster, the Toll and Imd signaling pathways are activated by pathogen-associated molecular patterns to initiate cellular and humoral immune processes that neutralize and kill invaders. The Toll and Imd signaling pathways operate in organs such as fat body and gut that control host nutrient metabolism, and infections or genetic activation of Toll and Imd signaling also induce wide-ranging changes in host lipid, carbohydrate and protein metabolism. Metabolic regulation by immune signaling can confer resistance to or tolerance of infection, but it can also lead to pathology and susceptibility to infection. These immunometabolic phenotypes are described in this review, as are changes in endocrine signaling and gene regulation that mediate survival during infection. Future work in the field is anticipated to determine key variables such as sex, dietary nutrients, life stage, and pathogen characteristics that modify immunometabolic phenotypes and, importantly, to uncover the mechanisms used by the immune system to regulate metabolism.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States.
| |
Collapse
|
11
|
de Lima FMR, Abrahão I, Pentagna N, Carneiro K. Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Dev Dyn 2023; 252:343-362. [PMID: 36205096 DOI: 10.1002/dvdy.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Animal regeneration is a fascinating field of research that has captured the attention of many generations of scientists. Among the cellular mechanisms underlying tissue and organ regeneration, we highlight the role of phagocytic ameboid cells (PACs). Beyond their ability to engulf nutritional particles, microbes, and apoptotic cells, their involvement in regeneration has been widely documented. It has been extensively described that, at least in part, animal regenerative mechanisms rely on PACs that serve as a hub for a range of critical physiological functions, both in health and disease. Considering the phylogenetics of PAC evolution, and the loss and gain of nutritional, immunological, and regenerative potential across Metazoa, we aim to discuss when and how phagocytic activity was first co-opted to regenerative tissue repair. We propose that the gradual specialization of PACs during metazoan derivation may have contributed to the loss of regenerative potential in animals, with critical impacts on potential translational strategies for regenerative medicine.
Collapse
Affiliation(s)
- Felipe Matheus Ribeiro de Lima
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Abrahão
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Dhankhar J, Shrivastava A, Agrawal N. Amendment of Altered Immune Response by Curcumin in Drosophila Model of Huntington's Disease. J Huntingtons Dis 2023; 12:335-354. [PMID: 37781812 DOI: 10.3233/jhd-230595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Though primarily classified as a brain disorder, surplus studies direct Huntington's disease (HD) to be a multi-system disorder affecting various tissues and organs, thus affecting overall physiology of host. Recently, we have reported that neuronal expression of mutant huntingtin induces immune dysregulation in Drosophila and may pose chronic threat to challenged individuals. Therefore, we tested the polyphenolic compound curcumin to circumvent the impact of immune dysregulation in Drosophila model of HD. OBJECTIVE The present study examined the molecular basis underlying immune derangements and immunomodulatory potential of curcumin in HD. METHODS UAS-GAL4 system was used to imitate the HD symptoms in Drosophila, and the desired female progenies (elav > Httex1pQ25; control and elav > Httex1pQ93; diseased) were cultured on food mixed without and with 10 μM concentration of curcumin since early development. Effect of curcumin supplementation was investigated by monitoring the hemocytes' count and their functional abilities in diseased condition. Reactive oxygen species (ROS) level in cells was assessed by DHE staining and mitochondrial dysfunction was assessed by CMXros red dye. In addition, transcript levels of pro-inflammatory cytokines and anti-microbial peptides were monitored by qRT-PCR. RESULTS We found that curcumin supplementation commendably reduced higher crystal cell count and phenoloxidase activity in diseased flies. Interestingly, curcumin significantly managed altered plasmatocytes count, improved their phagocytic activity by upregulating the expression of key phagocytic receptors in HD condition. Moreover, substantial alleviation of ROS levels and mitochondria dysfunction was observed in plasmatocytes of diseased flies upon curcumin supplementation. Furthermore, curcumin administration effectively attenuated transcriptional expression of pro-inflammatory cytokines and AMPs in diseased flies. CONCLUSIONS Our results indicate that curcumin efficiently attenuates immune derangements in HD flies and may prove beneficial in alleviating complexities associated with HD.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Kúthy-Sutus E, Kharrat B, Gábor E, Csordás G, Sinka R, Honti V. A Novel Method for Primary Blood Cell Culturing and Selection in Drosophila melanogaster. Cells 2022; 12:24. [PMID: 36611818 PMCID: PMC9818912 DOI: 10.3390/cells12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.
Collapse
Affiliation(s)
- Enikő Kúthy-Sutus
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Erika Gábor
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary
| |
Collapse
|
14
|
Destefanis F, Manara V, Santarelli S, Zola S, Brambilla M, Viola G, Maragno P, Signoria I, Viero G, Pasini ME, Penzo M, Bellosta P. Reduction of nucleolar NOC1 leads to the accumulation of pre-rRNAs and induces Xrp1, affecting growth and resulting in cell competition. J Cell Sci 2022; 135:285861. [PMID: 36314272 PMCID: PMC9789402 DOI: 10.1242/jcs.260110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022] Open
Abstract
NOC1 is a nucleolar protein necessary in yeast for both transport and maturation of ribosomal subunits. Here, we show that Drosophila NOC1 (annotated CG7839) is necessary for rRNAs maturation and for a correct animal development. Its ubiquitous downregulation results in a dramatic decrease in polysome level and of protein synthesis. NOC1 expression in multiple organs, such as the prothoracic gland and the fat body, is necessary for their proper functioning. Reduction of NOC1 in epithelial cells from the imaginal discs results in clones that die by apoptosis, an event that is partially rescued in a Minute/+ background, suggesting that reduction of NOC1 induces the cells to become less fit and to acquire a 'loser' state. NOC1 downregulation activates the pro-apoptotic Eiger-JNK pathway and leads to an increase of Xrp1, which results in the upregulation of DILP8, a member of the insulin/relaxin-like family known to coordinate organ growth with animal development. Our data underline NOC1 as an essential gene in ribosome biogenesis and highlight its novel functions in the control of growth and cell competition.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Sheri Zola
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marco Brambilla
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Giacomo Viola
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Paola Maragno
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Signoria
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR, Via Sommarive 18, 38123 Trento, Italy
| | - Maria Enrica Pasini
- Department of Biosciences, University of Milano, Via Celoria 25, 20133 Milano, Italy
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy,Center for Applied Biomedical Research, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy,Department of Medicine, NYU Langone School of Medicine, 550 First Avenue, New York, 10016 NY, USA,Author for correspondence ()
| |
Collapse
|
15
|
Ding SD, Leitão AB, Day JP, Arunkumar R, Phillips M, Zhou SO, Jiggins FM. Trans-regulatory changes underpin the evolution of the Drosophila immune response. PLoS Genet 2022; 18:e1010453. [PMID: 36342922 PMCID: PMC9671443 DOI: 10.1371/journal.pgen.1010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/17/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
When an animal is infected, the expression of a large suite of genes is changed, resulting in an immune response that can defend the host. Despite much evidence that the sequence of proteins in the immune system can evolve rapidly, the evolution of gene expression is comparatively poorly understood. We therefore investigated the transcriptional response to parasitoid wasp infection in Drosophila simulans and D. sechellia. Although these species are closely related, there has been a large scale divergence in the expression of immune-responsive genes in their two main immune tissues, the fat body and hemocytes. Many genes, including those encoding molecules that directly kill pathogens, have cis regulatory changes, frequently resulting in large differences in their expression in the two species. However, these changes in cis regulation overwhelmingly affected gene expression in immune-challenged and uninfected animals alike. Divergence in the response to infection was controlled in trans. We argue that altering trans-regulatory factors, such as signalling pathways or immune modulators, may allow natural selection to alter the expression of large numbers of immune-responsive genes in a coordinated fashion.
Collapse
Affiliation(s)
| | - Alexandre B. Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Champalimaud Foundation, Lisbon, Portugal
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Morgan Phillips
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Shuyu Olivia Zhou
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
17
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
18
|
Dysfunction of lipid storage droplet-2 suppresses endoreplication and induces JNK pathway-mediated apoptotic cell death in Drosophila salivary glands. Sci Rep 2022; 12:4302. [PMID: 35277579 PMCID: PMC8917166 DOI: 10.1038/s41598-022-08299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The lipid storage droplet-2 (LSD-2) protein of Drosophila is a homolog of mammalian perilipin 2, which is essential for promoting lipid accumulation and lipid droplet formation. The function of LSD-2 as a regulator of lipolysis has also been demonstrated. However, other LSD-2 functions remain unclear. To investigate the role of LSD-2, we performed tissue-specific depletion in the salivary glands of Drosophila using a combination of the Gal4-upstream activating sequence system and RNA interference. LSD-2 depletion inhibited the entry of salivary gland cells into the endoreplication cycle and delayed this process by enhancing CycE expression, disrupting the development of this organ. The deficiency of LSD-2 expression enhanced reactive oxygen species production in the salivary gland and promoted JNK-dependent apoptosis by suppressing dMyc expression. This phenomenon did not result from lipolysis. Therefore, LSD-2 is vital for endoreplication cell cycle and cell death programs.
Collapse
|
19
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
20
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Fear-of-intimacy-mediated zinc transport controls fat body cell dissociation through modulating Mmp activity in Drosophila. Cell Death Dis 2021; 12:874. [PMID: 34564691 PMCID: PMC8464599 DOI: 10.1038/s41419-021-04147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases that have been implicated in tumour invasion and metastasis. Drosophila fat body is important for energy storage and utilization, as well as biosynthetic and metabolic activities. The fat body undergoes remodelling during metamorphosis which is characterized by the dissociation of the fat body into individual cells. Mmps play important roles in the regulation of fat body cell dissociation. Here we show that a zinc transporter fear-of-intimacy (foi) is necessary for the cell dissociation of fat body in Drosophila. The progression of fat body cell dissociation was delayed by fat body-specific foi knockdown while it was accelerated by foi overexpression (OE). In essence, these phenotypes are closely associated with intracellular zinc homeostasis, which can be modulated by dietary zinc intervention or genetic modulation of other zinc transporters. Further study indicated that Mmp1 and Mmp2 levels could be transcriptionally regulated by zinc in vivo. Consistently, the retarded fat body cell dissociation caused by Mmp1 or Mmp2 RNAi could be regulated by modulating the expression of foi. Further, by using Drosophila models of malignant tumour RafGOFscrib−/− and RasV12lgl−/−, we showed that the tumour growth, invasion and migration could be markedly inhibited by foi knockdown. These findings demonstrate a close connection between zinc levels and cell dissociation in vivo, and also suggest that manipulation of zinc levels may provide a novel therapeutic strategy for cancer.
Collapse
|
22
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
23
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
24
|
Drosophila Hox genes induce melanized pseudo-tumors when misexpressed in hemocytes. Sci Rep 2021; 11:1838. [PMID: 33469139 PMCID: PMC7815749 DOI: 10.1038/s41598-021-81472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are early determinants of cell identity along the anterior–posterior body axis across bilaterians. Several late non-homeotic functions of Hox genes have emerged in a variety of processes involved in organogenesis in several organisms, including mammals. Several studies have reported the misexpression of Hox genes in a variety of malignancies including acute myeloid leukemia. The Hox genes Dfd, Ubx, abd-A and Abd-B were overexpressed via the UAS-Gal4 system using Cg-Gal4, Lsp2-Gal4, He-Gal4 and HmlD3-Gal4 as specific drivers. Genetic interaction was tested by bringing overexpression lines in heterozygous mutant backgrounds of Polycomb and trithorax group factors. Larvae were visually scored for melanized bodies. Circulating hemocytes were quantified and tested for differentiation. Pupal lethality was assessed. Expression of Dfd, Ubx and abd-A, but not Abd-B in the hematopoietic compartment of Drosophila led to the appearance of circulating melanized bodies, an increase in cell number, cell-autonomous proliferation, and differentiation of hemocytes. Pupal lethality and melanized pseudo-tumors were suppressed in Psc1 and esc2 backgrounds while polycomb group member mutations Pc1 and Su(z)123 and trithorax group member mutation TrlR85 enhanced the phenotype. Dfd, Ubx and abd-A are leukemogenic. Mutations in Polycomb and trithorax group members modulate the leukemogenic phenotype. Our RNAseq of Cg-Gal4 > UAS-abd-A hemocytes may contain genes important to Hox gene induced leukemias.
Collapse
|
25
|
Csordás G, Gábor E, Honti V. There and back again: The mechanisms of differentiation and transdifferentiation in Drosophila blood cells. Dev Biol 2020; 469:135-143. [PMID: 33131706 DOI: 10.1016/j.ydbio.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Transdifferentiation is a conversion of an already differentiated cell type into another cell type without the involvement of stem cells. This transition is well described in the case of vertebrate immune cells, as well as in Drosophila melanogaster, which therefore serves as a suitable model to study the process in detail. In the Drosophila larva, the latest single-cell sequencing methods enabled the clusterization of the phagocytic blood cells, the plasmatocytes, which are capable of transdifferentiation into encapsulating cells, the lamellocytes. Here we summarize the available data of the past years on the plasmatocyte-lamellocyte transition, and make an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Erika Gábor
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| | - Viktor Honti
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| |
Collapse
|
26
|
Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, Yoon SH, Comjean A, Li F, Dervis F, Hung RJ, Nam JW, Ho Sui S, Shim J, Perrimon N. A single-cell survey of Drosophila blood. eLife 2020; 9:e54818. [PMID: 32396065 PMCID: PMC7237219 DOI: 10.7554/elife.54818] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Drosophila blood cells, called hemocytes, are classified into plasmatocytes, crystal cells, and lamellocytes based on the expression of a few marker genes and cell morphologies, which are inadequate to classify the complete hemocyte repertoire. Here, we used single-cell RNA sequencing (scRNA-seq) to map hemocytes across different inflammatory conditions in larvae. We resolved plasmatocytes into different states based on the expression of genes involved in cell cycle, antimicrobial response, and metabolism together with the identification of intermediate states. Further, we discovered rare subsets within crystal cells and lamellocytes that express fibroblast growth factor (FGF) ligand branchless and receptor breathless, respectively. We demonstrate that these FGF components are required for mediating effective immune responses against parasitoid wasp eggs, highlighting a novel role for FGF signaling in inter-hemocyte crosstalk. Our scRNA-seq analysis reveals the diversity of hemocytes and provides a rich resource of gene expression profiles for a systems-level understanding of their functions.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | | | | | - Sang-Ho Yoon
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Fangge Li
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Franz Dervis
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Ruei-Jiun Hung
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
| | - Jin-Wu Nam
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | | | - Jiwon Shim
- Department of Life Science, Hanyang UniversitySeoulRepublic of Korea
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
27
|
Drosophila melanogaster as a model for arbovirus infection of adult salivary glands. Virology 2020; 543:1-6. [DOI: 10.1016/j.virol.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
|
28
|
Taking Insect Immunity to the Single-Cell Level. Trends Immunol 2020; 41:190-199. [DOI: 10.1016/j.it.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
29
|
Harsh S, Heryanto C, Eleftherianos I. Intestinal lipid droplets as novel mediators of host-pathogen interaction in Drosophila. Biol Open 2019; 8:bio.039040. [PMID: 31278163 PMCID: PMC6679391 DOI: 10.1242/bio.039040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are lipid-carrying multifunctional organelles, which might also interact with pathogens and influence the host immune response. However, the exact nature of these interactions remains currently unexplored. Here we show that systemic infection of Drosophila adult flies with non-pathogenic Escherichia coli, the extracellular bacterial pathogen Photorhabdus luminescens or the facultative intracellular pathogen Photorhabdus asymbiotica results in intestinal steatosis marked by lipid accumulation in the midgut. Accumulation of LDs in the midgut also correlates with increased whole-body lipid levels characterized by increased expression of genes regulating lipogenesis. The lipid-enriched midgut further displays reduced expression of the enteroendocrine-secreted hormone, Tachykinin. The observed lipid accumulation requires the Gram-negative cell wall pattern recognition molecule, PGRP-LC, but not PGRP-LE, for the humoral immune response. Altogether, our findings indicate that Drosophila LDs are inducible organelles, which can serve as markers for inflammation and, depending on the nature of the challenge, they can dictate the outcome of the infection. Summary: Lipid droplets are inducible organelles, act as inflammatory markers and, depending on the nature of challenge, can dictate the outcome of the infection.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Christa Heryanto
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
30
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
31
|
Mihajlovic Z, Tanasic D, Bajgar A, Perez-Gomez R, Steffal P, Krejci A. Lime is a new protein linking immunity and metabolism in Drosophila. Dev Biol 2019; 452:83-94. [PMID: 31085193 DOI: 10.1016/j.ydbio.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The proliferation, differentiation and function of immune cells in vertebrates, as well as in the invertebrates, is regulated by distinct signalling pathways and crosstalk with systemic and cellular metabolism. We have identified the Lime gene (Linking Immunity and Metabolism, CG18446) as one such connecting factor, linking hemocyte development with systemic metabolism in Drosophila. Lime is expressed in larval plasmatocytes and the fat body and regulates immune cell type and number by influencing the size of hemocyte progenitor populations in the lymph gland and in circulation. Lime mutant larvae exhibit low levels of glycogen and trehalose energy reserves and they develop low number of hemocytes. The low number of hemocytes in Lime mutants can be rescued by Lime overexpression in the fat body. It is well known that immune cell metabolism is tightly regulated with the progress of infection and it must be supported by systemic metabolic changes. Here we demonstrate that Lime mutants fails to induce such systemic metabolic changes essential for the larval immune response. Indeed, Lime mutants are not able to sustain high numbers of circulating hemocytes and are compromised in the number of lamellocytes produced during immune system challenge, using a parasitic wasp infection model. We therefore propose the Lime gene as a novel functional link between systemic metabolism and Drosophila immunity.
Collapse
Affiliation(s)
- Zorana Mihajlovic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Dajana Tanasic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Raquel Perez-Gomez
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Pavel Steffal
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Alena Krejci
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| |
Collapse
|
32
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
33
|
Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M. Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathog 2019; 15:e1007504. [PMID: 30633769 PMCID: PMC6345493 DOI: 10.1371/journal.ppat.1007504] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Non-coding RNAs have important roles in regulating physiology, including immunity. Here, we performed transcriptome profiling of immune-responsive genes in Drosophila melanogaster during a Gram-positive bacterial infection, concentrating on long non-coding RNA (lncRNA) genes. The gene most highly induced by a Micrococcus luteus infection was CR44404, named Induced by Infection (lincRNA-IBIN). lincRNA-IBIN is induced by both Gram-positive and Gram-negative bacteria in Drosophila adults and parasitoid wasp Leptopilina boulardi in Drosophila larvae, as well as by the activation of the Toll or the Imd pathway in unchallenged flies. We show that upon infection, lincRNA-IBIN is expressed in the fat body, in hemocytes and in the gut, and its expression is regulated by NF-κB signaling and the chromatin modeling brahma complex. In the fat body, overexpression of lincRNA-IBIN affected the expression of Toll pathway -mediated genes. Notably, overexpression of lincRNA-IBIN in unchallenged flies elevated sugar levels in the hemolymph by enhancing the expression of genes important for glucose retrieval. These data show that lncRNA genes play a role in Drosophila immunity and indicate that lincRNA-IBIN acts as a link between innate immune responses and metabolism.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tiina S. Salminen
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
34
|
Green N, Walker J, Bontrager A, Zych M, Geisbrecht ER. A tissue communication network coordinating innate immune response during muscle stress. J Cell Sci 2018; 131:jcs.217943. [PMID: 30478194 DOI: 10.1242/jcs.217943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Complex tissue communication networks function throughout an organism's lifespan to maintain tissue homeostasis. Using the genetic model Drosophila melanogaster, we have defined a network of immune responses that are activated following the induction of muscle stresses, including hypercontraction, detachment and oxidative stress. Of these stressors, loss of the genes that cause muscle detachment produced the strongest levels of JAK-STAT activation. In one of these mutants, fondue (fon), we also observe hemocyte recruitment and the accumulation of melanin at muscle attachment sites (MASs), indicating a broad involvement of innate immune responses upon muscle detachment. Loss of fon results in pathogen-independent Toll signaling in the fat body and increased expression of the Toll-dependent antimicrobial peptide Drosomycin. Interestingly, genetic interactions between fon and various Toll pathway components enhance muscle detachment. Finally, we show that JAK-STAT and Toll signaling are capable of reciprocal activation in larval tissues. We propose a model of tissue communication for the integration of immune responses at the local and systemic level in response to altered muscle physiology.
Collapse
Affiliation(s)
- Nicole Green
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Justin Walker
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Alexandria Bontrager
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Molly Zych
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
35
|
Hao Y, Yu S, Luo F, Jin LH. Jumu is required for circulating hemocyte differentiation and phagocytosis in Drosophila. Cell Commun Signal 2018; 16:95. [PMID: 30518379 PMCID: PMC6280549 DOI: 10.1186/s12964-018-0305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The regulatory mechanisms of hematopoiesis and cellular immunity show a high degree of similarity between insects and mammals, and Drosophila has become a good model for investigating cellular immune responses. Jumeau (Jumu) is a member of the winged-helix/forkhead (FKH) transcription factor family and is required for Drosophila development. Adult jumu mutant flies show defective hemocyte phagocytosis and a weaker defense capability against pathogen infection. Here, we further investigated the role of jumu in the regulation of larval hemocyte development and phagocytosis. Methods In vivo phagocytosis assays, immunohistochemistry, Real-time quantitative PCR and immunoblotting were performed to investigate the effect of Jumu on hemocyte phagocytosis. 5-Bromo-2-deoxyUridine (BrdU) labeling, phospho-histone H3 (PH3) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were performed to analyze the proliferation and apoptosis of hemocyte; immunohistochemistry and Mosaic analysis with a repressible cell marker (MARCM) clone analysis were performed to investigate the role of Jumu in the activation of Toll pathway. Results Jumu indirectly controls hemocyte phagocytosis by regulating the expression of NimC1 and cytoskeleton reorganization. The loss of jumu also causes abnormal proliferation and differentiation in circulating hemocytes. Our results suggest that a severe deficiency of jumu leads to the generation of enlarged multinucleate hemocytes by affecting the normal cell mitosis process and induces numerous lamellocytes by activating the Toll pathway. Conclusions Jumu regulates circulating hemocyte differentiation and phagocytosis in Drosophila. Our findings provide new insight into the mechanistic roles of cytoskeleton regulatory proteins in phagocytosis and establish a basis for further analyses of the regulatory mechanism of the mammalian ortholog of Jumu in mammalian innate immunity. Electronic supplementary material The online version of this article (10.1186/s12964-018-0305-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.,Department of Translational medicine research center, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
36
|
Wang F, Xia Q. Back to homeostasis: Negative regulation of NF-κB immune signaling in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:216-223. [PMID: 29908201 DOI: 10.1016/j.dci.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Maintenance of homeostasis requires prompt activation and down-regulation of immune signaling pathways. This review attempts to summarize our current knowledge regarding the negative regulation of two NF-κB signaling pathways in insects, Toll and IMD pathway, which are mostly essential for host defense against bacteria and fungus. Various types of negative regulators and their mechanisms are discussed here with the emphasis on the prominent roles of ubiquitination. The counterbalance between these two pathways, the crosstalk with other physiological pathways, and the difference in their repertoires of negative regulators are also discussed.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
37
|
Bazzi W, Cattenoz PB, Delaporte C, Dasari V, Sakr R, Yuasa Y, Giangrande A. Embryonic hematopoiesis modulates the inflammatory response and larval hematopoiesis in Drosophila. eLife 2018; 7:e34890. [PMID: 29992900 PMCID: PMC6040882 DOI: 10.7554/elife.34890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Recent lineage tracing analyses have significantly improved our understanding of immune system development and highlighted the importance of the different hematopoietic waves. The current challenge is to understand whether these waves interact and whether this affects the function of the immune system. Here we report a molecular pathway regulating the immune response and involving the communication between embryonic and larval hematopoietic waves in Drosophila. Down-regulating the transcription factor Gcm specific to embryonic hematopoiesis enhances the larval phenotypes induced by over-expressing the pro-inflammatory Jak/Stat pathway or by wasp infestation. Gcm works by modulating the transduction of the Upd cytokines to the site of larval hematopoiesis and hence the response to chronic (Jak/Stat over-expression) and acute (wasp infestation) immune challenges. Thus, homeostatic interactions control the function of the immune system in physiology and pathology. Our data also indicate that a transiently expressed developmental pathway has a long-lasting effect on the immune response.
Collapse
Affiliation(s)
- Wael Bazzi
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Vasanthi Dasari
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Yoshihiro Yuasa
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- UMR7104Centre National de la Recherche ScientifiqueIllkirchFrance
- U1258Institut National de la Santé et de la Recherche MédicaleIllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
38
|
Musselman LP, Fink JL, Maier EJ, Gatto JA, Brent MR, Baranski TJ. Seven-Up Is a Novel Regulator of Insulin Signaling. Genetics 2018; 208:1643-1656. [PMID: 29487137 PMCID: PMC5887154 DOI: 10.1534/genetics.118.300770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance is associated with obesity, cardiovascular disease, non-alcoholic fatty liver disease, and type 2 diabetes. These complications are exacerbated by a high-calorie diet, which we used to model type 2 diabetes in Drosophila melanogaster Our studies focused on the fat body, an adipose- and liver-like tissue that stores fat and maintains circulating glucose. A gene regulatory network was constructed to predict potential regulators of insulin signaling in this tissue. Genomic characterization of fat bodies suggested a central role for the transcription factor Seven-up (Svp). Here, we describe a new role for Svp as a positive regulator of insulin signaling. Tissue-specific loss-of-function showed that Svp is required in the fat body to promote glucose clearance, lipid turnover, and insulin signaling. Svp appears to promote insulin signaling, at least in part, by inhibiting ecdysone signaling. Svp also impairs the immune response possibly via inhibition of antimicrobial peptide expression in the fat body. Taken together, these studies show that gene regulatory networks can help identify positive regulators of insulin signaling and metabolic homeostasis using the Drosophila fat body.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Biological Sciences, Binghamton University, New York 13902
| | - Jill L Fink
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ezekiel J Maier
- Department of Computer Science, and Department of Genetics and
| | - Jared A Gatto
- Department of Biological Sciences, Binghamton University, New York 13902
| | - Michael R Brent
- Department of Computer Science, Washington University in St. Louis, Missouri 63110
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
39
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
40
|
Metarhizium anisopliae s.l. modulation of lipid metabolism during tick infection is independent of AMPK and ERK pathways. Parasitol Res 2018; 117:793-799. [PMID: 29352348 DOI: 10.1007/s00436-018-5753-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
Despite the importance of fat body in metabolism of arthropods, studies in ticks are scarce. This study evaluated the lipid composition and activation of extracellular signal-regulated protein kinase (ERK) and AMP-activated protein kinase (AMPK) enzymes in Rhipicephalus microplus fat body after infection with different isolates of the fungus Metarhizium anisopliae sensu lato (Metschnikoff, 1879) Sorokin, 1883. The isolates CG 32, GC 112, GC 148, GC 347, and GC 629 were inoculated as viable or non-viable conidia in the ticks. The engorged females were dissected, and their fat bodies were collected 24 and 48 h after infection. The lipid composition was assessed by thin layer chromatography, and enzyme activation was detected by Western blotting with antibodies against p-AMPK and p-ERK. The study showed increased levels of triacylglycerol 24 and 48 h and fatty acid after 48 h after inoculation with different isolates of viable fungi in the tick's hemocoel. Detection of the active form of ERK was demonstrated only after inoculation with non-viable conidia of all isolates tested. The active form of AMPK, only isolate CG 112 was able to activate with viable or non-viable conidia, whereas isolates CG 32 and CG 629 were able to activate with non-viable conidia. This study provides the first report about changes in important metabolic pathways in ticks infected with entomopathogenic fungi and suggests that the lipid content is modulated by non-usual pathways. However, further studies may be necessary for a better elucidation of this interaction.
Collapse
|
41
|
Kenmoku H, Hori A, Kuraishi T, Kurata S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 2017; 10:271-281. [PMID: 28250052 PMCID: PMC5374318 DOI: 10.1242/dmm.027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan .,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-1192, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
42
|
Yang H, Hultmark D. Drosophila muscles regulate the immune response against wasp infection via carbohydrate metabolism. Sci Rep 2017; 7:15713. [PMID: 29146985 PMCID: PMC5691183 DOI: 10.1038/s41598-017-15940-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
We recently found that JAK/STAT signaling in skeletal muscles is important for the immune response of Drosophila larvae against wasp infection, but it was not clear how muscles could affect the immune response. Here we show that insulin signaling is required in muscles, but not in fat body or hemocytes, during larval development for an efficient encapsulation response and for the formation of lamellocytes. This effect requires TOR signaling. We show that muscle tissue affects the immune response by acting as a master regulator of carbohydrate metabolism in the infected animal, via JAK/STAT and insulin signaling in the muscles, and that there is indirect positive feedback between JAK/STAT and insulin signaling in the muscles. Specifically, stimulation of JAK/STAT signaling in the muscles can rescue the deficient immune response when insulin signaling is suppressed. Our results shed new light on the interaction between metabolism, immunity, and tissue communication.
Collapse
Affiliation(s)
- Hairu Yang
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden.,Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden. .,Institute of Biomedical Technology, University of Tampere, FI-33520, Tampere, Finland.
| |
Collapse
|
43
|
Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, Vanzo N. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 2017; 6:25496. [PMID: 29091025 PMCID: PMC5681226 DOI: 10.7554/elife.25496] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.
Collapse
Affiliation(s)
- Isabelle Louradour
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anurag Sharma
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismael Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Letourneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
44
|
Del Signore SJ, Biber SA, Lehmann KS, Heimler SR, Rosenfeld BH, Eskin TL, Sweeney ST, Rodal AA. dOCRL maintains immune cell quiescence by regulating endosomal traffic. PLoS Genet 2017; 13:e1007052. [PMID: 29028801 PMCID: PMC5656325 DOI: 10.1371/journal.pgen.1007052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/25/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. Lowe syndrome is a developmental disorder characterized by severe kidney, eye, and neurological symptoms, and is caused by mutations in the gene OCRL. OCRL has been shown to control many steps of packaging and transport of materials within cells, though it remains unclear which of these disrupted transport steps cause each of the many symptoms in Lowe syndrome patients. We found that in fruit flies, loss of OCRL caused transport defects at specific internal compartments in innate immune cells, resulting in amplification of multiple critical inflammatory signals. Similar inflammatory signals have been implicated in forms of epilepsy, which is a primary symptom in Lowe syndrome patients. Thus, our work uncovers a new function for OCRL in animals, and opens an exciting new avenue of investigation into how loss of OCRL causes the symptoms of Lowe syndrome.
Collapse
Affiliation(s)
- Steven J. Del Signore
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sarah A. Biber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Katherine S. Lehmann
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Stephanie R. Heimler
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Benjamin H. Rosenfeld
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tania L. Eskin
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
| | - Avital A. Rodal
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Khadilkar RJ, Vogl W, Goodwin K, Tanentzapf G. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation. eLife 2017; 6:28081. [PMID: 28841136 PMCID: PMC5597334 DOI: 10.7554/elife.28081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
46
|
Aittomäki S, Valanne S, Lehtinen T, Matikainen S, Nyman TA, Rämet M, Pesu M. Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense. FASEB J 2017; 31:4770-4782. [PMID: 28705811 DOI: 10.1096/fj.201700296r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
Invading pathogens provoke robust innate immune responses in Dipteran insects, such as Drosophila melanogaster In a systemic bacterial infection, a humoral response is induced in the fat body. Gram-positive bacteria trigger the Toll signaling pathway, whereas gram-negative bacterial infections are signaled via the immune deficiency (IMD) pathway. We show here that the RNA interference-mediated silencing of Furin1-a member of the proprotein convertase enzyme family-specifically in the fat body, results in a reduction in the expression of antimicrobial peptides. This, in turn, compromises the survival of adult fruit flies in systemic infections that are caused by both gram-positive and -negative bacteria. Furin1 plays a nonredundant role in the regulation of immune responses, as silencing of Furin2, the other member of the enzyme family, had no effect on survival or the expression of antimicrobial peptides upon a systemic infection. Furin1 does not directly affect the Toll or IMD signaling pathways, but the reduced expression of Furin1 up-regulates stress response factors in the fat body. We also demonstrate that Furin1 is a negative regulator of the Janus kinase/signal transducer and activator of transcription signaling pathway, which is implicated in stress responses in the fly. In summary, our data identify Furin1 as a novel regulator of humoral immunity and cellular stress responses in Drosophila-Aittomäki, S., Valanne, S., Lehtinen, T., Matikainen, S., Nyman, T. A., Rämet, M., Pesu, M. Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense.
Collapse
Affiliation(s)
- Saara Aittomäki
- Immunoregulation Group, University of Tampere, Tampere, Finland.,BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Susanna Valanne
- BioMediTech Institute, University of Tampere, Tampere, Finland.,Experimental Immunology Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapio Lehtinen
- Immunoregulation Group, University of Tampere, Tampere, Finland.,BioMediTech Institute, University of Tampere, Tampere, Finland
| | | | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mika Rämet
- BioMediTech Institute, University of Tampere, Tampere, Finland.,Experimental Immunology Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, and.,Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Marko Pesu
- Immunoregulation Group, University of Tampere, Tampere, Finland .,BioMediTech Institute, University of Tampere, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
47
|
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 2017; 15:e2000862. [PMID: 28441450 PMCID: PMC5404834 DOI: 10.1371/journal.pbio.2000862] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Collapse
Affiliation(s)
- Ricardo Leitão-Gonçalves
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Gabriela Tondolo Fioreze
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pavel M. Itskov
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
48
|
Hao Y, Jin LH. Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. eLife 2017; 6. [PMID: 28350299 PMCID: PMC5391210 DOI: 10.7554/elife.25094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The Drosophila lymph gland is a hematopoietic organ in which the maintenance of hematopoietic progenitor cell fate relies on intrinsic factors and extensive interaction with cells within a microenvironment. The posterior signaling center (PSC) is required for maintaining the balance between progenitors and their differentiation into mature hemocytes. Moreover, some factors from the progenitors cell-autonomously control blood cell differentiation. Here, we show that Jumeau (Jumu), a member of the forkhead (Fkh) transcription factor family, controls hemocyte differentiation of lymph gland through multiple regulatory mechanisms. Jumu maintains the proper differentiation of prohemocytes by cell-autonomously regulating the expression of Col in medullary zone and by non-cell-autonomously preventing the generation of expanded PSC cells. Jumu can also cell-autonomously control the proliferation of PSC cells through positive regulation of dMyc expression. We also show that a deficiency of jumu throughout the lymph gland can induce the differentiation of lamellocytes via activating Toll signaling.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
49
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
50
|
Zhang G, Hao Y, Jin LH. Overexpression of jumu induces melanotic nodules by activating Toll signaling in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:31-38. [PMID: 27507244 DOI: 10.1016/j.ibmb.2016.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Melanotic nodules are commonly assumed to be caused by an abnormal immune response. Several hematopoietic mutants and signaling pathways, including the Toll, JAK/STAT, Ras and JNK pathways, can cause melanotic nodules to develop when specifically activated in hemocytes. Here, we used the UAS-Gal4 system to overexpress jumeaux (jumu) in the fly immune response system. Jumeaux (Jumu) is a new member of the winged-helix/forkhead (WH/FKH) gene family of transcription factors, which plays an important role in the growth and morphogenesis of Drosophila and participates in the proliferation and differentiation of hemocytes. Overexpressing jumu in both hemocytes and the fat body generated many melanotic nodules in larvae and adult flies. The nodules observed in the fat body were surrounded by large numbers of blood cells through a process that appeared similar to foreign body encapsulation. This phenomenon is caused by Toll pathway activation and leads to blood cells deposited in the fat body. In addition, we also report the dissociation of fat cells and the abnormal proliferation and differentiation of blood cells. These results suggest a Jumu-mediated crosstalk between hematopoiesis and the fat body, especially during the Toll-dependent formation of melanotic nodules.
Collapse
Affiliation(s)
- Gaoqun Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|