1
|
Yang R, Wang H, Wu C, Shi Y, Li H, Bao X, Yang Y, Han S, Yang X, Tao J, Sun H, Wu S, Sun L. PAQR5 drives the malignant progression and shapes the immunosuppressive microenvironment of hepatocellular carcinoma by activating the NF-κB signaling. Biomark Res 2025; 13:70. [PMID: 40336138 PMCID: PMC12060467 DOI: 10.1186/s40364-025-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Progesterone and adipose Q receptor 5 (PAQR5), a membrane receptor characterized by seven transmembrane domains, has been indirectly implicated in pro-carcinogenic activities, though its specific role in hepatocellular carcinoma (HCC) remains to be defined. METHODS This study aimed to elucidate the molecular mechanisms by which PAQR5 facilitates HCC progression and contributes to the immunosuppressive microenvironment through an integrative approach combining multi-omics analysis and experimental validation. Utilizing data from bulk, single-cell, and spatial transcriptomics cohorts, this study systematically assessed the expression patterns, immune landscape, and functional characteristics of PAQR5 across different levels of resolution in HCC. RESULTS PAQR5 expression was significantly upregulated in tumor tissues and correlated with poor clinical outcomes. Enrichment analysis revealed that PAQR5 activated the NF-κB signaling pathway in HCC. Single-cell transcriptomics identified PAQR5 as predominantly localized within malignant cell clusters, with significant association with NF-κB pathway activation. Spatial transcriptomics further corroborated the alignment of PAQR5 expression with tumor cell distribution. In vitro assays showed elevated PAQR5 levels in HCC cell lines, and silencing PAQR5 significantly suppressed cell proliferation, invasion, epithelial-mesenchymal transition (EMT), and prevented the formation of immunosuppressive microenvironment. In vivo studies demonstrated that targeting PAQR5 attenuated tumorigenic potential, disrupted the invasion-metastasis cascade and inhibited the tumor immune escape. Mechanistically, PAQR5 was found to activate NF-κB signaling by inducing ERK phosphorylation, thereby driving proliferation, invasion, EMT, and immune escape in HCC through the pathway.
Collapse
Affiliation(s)
- Ruida Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Cong Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yu Shi
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hanqi Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinyue Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuqian Yang
- Department of Medical Oncology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 711018, Shaanxi, People's Republic of China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xue Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hao Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Shaobo Wu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
2
|
Hu WF, Yu J, Wang JJ, Sun RJ, Zheng YS, Zhang T, Liu YL, Xu ZG, Guo ZY. Identification of orphan GPR25 as a receptor for the chemokine CXCL17. FEBS J 2025. [PMID: 40279398 DOI: 10.1111/febs.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 04/27/2025]
Abstract
C-X-C motif chemokine ligand 17 (CXCL17) is a small secretory protein primarily expressed in mucosal tissues, which likely functions as a chemoattractant; however, its receptor is controversial. Herein, we identified the rarely studied orphan G protein-coupled receptor 25 (GPR25) as a receptor of CXCL17 via prediction using the newly developed AlphaFold 3 algorithm and experimental validation. In the NanoLuc Binary Technology (NanoBiT)-based β-arrestin recruitment assay, recombinant human CXCL17 could activate human GPR25 in transfected human embryonic kidney (HEK) 293T cells with an EC50 value around 100 nm, but it had no activation effect on the other 17 tested G protein-coupled receptors. Deletion of three conserved C-terminal residues from human CXCL17 almost abolished its activation effect. Alanine replacement of W95 or R178 of human GPR25, two conserved residues in the predicted orthosteric ligand binding pocket, almost abolished its response to CXCL17. Only the pairing of wild-type CXCL17 with wild-type GPR25 could cause shedding of transforming growth factor α and induce chemotactic movement of transfected HEK293T cells. These results were consistent with the AlphaFold 3-predicted binding model, in which the highly conserved C-terminal fragment of CXCL17 inserts into the orthosteric ligand binding pocket of GPR25. According to their expression pattern shown in the Human Protein Atlas, CXCL17 may be an endogenous agonist of GPR25 in humans and other mammals; however, this hypothesis needs to be tested experimentally in future studies. The present deorphanization paves the way for further functional characterization of the orphan receptor GPR25 and the orphan ligand CXCL17.
Collapse
Affiliation(s)
- Wen-Feng Hu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Yu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Juan-Juan Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ru-Jiao Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Teng Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Jeng LB, Shih FY, Chan WL, Teng CF. Cytokine biomarkers for independent prediction of hepatocellular carcinoma prognosis. Discov Oncol 2025; 16:421. [PMID: 40155531 PMCID: PMC11953510 DOI: 10.1007/s12672-025-02188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Although various therapeutic modalities have been established for HCC, the overall outcomes of patients after treatment remain unsatisfactory, highlighting the need for valuable independent prognostic biomarkers. Cytokines are a large group of multifunctional secretory proteins and play critical roles in regulating development and progression of many cancer types, including HCC. Moreover, the expression levels of many cytokines in tumor/peritumor tissues and serum/plasma samples have been validated as important biomarkers for independently predicting the prognosis of HCC patients. This review provides a comprehensive summary of literature evidence for the independent prognostic significance of cytokine biomarkers in HCC patients receiving different therapies.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Fu-Ying Shih
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 404, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, 404, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Rd., Northern Dist., Taichung, 404, Taiwan.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
5
|
Oura K, Morishita A, Tadokoro T, Fujita K, Tani J, Kobara H. Immune Microenvironment and the Effect of Vascular Endothelial Growth Factor Inhibition in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:13590. [PMID: 39769351 PMCID: PMC11679663 DOI: 10.3390/ijms252413590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Systemic therapy for unresectable hepatocellular carcinoma (HCC) has progressed with the development of multiple kinases, such as vascular endothelial growth factor (VEGF) signaling, targeting cancer growth and angiogenesis. Additionally, the efficacy of sorafenib, regorafenib, lenvatinib, ramucirumab, and cabozantinib has been demonstrated in various clinical trials, and they are now widely used in clinical practice. Furthermore, the development of effective immune checkpoint inhibitors has progressed in systemic therapy for unresectable HCC, and atezolizumab + bevacizumab (atezo/bev) therapy and durvalumab + tremelimumab therapy are now recommended as first-line treatment. Atezo/bev therapy, which combines an anti-programmed cell death 1 ligand 1 antibody with an anti-VEGF antibody, is the first cancer immunotherapy to demonstrate efficacy against unresectable HCC. With the increasing popularity of these treatments, VEGF inhibition is attracting attention from the perspective of its anti-angiogenic effects and impact on the cancer-immune cycle. In this review, we outline the role of VEGF in the tumor immune microenvironment and cancer immune cycle in HCC and outline the potential immune regulatory mechanisms of VEGF. Furthermore, we consider the potential significance of the dual inhibition of angiogenesis and immune-related molecules by VEGF, and ultimately aim to clarify the latest treatment strategies that maximizes efficacy.
Collapse
Affiliation(s)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita 761-0793, Kagawa, Japan; (K.O.)
| | | | | | | | | |
Collapse
|
6
|
Du C, Zhu La ALT, Gao S, Gao W, Ma L, Bu D, Zhang W. Hepatic Transcriptome Reveals Potential Key Genes Contributing to Differential Milk Production. Genes (Basel) 2024; 15:1229. [PMID: 39336820 PMCID: PMC11431119 DOI: 10.3390/genes15091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the widespread adoption of TMR or PMR and the formulas designed to sufficiently cover the cows' requirements, individual dairy cows' milk production varies significantly. The liver is one of the most important organs in cow lactation metabolism and plays an essential role in the initiation of lactation. OBJECTIVES This study aimed to investigate the potential key genes in the liver contributing to the different milk production. METHODS We enrolled 64 cows and assigned them to high or low milk yield (MY) groups according to their first 3 weeks of milk production. We performed RNAseq for 35 liver samples with 18 from prepartum and 17 from postpartum cows. RESULTS The continuous milk yield observation showed a persistently higher milk yield in high MY cows than low MY cows in the first 3 weeks. High MY cows showed better feed conversion efficiency. We identified 795 differentially expressed genes (DGEs) in the liver of high MY cows compared with low MY cows, with up-regulated genes linked to morphogenesis and development pathways. Weighted gene co-expression network analysis (WGCNA) revealed four gene modules positively correlating with milk yield, and protein and lactose yield (p < 0.05). Using the intersected genes between the four gene modules and DEGs, we constructed the linear mixed-effects models and identified six hub genes positively associated and two hub genes negatively associated with milk yield (Coefficients > 0.25, p < 0.05). Random forest machine learning model training based on these eight hub genes could efficiently predict the milk yield (p < 0.001, R2 = 0.946). Interestingly, the expression patterns of these eight hub genes remained remarkably similar before and after parturition. CONCLUSIONS The present study indicated the critical role of liver in milk production. Activated processes involved in morphogenesis and development in liver may contribute to the higher milk production. Eight hub genes identified in this study may provide genetic research materials for dairy cow breeding.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - A La Teng Zhu La
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shengtao Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Wenshuo Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
| |
Collapse
|
7
|
Lowry E, Chellappa RC, Penaranda B, Sawant KV, Wakamiya M, Garofalo RP, Rajarathnam K. CXCL17 is a proinflammatory chemokine and promotes neutrophil trafficking. J Leukoc Biol 2024; 115:1177-1182. [PMID: 38298146 PMCID: PMC11135614 DOI: 10.1093/jleuko/qiae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Rani C Chellappa
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Brigith Penaranda
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Kirti V Sawant
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Maki Wakamiya
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Roberto P Garofalo
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
- Department of Pediatrics, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
- Department of Microbiology and Immunology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, United States
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, United States
| |
Collapse
|
8
|
Lahusen A, Cai J, Schirmbeck R, Wellstein A, Kleger A, Seufferlein T, Eiseler T, Lin YN. A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing. Sci Rep 2024; 14:9377. [PMID: 38654067 DOI: 10.1038/s41598-024-60107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.
Collapse
Affiliation(s)
- Anton Lahusen
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Jierui Cai
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Alexander Kleger
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, 89081, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
- Organoid Core Facility, Ulm University Hospital, 89081, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Yuan-Na Lin
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
9
|
White CW, Platt S, Kilpatrick LE, Dale N, Abhayawardana RS, Dekkers S, Kindon ND, Kellam B, Stocks MJ, Pfleger KDG, Hill SJ. CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Sci Signal 2024; 17:eabl3758. [PMID: 38502733 PMCID: PMC7615768 DOI: 10.1126/scisignal.abl3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.
Collapse
Affiliation(s)
- Carl W. White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Simon Platt
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Natasha Dale
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Sebastian Dekkers
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicholas D Kindon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Stephen J. Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
10
|
Zhou Y, Qin X, Hu Q, Qin S, Xu R, Gu K, Lu H. Cross-talk between disulfidptosis and immune check point genes defines the tumor microenvironment for the prediction of prognosis and immunotherapies in glioblastoma. Sci Rep 2024; 14:3901. [PMID: 38365809 PMCID: PMC10873294 DOI: 10.1038/s41598-024-52128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024] Open
Abstract
Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xue Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunchao Hu
- Department of Radiation Oncology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ran Xu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China.
| |
Collapse
|
11
|
Yılmaz E, Aydın D, Ahmed SE. Modified Local Linear Estimators in Partially Linear Additive Models with Right-Censored Data Based on Different Censorship Solution Techniques. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1307. [PMID: 37761606 PMCID: PMC10527737 DOI: 10.3390/e25091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This paper introduces a modified local linear estimator (LLR) for partially linear additive models (PLAM) when the response variable is subject to random right-censoring. In the case of modeling right-censored data, PLAM offers a more flexible and realistic approach to the estimation procedure by involving multiple parametric and nonparametric components. This differs from the widely used partially linear models that feature a univariate nonparametric function. The LLR method is employed to estimate unknown smooth functions using a modified backfitting algorithm, delivering a non-iterative solution for the right-censored PLAM. To address the censorship issue, three approaches are employed: synthetic data transformation (ST), Kaplan-Meier weights (KMW), and the kNN imputation technique (kNNI). Asymptotic properties of the modified backfitting estimators are detailed for both ST and KMW solutions. The advantages and disadvantages of these methods are discussed both theoretically and practically. Comprehensive simulation studies and real-world data examples are conducted to assess the performance of the introduced estimators. The results indicate that LLR performs well with both KMW and kNNI in the majority of scenarios, along with a real data example.
Collapse
Affiliation(s)
- Ersin Yılmaz
- Department of Statistics, Mugla Sıtkı Kocman University, Mugla 48000, Turkey;
| | - Dursun Aydın
- Department of Statistics, Mugla Sıtkı Kocman University, Mugla 48000, Turkey;
| | - S. Ejaz Ahmed
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
12
|
Hashemi SF, Khorramdelazad H. The cryptic role of CXCL17/CXCR8 axis in the pathogenesis of cancers: a review of the latest evidence. J Cell Commun Signal 2023; 17:409-422. [PMID: 36352331 PMCID: PMC10409701 DOI: 10.1007/s12079-022-00699-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Chemokines are immune system mediators that mediate various activities and play a role in the pathogenesis of several cancers. Among these chemokines, C-X-C motif chemokine 17 (CXCL-17) is a relatively novel molecule produced along the airway epithelium in physiological and pathological conditions, and evidence shows that it plays a homeostatic role in most cases. CXCL17 has a protective role in some cancers and a pathological role in others, such as liver and lung cancer. This chemokine, along with its possible receptor termed G protein-coupled receptor 35 (GPR35) or CXCR8, are involved in recruiting myeloid cells, regulating angiogenesis, defending against pathogenic microorganisms, and numerous other mechanisms. Considering the few studies that have been performed on the dual role of CXCL17 in human malignancies, this review has investigated the possible pro-tumor and anti-tumor roles of this chemokine, as well as future treatment options in cancer therapy.
Collapse
Affiliation(s)
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Lu G, Ma X, Wang F, Chen D, Lin Y, Wang Y, Liu W, Li Y. Effect of CXCL17 on Subcutaneous Preadipocytes Proliferation in Goats. Animals (Basel) 2023; 13:1757. [PMID: 37889664 PMCID: PMC10252012 DOI: 10.3390/ani13111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 10/29/2023] Open
Abstract
The presence or absence of subcutaneous adipose accumulation will affect the energy storage, insulation resistance and metabolism of animals. Proliferation and differentiation of preadipocytes play a significant role in lipid deposition. The objective of this study was to clone the goat CXCL17 gene and investigate its potential functions on goat subcutaneous preadipocytes' proliferation by gaining or losing function in vitro. The goat CXCL17 gene was cloned by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and bioinformatics analysis was performed. The expression of the CXCL17 gene in the different goat tissues and adipocytes at different differentiation stages was detected by real-time fluorescence quantitative PCR (qPCR). The results showed that the cloned sequence of goat CXCL17 gene is 728 bp and the CDS region is 357 bp, encoding 118 amino acids. CXCL17 protein is located in nucleus, cytoplasm, mitochondria and extracellular matrix. Tissue-expression profiles revealed that CXCL17 expressed in all of the examined tissues. In visceral tissues, the highest expression level was found in lung (p < 0.01); in muscle tissues, the highest CXCL17 expression level was found in the longissimus dorsi (p < 0.01) and in adipose tissues, the highest expression level was found in subcutaneous adipose (p <0.01). Compared with those cells before differentiation, CXCL17 expression levels upregulated at 48 h (p < 0.01), 72 h (p < 0.01), 120 h (p < 0.01) and downregulated at 96 h (p < 0.01). Furthermore, the results of crystal violet staining and semi-quantitative assay showed that transfection with 1 μg CXCL17 expression plasmid reduced the cell numbers in vitro. Meanwhile, the expression of CCND1 was significantly decreased. A similar consequence happened after interfering with CXCL17 expression. However, plasmid transfected with 2 μg pEGFPN1-CXCL17 increased the number of cells in vitro. These results suggest that CXCL17 is involved in the proliferation of goat subcutaneous preadipocytes.
Collapse
Affiliation(s)
- Guangyu Lu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xiaotong Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Fei Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dingshuang Chen
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai—Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
15
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Li Y, Liu A, Liu S, Yan L, Yuan Y, Xu Q. Involvement of CXCL17 and GPR35 in Gastric Cancer Initiation and Progression. Int J Mol Sci 2022; 24:ijms24010615. [PMID: 36614059 PMCID: PMC9820077 DOI: 10.3390/ijms24010615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The expression of CXC motif chemokine 17 (CXCL17) and its reported membrane receptor G-protein-coupled receptor 35 (GPR35) in different gastric pathological lesions and their clinical implications are largely unknown. In this study, a total of 860 pathological sections were immune-stained with either anti-CXCL17 or anti-GPR35 antibodies. Their expression was scored within the area of the normal gastric gland of non-atrophic gastritis (NAG-NOR), intestinal metaplasia of atrophic gastritis (AG-IM), IM adjacent to GC (GC-IM), and GC tissue. The clinical significance and potential function of CXCL17 and GPR35 were explored using multiple methods. Our results suggested that CXCL17 expression was gradually upregulated during the pathological progress of gastric diseases (NAG-NOR < AG-IM < GC-IM), but significantly downregulated when GC occurred. GPR35 had a similar expression pattern but its expression in GC remained abundant. High CXCL17 expression in GC was associated with less malignant behavior and was an independent biomarker of favorable prognosis. Overexpressing CXCL17 in HGC27 cells significantly upregulated CCL20 expression. TCGA analysis identified that CXCL17 was negatively correlated with some cancer-promoting pathways and involved in inflammatory activities. CTRP analysis revealed that gastric cell lines expressing less CXCL17 and were more sensitive to the CXCR2 inhibitor SB-225002.
Collapse
Affiliation(s)
- Yizhi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Aoran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.X.)
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.X.)
| |
Collapse
|
17
|
Li Q, Han J, Yang Y, Chen Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol 2022; 13:1070961. [PMID: 36601120 PMCID: PMC9806143 DOI: 10.3389/fimmu.2022.1070961] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high prevalence and mortality rate worldwide. Sorafenib monotherapy has been the standard of first-line treatment for advanced HCC for a long time, but there are still many shortcomings. In recent years, with the deepening of research on tumor immune microenvironment, researchers have begun to explore new approaches in immunotherapy, and the introduction of immune checkpoint inhibitors has brought fundamental changes to the treatment of HCC. Programmed cell death protein 1 (PD-1) is an immune checkpoint molecule that plays an important role in down-regulating immune system function and promoting tolerance. Programmed cell death ligand 1 (PDL-1) is involved in tumor immune evasion by binding to PD-1, resulting in failure of treatment. Currently, immunotherapy targeting the PD-1/PD-L1 axis has achieved unprecedented success in HCC, but it also faces great challenges, with its low remission rate still to be solved. For most patients with HCC, the PD-1/PD-L1 pathway is not the only rate limiting factor of antitumor immunity, and blocking only the PD-1/PD-L1 axis is not enough to stimulate an effective antitumor immune response; thus, combination therapy may be a better option. In this study, changes in the immune microenvironment of HCC patients were reviewed to clarify the feasibility of anti-PD-1/PD-L1 therapy, and a series of monotherapy and combination therapy clinical trials were summarized to verify the safety and efficacy of this newly developed treatment in patients with advanced HCC. Furthermore, we focused on hyperprogressive disease and drug resistance to gain a better understanding of PD-1/PD-L1 blockade as a promising treatment.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Ahmed SE, Aydın D, Yılmaz E. Penalty and Shrinkage Strategies Based on Local Polynomials for Right-Censored Partially Linear Regression. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1833. [PMID: 36554238 PMCID: PMC9778259 DOI: 10.3390/e24121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
This study aims to propose modified semiparametric estimators based on six different penalty and shrinkage strategies for the estimation of a right-censored semiparametric regression model. In this context, the methods used to obtain the estimators are ridge, lasso, adaptive lasso, SCAD, MCP, and elasticnet penalty functions. The most important contribution that distinguishes this article from its peers is that it uses the local polynomial method as a smoothing method. The theoretical estimation procedures for the obtained estimators are explained. In addition, a simulation study is performed to see the behavior of the estimators and make a detailed comparison, and hepatocellular carcinoma data are estimated as a real data example. As a result of the study, the estimators based on adaptive lasso and SCAD were more resistant to censorship and outperformed the other four estimators.
Collapse
Affiliation(s)
- Syed Ejaz Ahmed
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Dursun Aydın
- Department of Statistics, Mugla Sıtkı Kocman University, 48000 Mugla, Turkey
| | - Ersin Yılmaz
- Department of Statistics, Mugla Sıtkı Kocman University, 48000 Mugla, Turkey
| |
Collapse
|
19
|
Roshani M, Baniebrahimi G, Mousavi M, Zare N, Sadeghi R, Salarinia R, Sheida A, Molavizadeh D, Sadeghi S, Moammer F, Zolfaghari MR, Mirzaei H. Exosomal long non-coding RNAs: novel molecules in gastrointestinal cancers' progression and diagnosis. Front Oncol 2022; 12:1014949. [PMID: 36591473 PMCID: PMC9795196 DOI: 10.3389/fonc.2022.1014949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) cancers arise in the GI tract and accessory organs, including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small intestine, large intestine, and rectum. GI cancers are a major cause of cancer-related morbidity and mortality worldwide. Exosomes act as mediators of cell-to-cell communication, with pleiotropic activity in the regulation of homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs), can be transported by exosomes derived from tumor cells or non-tumor cells. They can be taken by recipient cells to alter their function or remodel the tumor microenvironment. Moreover, due to their uniquely low immunogenicity and excellent stability, exosomes can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal lncRNAs have a crucial role in regulating several cancer processes, including angiogenesis, proliferation, drug resistance, metastasis, and immunomodulation. Exosomal lncRNA levels frequently alter according to the onset and progression of cancer. Exosomal lncRNAs can therefore be employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal lncRNAs can also monitor the patient's response to chemotherapy while also serving as potential targets for cancer treatment. Here, we discuss the role of exosomal lncRNAs in the biology and possible future treatment of GI cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mousavi
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Noushid Zare
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Reza Sadeghi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Moammer
- Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Hamed Mirzaei
- Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Koch CM, Prigge AD, Setar L, Anekalla KR, Do-Umehara HC, Abdala-Valencia H, Politanska Y, Shukla A, Chavez J, Hahn GR, Coates BM. Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Front Immunol 2022; 13:924792. [PMID: 36211387 PMCID: PMC9540395 DOI: 10.3389/fimmu.2022.924792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) can cause life-threatening respiratory failure in infants. We sought to characterize the local host response to RSV infection in the nasal mucosa of infants with critical bronchiolitis and to identify early admission gene signatures associated with clinical outcomes. Methods Nasal scrape biopsies were obtained from 33 infants admitted to the pediatric intensive care unit (PICU) with critical RSV bronchiolitis requiring non-invasive respiratory support (NIS) or invasive mechanical ventilation (IMV), and RNA sequencing (RNA-seq) was performed. Gene expression in participants who required shortened NIS (</= 3 days), prolonged NIS (> 3 days), and IMV was compared. Findings Increased expression of ciliated cell genes and estimated ciliated cell abundance, but not immune cell abundance, positively correlated with duration of hospitalization in infants with critical bronchiolitis. A ciliated cell signature characterized infants who required NIS for > 3 days while a basal cell signature was present in infants who required NIS for </= 3 days, despite both groups requiring an equal degree of respiratory support at the time of sampling. Infants who required invasive mechanical ventilation had increased expression of genes involved in neutrophil activation and cell death. Interpretation Increased expression of cilia-related genes in clinically indistinguishable infants with critical RSV may differentiate between infants who will require prolonged hospitalization and infants who will recover quickly. Validation of these findings in a larger cohort is needed to determine whether a cilia-related gene signature can predict duration of illness in infants with critical bronchiolitis. The ability to identify which infants with critical RSV bronchiolitis may require prolonged hospitalization using non-invasive nasal samples would provide invaluable prognostic information to parents and medical providers.
Collapse
Affiliation(s)
- Clarissa M. Koch
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew D. Prigge
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Leah Setar
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | | | | | | | - Yuliya Politanska
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Avani Shukla
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jairo Chavez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Grant R. Hahn
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Bria M. Coates
- Department of Pediatrics, Northwestern University, Chicago, IL, United States
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- *Correspondence: Bria M. Coates,
| |
Collapse
|
21
|
Gowhari Shabgah A, Jadidi-Niaragh F, Ebrahimzadeh F, Mohammadi H, Askari E, Pahlavani N, Malekahmadi M, Ebrahimi Nik M, Gholizadeh Navashenaq J. A comprehensive review of chemokine CXC17 (VCC1) in cancer, infection, and inflammation. Cell Biol Int 2022; 46:1557-1570. [PMID: 35811438 DOI: 10.1002/cbin.11846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
A crucial component of the immune system are chemokiness. Chemokine's dysregulation has been linked to a number of pathological diseases. Recently, CXCL17, a chemokine belonging to the CXC subfamily, was identified. With regard to a number of physiological conditions and disorders, CXCL17 either has homeostatic or pathogenic effects. Some research suggests that CXCL17 is an orphan ligand, despite the fact that G protein-coupled receptor (GPR) 35 has been suggested as a possible receptor for CXCL17. Since CXCL17 is primarily secreted by mucosal epithelia, such as those in the digestive and respiratory tracts, under physiological circumstances, this chemokine is referred to as a mucosal chemokine. Macrophages and monocytes are the cells that express GPR35 and hence react to CXCL17. In homeostatic conditions, this chemokine has anti-inflammatory, antibacterial, and chemotactic properties. CXCL17 promotes angiogenesis, metastasis, and cell proliferation in pathologic circumstances like malignancies. However, other studies suggest that CXCL17 may have anti-tumor properties. Additionally, studies have shown that CXCL17 may have a role in conditions such as idiopathic pulmonary fibrosis, multiple sclerosis, asthma, and systemic sclerosis. Additionally, deregulation of CXCL17 in some diseases may serve as a biomarker for diagnosis and prognosis. Clarifying the underlying mechanism of CXCL17's activity in homeostatic and pathological situations may thus increase our understanding of its role and hold promise for the development of novel treatment strategies.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
22
|
Yenilmez İ, Yılmaz E, Kantar YM, Aydın D. Comparison of parametric and semi-parametric models with randomly right-censored data by weighted estimators: Two applications in colon cancer and hepatocellular carcinoma datasets. Stat Methods Med Res 2021; 31:372-387. [PMID: 34903099 DOI: 10.1177/09622802211061635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, parametric and semi-parametric regression models are examined for random right censorship. The components of the aforementioned regression models are estimated with weights based on Cox and Kaplan-Meier estimates, which are semi-parametric and nonparametric methods used in survival analysis, respectively. The Tobit based on weights obtained from a Cox regression is handled as a parametric model instead of other parametric models requiring distribution assumptions such as exponential, Weibull, and gamma distributions. Also, the semi-parametric smoothing spline and the semi-parametric smoothing kernel estimators based on Kaplan-Meier weights are used. Therefore, estimates are obtained from two models with flexible approaches. To show the flexible shape of the models depending on the weights, Monte Carlo simulations are conducted, and all results are presented and discussed. Two empirical datasets are used to show the performance of the aforementioned estimators. Although three approaches gave similar results to each other, the semi-parametric approach was slightly superior to the parametric approach. The parametric approach method, on the other hand, yields good results in medium and large sample sizes and at a high censorship level. All other findings have been shared and interpreted.
Collapse
Affiliation(s)
- İsmail Yenilmez
- Department of Statistics, 522675Eskişehir Technical University, Eskişehir, Turkey
| | - Ersin Yılmaz
- Department of Statistics, 52986Muğla Sitki Koçman University, Muğla, Turkey
| | - Yeliz Mert Kantar
- Department of Statistics, 522675Eskişehir Technical University, Eskişehir, Turkey
| | - Dursun Aydın
- Department of Statistics, 52986Muğla Sitki Koçman University, Muğla, Turkey
| |
Collapse
|
23
|
Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. Int J Mol Sci 2021; 22:ijms22115801. [PMID: 34071550 PMCID: PMC8198390 DOI: 10.3390/ijms22115801] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Liver cancer has the fourth highest mortality rate of all cancers worldwide, with hepatocellular carcinoma (HCC) being the most prevalent subtype. Despite great advances in systemic therapy, such as molecular-targeted agents, HCC has one of the worst prognoses due to drug resistance and frequent recurrence and metastasis. Recently, new therapeutic strategies such as cancer immunosuppressive therapy have prolonged patients' lives, and the combination of an immune checkpoint inhibitor (ICI) and VEGF inhibitor is now positioned as the first-line therapy for advanced HCC. Since the efficacy of ICIs depends on the tumor immune microenvironment, it is necessary to elucidate the immune environment of HCC to select appropriate ICIs. In this review, we summarize the findings on the immune microenvironment and immunosuppressive approaches focused on monoclonal antibodies against cytotoxic T lymphocyte-associated protein 4 and programmed cell death protein 1 for HCC. We also describe ongoing treatment modalities, including adoptive cell transfer-based therapies and future areas of exploration based on recent literature. The results of pre-clinical studies using immunological classification and animal models will contribute to the development of biomarkers that predict the efficacy of immunosuppressive therapy and aid in the selection of appropriate strategies for HCC treatment.
Collapse
|
24
|
Exosomal DLX6-AS1 from hepatocellular carcinoma cells induces M2 macrophage polarization to promote migration and invasion in hepatocellular carcinoma through microRNA-15a-5p/CXCL17 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:177. [PMID: 34039401 PMCID: PMC8152341 DOI: 10.1186/s13046-021-01973-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Background Hepatocellular carcinoma (HCC) cells-secreted exosomes (exo) could stimulate M2 macrophage polarization and promote HCC progression, but the related mechanism of long non-coding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) with HCC-exo-mediated M2 macrophage polarization is largely ambiguous. Thereafter, this research was started to unearth the role of DLX6-AS1 in HCC-exo in HCC through M2 macrophage polarization and microRNA (miR)-15a-5p/C-X-C motif chemokine ligand 17 (CXCL17) axis. Methods DLX6-AS1, miR-15a-5p and CXCL17 expression in HCC tissues and cells were tested. Exosomes were isolated from HCC cells with overexpressed DLX6-AS1 and co-cultured with M2 macrophages. MiR-15a-5p/CXCL17 down-regulation assays were performed in macrophages. The treated M2 macrophages were co-cultured with HCC cells, after which cell migration, invasion and epithelial mesenchymal transition were examined. The targeting relationships between DLX6-AS1 and miR-15a-5p, and between miR-15a-5p and CXCL17 were explored. In vivo experiment was conducted to detect the effect of exosomal DLX6-AS1-induced M2 macrophage polarization on HCC metastasis. Results Promoted DLX6-AS1 and CXCL17 and reduced miR-15a-5p exhibited in HCC. HCC-exo induced M2 macrophage polarization to accelerate migration, invasion and epithelial mesenchymal transition in HCC, which was further enhanced by up-regulated DLX6-AS1 but impaired by silenced DLX6-AS1. Inhibition of miR-15a-5p promoted M2 macrophage polarization to stimulate the invasion and metastasis of HCC while that of CXCL17 had the opposite effects. DLX6-AS1 mediated miR-15a-5p to target CXCL17. DLX6-AS1 from HCC-exo promoted metastasis in the lung by inducing M2 macrophage polarization in vivo. Conclusion DLX6-AS1 from HCC-exo regulates CXCL17 by competitively binding to miR-15a-5p to induce M2 macrophage polarization, thus promoting HCC migration, invasion and EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01973-z.
Collapse
|
25
|
Wang J, Zhang C, Chen X, Li Y, Li A, Liu D, Li F, Luo T. Functions of CXC chemokines as biomarkers and potential therapeutic targets in the hepatocellular carcinoma microenvironment. Transl Cancer Res 2021; 10:2169-2187. [PMID: 35116536 PMCID: PMC8797652 DOI: 10.21037/tcr-21-127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Background Several studies have indicated that CXC chemokines influence the prognosis and therapy in patients with hepatocellular carcinoma (HCC). However, there are limited studies on the roles of CXC chemokines in HCC based on data acquired from various databases. This study aimed to conduct an in-depth and comprehensive bioinformatic analysis of the expression and functions of CXC chemokines in HCC. Methods Data was obtained from various databases including ONCOMINE, UALCAN, STRING, GeneMinia, DAVID, Kaplan-Meier plotter, TIMER, GSCALite and NetworkAnalyst for the analysis of the expression and functions of the CXC chemokines in HCC. Results Analysis of the differential expression levels of CXC chemokines between HCC and adjacent normal tissues revealed that the mRNA expression levels of CXCL1/2/5/6/7/12/14 were significantly lower in HCC tissues than those in adjacent normal tissues, whereas the mRNA expression levels of CXCL9/16/17 were significantly higher in HCC tissues. Analysis of the relationship between CXC chemokines and overall survival revealed that high mRNA expression levels of CXCL1/3/5/6/8 were associated with poor overall survival, whereas high mRNA expression levels of CXCL2/4/7/9/10/12 were associated with better overall survival. The functions of CXC chemokines and related genes were associated with cytokine-cytokine receptor interactions and chemokine signaling pathway. Analysis of the association between CXC chemokines and activity of cancer pathways indicated that the DNA damage response and hormone androgen receptor (AR) signaling pathways were inhibited, whereas apoptosis, epithelial-mesenchymal transition (EMT) and Ras/mitogen-activated protein kinase (MAPK) signaling pathways were activated. The expression of CXC chemokines was positively correlated with the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells). Conclusions This study has demonstrated that CXC chemokines can influence survival of patients with HCC by recruiting different types of immune cells into the tumor microenvironment.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongbin Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Increased Regulatory T Cells and Decreased Myeloid-Derived Suppressor Cells Induced by High CCL17 Levels May Account for Normal Incidence of Cancers among Patients with Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22042025. [PMID: 33670758 PMCID: PMC7922104 DOI: 10.3390/ijms22042025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/12/2023] Open
Abstract
The incidence of cancers in atopic dermatitis (AD) is not increased, although the Th2-dominant environment is known to downregulate tumor immunity. To gain mechanistic insights regarding tumor immunity in AD, we utilized CCL17 transgenic (TG) mice overexpressing CCL17, which is a key chemokine in AD. Tumor formation and lung metastasis were accelerated in CCL17 TG mice when melanoma cells were injected subcutaneously or intravenously. Flow cytometric analysis showed increases in regulatory T cells (Tregs) in lymph nodes in CCL17 TG mice with high mRNA levels of IL-10 and Foxp3 in tumors, suggesting that Tregs attenuated tumor immunity. The frequency of myeloid-derived suppressor cells (MDSCs), however, was significantly decreased in tumors of CCL17 TG mice, suggesting that decreased MDSCs might promote tumor immunity. Expression of CXCL17, a chemoattractant of MDSCs, was decreased in tumors of CCL17 TG mice. Depletion of Tregs by the anti-CD25 antibody markedly reduced tumor volumes in CCL17 TG mice, suggesting that tumor immunity was accelerated by the decrease in MDSCs in the absence of Tregs. Thus, CCL17 attenuates tumor immunity by increasing Tregs and Th2 cells, while it decreases MDSCs through reductions in CXCL17, which may work as a “safety-net” to reduce the risk of malignant tumors in the Th2-dominant environment.
Collapse
|
27
|
Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients. Int J Mol Sci 2021; 22:1075. [PMID: 33499054 PMCID: PMC7865606 DOI: 10.3390/ijms22031075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although extensive advancements have been made in treatment against hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfied. It is now clearly established that extensive epigenetic changes act as a driver in human tumors. This study exploits HCC epigenetic deregulation to define a novel prognostic model for monitoring the progression of HCC. We analyzed the genome-wide DNA methylation profile of 374 primary tumor specimens using the Illumina 450 K array data from The Cancer Genome Atlas. We initially used a novel combination of Machine Learning algorithms (Recursive Features Selection, Boruta) to capture early tumor progression features. The subsets of probes obtained were used to train and validate Random Forest models to predict a Progression Free Survival greater or less than 6 months. The model based on 34 epigenetic probes showed the best performance, scoring 0.80 accuracy and 0.51 Matthews Correlation Coefficient on testset. Then, we generated and validated a progression signature based on 4 methylation probes capable of stratifying HCC patients at high and low risk of progression. Survival analysis showed that high risk patients are characterized by a poorer progression free survival compared to low risk patients. Moreover, decision curve analysis confirmed the strength of this predictive tool over conventional clinical parameters. Functional enrichment analysis highlighted that high risk patients differentiated themselves by the upregulation of proliferative pathways. Ultimately, we propose the oncogenic MCM2 gene as a methylation-driven gene of which the representative epigenetic markers could serve both as predictive and prognostic markers. Briefly, our work provides several potential HCC progression epigenetic biomarkers as well as a new signature that may enhance patients surveillance and advances in personalized treatment.
Collapse
Affiliation(s)
- Luca Bedon
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (L.B.); (M.D.B.); (M.M.); (D.B.)
| |
Collapse
|
28
|
Li Y, Wu T, Gong S, Zhou H, Yu L, Liang M, Shi R, Wu Z, Zhang J, Li S. Analysis of the Prognosis and Therapeutic Value of the CXC Chemokine Family in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 10:570736. [PMID: 33489879 PMCID: PMC7820708 DOI: 10.3389/fonc.2020.570736] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The CXC chemokines belong to a family which includes 17 different CXC members. Accumulating evidence suggests that CXC chemokines regulate tumor cell proliferation, invasion, and metastasis in various types of cancers by influencing the tumor microenvironment. The different expression profiles and specific function of each CXC chemokine in head and neck squamous cell carcinoma (HNSCC) are not yet clarified. In our work, we analyzed the altered expression, interaction network, and clinical data of CXC chemokines in patients with HNSCC by using the following: the Oncomine dataset, cBioPortal, Metascape, String analysis, GEPIA, and the Kaplan–Meier plotter. The transcriptional level analysis suggested that the mRNA levels of CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL13 increased in HNSCC tissue samples when compared to the control tissue samples. The expression levels of CXCL9, CXCL10, CXCL11, CXCL12, and CXCL14 were associated with various tumor stages in HNSCC. Clinical data analysis showed that high transcription levels of CXCL2, CXCL3, and CXCL12, were linked with low relapse-free survival (RFS) in HNSCC patients. On the other hand, high CXCL14 levels predicted high RFS outcomes in HNSCC patients. Meanwhile, increased gene transcription levels of CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 were associated with a higher overall survival (OS) advantage in HNSCC patients, while high levels of CXCL1, and CXCL8 were associated with poor OS in all HNSCC patients. This study implied that CXCL1, CXCL2, CXCL3, CXCL8, and CXCL12 could be used as prognosis markers to identify low survival rate subgroups of patients with HNSCC as well as be potential suitable therapeutic targets for HNSCC patients. Additionally, CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 could be used as functional prognosis biomarkers to identify better survival rate subgroups of patients with HNSCC.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Tinghui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shujuan Gong
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Hangzheng Zhou
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Lufei Yu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Meiyan Liang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Ruijun Shi
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Zhenhui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Jinpei Zhang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shuwei Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| |
Collapse
|
29
|
Chen J, Liu X, Wu Q, Jiang X, Zeng Z, Li J, Gao Y, Gong Y, Xie C. Systematic Analyses of a Chemokine Family-Based Risk Model Predicting Clinical Outcome and Immunotherapy Response in Lung Adenocarcinoma. Cell Transplant 2021; 30:9636897211055046. [PMID: 34705571 PMCID: PMC8554550 DOI: 10.1177/09636897211055046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Chemokines exhibited complicated functions in antitumor immunity, with their expression profile and clinical importance of lung adenocarcinoma (LUAD) patients remaining largely undetermined. This study aimed to explore the expression patterns of chemokine family in LUAD and construct a predictive chemokine family-based signature. A total of 497 samples were downloaded from the Cancer Genome Atlas (TCGA) data portal as the training set, and the combination of 4 representative Gene Expression Omnibus (GEO) datasets, including GSE30219, GSE50081, GSE37745, and GSE31210, were utilized as the validation set. A three gene-based signature was constructed using univariate and stepwise multivariate Cox regression analysis, classifying patients into high and low risk groups according to the overall survival. The independent GEO datasets were utilized to validate this signature. Another multivariate analysis revealed that this signature remained an independent prognostic factor in LUAD patients. Furthermore, patients in the low risk group featured immunoactive tumor microenvironment (TME), higher IPS scores and lower TIDE scores, and was regarded as the potential beneficiaries of immunotherapy. Finally, the role of risky CCL20 was validated by immunohistochemistry (IHC), and patients possessed higher CCL20 expression presented shorter overall survival (P = 0.011).
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Xiao S, Xie W, Zhou L. Mucosal chemokine CXCL17: What is known and not known. Scand J Immunol 2020; 93:e12965. [PMID: 32869346 DOI: 10.1111/sji.12965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Abstract
CXCL17, the last described chemokine, has recently been found to be abundantly and specifically expressed in mucosal sites, while its receptor is still not well determined. Accumulative studies indicate that CXCL17 could potentially exhibit chemotactic, anti-inflammatory, antimicrobial activities under multiple biological conditions. However, the mechanism by which it contributes to the physiological and pathological processes within specific mucosal tissues is still far from being fully elucidated. In this present review, we therefore summarize the current available evidence of CXCL17 with specific emphasis on its biological role and pathophysiological significance, in order to aid in the advancement of CXCL17-related studies.
Collapse
Affiliation(s)
- Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| | - Wenhui Xie
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Liya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Dao TN, Utturkar S, Atallah Lanman N, Matosevic S. TIM-3 Expression Is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation. Cancers (Basel) 2020; 12:cancers12092417. [PMID: 32858904 PMCID: PMC7565804 DOI: 10.3390/cancers12092417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.
Collapse
Affiliation(s)
- Tram N. Dao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Sagar Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
| | - Nadia Atallah Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; (S.U.); (N.A.L.)
- Correspondence:
| |
Collapse
|
32
|
Yao H, Lv Y, Bai X, Yu Z, Liu X. Prognostic value of CXCL17 and CXCR8 expression in patients with colon cancer. Oncol Lett 2020; 20:2711-2720. [PMID: 32782587 PMCID: PMC7400977 DOI: 10.3892/ol.2020.11819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
C-X-C motif chemokine ligand 17 (CXCL17) is a mucous chemokine and its expression is highly correlated with that of G protein-coupled receptor 35 (GPR35), which has been confirmed as its receptor and named C-X-C motif chemokine receptor 8 (CXCR8). CXCL17 is upregulated in several types of cancer. However, the biological role of this chemokine in colon cancer remains unknown. In the present study, the expression levels of CXCL17 and CXCR8 were examined using immunohistochemistry in 101 colon cancer tissues and 79 healthy tumour-adjacent tissues. CXCL17 and CXCR8 expression levels were increased in the colon cancer samples compared with tumour-adjacent samples. Patients with high CXCL17 expression had longer overall survival (OS) compared with patients with low expression of CXCL17 (log-rank test; P=0.027). However, CXCR8 expression, but not CXCL17, was an independent prognostic factor for OS in patients with colon cancer. The expression of CXCR8 correlated positively with that of CXCL17 in colon cancer samples (ρ=0.295; P=0.003). Furthermore, the combined high expression of CXCL17 and CXCR8 was a significant independent prognostic factor for OS in patients with colon cancer (P=0.001). In subgroups with a TNM stage of I–II, the patients with combined high expression of CXCL17 and CXCR8 had a longer survival compared with those without combined high expression (P=0.001). However, this difference was not observed in subgroups with a TNM stage of III–IV. Collectively, these findings suggest that CXCL17/CXCR8 signalling may be involved in colon cancer and contribute to improved patient outcomes.
Collapse
Affiliation(s)
- Hongyan Yao
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China.,Nuclear Medicine Department, Jinzhou Central Hospital, Jinzhou, Liaoning 121001, P.R. China
| | - Yufeng Lv
- Department of Respiration and Critical Care, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaojian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
33
|
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020; 181:1643-1660.e17. [PMID: 32470396 DOI: 10.1016/j.cell.2020.05.007] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.
Collapse
|
34
|
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine Growth Factor Rev 2020; 53:53-62. [PMID: 32345516 PMCID: PMC7177079 DOI: 10.1016/j.cytogfr.2020.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
C-X-C motif chemokine 17 (CXCL17), plays a functional role in maintaining homeostasis at mucosal barriers. CXCL17 expression is associated with both disease progression and protection in various diseases. The multifactorial mechanistic properties of CXCL17 could be exploited as a therapeutic target
C-X-C motif chemokine 17 (CXCL-17) is a novel chemokine that plays a functional role maintaining homeostasis at distinct mucosal barriers, including regulation of myeloid-cell recruitment, angiogenesis, and control of microorganisms. Particularly, CXCL17 is produced along the epithelium of the airways both at steady state and under inflammatory conditions. While increased CXCL17 expression is associated with disease progression in pulmonary fibrosis, asthma, and lung/hepatic cancer, it is thought to play a protective role in pancreatic cancer, autoimmune encephalomyelitis and viral infections. Thus, there is emerging evidence pointing to both a harmful and protective role for CXCL17 in human health and disease, with therapeutic potential for translational applications. In this review, we provide an overview of the discovery, characteristics and functions of CXCL17 emphasizing its clinical potential in respiratory disorders.
Collapse
|
35
|
Gong FH, Xiao XQ, Zhang XP, Long L, Huang S, Wang XS, Shu ZL, Yang YS. Association Between Unstable Angina and CXCL17: a New Potential Biomarker. Open Med (Wars) 2020; 14:939-944. [PMID: 31934638 PMCID: PMC6947758 DOI: 10.1515/med-2019-0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and chemokines are strongly related, but the role of the chemokine CXCL17 in atherogenesis is still poorly understood. We aim to investigate the serum CXCL17 levels in different stages of patients with coronary heart disease and explore whether these differences contribute to atherosclerosis. In the current prospective study, we enrolled 48 patients with unstable angina (UA), 51 patients with stable angina (SA) and 41 patients for the control group (CG). All subjects were diagnosed by coronary angiography and Gensini score was used to evaluate the severity of coronary artery disease. The CXCL17 levels were determined using ELISA, while lipid metabolism indicators and high sensitivity C-reactive protein (hs-CRP) were detected by automatic biochemical analyzer. We observed that the unstable angina group had higher CXCL17 levels compared with the stable angina and the control group. The logistic regression analysis showed that CXCL17 was an independent risk factor for unstable angina. Our results showed that CXCL17 was also statistically correlated with hs-CRP, while it was irrelevant with Gensini score. CXCL17 levels were associated with activity of inflammatory response and the instability of atherosclerotic plaques. These results suggest that CXCL17 elevation may be a potential new biomarker of unstable angina.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| | - Xiao-Qiang Xiao
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| | - Xue-Ping Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| | - Li Long
- Department of Clinical Laboratory, Tongren Municipal People's Hospital, Tongren 554300, China
| | - Sheng Huang
- Department of Ophthalmology, Tongren Municipal People's Hospital, Tongren 554300, China
| | - Xue-Sheng Wang
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| | - Zhen-Lin Shu
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| | - Yong-Sheng Yang
- Department of Cardiology, Tongren Municipal People's Hospital, No.120 Taoyuan Avenue, Chuandong Education park, Bijiang District, Tongren City 554300, China
| |
Collapse
|
36
|
Acceleration in the DNA methylation age in breast cancer tumours from very young women. Sci Rep 2019; 9:14991. [PMID: 31628391 PMCID: PMC6800453 DOI: 10.1038/s41598-019-51457-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in very young women (≤35 years; BCVY) presents more aggressive and complex biological features than their older counterparts (BCO). Our aim was to evaluate methylation differences between BCVY and BCO and their DNA epigenetic age. EPIC and 450k Illumina methylation arrays were used in 67 breast cancer tumours, including 32 from BCVY, for methylation study and additionally we analysed their epigenetic age. We identified 2 219 CpG sites differently-methylated in BCVY vs. BCO (FDR < 0.05; β-value difference ± 0.1). The signature showed a general hypomethylation profile with a selective small hypermethylation profile located in open-sea regions in BCVY against BCO and normal tissue. Strikingly, BCVY presented a significant increased epigenetic age-acceleration compared with older women. The affected genes were enriched for pathways in neuronal-system pathways, cell communication, and matrix organisation. Validation in an independent sample highlighted consistent higher expression of HOXD9, and PCDH10 genes in BCVY. Regions implicated in the hypermethylation profile were involved in Notch signalling pathways, the immune system or DNA repair. We further validated HDAC5 expression in BCVY. We have identified a DNA methylation signature that is specific to BCVY and have shown that epigenetic age-acceleration is increased in BCVY.
Collapse
|
37
|
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res 2019; 38:396. [PMID: 31500650 PMCID: PMC6734524 DOI: 10.1186/s13046-019-1396-4] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the most common primary liver malignancy and the third leading cause of tumor-related mortality worldwide. Unfortunately, despite advances in HCC treatment, less than 40% of HCC patients are eligible for potentially curative therapies. Recently, cancer immunotherapy has emerged as one of the most promising approaches for cancer treatment. It has been proven therapeutically effective in many types of solid tumors, such as non-small cell lung cancer and melanoma. As an inflammation-associated tumor, it's well-evidenced that the immunosuppressive microenvironment of HCC can promote immune tolerance and evasion by various mechanisms. Triggering more vigorous HCC-specific immune response represents a novel strategy for its management. Pre-clinical and clinical investigations have revealed that various immunotherapies might extend current options for needed HCC treatment. In this review, we provide the recent progress on HCC immunology from both basic and clinical perspectives, and discuss potential advances and challenges of immunotherapy in HCC.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Humans
- Immunity, Innate
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Translational Research, Biomedical
- Treatment Outcome
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
38
|
Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer 2019; 18:130. [PMID: 31464625 PMCID: PMC6714090 DOI: 10.1186/s12943-019-1047-6] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Incidence of hepatocellular carcinoma (HCC) is on the rise due to the prevalence of chronic hepatitis and cirrhosis. Although there are surgical and chemotherapy treatment avenues the mortality rate of HCC remains high. Immunotherapy is currently the new frontier of cancer treatment and the immunobiology of HCC is emerging as an area for further exploration. The tumor microenvironment coexists and interacts with various immune cells to sustain the growth of HCC. Thus, immunosuppressive cells play an important role in the anti-tumor immune response. This review will discuss the current concepts of immunosuppressive cells, including tumor-associated macrophages, marrow-derived suppressor cells, tumor-associated neutrophils, cancer-associated fibroblasts, and regulatory T cell interactions to actively promote tumorigenesis. It further elaborates on current treatment modalities and future areas of exploration.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Betty Zhang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. .,Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
| | - Ziyi Chen
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Lin X, Xia Y, Hu D, Mao Q, Yu Z, Zhang H, Li C, Chen G, Liu F, Zhu W, Shi Y, Zhang H, Zheng J, Sun T, Xu J, Chao HH, Zheng X, Luο X. Transcriptome‑wide piRNA profiling in human gastric cancer. Oncol Rep 2019; 41:3089-3099. [PMID: 30896887 PMCID: PMC6448102 DOI: 10.3892/or.2019.7073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) comprise the largest class of non-coding RNAs. They represent a molecular feature shared by all non-aging biological systems, including germline and somatic cancer stem cells, which display an indefinite capacity of renewal and proliferation and are potentially immortal. They have been identified in animal stomachs, but their relationship with human gastric cancers remains largely unclear. The present study aimed to identify the piRNAs associated with human gastric cancers across the whole transcriptome. Fresh tumor tissues and adjacent non-tumorous tissues from stomachs were examined using a piRNA microarray (23,677 piRNAs) that was then validated by qPCR. The differential expression of piRNAs between cases and controls was analyzed. The transposable elements (TEs) that are potentially targeted by the risk piRNAs were searched. The expression of the nearest genes that are complementary to the sequences of the piRNAs was examined in the stomach tissue. The regulatory effects of genome-wide significant and replicated cancer-risk DNA variants on the piRNA expression in stomach were tested. Based on the findings, we identified a total of 8,759 piRNAs in human stomachs. Of all, 50 were significantly (P<0.05) and differentially (>2-fold change) expressed between the cases and controls, and 64.7% of the protein-coding genes potentially regulated by the gastric cancer-associated piRNAs were expressed in the human stomach. The expression of many cancer-associated piRNAs was correlated with the genome-wide and replicated cancer-risk SNPs. In conclusion, we conclude that piRNAs are abundant in human stomachs and may play important roles in the etiological processes of gastric cancers.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yan Xia
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Dan Hu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qiao Mao
- People's Hospital of Deyang City, Deyang, Sichun 618000, P.R. China
| | - Zongyang Yu
- Department of Medical Oncology, Fuzhou General Hospital of PLA, Fuzhou, Fujian 350025, P.R. China
| | - Hejun Zhang
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Chao Li
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, P.R. China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Fen Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350002, P.R. China
| | - Weifeng Zhu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yi Shi
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianming Zheng
- Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Tao Sun
- Huashan Hospital, Fudan University School of Medicine, Shanghai 200040, P.R. China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children's Health Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, P.R. China
| | - Xiongwei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian 350014, P.R. China
| | - Xingguang Luο
- Huilongguan Hospital, Beijing University School of Clinical Medicine, Beijing 100096, P.R. China
| |
Collapse
|
40
|
Hernández-Ruiz M, Othy S, Herrera C, Nguyen HT, Arrevillaga-Boni G, Catalan-Dibene J, Cahalan MD, Zlotnik A. Cxcl17 -/- mice develop exacerbated disease in a T cell-dependent autoimmune model. J Leukoc Biol 2019; 105:1027-1039. [PMID: 30860634 DOI: 10.1002/jlb.3a0918-345rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/07/2023] Open
Abstract
CXCL17 is a homeostatic chemokine in the mucosa known to chemoattract dendritic cells and macrophages but can also be expressed elsewhere under inflammatory conditions. Cxcl17-/- mice have lower numbers of macrophages or dendritic cells in mucosal tissues. CXCL17 is also able to chemoattract suppressor myeloid cells that can recruit regulatory T cells. To explore a possible role of Cxcl17 in T cells, we studied T cell populations from Cxcl17-/- or wild-type (WT) littermate mice. Cxcl17-/- mice have higher numbers of CD4+ and CD8+ T cells in spleen and lymph nodes (LNs). Upon activation, they produce higher levels of several proinflammatory cytokines and chemokines. Furthermore, a Cxcl17-/- mouse developed exacerbated disease in a T cell-dependent model of experimental autoimmune encephalomyelitis (EAE). By 18 days after immunization with myelin oligodendrocyte peptide, only 44% of Cxcl17-/- mice were still alive vs. 90% for WT mice. During EAE, Cxcl17-/- mice exhibited higher numbers of lymphoid and myeloid cells in spleen and LNs, whereas they had less myeloid cell infiltration in the CNS. Cxcl17-/- mice also had higher levels of some inflammatory cytokines in serum, suggesting that they may be involved in the poor survival of these mice. Abnormal T cell function may reflect altered myeloid cell migration, or it could be due to altered T cell development in the thymus. We conclude that CXCL17 is a novel factor regulating T cell homeostasis and function.
Collapse
Affiliation(s)
- Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Carolina Herrera
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Hong-Tam Nguyen
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Gerardo Arrevillaga-Boni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Jovani Catalan-Dibene
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.,Institute for Immunology, University of California Irvine, Irvine, California, USA
| |
Collapse
|
41
|
Goulart MR, Hlavaty SI, Chang YM, Polton G, Stell A, Perry J, Wu Y, Sharma E, Broxholme J, Lee AC, Szladovits B, Turmaine M, Gribben J, Xia D, Garden OA. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells. Sci Rep 2019; 9:3574. [PMID: 30837603 PMCID: PMC6400936 DOI: 10.1038/s41598-019-40285-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer.
Collapse
Affiliation(s)
- Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sabina I Hlavaty
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - James Perry
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Wu
- Royal Veterinary College, London, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avery C Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Turmaine
- Division of Bioscience, University College London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Hsu YL, Yen MC, Chang WA, Tsai PH, Pan YC, Liao SH, Kuo PL. CXCL17-derived CD11b +Gr-1 + myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB. Breast Cancer Res 2019; 21:23. [PMID: 30755260 PMCID: PMC6373011 DOI: 10.1186/s13058-019-1114-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is the major cause of death from breast cancer. Colonization and adaption of metastatic cells in distant organs is a rate-limiting step of the cancer spreading. The underlying mechanisms responsible for the colonization of breast cancer to lung metastatic niches are not fully understood. Methods Specific gene contributions to lung metastasis were identified by comparing gene profiles of 4T1 tumors metastasizing to various organs via microarray. The oncogenic properties CXCL17 were examined by in vivo spontaneous metastasis mouse model. The chemotactic activity of CXCL17 on CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) was examined by both in vitro and in vivo models. The therapeutic effects of MDSC depletion and platelet-derived growth factor-BB (PDGF-BB) inhibition were examined by orthotic models. Results Here, we demonstrate that breast cancer cells secrete CXCL17, which increases the accumulation of CD11b+Gr-1+ MDSCs in the lungs. Metastatic lung-infiltrating CD11b+Gr-1+ MDSCs induce angiogenesis in the lungs and facilitate cancer extravasation and survival that ultimately promote lung metastases. CXCL17 increases CD11b+Gr-1+ MDSCs to express PDGF-BB, which not only contributes to CD11b+Gr-1+ MDSC-mediated angiogenesis in the lung metastatic niche, but is also involved in the colonization of breast cancer. Consequently, both CD11b+Gr-1+ MDSC depletion and PDGF receptor inhibitor effectively prevents CXCL17-driven lung metastasis in breast cancer. More importantly, patients with high levels of CXCL17 have shorter distant metastasis-free and overall survival rates, indicators of poor prognosis. Conclusion Our study reveals that MDSCs derived by CXCL17 contribute to the establishment of a lung metastatic niche by PDGF-BB secretion and provide a rationale for development of CXCL17 or PDGF-BB antagonists to inhibit or prevent lung metastasis in cases of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1114-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Meng-Chi Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chung Pan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ssu-Hui Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Po-Lin Kuo
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
43
|
Shih AJ, Menzin A, Whyte J, Lovecchio J, Liew A, Khalili H, Bhuiya T, Gregersen PK, Lee AT. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS One 2018; 13:e0206785. [PMID: 30383866 PMCID: PMC6211742 DOI: 10.1371/journal.pone.0206785] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Here we investigated different cell populations within ovarian cancer using single-cell RNA seq: fourteen samples from nine patients with differing grades (high grade, low grade and benign) as well as different origin sites (primary and metastatic tumor site, ovarian in origin and fallopian in origin). We were able to identify sixteen distinct cell populations with specific cells correlated to high grade tumors, low grade tumors, benign and one population unique to a patient with a breast cancer relapse. Furthermore the proportion of these populations changes from primary to metastatic in a shift from mainly epithelial cells to leukocytes with few cancer epithelial cells in the metastases. Differential gene expression shows myeloid lineage cells are the primary cell group expressing soluble factors in primary samples while fibroblasts do so in metastatic samples. The leukocytes that were captured did not seem to be suppressed through known pro-tumor cytokines from any of the cell populations. Single cell RNA-seq is necessary to de-tangle cellular heterogeneity for better understanding of ovarian cancer progression.
Collapse
Affiliation(s)
- Andrew J. Shih
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| | - Andrew Menzin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Jill Whyte
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - John Lovecchio
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Anthony Liew
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Tawfiqul Bhuiya
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Peter K. Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Annette T. Lee
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| |
Collapse
|
44
|
Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Immunol Res 2018; 2018:7819520. [PMID: 30410942 PMCID: PMC6206557 DOI: 10.1155/2018/7819520] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) most often develops in patients with underlying liver disease characterized by chronic nonresolving inflammation. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations within the tumoral microenvironment. As key actors of cancer-related inflammation, they promote tumor growth by suppression of effective anticancer immunity, stimulation of angiogenesis, and tissue remodeling. Therefore, they have become an attractive and promising target for immunotherapy. The heterogeneity of TAM subtypes and their origin and dynamic phenotype during the initiation and progression of HCC has been partially unraveled and forms the base for the development of therapeutic agents. Current approaches are aimed at decreasing the population of TAMs by depleting macrophages present in the tumor, blocking the recruitment of bone marrow-derived monocytes, and/or functionally reprogramming TAMs to antitumoral behavior. In this review, the preclinical evolution and hitherto clinical trials for TAM-targeted therapy in HCC will be highlighted.
Collapse
|
45
|
Zhang K, Liang Y, Feng Y, Wu W, Zhang H, He J, Hu Q, Zhao J, Xu Y, Liu Z, Zhen G. Decreased epithelial and sputum miR-221-3p associates with airway eosinophilic inflammation and CXCL17 expression in asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L253-L264. [PMID: 29644894 DOI: 10.1152/ajplung.00567.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Airway eosinophilic inflammation is a key feature of type 2 high asthma. The role of epithelial microRNA (miR) in airway eosinophilic inflammation remains unclear. We examined the expression of miR-221-3p in bronchial brushings, induced sputum, and plasma from 77 symptomatic, recently diagnosed, steroid-naive subjects with asthma and 36 healthy controls by quantitative PCR and analyzed the correlation between miR-221-3p expression and airway eosinophilia. We found that epithelial, sputum, and plasma miR-221-3p expression was significantly decreased in subjects with asthma. Epithelial miR-221-3p correlated with eosinophil in induced sputum and bronchial biopsies, fraction of exhaled nitric oxide, blood eosinophil, epithelial gene signature of type 2 status, and methacholine provocative dosage required to cause a 20% decline in forced expiratory volume in the first second in subjects with asthma. Sputum miR-221-3p also correlated with airway eosinophilia and was partially restored after inhaled corticosteroid treatment. Inhibition of miR-221-3p expression suppressed chemokine (C-C motif) ligand (CCL) 24 (eotaxin-2), CCL26 (eotaxin-3), and periostin (POSTN) expression in BEAS-2B bronchial epithelial cells. We verified that chemokine (C-X-C motif) ligand (CXCL) 17, an anti-inflammatory chemokine, is a target of miR-221-3p, and epithelial CXCL17 expression significantly increased in asthma. CXCL17 inhibited CCL24, CCL26, and POSTN expression via the p38 MAPK pathway. Airway overexpression of miR-221-3p exacerbated airway eosinophilic inflammation, suppressed CXCL17 expression, and enhanced CCL24, CCL26, and POSTN expression in house dust mite-challenged mice. Taken together, epithelial and sputum miR-221-3p are novel biomarkers for airway eosinophilic inflammation in asthma. Decreased epithelial miR-221-3p may protect against airway eosinophilic inflammation by upregulating anti-inflammatory chemokine CXCL17.
Collapse
Affiliation(s)
- Kan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yuxia Liang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Wenliang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Huilan Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Jianguo He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qinghua Hu
- Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jianping Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Yongjian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guohua Zhen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,Key Laboratory of Respiratory Diseases of Ministry of Health , Wuhan , China
| |
Collapse
|
46
|
Guo YJ, Zhou YJ, Yang XL, Shao ZM, Ou ZL. The role and clinical significance of the CXCL17-CXCR8 (GPR35) axis in breast cancer. Biochem Biophys Res Commun 2017; 493:1159-1167. [PMID: 28943434 DOI: 10.1016/j.bbrc.2017.09.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Chemokine (C-X-C motif) ligand 17 (CXCL17) is the latest member of the chemokine family. However, its function in various cancer types is unknown. The G protein-coupled receptor 35 (GPR35) was identified as the receptor of CXCL17 and named recently as CXCR8. The function of the CXCL17-CXCR8 (GPR35) biological axis in cancer has not been reported. METHODS The expression of CXCL17 and CXCR8 (GPR35) in breast cancer cell lines and a tissue microarray (TMA) was detected through western blot and immunohistochemistry (IHC). Expression data in IHC were analyzed using clinicopatholigical and survival information. RESULTS CXCL17 and CXCR8 (GPR35) were found to be variably expressed in breast cancer cell lines. Both expressed higher in breast cancer tissue than normal adjacent tissue. Although CXCL17 can interact with CXCR8 (GPR35) in breast cancer cells in vitro, the expression correlation between these two markers in breast cancer tissue was not found to be significant. As to clinical significance, CXCR8 (GPR35) expression was found to be significantly associated with advanced histological grade and higher proliferation rate indicated by Ki-67 expression. Although CXCL17 was not found to statistically correlate with any clinicopathological characteristics, it was found to be associated with shorter overall survival and is an independent marker of poor prognosis in breast cancer. In addition, CXCL17 was found to promote proliferation and migration of breast cancer cells in vitro and in vivo. CONCLUSIONS We investigated the role of the CXCL17-CXCR8 (GPR35) axis in breast cancer for the first time. CXCL17 is a potential oncogene and promising therapeutic target, is an independent biomarker of poor prognosis in patients with breast cancer, and can promote proliferation and migration of breast cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Ya Jie Guo
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Jie Zhou
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao Li Yang
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi Min Shao
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhou Luo Ou
- Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
47
|
Brunner SM, Itzel T, Rubner C, Kesselring R, Griesshammer E, Evert M, Teufel A, Schlitt HJ, Fichtner-Feigl S. Tumor-infiltrating B cells producing antitumor active immunoglobulins in resected HCC prolong patient survival. Oncotarget 2017; 8:71002-71011. [PMID: 29050338 PMCID: PMC5642613 DOI: 10.18632/oncotarget.20238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/22/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND & AIMS The immunological microenvironment of HCC influences patient outcome, however, the role of B cells remains unclear. This study investigated effects of local B-cell infiltration in HCC cohorts on patient survival and immunological and molecular tumor microenvironment. RESULTS Unsupervised gene expression analysis of full cancer transcriptomes (N=2158) revealed a highly co-regulated immunological cluster in HCC that mainly contained immunoglobulin fragments. More specifically, in an independent patient cohort (N=242) that compares HCC with non tumorous liver tissue high expression of these B-cell associated genes was associated with better patient outcome (P=0.0149). Conclusively, the immunohistochemical analysis of another independent cohort of resected HCCs (N=119) demonstrated that infiltration of HCCs by CD20+ cells (P=0.004) and CD79a+ cells (P=0.038) at the infiltrative margin were associated with prolonged patient survival. Further, the immunoglobulin fragments that were identified in the gene expression analysis were detected at high levels in patients with dense B-cell infiltration. METHODS Gene expression of 2 independent HCC tissue databases was compared using microarrays. Additionally, tissue of resected HCCs was stained for CD20, CD79a and immunoglobulins and analysed for the respective cell numbers separately for tumor, infiltrative margin and distant liver stroma. These findings were correlated with clinical data and patient outcome. CONCLUSIONS Infiltration of HCCs by B cells is associated with prolonged patient survival. Further, a distinct B-cell like immunoglobulin profile of HCCs was identified that goes along with better patient outcome. We suggest that B cells contribute to local tumor control by secreting increased levels of immunoglobulins with antitumor activity.
Collapse
Affiliation(s)
- Stefan M Brunner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Timo Itzel
- Institute of Pathology, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph Rubner
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Rebecca Kesselring
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Eva Griesshammer
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University Medical Center Regensburg, Regensburg, Germany
| | - Andreas Teufel
- Department of Internal Medicine I, University Medical Center Regensburg, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Stefan Fichtner-Feigl
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany.,Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Park IJ, An S, Kim SY, Lim HM, Hong SM, Kim MJ, Kim YJ, Yu CS. Prediction of radio-responsiveness with immune-profiling in patients with rectal cancer. Oncotarget 2017; 8:79793-79802. [PMID: 29108360 PMCID: PMC5668093 DOI: 10.18632/oncotarget.19558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
We evaluate whether the tumor immune infiltrate (TIL) could be used for prediction of responsiveness to preoperative chemoradiotherapy (PCRT) in rectal cancers. Using formalin-fixed paraffin-embedded slides of pretreatment biopsies, co-stain for CD4, CD8, CD274 (PD-L1), FOXP3, cytokeratin, and DAPI was performed with Opal multi staining kit (Perkin-Elmer, Waltham, MA). Multispectral imaging and digital analysis to visualize and quantify specific immune infiltrates were performed using the Vectra imaging system (Perkin-Elmer). The density (number of cells per mm2) and proportion of total TILs and specific cell types in the stroma were calculated by inForm™ 2.2.1 software (Perkin-Elmer). The density and proportion of total TILs and specific cell types in the stroma were calculated by inForm™ 2.2.1 software (Perkin-Elmer, Waltham, MA). Patients were classified as group with total regression (TR, n = 25) and group with residual disease (near total, moderate, and minimal regression, RD, n = 50). The mean density of T cell infiltration and CD274 (PD-L1)+ lymphocyte were significantly higher in TR (p = 0.005, p = 0.001). The proportion of CD4+ lymphocyte (p=0.042) and CD274 (PD-L1)+ lymphocyte (p = 0.002) were different between 2 groups. The TR group has lower CD4+ and higher CD274 (PD-L1)+ proportions than RD group. The ratio among CD4+, CD8+, CD274 (PD-L1)+, FOXP3+ T cell was different between groups. TR group showed lower CD4/ CD274 (PD-L1) (p = 0.007), CD8/ CD274 (PD-L1) (p = 0.02), and FOXP3/ CD274 (PD-L1) (p = 0.003) ratio than RD group. The determination of the immune infiltrate in biopsies before treatment could be a valuable information for the prediction of responsiveness to PCRT.
Collapse
Affiliation(s)
- In Ja Park
- Department of Colon and Rectal Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Soyeon An
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.,Asan Institute for life sciences, Asan Medical Center, Seoul, Korea
| | - Hye Min Lim
- Asan Institute for life sciences, Asan Medical Center, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Mi-Ju Kim
- Asan Institute for life sciences, Asan Medical Center, Seoul, Korea
| | - Yun Jae Kim
- Asan Institute for life sciences, Asan Medical Center, Seoul, Korea
| | - Chang Sik Yu
- Department of Colon and Rectal Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| |
Collapse
|
49
|
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, Asano Y, Sato S. CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:3897-3908. [DOI: 10.4049/jimmunol.1601607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
|
50
|
Mao Y, Zhao Q, Yin S, Ding X, Wang H. Genome-wide expression profiling and bioinformatics analysis of deregulated genes in human gastric cancer tissue after gastroscopy. Asia Pac J Clin Oncol 2017; 14:e29-e36. [PMID: 28374495 DOI: 10.1111/ajco.12688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to analyze the gene expression profile and biological processes enriched in gastric cancer. METHODS We collected five human advanced gastric cancer tissues by gastroscopy and five peritumor normal tissues as controls and examined the gene expression changes by microarray. KEGG Orthology Based Annotation System annotation was used to identify pathways and biological processes regulated by the deregulated genes. Protein-protein interaction network analysis identified protein complex and functional modules. We also selected 14 genes for further verification by real-time quantitative Polymerase Chain Reaction (PCR). RESULTS Human gene expression profile analysis showed that 2028 deregulated genes were detected in gastric cancer compared with the control group (at least a 2.0-fold change and P < 0.05), among which there were 689 upregulated and 1339 downregulated genes. Interestingly, we identified some important genes, such as CXCL17, OTX1 and CCDC125, which have not previously been reported in gastric cancer. Real-time quantitative PCR results verified that CXCL8, OTX1, CEBPB, FOSL1, FOXS1, ARFRP1 and IRF9 were upregulated in gastric cancer and CCDC125, PPP1R36, SOX2, JUN and MIA2 were downregulated. Moreover, bioinformatics analysis demonstrated that the biological processes of inflammatory response, angiogenesis, cell migration and pathways of chemokine signaling pathway, TNF signaling pathway were enriched. We also selected the top 30 significant Gene Ontology terms and select pathways for a brief summary. CONCLUSION We performed a global analysis of the mRNA landscape in gastric cancer. Our results may stimulate a deeper understanding of the disease, and lead to the development of potential therapies and the identification of novel biomarkers.
Collapse
Affiliation(s)
- Yudi Mao
- Department of Gastroenterology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xiping Ding
- Department of Gastroenterology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|