1
|
Genova E, Rispoli P, Fengming Y, Kohei J, Bramuzzo M, Bulla R, Lucafò M, Ferraro RM, Decorti G, Stocco G. Time-efficient strategies in human iPS cell-derived pancreatic progenitor differentiation and cryopreservation: advancing towards practical applications. Stem Cell Res Ther 2024; 15:483. [PMID: 39695795 PMCID: PMC11658428 DOI: 10.1186/s13287-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells. METHODS We differentiated the iPS cells of two pediatric Crohn's disease patients into pancreatic progenitors and exocrine cells, adapting and shortening a protocol for differentiating embryonic stem cells. We analyzed the expression of key genes and proteins of the differentiation process by qPCR and immunofluorescence, respectively. We explored the possibility of keeping differentiated cells in culture and freezing and thawing them to shorten the time needed for the differentiation. We analyzed the cell cycle of undifferentiated and differentiated cells by flow cytometry. RESULTS The analysis of mRNA levels of key pancreatic differentiation genes PDX1 and pancreatic amylase indicate that iPS cells were successfully differentiated into pancreatic exocrine cells with expression of PDX1 (one way ANOVA p < 0.0001), and the two isoforms of amylase (one way ANOVA p < 0.05) significantly higher in exocrine cells in comparison to iPS cells. Differentiation efficiency was also confirmed by immunofluorescence analysis of PDX1 and amylase. We confirmed the possibility of shortening the time necessary for obtaining pancreatic cells without losing differentiation efficiency. Pancreatic progenitors and exocrine cells were maintained in culture and cryopreserved. Interestingly, the stemness marker OCT4 resulted significantly lower after subculturing (OCT4 p < 0.001; one-way ANOVA) and after freezing and thawing procedures (p < 0.05, one-way ANOVA) suggesting a reduction of undifferentiated stem cells leading to a purer population of pancreatic progenitor cells. Also, the stemness marker NANOG resulted lower after passaging, corroborating this result. CONCLUSIONS In this work, we optimized the generation of patient-specific pancreatic differentiated cells and laid the foundation for creating a bank of patient-specific pancreatic lines exploitable for tailored pharmacological assays. TRIAL REGISTRATION The study was approved by the Ethical Committee of the Institute of Maternal and Child Health IRCCS Burlo Garofolo, with approval number 1556 (internal ID RC 44/22).
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Yue Fengming
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Matsumoto, Japan
| | - Johkura Kohei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Gupta S, Sharma A, Rajakannu M, Bisevac J, Rela M, Verma RS. Small Molecule-Mediated Stage-Specific Reprogramming of MSCs to Hepatocyte-Like Cells and Hepatic Tissue for Liver Injury Treatment. Stem Cell Rev Rep 2024; 20:2215-2235. [PMID: 39259445 PMCID: PMC11554881 DOI: 10.1007/s12015-024-10771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Derivation of hepatocytes from stem cells has been established through various protocols involving growth factor (GF) and small molecule (SM) agents, among others. However, mesenchymal stem cell-based derivation of hepatocytes still remains expensive due to the use of a cocktail of growth factors, and a long duration of differentiation is needed, thus limiting its potential clinical application. METHODS In this study, we developed a chemically defined differentiation strategy that is exclusively based on SM and takes 14 days, while the GF-based protocol requires 23-28 days. RESULTS We optimized a stage-specific differentiation protocol for the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into functional hepatocyte-like cells (dHeps) that involved four stages, i.e., definitive endoderm (DE), hepatic competence (HC), hepatic specification (HS) and hepatic differentiation and growth. We further generated hepatic tissue using human decellularized liver extracellular matrix and compared it with hepatic tissue derived from the growth factor-based protocol at the transcriptional level. dHep, upon transplantation in a rat model of acute liver injury (ALI), was capable of ameliorating liver injury in rats and improving liver function and tissue damage compared to those in the ALI model. CONCLUSIONS In summary, this is the first study in which hepatocytes and hepatic tissue were derived from MSCs utilizing a stage-specific strategy by exclusively using SM as a differentiation factor.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Muthukumarassamy Rajakannu
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Jovana Bisevac
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
3
|
Cabral JV, Smorodinová N, Voukali E, Balogh L, Kučera T, Kolín V, Studený P, Vacík T, Jirsová K. Effect of Cryoprotectants on Long-Term Storage of Oral Mucosal Epithelial Cells: Implications for Stem Cell Preservation and Proliferation Status. Folia Biol (Praha) 2024; 70:209-218. [PMID: 39692575 DOI: 10.14712/fb2024070040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In this study, we tested a method for long-term storage of oral mucosal epithelial cells (OMECs) so that the cells could be expanded in vitro after cryopreservation and used for the treatment of bilateral limbal stem cell deficiency. The ability of suspended primary OMECs to proliferate in vitro after cryopreservation was compared to that of OMEC cultures that had undergone the same process. Both were preserved in standard complex medium (COM) with or without cryoprotective agents (CPAs) (gly-cerol at 5 % or 10 % or dimethyl sulphoxide at 10 %). We found that after cryopreservation, primary OMECs could form a confluent cell sheet only in a few samples after 22 ± 2.9 (mean ± SD) days of cultivation with 72.4 % ± 12.9 % overall viability. Instead, all ex vivo OMEC cultures could re-expand after cryopreservation with a comparable viability of 78.6 ± 13.8 %, like primary OMECs, but with significantly faster growth rate (adj. P < 001), forming a confluent cell sheet at 13.7 ± 3.9 days. Gene expression analyses of the ex vivo expansion of OMEC cultures showed that the stemness, proliferation and differentiation-related gene expression was similar before and after cryopreservation, except for KRT13 expres-sion, which significantly decreased after the second passage (adj. P < 0.05). The addition of CPAs had no effect on these outcomes. In conclusion, the optimal strategy for OMEC preservation is to freeze the cells that have been previously cultured, in order to maintain cell viability and the capacity to create a sizable graft even without CPAs.
Collapse
Affiliation(s)
- Joao Victor Cabral
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Natálie Smorodinová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eleni Voukali
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukáš Balogh
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtěch Kolín
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Studený
- Department of Ophthalmology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
4
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
5
|
Zheng S, Bian H, Li J, Shen Y, Yang Y, Hu W. Differentiation therapy: Unlocking phenotypic plasticity of hepatocellular carcinoma. Crit Rev Oncol Hematol 2022; 180:103854. [PMID: 36257532 DOI: 10.1016/j.critrevonc.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
6
|
Dubois-Pot-Schneider H, Aninat C, Kattler K, Fekir K, Jarnouen K, Cerec V, Glaise D, Salhab A, Gasparoni G, Takashi K, Ishida S, Walter J, Corlu A. Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells. Cells 2022; 11:cells11152298. [PMID: 35892596 PMCID: PMC9331440 DOI: 10.3390/cells11152298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
- Correspondence: ; Tel.: +33-372746115
| | - Caroline Aninat
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathrin Kattler
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Karim Fekir
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathleen Jarnouen
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Virginie Cerec
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Denise Glaise
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Kubo Takashi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Anne Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| |
Collapse
|
7
|
Li R, Zhao Y, Yourick JJ, Sprando RL, Gao X. Phenotypical, functional and transcriptomic comparison of two modified methods of hepatocyte differentiation from human induced pluripotent stem cells. Biomed Rep 2022; 16:43. [PMID: 35371477 PMCID: PMC8972237 DOI: 10.3892/br.2022.1526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) into hepatocytes could provide an unlimited source of liver cells, and therefore holds great promise for regenerative medicine, disease modeling, drug screening and toxicology studies. Various methods have been established during the past decade to differentiate human iPSCs into hepatocyte-like cells (HLCs) using growth factors and/or small molecules. However, direct comparison of the differentiation efficiency and the quality of the final HLCs between different methods has rarely been reported. In the current study, two hepatocyte differentiation methods were devised, termed Method 1 and 2, through modifying existing well-known hepatocyte differentiation strategies, and the resultant cells were compared phenotypically and functionally at different stages of hepatocyte differentiation. Compared to Method 1, higher differentiation efficiency and reproducibility were observed in Method 2, which generated highly homogeneous functional HLCs at the end of the differentiation process. The cells exhibited morphology closely resembling primary human hepatocytes and expressed high levels of hepatic protein markers. More importantly, these HLCs demonstrated several essential characteristics of mature hepatocytes, including major serum protein (albumin, fibronectin and α-1 antitrypsin) secretion, urea release, glycogen storage and inducible cytochrome P450 activity. Further transcriptomic comparison of the HLCs derived from the two methods identified 1,481 differentially expressed genes (DEGs); 290 Gene Ontology terms in the biological process category were enriched by these genes, which were further categorized into 34 functional classes. Pathway analysis of the DEGs identified several signaling pathways closely involved in hepatocyte differentiation of pluripotent stem cells, including 'signaling pathways regulating pluripotency of stem cells', 'Wnt signaling pathway', 'TGF-beta signaling pathway' and 'PI3K-Akt signaling pathway'. These results may provide a molecular basis for the differences observed between the two differentiation methods and suggest ways to further improve hepatocyte differentiation in order to obtain more mature HLCs for biomedical applications.
Collapse
Affiliation(s)
- Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
8
|
Pan T, Wang N, Zhang J, Yang F, Chen Y, Zhuang Y, Xu Y, Fang J, You K, Lin X, Li Y, Li S, Liang K, Li YX, Gao Y. Efficiently generate functional hepatic cells from human pluripotent stem cells by complete small-molecule strategy. Stem Cell Res Ther 2022; 13:159. [PMID: 35410439 PMCID: PMC8996222 DOI: 10.1186/s13287-022-02831-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various methods have been developed to generate hepatic cells from human pluripotent stem cells (hPSCs) that rely on the combined use of multiple expensive growth factors, limiting industrial-scale production and widespread applications. Small molecules offer an attractive alternative to growth factors for producing hepatic cells since they are more economical and relatively stable. METHODS We dissect small-molecule combinations and identify the ideal cocktails to achieve an optimally efficient and cost-effective strategy for hepatic cells differentiation, expansion, and maturation. RESULTS We demonstrated that small-molecule cocktail CIP (including CHIR99021, IDE1, and PD0332991) efficiently induced definitive endoderm (DE) formation via increased endogenous TGF-β/Nodal signaling. Furthermore, we identified that combining Vitamin C, Dihexa, and Forskolin (VDF) could substitute growth factors to induce hepatic specification. The obtained hepatoblasts (HBs) could subsequently expand and mature into functional hepatocyte-like cells (HLCs) by the established chemical formulas. Thus, we established a stepwise strategy with complete small molecules for efficiently producing scalable HBs and functionally matured HLCs. The small-molecule-derived HLCs displayed typical functional characteristics as mature hepatocytes in vitro and repopulating injured liver in vivo. CONCLUSION Our current small-molecule-based hepatic generation protocol presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery using.
Collapse
Affiliation(s)
- Tingcai Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaye Zhang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Yan Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanqi Zhuang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ji Fang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Yin-Xiong Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes‐like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022. [DOI: https://doi.org/10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Sugan Paneerselvan
- Department of Hepatology Madras Medical College Chennai Tamil Nadu India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
- Department of Ophthalmology Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California San Francisco California USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| | - Dillip Kumar Bishi
- Department of Biotechnology Rama Devi Women's University Bhubaneswar Odisha India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory Department of Biotechnology Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras Chennai Tamil Nadu India
| |
Collapse
|
10
|
Gupta S, Sharma A, Paneerselvan S, Kandoi S, Patra B, Bishi DK, Verma RS. Generation and transplantation of hepatocytes-like cells using human origin hepatogenic serum for acute liver injury treatment. Xenotransplantation 2022; 29:e12730. [PMID: 35166406 DOI: 10.1111/xen.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
Liver failure is a critical disease for which regenerative therapies are still being explored. The major limitation in the use of a clinical grade, viable cell-based therapy approach is the scarce availability of sufficient number of in-vitro differentiated hepatocyte-like cells (HLC) that can induce regeneration and ameliorate liver injury. Here, we report for the first time an approach to engineer HLCs using sera of hyperbilirubin patients that act as a reservoir of differentiation factor. Utilizing our humanized approach, mesenchymal stem cells (hMSC) derived from umbilical cord tissue were transdifferentiated into HLC using patient-derived serum along with dimethyl sulfoxide (DMSO). We studied the effects of serum on the proliferation, cell cycle analysis, and apoptosis of hMSC by various differentiation combinations. We optimized the hepatic transdifferentiation ability of hMSC with hyperbilirubin serum treatment for a period of 7 days. Assessment of HLC functionalities was shown by quantifying the HLC spent medium for albumin and urea secretions. Transplantation of HLC in an acute liver injury (ALI) rat model showed an effective improvement in the liver function and histological changes in the liver. The results of this study suggest that hMSC-derived HLC using humanized hepatogenic serum holds a promising potential for cell transplantation, as an efficient therapy modality for liver failure in humans.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sugan Paneerselvan
- Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Sangeetha Kandoi
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.,Department of Ophthalmology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Dillip Kumar Bishi
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, Odisha, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
12
|
Qin K, Lei J, Yang J. The Differentiation of Pluripotent Stem Cells towards Endothelial Progenitor Cells - Potential Application in Pulmonary Arterial Hypertension. Int J Stem Cells 2021; 15:122-135. [PMID: 34711697 PMCID: PMC9148829 DOI: 10.15283/ijsc21044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Endothelial progenitor cells (EPCs) and endothelial cells (ECs) have been applied in the clinic to treat pulmonary arterial hypertension (PAH), a disease characterized by disordered pulmonary vasculature. However, the lack of sufficient transplantable cells before the deterioration of disease condition is a current limitation to apply cell therapy in patients. It is necessary to differentiate pluripotent stem cells (PSCs) into EPCs and identify their characteristics. Methods and Results Comparing previously reported methods of human PSCs-derived ECs, we optimized a highly efficient differentiation protocol to obtain cells that match the phenotype of isolated EPCs from healthy donors. The protocol is compatible with chemically defined medium (CDM), it could produce a large number of clinically applicable cells with low cost. Moreover, we also found PSCs-derived EPCs express CD133, have some characteristics of mesenchymal stem cells and are capable of homing to repair blood vessels in zebrafish xenograft assays. In addition, we further revealed that IPAH PSCs-derived EPCs have higher expression of proliferation-related genes and lower expression of immune-related genes than normal EPCs and PSCs-derived EPCs through microarray analysis. Conclusions In conclusion, we optimized a highly efficient differentiation protocol to obtain PSCs-derived EPCs with the phenotypic and molecular characteristics of EPCs from healthy donors which distinguished them from EPCs from PAH.
Collapse
Affiliation(s)
- Kezhou Qin
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Lei
- Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Morgan K, Bryans A, Brzeszczyński F, Samuel K, Treskes P, Brzeszczyńska J, Morley SD, Hayes PC, Gadegaard N, Nelson LJ, Plevris JN. Oxygen Plasma Substrate and Specific Nanopattern Promote Early Differentiation of HepaRG Progenitors. Tissue Eng Part A 2021; 26:1064-1076. [PMID: 32292123 DOI: 10.1089/ten.tea.2019.0241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fully differentiated HepaRG™ cells are the hepatic cell line of choice for in vitro study in toxicology and drug trials. They are derived from a hepatoblast-like progenitor (HepaRG-P) that differentiates into a coculture of hepatocyte-like and cholangiocyte-like cells. This process that requires 2 weeks of proliferation followed by 2 weeks of differentiation using dimethyl sulfoxide (DMSO) can be time consuming and costly. Identifying a method to accelerate HepaRG-Ps toward a mature lineage would save both time and money. The ability to do this in the absence of DMSO would remove the possibility of confounding toxicology results caused by DMSO induction of CYP pathways. It has been shown that tissue culture substrates play an important role in the development and maturity of a cell line, and this is particularly important for progenitor cells, which retain some form of plasticity. Oxygen plasma treatment is used extensively to modify cell culture substrates. There is also evidence that patterned rather than planar surfaces have a positive effect on proliferation and differentiation. In this study, we compared the effect of standard tissue culture plastic (TCP), oxygen plasma coated (OPC), and nanopatterned substrates (NPS) on early differentiation and function of HepaRG-P cells. Since NPS were OPC we initially compared the effect of TCP and OPC to enable comparison between all three culture surfaces using OPC as control to asses if patterning further enhanced early differentiation and functionality. The results show that HepaRG-P's grown on OPC substrate exhibited earlier differentiation, proliferation, and function compared with TCP. Culturing HepaRG-P's on OPC with the addition of NPS did not confer any additional advantage. In conclusion, OPC surface appeared to enhance hepatic differentiation and functionality and could replace traditional methods of differentiating HepaRG-P cells into fully differentiated and functional HepaRGs earlier than standard methods. Impact statement We show significantly earlier differentiation and function of HepaRG progenitor cells when grown in dimethyl sulfoxide-free medium on oxygen plasma substrates versus standard tissue culture plastic. Further investigation showed that nanopatterning of oxygen plasma substrates did not confer any additional advantage over smooth oxygen plasma, although one pattern (DSQ120) showed comparable early differentiation and function.
Collapse
Affiliation(s)
- Katie Morgan
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Bryans
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Filip Brzeszczyński
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Advanced Therapeutics, The Jack Copland Centre, Edinburgh, United Kingdom
| | - Philipp Treskes
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Brzeszczyńska
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | - Steven D Morley
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Hayes
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Leonard J Nelson
- Institute for BioEngineering (IBioE), School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - John N Plevris
- Hepatology Laboratory, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
14
|
Luce E, Messina A, Duclos-Vallée JC, Dubart-Kupperschmitt A. Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology 2021; 74:1101-1116. [PMID: 33420753 PMCID: PMC8457237 DOI: 10.1002/hep.31705] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Liver transplantation is currently the only curative treatment for several liver diseases such as acute liver failure, end-stage liver disorders, primary liver cancers, and certain genetic conditions. Unfortunately, despite improvements to transplantation techniques, including live donor transplantation, the number of organs available remains insufficient to meet patient needs. Hepatocyte transplantation has enabled some encouraging results as an alternative to organ transplantation, but primary hepatocytes are little available and cannot be amplified using traditional two-dimensional culture systems. Indeed, although recent studies have tended to show that three-dimensional culture enables long-term hepatocyte culture, it is still agreed that, like most adult primary cell types, hepatocytes remain refractory to in vitro expansion. Because of their exceptional properties, human pluripotent stem cells (hPSCs) can be amplified indefinitely and differentiated into any cell type, including liver cells. While many teams have worked on hepatocyte differentiation, there has been a consensus that cells obtained after hPSC differentiation have more fetal than adult hepatocyte characteristics. New technologies have been used to improve the differentiation process in recent years. This review discusses the technical improvements made to hepatocyte differentiation protocols and the clinical approaches developed to date and anticipated in the near future.
Collapse
Affiliation(s)
- Eléanor Luce
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Antonietta Messina
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Jean-Charles Duclos-Vallée
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Anne Dubart-Kupperschmitt
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| |
Collapse
|
15
|
Lim CK, Efthymios M, Tan W, Autio MI, Tiang Z, Li PY, Foo RSY. Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300. J Mol Cell Cardiol 2021; 160:15-26. [PMID: 34146546 DOI: 10.1016/j.yjmcc.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/01/2022]
Abstract
AIMS Direct cardiac reprogramming represents an attractive way to reversing heart damage caused by myocardial infarction because it removes fibroblasts, while also generating new functional cardiomyocytes. Yet, the main hurdle for bringing this technique to the clinic is the lack of efficacy with current reprogramming protocols. Here, we describe our unexpected discovery that DMSO is capable of significantly augmenting direct cardiac reprogramming in vitro. METHODS AND RESULTS Upon induction with cardiac transcription factors- Gata4, Hand2, Mef2c and Tbx5 (GHMT), the treatment of mouse embryonic fibroblasts (MEFs) with 1% DMSO induced ~5 fold increase in Myh6-mCherry+ cells, and significantly upregulated global expression of cardiac genes, including Myh6, Ttn, Nppa, Myh7 and Ryr2. RNA-seq confirmed upregulation of cardiac gene programmes and downregulation of extracellular matrix-related genes. Treatment of TGF-β1, DMSO, or SB431542, and the combination thereof, revealed that DMSO most likely targets a separate but parallel pathway other than TGF-β signalling. Subsequent experiments using small molecule screening revealed that DMSO enhances direct cardiac reprogramming through inhibition of the CBP/p300 bromodomain, and not its acetyltransferase property. CONCLUSION In conclusion, our work points to a direct molecular target of DMSO, which can be used for augmenting GHMT-induced direct cardiac reprogramming and possibly other cell fate conversion processes.
Collapse
Affiliation(s)
- Choon Kiat Lim
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456, Singapore
| | - Motakis Efthymios
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wilson Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Peter Yiqing Li
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| |
Collapse
|
16
|
Assis RIF, Schmidt AG, Racca F, da Silva RA, Zambuzzi WF, Silvério KG, Nociti FH, Pecorari VG, Wiench M, Andia DC. DNMT1 Inhibitor Restores RUNX2 Expression and Mineralization in Periodontal Ligament Cells. DNA Cell Biol 2021; 40:662-674. [PMID: 33751901 DOI: 10.1089/dna.2020.6239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Periodontal ligament cells (PDLCs) have well documented osteogenic potential; however, this commitment can be highly heterogenous, limiting their applications in tissue regeneration. In this study, we use PDLC populations characterized by high and low osteogenic potential (h-PDLCs and l-PDLCs, respectively) to identify possible sources of such heterogeneity and to investigate whether the osteogenic differentiation can be enhanced by epigenetic modulation. In h-PDLCs, low basal expression levels of pluripotency markers (NANOG, OCT4), DNA methyltransferases (DNMT1, DNMT3B), and enzymes involved in active DNA demethylation (TET1, TET3) were prerequisite to high osteogenic potential. Furthermore, these genes were downregulated upon early osteogenesis, possibly allowing for the increase in expression of the key osteogenic transcription factors, Runt-related transcription factor 2 (RUNX2) and SP7, and ultimately, mineral nodule formation. l-PDLCs appeared locked in the multipotent state and this was further enhanced upon early osteogenic stimulation, correlating with low RUNX2 expression and impaired mineralization. Further upregulation of DNMTs was also evident, while pretreatment with RG108, the DNMTs' inhibitor, enhanced the osteogenic program in l-PDLCs through downregulation of DNMTs, increased RUNX2 expression and nuclear localization, accelerated expression of osteogenic markers, and increased mineralization. These findings point toward the role of DNMTs and Ten Eleven Translocations (TETs) in osteogenic commitment and support application of epigenetic approaches to modulate biomineralization in PDLCs.
Collapse
Affiliation(s)
- Rahyza I F Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Arthur G Schmidt
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Francesca Racca
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Rodrigo A da Silva
- Program in Environmental and Experimental Pathology, Paulista University-UNIP, São Paulo, Brazil
| | - William F Zambuzzi
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu, Brazil
| | - Karina G Silvério
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Vanessa G Pecorari
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Malgorzata Wiench
- Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Denise C Andia
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| |
Collapse
|
17
|
Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicol In Vitro 2021; 73:105107. [PMID: 33545341 DOI: 10.1016/j.tiv.2021.105107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
Various adaptive cellular stress response pathways are critical in the pathophysiology of liver disease and drug-induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived hepatocyte-like cells (HLCs) provide a promising tool to study cellular stress response pathways, but in this context there is limited insight on how HLCs compare to other in vitro liver models. Here, we systematically compared the transcriptomic profiles upon chemical activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We used targeted RNA-sequencing to map concentration transcriptional response using benchmark concentration modeling for the various stress responses in the different test systems. We found that HLCs are very sensitive towards oxidative stress and inflammation conditions as corresponding genes were activated at over 3 fold lower concentrations of the corresponding pathway inducing compounds as compared to PHH. PHH were the most sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH and HLCs, these do not pose a good/sensitive model to pick up DNA damage responses, while hiPSC and HepG2 were more sensitive in these conditions. We envision that this study contributes to a better understanding on how HLCs can contribute to the assessment of cell physiological stress response activation to predict hepatotoxic events.
Collapse
|
18
|
Gurevich I, Burton SA, Munn C, Ohshima M, Goedland ME, Czysz K, Rajesh D. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open 2020; 9:bio055087. [PMID: 33268331 PMCID: PMC7758638 DOI: 10.1242/bio.055087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 30-40% of adults and 10% of children in the US. About 20% of people with NAFLD develop non-alcoholic steatohepatitis (NASH), which may lead to cirrhosis and liver cancer, and is projected to be a leading cause of liver transplantation in the near future. Human induced pluripotent stem cells (iPSC) from NASH patients are useful for generating a large number of hepatocytes for NASH modeling applications and identification of potential drug targets. We developed a novel defined in vitro differentiation process to generate cryopreservable hepatocytes using an iPSC panel of NASH donors and apparently healthy normal (AHN) controls. iPSC-derived hepatocytes displayed stage specific phenotypic markers, hepatocyte morphology, with bile canaliculi. Importantly, both fresh and cryopreserved definitive endoderm and hepatoblasts successfully differentiated to pure and functional hepatocytes with increased CYP3A4 activity in response to rifampicin and lipid accumulation upon fatty acid (FA) treatment. End-stage hepatocytes integrated into three-dimensional (3D) liver organoids and demonstrated increased levels of albumin secretion compared to aggregates consisting of hepatocytes alone. End-stage hepatocytes derived from NASH donors demonstrated spontaneous lipidosis without FA supplementation, recapitulating a feature of NASH hepatocytes in vivo Cryopreserved hepatocytes generated by this protocol across multiple donors will provide a critical cell source to facilitate the fundamental understanding of NAFLD/NASH biology and potential high throughput screening applications for preclinical evaluation of therapeutic targets.
Collapse
Affiliation(s)
- Igor Gurevich
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Sarah A Burton
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Christie Munn
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Makiko Ohshima
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Madelyn E Goedland
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Katherine Czysz
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| | - Deepika Rajesh
- Life Science R&D Division, FUJIFILM Cellular Dynamics, Inc., 525 Science Drive, Madison, WI 53711, USA
| |
Collapse
|
19
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
20
|
Gulevskyy OK. Influence of cryoprotective agents on protein biosynthesis in Krebs-2 ascites carcinoma and wheat germ cell-free systems. Cryobiology 2020; 96:55-60. [PMID: 32827498 DOI: 10.1016/j.cryobiol.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Currently, the cell and tissue storage using the cryoprotective agents are quite common, in particular in reproductive technologies. Meanwhile the issue of safety when applying the CPAs remains open, since even in residual amounts after washing, they can affect the functioning of the most critical metabolic processes of a cell, in particular transcription and translation, which can be of great importance for further life and development of organs, tissues, cells. The goal was to study the effect of penetrating cryoprotective agents glycerol, ME2SO, ethylene glycol, and non-penetrating PEG-400 on protein synthesizing activity in cell-free systems of Krebs-2 ascites carcinoma and wheat germ. In this study, we compared the effects of ME2SO, PEG-400, glycerol, and ethylene glycol on protein biosynthesis in cell-free systems according to the incorporation of 14C-amino acids in total proteins. A reversible suppression of protein biosynthesis in Krebs-2 ascites carcinoma cells and wheat germ cell-free systems by CPAs PEG-400, ethylene glycol, glycerol and ME2SO was found. This effect is shown to be stipulated by a direct influence of the studied CPAs on translation processes. ME2SO, glycerol, ethylene glycol and PEG-400 were established to cause the Mg-dependent inhibition of protein biosynthesis in cell-free system of Krebs-2 ascites carcinoma cells in endogenous matrices and wheat germ ones in exogenous matrices. It has been shown that the mechanism of inhibiting action of CPAs on protein biosynthesis in cell-free systems is related to Mg2+-dependent inhibition of tRNA aminoacylation, which when penetrating Me2SO, glycerol and ethylene glycol CPAs are used, has a reversible character, and when PEG-400 being a hardly penetrating CPA is applied it is just partially recovered.
Collapse
Affiliation(s)
- Oleksandr K Gulevskyy
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| |
Collapse
|
21
|
Zabulica M, Srinivasan RC, Vosough M, Hammarstedt C, Wu T, Gramignoli R, Ellis E, Kannisto K, Collin de l'Hortet A, Takeishi K, Soto-Gutierrez A, Strom SC. Guide to the Assessment of Mature Liver Gene Expression in Stem Cell-Derived Hepatocytes. Stem Cells Dev 2020; 28:907-919. [PMID: 31122128 PMCID: PMC6648222 DOI: 10.1089/scd.2019.0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of stem cells to hepatocyte-like cells (HLCs) holds great promise for basic research, drug and toxicological investigations, and clinical applications. There are currently no protocols for the production of HLCs from stem cells, such as embryonic stem cells or induced pluripotent stem cells, that produce fully mature hepatocytes with a wide range of mature hepatic functions. This report describes a standard method to assess the maturation of stem cell-derived HLCs with a moderately high-throughput format, by analysing liver gene expression by quantitative RT-qPCR. This method also provides a robust data set of the expression of 62 genes expressed in normal liver, generated from 17 fetal and 25 mature human livers, so that investigators can quickly and easily compare the expression of these genes in their stem cell-derived HLCs with the values obtained in authentic fetal and mature human liver. The simple methods described in this study will provide a quick and accurate assessment of the efficacy of a differentiation protocol and will help guide the optimization of differentiation conditions.
Collapse
Affiliation(s)
- Mihaela Zabulica
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raghuraman C Srinivasan
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christina Hammarstedt
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Wu
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- 3Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kristina Kannisto
- 4Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden
| | | | - Kazuki Takeishi
- 5Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Stephen C Strom
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
DMSO supplementation during in vitro maturation of bovine oocytes improves blastocyst rate and quality. Theriogenology 2020; 148:140-148. [PMID: 32171973 DOI: 10.1016/j.theriogenology.2020.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
The molecule Dimethyl sulfoxide is widely used as drug solvent. However, its antioxidant property was poorly explored. In this study, we evaluated the effect of DMSO supplementation during oocyte in vitro maturation (IVM) on embryo development and quality. Bovine oocytes were matured with different DMSO concentrations (0, 0.1, 0.25, 0.5, 0.75, 1 and 10% v:v) followed by in vitro fertilization. Subsequently, quality indicators such as gene expression of SOX2, OCT4, CDX2, SOD1, oocyte and embryo redox status and DNA damage were evaluated. Polar body extrusion and blastocyst rates increased with 0.5% v:v DMSO. Moreover, first polar body extrusion and blastocyst rates did not increase with 1%, and 10% of DMSO reduced polar body extrusion and did not produce blastocyst. Optimal concentration of DMSO for the use on the maturation was estimated at around 0.45% v:v. Supplementation with 0.5% v:v DMSO has not affected mRNA abundance of genes key in blastocyst, however 0.75% increased gene expression of OCT4 and SOX2. Oocytes matured with 0.5% v:v DMSO and blastocyst from DMSO group showed reduced lipid peroxidation respect control. Total Glutathione concentrations increased in blastocyst stage in DMSO group. DMSO increased the total cell number of blastocysts but not TUNEL positive cells. In conclusion, our results suggest that low DMSO concentrations used during bovine oocytes in vitro maturation increases the maturation, as well as the blastocyst rate and its quality, without demonstrating deleterious effect on embryo cells.
Collapse
|
23
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Oliva J, Florentino A, Bardag-Gorce F, Niihara Y. Vitrification and storage of oral mucosa epithelial cell sheets. J Tissue Eng Regen Med 2019; 13:1153-1163. [PMID: 30964962 PMCID: PMC6767061 DOI: 10.1002/term.2864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Shipping time and shipping delays might affect the quality of the stem cells based engineered "organs." In our laboratory, we have developed a limbal stem cell deficient (LSCD) rabbit model. To reverse the LSCD, we cultured oral mucosal epithelial cells for 2-3 weeks and engineered cultured autologous oral mucosa epithelial cell sheets (CAOMECS), which were grafted on the LSCD cornea. The purpose of this study was to vitrify CAOMECS and to store it until the CAOMECS can be grafted onto patients. CAOMECS were vitrified in LN2 for up to 204 days. We tested two different methods of vitrification with different solutions; however, CAOMECS were only viable when they were not stored in a vitrification solution; results were only reported from this CAOMECS. On the basis of hematoxylin and eosin staining, we showed that the CAOMECS morphology was well preserved after long-term storage in LN2 . Most of the preservation solutions maintained the CAOMECS phenotype (Ki67, proliferating cell nuclear antigen (PCNA), Beta-Catenin, ZO-1, E-Cadherin, CK3, CK4, CK13). The exception was the solution composed with ethylene glycol and Dimethyl sulfoxide (DMSO): this resulted in loss of DeltaN-p63 expression. DeltaN-p63 is an important marker for cell proliferation. The expression of proteins involved in cell-cell connection and the differentiation markers were maintained. Apoptosis was not detected in the thawed CAOMECS. We demonstrated that CAOMECS can be stored long-term in LN2 without affecting their morphology and phenotype.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Research & Development, Emmaus Medical, Inc., Torrance, CA.,Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA
| | - Arjie Florentino
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA
| | - Fawzia Bardag-Gorce
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA
| | - Yutaka Niihara
- Department of Research & Development, Emmaus Medical, Inc., Torrance, CA.,Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA
| |
Collapse
|
25
|
Paradoxical effects of the epigenetic modifiers 5-aza-deoxycytidine and suberoylanilide hydroxamic acid on adipogenesis. Differentiation 2019; 106:1-8. [PMID: 30818187 DOI: 10.1016/j.diff.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 01/17/2023]
Abstract
Adipogenesis is an important biological process that is linked to obesity and metabolic disorders. On the other hand, fat regeneration is crucial as a restorative approach following mastectomy or severe burn injury. Furthermore, optimizing an in-vitro model of adipogenesis, which would help in understanding the possible effects and/or side effects of fat-soluble drugs and anti-obesity remedies, in addition to the developmental studies. Epigenetic is an important factor that is involved in cellular differentiation and commitment. This study aimed at investigating the effect of DNA methylation and histone deactylases inhibitors, 5-Aza-deoxycytidine (5-Aza-dC) and Suberoylanilide hydroxamic acid (SAHA), on the adipogenic differentiation process. The two modifiers were applied according to our previously published protocol, followed by three cycles of a classical, two-step adipogenesis protocol. The cells pretreated with SAHA showed enhanced expression of the many adipogenic genes, including peroxisome proliferator-activated receptor-γ as well as the accumulation of intracytoplasmic fat as shown by oil red and Nile red staining and the secretion of adipokines, such as MCP-1 and IP-10. On contrary, 5-Aza-dC inhibited all these markers. In conclusion, adding the reported step with SAHA to the differentiation protocols could have an impact on the progress of the in-vitro fat regenerative approach. The possible role of 5-Aza-dC in the inhibition of adipogenesis can be of clinical interest and will need further characterization in the future.
Collapse
|
26
|
Hu H, Xue J, Dong R, Zhao Y, Song C, Zhao H, Hescheler J, Zhang Y, Liang H. STAT3 Phosphorylation Mediating DMSO's Function on Fetal Cardiomyocyte Proliferation with Developmental Changes. Int Heart J 2019; 60:392-399. [PMID: 30745528 DOI: 10.1536/ihj.18-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endogenous cardiac regeneration has been focused for decades as a potential therapy for heart diseases with cell loss, and dimethyl sulfoxide (DMSO) has been proposed as a treatment for many diseases. In this study, we aimed to investigate the function of DMSO on fetal cardiomyocyte proliferation. By tracing BrdU+/α actinin+ cells or Ki67+/α actinin+ cells with immunohistochemical staining, we found that DMSO remarkably promoted fetal cardiomyocytes proliferation, and at the late developmental stage (LDS), such effects were more efficient than that at early developmental stage (EDS). Western blot data revealed a significant increase in STAT3 phosphorylation under DMSO treatments at LDS, while not at EDS. Consistently, STAT3 phosphorylation blocker STA21 could greatly reverse DMSO's function at LDS whereas hardly at EDS. Moreover, hearts at the EDS had less total STAT3 protein, but relatively much higher level of phosphorylated STAT3. This suggests that DMSO promote fetal cardiomyocytes proliferation, and STAT3 phosphorylation play a pivotal role in DMSO's function. With maturation, DMSO exerted a better ability to favor cardiomyocyte proliferation depending on STAT3 phosphorylation. Therefore, DMSO could serve as an effective, economic, and safe therapy for heart diseases with cell loss.
Collapse
Affiliation(s)
- Haitao Hu
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Jin Xue
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology.,Department of Pathology, School of Basic Medicine, Huazhong University of Science and Technology
| | - Renshun Dong
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Yanan Zhao
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Chunyan Song
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | - Hongjian Zhao
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| | | | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Huamin Liang
- Department of Physiology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Huazhong University of Science and Technology.,Institute of Brain Research, Huazhong University of Science and Technology
| |
Collapse
|
27
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
28
|
Fine Tuning of Hepatocyte Differentiation from Human Embryonic Stem Cells: Growth Factor vs. Small Molecule-Based Approaches. Stem Cells Int 2019; 2019:5968236. [PMID: 30805010 PMCID: PMC6362496 DOI: 10.1155/2019/5968236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) are being utilized in diverse areas of studies such as development and disease modeling, cell replacement therapy, or drug toxicity testing because of their potential to be differentiated into any cell type in the body. The directed differentiation of hESCs into hepatocytes could provide an invaluable source of liver cells for various liver-based applications. Therefore, several protocols have been established in the past for hESC-hepatocyte differentiation based on the knowledge of signaling pathways and growth factors involved in different stages of embryonic hepatogenesis. Although successful derivation of hepatocytes has been achieved through these protocols, the efficiency is not always ideal. Herein, we have tested several combinations of published protocols, for example, growth factor vs. small molecule and different time durations of treatment for definitive endoderm (DE) induction and further hepatocyte differentiation to develop an efficient DE induction and hepatocyte differentiation in a highly reproducible manner based on the stage-specific marker expression and functional analysis.
Collapse
|
29
|
Budash HV, Bilko NM. Embryonic and Induced Pluripotent Stem Cells and Their Differentiation in the Cardiomyocyte Direction in the Presence of Dimethyl Sulfoxide. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
31
|
Li J, Narayanan C, Bian J, Sambo D, Brickler T, Zhang W, Chetty S. A transient DMSO treatment increases the differentiation potential of human pluripotent stem cells through the Rb family. PLoS One 2018; 13:e0208110. [PMID: 30540809 PMCID: PMC6291069 DOI: 10.1371/journal.pone.0208110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
The propensity for differentiation varies substantially across human pluripotent stem cell (hPSC) lines, greatly restricting the use of hPSCs for cell replacement therapy or disease modeling. Here, we investigate the underlying mechanisms and demonstrate that activation of the retinoblastoma (Rb) pathway in a transient manner is important for differentiation. In prior work, we demonstrated that pre-treating hPSCs with dimethylsulfoxide (DMSO) before directed differentiation enhanced differentiation potential across all three germ layers. Here, we show that exposure to DMSO improves the efficiency of hPSC differentiation through Rb and by repressing downstream E2F-target genes. While transient inactivation of the Rb family members (including Rb, p107, and p130) suppresses DMSO’s capacity to enhance differentiation across all germ layers, transient expression of a constitutively active (non-phosphorylatable) form of Rb increases the differentiation efficiency similar to DMSO. Inhibition of downstream targets of Rb, such as E2F signaling, also promotes differentiation of hPSCs. More generally, we demonstrate that the duration of Rb activation plays an important role in regulating differentiation capacity.
Collapse
Affiliation(s)
- Jingling Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cyndhavi Narayanan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jing Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danielle Sambo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Brickler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Wancong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
Collapse
|
33
|
Luz AL, Tokar EJ. Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicol Sci 2018; 165:31-39. [PMID: 30169765 PMCID: PMC6111785 DOI: 10.1093/toxsci/kfy174] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Millions of children are born each year with a birth defect. Many of these defects are caused by environmental factors, although the underlying etiology is often unknown. In vivo mammalian models are frequently used to determine if a chemical poses a risk to the developing fetus. However, there are over 80 000 chemicals registered for use in the United States, many of which have undergone little safety testing, necessitating the need for higher-throughput methods to assess developmental toxicity. Pluripotent stem cells (PSCs) are an ideal in vitro model to investigate developmental toxicity as they possess the capacity to differentiate into nearly any cell type in the human body. Indeed, a burst of research has occurred in the field of stem cell toxicology over the past decade, which has resulted in numerous methodological advances that utilize both mouse and human PSCs, as well as cutting-edge technology in the fields of metabolomics, transcriptomics, transgenics, and high-throughput imaging. Here, we review the wide array of approaches used to detect developmental toxicants, suggest areas for further research, and highlight critical aspects of stem cell biology that should be considered when utilizing PSCs in developmental toxicity testing.
Collapse
Affiliation(s)
- Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
34
|
Kiamehr M, Alexanova A, Viiri LE, Heiskanen L, Vihervaara T, Kauhanen D, Ekroos K, Laaksonen R, Käkelä R, Aalto-Setälä K. hiPSC-derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. J Cell Physiol 2018; 234:3744-3761. [PMID: 30146765 DOI: 10.1002/jcp.27131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.
Collapse
Affiliation(s)
- Mostafa Kiamehr
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anna Alexanova
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leena E Viiri
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | | | - Kim Ekroos
- Lipidomics Consulting Ltd, Espoo, Finland
| | - Reijo Laaksonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Zora Biosciences, Espoo, Finland
| | - Reijo Käkelä
- Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Stratigopoulos G, De Rosa MC, LeDuc CA, Leibel RL, Doege CA. DMSO increases efficiency of genome editing at two non-coding loci. PLoS One 2018; 13:e0198637. [PMID: 29864154 PMCID: PMC5986138 DOI: 10.1371/journal.pone.0198637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) has become the tool of choice for genome editing. Despite the fact that it has evolved as a highly efficient means to edit/replace coding sequence, CRISPR/Cas9 efficiency for “clean” editing of non-coding DNA remains low. We set out to introduce a single base-pair substitution in two intronic SNPs at the FTO locus without altering nearby non-coding sequence. Substitution efficiency increased up to 10-fold by treatment of human embryonic stem cells (ESC) with non-toxic levels of DMSO (1%) before CRISPR/Cas9 delivery. Treatment with DMSO did not result in CRISPR/Cas9 off-target effects or compromise the chromosomal stability of the ESC. Twenty-four hour treatment of human ESC with DMSO before CRISPR/Cas9 delivery may prove a simple means to increase editing efficiency of non-coding DNA without incorporation of undesirable mutations.
Collapse
Affiliation(s)
- George Stratigopoulos
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- * E-mail:
| | - Maria Caterina De Rosa
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, United States of America
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
| | - Rudolph L. Leibel
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
- Institute of Human Nutrition, Columbia University, New York, NY, United States of America
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| |
Collapse
|
36
|
Meier F, Freyer N, Brzeszczynska J, Knöspel F, Armstrong L, Lako M, Greuel S, Damm G, Ludwig-Schwellinger E, Deschl U, Ross JA, Beilmann M, Zeilinger K. Hepatic differentiation of human iPSCs in different 3D models: A comparative study. Int J Mol Med 2017; 40:1759-1771. [PMID: 29039463 PMCID: PMC5716452 DOI: 10.3892/ijmm.2017.3190] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising source from which to derive distinct somatic cell types for in vitro or clinical use. Existent protocols for hepatic differentiation of hiPSCs are primarily based on 2D cultivation of the cells. In the present study, the authors investigated the generation of hiPSC-derived hepatocyte-like cells using two different 3D culture systems: A 3D scaffold-free microspheroid culture system and a 3D hollow-fiber perfusion bioreactor. The differentiation outcome in these 3D systems was compared with that in conventional 2D cultures, using primary human hepatocytes as a control. The evaluation was made based on specific mRNA expression, protein secretion, antigen expression and metabolic activity. The expression of α-fetoprotein was lower, while cytochrome P450 1A2 or 3A4 activities were higher in the 3D culture systems as compared with the 2D differentiation system. Cells differentiated in the 3D bioreactor showed an increased expression of albumin and hepatocyte nuclear factor 4α, as well as secretion of α-1-antitrypsin as compared with the 2D differentiation system, suggesting a higher degree of maturation. In contrast, the 3D scaffold-free microspheroid culture provides an easy and robust method to generate spheroids of a defined size for screening applications, while the bioreactor culture model provides an instrument for complex investigations under physiological-like conditions. In conclusion, the present study introduces two 3D culture systems for stem cell derived hepatic differentiation each demonstrating advantages for individual applications as well as benefits in comparison with 2D cultures.
Collapse
Affiliation(s)
- Florian Meier
- Boehringer Ingelheim Pharma GmbH and Co.KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, D-13353 Berlin, Germany
| | - Joanna Brzeszczynska
- Tissue Injury and Repair Group, Chancellor's Building, Edinburgh Medical School, University of Edinburgh, EH164SB Edinburgh, UK
| | - Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, D-13353 Berlin, Germany
| | - Lyle Armstrong
- Institute of Genetic Medicine, University of Newcastle upon Tyne, NE13BZ Newcastle upon Tyne, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, University of Newcastle upon Tyne, NE13BZ Newcastle upon Tyne, UK
| | - Selina Greuel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, D-13353 Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, D-04103 Leipzig, Germany
| | - Eva Ludwig-Schwellinger
- Boehringer Ingelheim Pharma GmbH and Co.KG, Drug Metabolism and Pharmacokinetics Germany, D-88397 Biberach an der Riss, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH and Co.KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany
| | - James A Ross
- Tissue Injury and Repair Group, Chancellor's Building, Edinburgh Medical School, University of Edinburgh, EH164SB Edinburgh, UK
| | - Mario Beilmann
- Boehringer Ingelheim Pharma GmbH and Co.KG, Nonclinical Drug Safety Germany, D-88397 Biberach an der Riss, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, D-13353 Berlin, Germany
| |
Collapse
|
37
|
Cho YD, Yoon S, Kang K, Kim Y, Lee SB, Seo D, Ryu K, Jeong J, Choi D. Simple Maturation of Direct-Converted Hepatocytes Derived from Fibroblasts. Tissue Eng Regen Med 2017; 14:579-586. [PMID: 30603511 PMCID: PMC6171619 DOI: 10.1007/s13770-017-0064-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Target cells differentiation techniques from stem cells are developed rapidly. Recently, direct conversion techniques are introduced in various categories. Unlike pluripotent stem cells, this technique enables direct differentiation into the other cell types such as neurons, cardiomyocytes, insulin-producing cells, and hepatocytes without going through the pluripotent stage. However, the function of these converted cells reserve an immature phenotype. Therefore, we modified the culture conditions of mouse direct converted hepatocytes (miHeps) to mature fetal characteristics, such as higher AFP and lower albumin (ALB) expression than primary hepatocytes. First, we generate miHeps from mouse embryonic fibroblasts (MEFs) with two transcription factors HNF4α and Foxa3. These cells indicate typical epithelial morphology and express hepatic proteins. To mature hepatic function, DMSO is treated during culture time for more than 7 days. After maturation, miHeps showed features of maturation such as exhibiting typical hepatocyte-like morphology, increased up-regulated ALB and CYP enzyme gene expression, down-regulated AFP expressions, and acquired hepatic function over time. Thus, our data provides a simple method to mature direct converted hepatocytes functionally and these cells enable them to move closer to generating functional hepatocytes.
Collapse
Affiliation(s)
- Young-duck Cho
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, 02841 Korea
| | - Sangtae Yoon
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Kyojin Kang
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Yohan Kim
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, 01812 Korea
| | - Daekwan Seo
- Bioinformatics Department, Macrogen Corp, Rockville, MD 20850 USA
| | - Kiyoung Ryu
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Jaemin Jeong
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Dongho Choi
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| |
Collapse
|
38
|
Yamamoto H, Tonello JM, Sambuichi T, Kawabe Y, Ito A, Kamihira M. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors. J Biosci Bioeng 2017; 125:131-139. [PMID: 28847578 DOI: 10.1016/j.jbiosc.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/24/2022]
Abstract
New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jane Marie Tonello
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takanori Sambuichi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
39
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Abstract
The phenotype of the human embryo conceived through in vitro fertilization (IVF), that is its morphology, developmental kinetics, physiology and metabolism, can be affected by numerous components of the laboratory and embryo culture system (which comprise the laboratory environment). The culture media formulation is important in determining embryo phenotype, but this exists within a culture system that includes oxygen, temperature, pH and whether an embryo is cultured individually or in a group, all of which can influence embryo development. Significantly, exposure of an embryo to one suboptimal component of the culture system of laboratory typically predisposes the embryo to become more vulnerable to a second stressor, as has been well documented for atmospheric oxygen and individual culture, as well as for oxygen and ammonium. Furthermore, the inherent viability of the human embryo is derived from the quality of the gametes from which it is created. Patient age, aetiology, genetics, lifestyle (as well as ovarian stimulation in women) are all known to affect the developmental potential of gametes and hence the embryo. Thus, as well as considering the impact of the IVF laboratory environment, one needs to be aware of the status of the infertile couple, as this impacts how their gametes and embryos will respond to an in vitro environment. Although far from straight forward, analysing the interactions that exist between the human embryo and its environment will facilitate the creation of more effective and safer treatments for the infertile couple.
Collapse
|
41
|
Tiyaboonchai A, Cardenas-Diaz FL, Ying L, Maguire JA, Sim X, Jobaliya C, Gagne AL, Kishore S, Stanescu DE, Hughes N, De Leon DD, French DL, Gadue P. GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells. Stem Cell Reports 2017; 8:589-604. [PMID: 28196690 PMCID: PMC5355564 DOI: 10.1016/j.stemcr.2016.12.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells were created from a pancreas agenesis patient with a mutation in GATA6. Using genome-editing technology, additional stem cell lines with mutations in both GATA6 alleles were generated and demonstrated a severe block in definitive endoderm induction, which could be rescued by re-expression of several different GATA family members. Using the endodermal progenitor stem cell culture system to bypass the developmental block at the endoderm stage, cell lines with mutations in one or both GATA6 alleles could be differentiated into β-like cells but with reduced efficiency. Use of suboptimal doses of retinoic acid during pancreas specification revealed a more severe phenotype, more closely mimicking the patient’s disease. GATA6 mutant β-like cells fail to secrete insulin upon glucose stimulation and demonstrate defective insulin processing. These data show that GATA6 plays a critical role in endoderm and pancreas specification and β-like cell functionality in humans. GATA6 is required for definitive endoderm specification in human ES/iPS cells Bypassing the endoderm defect allows GATA6 mutants to generate β-like cells Suboptimal retinoic acid signaling blocks pancreas specification in GATA6 mutants GATA6 is critical for human β cell function in vitro
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lei Ying
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Xiuli Sim
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chintan Jobaliya
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Alyssa L Gagne
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Siddharth Kishore
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nkecha Hughes
- Clinical and Translational Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diva D De Leon
- Division of Endocrinology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Biol Toxicol 2017; 33:407-421. [PMID: 28144825 DOI: 10.1007/s10565-017-9383-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Hepatocytes derived from human induced pluripotent stem cells (iPSCs) hold great promise as an in vitro liver model by virtue of their unlimited long-term supply, stability and consistency in functionality, and affordability of donor diversity. However, the suitability of iPSC-derived hepatocytes (iPSC-Heps) for toxicology studies has not been fully validated. In the current study, we characterized global gene expression profiles of iPSC-Heps in comparison to those of primary human hepatocytes (PHHs) and several human hepatoma cell lines (HepaRG, HuH-7, HepG2, and HepG2/C3A). Furthermore, genes associated with hepatotoxicity, drug-metabolizing enzymes, transporters, and nuclear receptors were extracted for more detailed comparisons. Our results showed that iPSC-Heps correlate more closely to PHHs than hepatoma cell lines, suggesting that iPSC-Heps had a relatively mature hepatic phenotype that more closely resembles that of adult hepatocytes. HepaRG was the sole exception but nonetheless suffers from lack of donor diversity and poor prediction of hepatotoxicity. The effects of sex differences and DMSO treatment on gene expression of the cellular models were also investigated. Overall, the results presented in the current study suggest that iPSC-Heps represent a reproducible source of human hepatocytes and a promising in vitro model for hepatotoxicity evaluation. Further studies are needed to develop a robust protocol for hepatocyte differentiation towards a more mature adult phenotype.
Collapse
|
43
|
Cipriano M, Correia JC, Camões SP, Oliveira NG, Cruz P, Cruz H, Castro M, Ruas JL, Santos JM, Miranda JP. The role of epigenetic modifiers in extended cultures of functional hepatocyte-like cells derived from human neonatal mesenchymal stem cells. Arch Toxicol 2016; 91:2469-2489. [PMID: 27909741 DOI: 10.1007/s00204-016-1901-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/24/2016] [Indexed: 01/06/2023]
Abstract
The development of predictive in vitro stem cell-derived hepatic models for toxicological drug screening is an increasingly important topic. Herein, umbilical cord tissue-derived mesenchymal stem cells (hnMSCs) underwent hepatic differentiation using an optimized three-step core protocol of 24 days that mimicked liver embryogenesis with further exposure to epigenetic markers, namely the histone deacetylase inhibitor trichostatin A (TSA), the cytidine analogue 5-azacytidine (5-AZA) and dimethyl sulfoxide (DMSO). FGF-2 and FGF-4 were also tested to improve endoderm commitment and foregut induction during Step 1 of the differentiation protocol, being HHEX expression increased with FGF-2 (4 ng/mL). DMSO (1%, v/v) when added at day 10 enhanced cell morphology, glycogen storage ability, enzymatic activity and induction capacity. Moreover, the stability of the hepatic phenotype under the optimized differentiation conditions was examined up to day 34. Our findings showed that hepatocyte-like cells (HLCs) acquired the ability to metabolize glucose, produce albumin and detoxify ammonia. Global transcriptional analysis of the HLCs showed a partial hepatic differentiation degree. Global analysis of gene expression in the different cells revealed shared expression of gene groups between HLCs and human primary hepatocytes (hpHeps) that were not observed between HepG2 and hpHeps. In addition, bioinformatics analysis of gene expression data placed HLCs between the HepG2 cell line and hpHeps and distant from hnMSCs. The enhanced hepatic differentiation observed was supported by the presence of the hepatic drug transporters OATP-C and MRP-2 and gene expression of the hepatic markers CK18, TAT, AFP, ALB, HNF4A and CEBPA; and by their ability to display stable UGT-, EROD-, ECOD-, CYP1A1-, CYP2C9- and CYP3A4-dependent activities at levels either comparable with or even higher than those observed in primary hepatocytes and HepG2 cells. Overall, an improvement of the hepatocyte-like phenotype was achieved for an extended culture time suggesting a role of the epigenetic modifiers in hepatic differentiation and maturation and presenting hnMSC-HLCs as an advantageous alternative for drug discovery and in vitro toxicology testing.
Collapse
Affiliation(s)
- M Cipriano
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J C Correia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S P Camões
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - N G Oliveira
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - P Cruz
- ECBio S.A., Amadora, Portugal
| | - H Cruz
- ECBio S.A., Amadora, Portugal
| | - M Castro
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - J L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - J P Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
44
|
Zeilinger K, Freyer N, Damm G, Seehofer D, Knöspel F. Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 2016; 241:1684-98. [PMID: 27385595 PMCID: PMC4999620 DOI: 10.1177/1535370216657448] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.
Collapse
Affiliation(s)
- Katrin Zeilinger
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nora Freyer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Fanny Knöspel
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
45
|
Freyer N, Knöspel F, Strahl N, Amini L, Schrade P, Bachmann S, Damm G, Seehofer D, Jacobs F, Monshouwer M, Zeilinger K. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor. Biores Open Access 2016; 5:235-48. [PMID: 27610270 PMCID: PMC5003005 DOI: 10.1089/biores.2016.0027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p < 0.05) higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p < 0.05) higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures.
Collapse
Affiliation(s)
- Nora Freyer
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Fanny Knöspel
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Strahl
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Leila Amini
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Schrade
- Charité Centrum Grundlagenmedizin, Institut für Vegetative Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Charité Centrum Grundlagenmedizin, Institut für Vegetative Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Department of General-, Visceral- and Transplantation Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, Leipzig, Germany
| | - Frank Jacobs
- Janssen Research and Development, Beerse, Belgium
| | | | - Katrin Zeilinger
- Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Address correspondence to: Dr. med. vet. Katrin Zeilinger, Bioreactor Group, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany, E-mail:
| |
Collapse
|
46
|
Vanhove J, Pistoni M, Welters M, Eggermont K, Vanslembrouck V, Helsen N, Boon R, Najimi M, Sokal E, Collas P, Voncken JW, Verfaillie CM. H3K27me3 Does Not Orchestrate the Expression of Lineage-Specific Markers in hESC-Derived Hepatocytes In Vitro. Stem Cell Reports 2016; 7:192-206. [PMID: 27477635 PMCID: PMC4982990 DOI: 10.1016/j.stemcr.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023] Open
Abstract
Although pluripotent stem cells can be differentiated into the hepatocyte lineages, such cells retain an immature phenotype. As the chromatin state of regulatory regions controls spatiotemporal gene expression during development, we evaluated changes in epigenetic histone marks in lineage-specific genes throughout in vitro hepatocyte differentiation from human embryonic stem cells (hESCs). Active acetylation and methylation marks at promoters and enhancers correlated with progressive changes in gene expression. However, repression-associated H3K27me3 marks at these control regions showed an inverse correlation with gene repression during transition from hepatic endoderm to a hepatocyte-like state. Inhibitor of Enhancer of Zeste Homolog 2 (EZH2) reduced H3K27me3 decoration but did not improve hepatocyte maturation. Thus, H3K27me3 at regulatory regions does not regulate transcription and appears dispensable for hepatocyte lineage differentiation of hESCs in vitro. Epigenetic studies to understand hepatocyte differentiation from human PSC Dynamics in histone profile correlate with alterations in gene transcription hESC-derived HLCs have higher H3K27me3 mark at regulatory regions compared with PHHs Reducing H3K27me3 by EZH2 inhibition did not improve hepatocyte differentiation
Collapse
Affiliation(s)
- Jolien Vanhove
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.
| | - Mariaelena Pistoni
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium.
| | - Marc Welters
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Veerle Vanslembrouck
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Nicky Helsen
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Ruben Boon
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Cliniques St-Luc - Institut de Recherche Expérimentale et Clinique (IREC), Brussels 1200, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Cliniques St-Luc - Institut de Recherche Expérimentale et Clinique (IREC), Brussels 1200, Belgium
| | - Philippe Collas
- Faculty of Medicine, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - J Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Catherine M Verfaillie
- Department Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
47
|
Li X, Wang YK, Song ZQ, Du ZQ, Yang CX. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes. PLoS One 2016; 11:e0158074. [PMID: 27348312 PMCID: PMC4922549 DOI: 10.1371/journal.pone.0158074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
Collapse
Affiliation(s)
- Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| |
Collapse
|
48
|
Petzuch B, Groll N, Schwarz M, Braeuning A. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1. Drug Metab Dispos 2015; 43:1727-33. [PMID: 26307675 DOI: 10.1124/dmd.115.064659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022] Open
Abstract
Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells.
Collapse
Affiliation(s)
- Barbara Petzuch
- University of Tübingen, Department of Toxicology, Tübingen (B.P., M.S., A.B.), Natural and Medical Sciences Institute, Reutlingen (N.G.), and Federal Institute for Risk Assessment, Department of Food Safety, Berlin (A.B.), Germany
| | - Nicola Groll
- University of Tübingen, Department of Toxicology, Tübingen (B.P., M.S., A.B.), Natural and Medical Sciences Institute, Reutlingen (N.G.), and Federal Institute for Risk Assessment, Department of Food Safety, Berlin (A.B.), Germany
| | - Michael Schwarz
- University of Tübingen, Department of Toxicology, Tübingen (B.P., M.S., A.B.), Natural and Medical Sciences Institute, Reutlingen (N.G.), and Federal Institute for Risk Assessment, Department of Food Safety, Berlin (A.B.), Germany
| | - Albert Braeuning
- University of Tübingen, Department of Toxicology, Tübingen (B.P., M.S., A.B.), Natural and Medical Sciences Institute, Reutlingen (N.G.), and Federal Institute for Risk Assessment, Department of Food Safety, Berlin (A.B.), Germany
| |
Collapse
|
49
|
Tanabe S. Signaling involved in stem cell reprogramming and differentiation. World J Stem Cells 2015; 7:992-998. [PMID: 26328015 PMCID: PMC4550631 DOI: 10.4252/wjsc.v7.i7.992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.
Collapse
Affiliation(s)
- Shihori Tanabe
- Shihori Tanabe, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|