1
|
Zhang Y, Feng G, Zhang W, Liu X. Natural Compounds Exert Anti-Obesity Effects by Regulating Cytokines. Phytother Res 2025. [PMID: 40312999 DOI: 10.1002/ptr.8508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/13/2025] [Accepted: 03/29/2025] [Indexed: 05/03/2025]
Abstract
Obesity, along with its associated health risks such as hypertension, hyperlipidemia, Type 2 diabetes, stroke, metabolic syndrome, asthma, and cancer, constitutes a significant global health burden, contributing substantially to morbidity and mortality. Cytokines, a group of secreted signaling proteins, are crucial in initiating, maintaining, and resolving immune and metabolic responses. Although cytokines have unique advantages in regulating immune and metabolic functions, their therapeutic application for obesity remains limited in clinical practice. Natural compounds, known for their structural diversity and low toxicity, have become a valuable resource for drug development. Many natural compounds have shown anti-obesity effects. This review comprehensively examines the mechanisms underlying obesity, with a specific focus on the roles of cytokines, such as inflammatory cytokines, adipokines, and growth factors. Additionally, it highlights the regulatory interactions between gut microbiota and cytokines in obesity. The review critically analyzes current anti-obesity pharmacological interventions and summarizes advanced methodologies for identifying potential natural compounds. Finally, it identifies promising natural compounds that modulate cytokine activity to prevent or treat obesity and assesses their potential as complementary or alternative therapies.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guize Feng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Ruan H, Li W, Chang H, Wen M, Luo S, Song F, Ye L, Mei J, Zhu X, Liu X, Jiang N. Antioxidant, Hypoglycemic, and Hypolipidemic Effects of Puerarin In Vivo. Food Sci Nutr 2025; 13:e70257. [PMID: 40336535 PMCID: PMC12056237 DOI: 10.1002/fsn3.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Puerarin (PUE) exhibits various pharmacological effects. This study evaluated its antioxidant, hypoglycemic, and hypolipidemic effects in vivo using models of aging, diabetes, and hyperlipidemia. D-galactose-induced aging, streptozotocin (STZ)-induced diabetic, and high-fat diet-induced hyperlipidemic mouse models were established. To evaluate the therapeutic effects, mice were administered various doses of PUE (50, 100, and 200 mg/kg). Results showed that PUE treatment improved antioxidant enzyme activities and reduced serum and liver malondialdehyde (MDA) levels in aging mice, thereby mitigating cellular oxidative stress. In diabetic mice, fasting blood glucose (FBG) levels were observed to decrease, while hepatic hexokinase (HK) activity, pyruvate kinase (PK) activity, and insulin levels increased after 7 weeks of PUE treatment. Furthermore, PUE significantly enhanced blood lipid profiles and antioxidant enzyme properties in diabetic mice. In hyperlipidemic mice, PUE administration led to decreased levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). These findings indicate that PUE possesses antioxidant, hypoglycemic, and hypolipidemic properties and shows potential for treating aging and related diseases like type 2 diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Hong Ruan
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Wanqing Li
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Huien Chang
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Manlin Wen
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Shouchun Luo
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Fangshuai Song
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
| | - Li Ye
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Jie Mei
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Xiqiang Zhu
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Xiaopeng Liu
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| | - Ning Jiang
- Hubei Key Laboratory of Biologic Resources Protection and UtilizationHubei Minzu UniversityEnshiPeople's Republic of China
- School of Biological Science and TechnologyHubei Minzu UniversityEnshiPeople's Republic of China
| |
Collapse
|
3
|
Lei Y, Zhang R, Li Y, Pang H, Fu Q, Chen C, Liu F. Pueraria Radix and Its Major Constituents Against Metabolic Diseases: Pharmacological Mechanisms and Potential Applications. Phytother Res 2025. [PMID: 40099674 DOI: 10.1002/ptr.8464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Metabolic diseases (MD), a series of chronic disorders, severely decrease the quality of life for patients but also cause a heavy economic burden. The ancient Chinese herb Pueraria Radix (PR) plays an important role in curing MD. Up to now, the bioactive compounds found in PR demonstrate effective actions in treating various metabolic disorders. This paper systematically summarizes the recent research advances on the pharmacological activities of PR and its constituents, explains the underlying mechanisms of preventing and treating MD. Besides, phytochemicals, drug delivery systems, clinical application, and safety of PR have been researched, hoping to provide valuable information for the future application, development, and improvement of PR as well as MD treatment. The information about PR was collected from various sources including classic books about Chinese herbal medicine and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, Google Scholar, X-MOL, and WANFANG using keywords given and terms like pharmacological and phytochemical details of this plant. The chemical constituents isolated and identified from PR, such as isoflavones including puerarin, formononetin, daidzin, daidzein, genistein, and so forth, polysaccharides, alkaloids, starch, and other components have been proved to have the effect of anti-diabetic, anti-obesity, anti-atherosclerotic, anti-osteoporotic, anti-hypertensive, anti-hyperlipidemia, and anti-nonalcoholic fatty liver disease (NAFLD) through PI3K/Akt, Nrf2/HO-1, LOX-1/ROS/Akt/eNOS, ERK1/2-Nrf2, GLP-1R, Caspase, MAPK, NF-κB, and other anti-inflammatory and anti-oxidant signaling pathways. Also, the active contents of PR have been designed as drug delivery systems to improve the therapeutic effects of MD. It provides a preclinical basis for the efficacy of PR as an effective therapeutic agent for the prevention and treatment of MD. Even so, further studies are still needed to enhance bioavailability and expand clinical application.
Collapse
Affiliation(s)
- Yicheng Lei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Yan Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Chen Chen
- School of Biomedical Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
Dong H, Zhao Y, Teng H, Jiang T, Yue Y, Zhang S, Fan L, Yan M, Shao S. Pueraria lobata antioxidant extract ameliorates non-alcoholic fatty liver by altering hepatic fat accumulation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118468. [PMID: 38906339 DOI: 10.1016/j.jep.2024.118468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata is essential medicinal and edible homologous plants widely cultivated in Asian countries. Therefore, P. lobata is widely used in the food, health products and pharmaceutical industries and have significant domestic and international market potential and research value. P. lobata has remarkable biological activities in protecting liver, relieving alcoholism, antioxidation, anti-tumor and anti-inflammation in clinic. However, the potential mechanism of ethyl acetate extract of Pueraria lobata after 70% alcohol extraction (APL) ameliorating nonalcoholic fatty liver disease (NAFLD) has not been clarified. AIM OF THE STUDY This study aimed to investigate the ameliorative effect of P. lobata extract on human hepatoma cells and injury in rats, and to evaluate its therapeutic potential for ameliorating NAFLD. METHODS Firstly, the effective part of P. lobata extract was determined as APL by measuring its total substances and antioxidant activity. And then the in vitro and in vivo models of NAFLD were adopted., HepG2 cells were incubated with palmitic acid (PA) and hydrogen peroxide (H2O2). In order to evaluate the effect of APL, Simvastatin and Vitamin C (VC) were used as positive control. Various parameters related to lipogenesis and fatty acid β-oxidation were studied, such as intracellular lipid accumulation, reactive oxygen species (ROS), Western Blot, mitochondrial membrane potential, apoptosis, and the mechanism of APL improving NAFLD. The chemical components of APL were further determined by HPLC and UPLC-MS, and molecular docking was carried out with Keap1/Nrf2/HO-1 pathway related proteins. RESULTS APL significantly reduced lipid accumulation and levels of oxidative stress-related factors in vitro and in vivo. Immunohistochemical、Western Blot and PCR analysis showed that the expressions of Nrf2 and HO-1 were up-regulated in APL treatment. The Nrf2 inhibitor ML385 can block the rescue by APL of cellular oxidative stress and lipid accumulation induced by H2O2 and PA, demonstrating its dependence on Nrf2. UPLC/MS analysis showed that there were 3'-hydroxyl puerarin, puerarin, 3'-methoxy puerarin, daidzein, genistin, ononin, daidzin and genistein. CONCLUSION This study further clarified the mechanism of P. lobata extract in improving NAFLD, which provided a scientific basis for developing new drugs to protect liver injury and laid a solid foundation for developing P. lobata Chinese herbal medicine resources.
Collapse
Affiliation(s)
- Hongying Dong
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - He Teng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Jiang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yihan Yue
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shuang Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lin Fan
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| | - Shuai Shao
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China.
| |
Collapse
|
6
|
He YX, Liu MN, Wu H, Lan Q, Liu H, Mazhar M, Xue JY, Zhou X, Chen H, Li Z. Puerarin: a hepatoprotective drug from bench to bedside. Chin Med 2024; 19:139. [PMID: 39380120 PMCID: PMC11460048 DOI: 10.1186/s13020-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
Pueraria is a time-honored food and medicinal plant, which is widely used in China. Puerarin, the main component extracted from pueraria, has a variety of pharmacological characteristics. In recent years, puerarin has received increasing attention for its significant hepatoprotective effects, such as metabolic dysfunction-associated steatotic liver disease, alcohol-related liver disease, and hepatic carcinoma. This paper explores the pharmacological effects of puerarin on various liver diseases through multiple mechanisms, including inflammation factors, oxidative stress, lipid metabolism, apoptosis, and autophagy. Due to its restricted solubility, pharmacokinetic studies revealed that puerarin has a low bioavailability. However, combining puerarin with novel drug delivery systems can improve its bioavailability. Meanwhile, puerarin has very low toxicity and high safety, providing a solid foundation for its further. In addition, this paper discusses puerarin's clinical trials, highlighting its unique advantages. Given its excellent pharmacological effects, puerarin is expected to be a potential drug for the treatment of various liver diseases.
Collapse
Affiliation(s)
- Yi-Xiang He
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xin Zhou
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Chen
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhi Li
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
7
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
8
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
10
|
Jing X, Zhou J, Zhang N, Zhao L, Wang S, Zhang L, Zhou F. A Review of the Effects of Puerarin on Glucose and Lipid Metabolism in Metabolic Syndrome: Mechanisms and Opportunities. Foods 2022; 11:foods11233941. [PMID: 36496749 PMCID: PMC9739247 DOI: 10.3390/foods11233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic diseases, including metabolic syndrome related to sugar and lipid metabolic disorders, are the leading causes of premature death around the world. Novel treatment strategies without undesirable effects are urgently needed. As a natural functional ingredient, puerarin is a promising alternative for the treatment of sugar and lipid metabolic disorders. However, the applications of puerarin are limited due to its poor solubility and short half-life. Various drug delivery systems have been investigated to improve the bioavailability of puerarin. This review summarizes the mechanisms involved in the beneficial action of puerarin: suppressing the release of glucose and FFA; regulating the transport of glucose and fatty acids; acting on the PI3K-Akt and AMPK signaling pathways to decrease the synthesis of glucose and fatty acids; acting on the PPAR signaling pathway to promote β-oxidation; and improving insulin secretion and sensitivity. In addition, the preparation technologies used to improve the bioavailability of puerarin are also summarized in this review, in the hope of helping to promote the application of puerarin.
Collapse
Affiliation(s)
- Xiaoxuan Jing
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Shiran Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (L.Z.); (F.Z.)
| |
Collapse
|
11
|
Edible Pueraria lobata-Derived Exosomes Promote M2 Macrophage Polarization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238184. [PMID: 36500277 PMCID: PMC9735656 DOI: 10.3390/molecules27238184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Pueraria lobata (known as Gegen) is an edible and medicinal herb that is a nutritious medicine food homology plant in China. Previous studies indicated that P. lobata plays an essential role in controlling cytokines. However, the exact mechanism of the inflammation response is still unknown. In this study, we observed the uptake of P. lobata-derived exosomes (Exos) in isolated mouse macrophages. Our results show that P. lobata-derived Exos shift M1 macrophages toward the M2. These data present that P. lobata and puerarin might exert and enhance anti-inflammatory effects through the activation of exosomes and shifts in macrophage polarization, providing strong evidence for the application of P. lobata as novel an anti-inflammatory therapeutic biomaterial.
Collapse
|
12
|
Wang G, Sun C, Xie B, Wang T, Liu H, Chen X, Huang Q, Zhang C, Li T, Deng W. Cordyceps guangdongensis lipid-lowering formula alleviates fat and lipid accumulation by modulating gut microbiota and short-chain fatty acids in high-fat diet mice. Front Nutr 2022; 9:1038740. [PMID: 36407511 PMCID: PMC9667106 DOI: 10.3389/fnut.2022.1038740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2023] Open
Abstract
Obesity has caused serious health and economic problems in the world. Cordyceps guangdongensis is a high-value macrofungus with broad application potential in the food and bio-medicine industry. This current study aimed to estimate the role of C. guangdongensis lipid-lowering compound formula (CGLC) in regulating fat and lipid accumulation, gut microbiota balance, short-chain fatty acid (SCFA) contents, and expression levels of genes involved in fat and lipid metabolism in high-fat diet (HFD) mice. The results showed that CGLC intervention markedly reduced body weights and fat accumulation in HFD mice, improved glucose tolerance and blood lipid levels, and decreased lipid droplet accumulation and fat vacuole levels in the liver. CGLC decreased the ratio of Firmicutes and Bacteroidetes and increased the relative abundances of Bacteroides (B. acidifaciens) and Bifidobacterium (B. pseudolongum). In addition, CGLC treatment significantly promoted the production of SCFAs and regulated the relative expression levels of genes involved in fat and lipid metabolism in liver. Association analysis showed that several species of Bacteroides and most of SCFAs were significantly associated with serum lipid indicators. These results suggested that CGLC is a novel candidate formulation for treating obesity and non-alcohol fatty liver by regulating gut microbiota, SCFAs, and genes involved in fat and lipid metabolism.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Bojun Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianglian Chen
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Qiuju Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Zhou J, Zhang N, Aldhahrani A, Soliman MM, Zhang L, Zhou F. Puerarin ameliorates nonalcoholic fatty liver in rats by regulating hepatic lipid accumulation, oxidative stress, and inflammation. Front Immunol 2022; 13:956688. [PMID: 35958617 PMCID: PMC9359096 DOI: 10.3389/fimmu.2022.956688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the public health problems globally. The occurrence of NAFLD is usually accompanied by a series of chronic metabolic diseases, with a prevalence rate is 25.24% among adults worldwide. Therefore, NAFLD seriously affects the quality of life in patients and causes a large economic burden. It has been reported that puerarin has the function of lowering the serum lipids, but due to the complexity of NAFLD, the specific mechanism of action has not been clarified. The aim of this study was to evaluate the preventive or ameliorating effects of two doses of puerarin (0.11% and 0.22% in diet) on high-fat and high-fructose diet (HFFD)-induced NAFLD in rats. The rats were fed with HFFD-mixed puerarin for 20 weeks. The results showed that puerarin ameliorated the levels of lipids in the serum and liver. Further exploration of the mechanism found that puerarin ameliorated hepatic lipid accumulation in NAFLD rats by reducing the expression of Srebf1, Chrebp, Acaca, Scd1, Fasn, Acacb, Cd36, Fatp5, Degs1, Plin2, and Apob100 and upregulating the expression of Mttp, Cpt1a, and Pnpla2. At the same time, after administration of puerarin, the levels of antioxidant markers (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased in the serum and liver, and the contents of serum and hepatic inflammatory factors (interleukin-18, interleukins-1β, and tumor necrosis factor α) were clearly decreased. In addition, puerarin could ameliorate the liver function. Overall, puerarin ameliorated HFFD-induced NAFLD by modulating liver lipid accumulation, liver function, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Feng Zhou,
| |
Collapse
|
14
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Jeong HG. Puerarin attenuates hepatic steatosis via G‐protein‐coupled estrogen receptor‐mediated calcium and
SIRT1
signaling pathways. Phytother Res 2022; 36:3601-3618. [DOI: 10.1002/ptr.7526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Gi Ho Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis Korea Basic Science Institute (KBSI) Cheongju Republic of Korea
| | | | - Hye Gwang Jeong
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
15
|
Zhu Q, Yang S, Wei C, Lu G, Lee K, He JC, Liu R, Zhong Y. Puerarin attenuates diabetic kidney injury through interaction with Guanidine nucleotide-binding protein Gi subunit alpha-1 (Gnai1) subunit. J Cell Mol Med 2022; 26:3816-3827. [PMID: 35678269 PMCID: PMC9279604 DOI: 10.1111/jcmm.17414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
Radix puerariae, a traditional Chinese herbal medication, has been used to treat patients with diabetic kidney disease (DKD). Our previous studies demonstrated that puerarin, the active compound of radix puerariae, improves podocyte injury in type 1 DKD mice. However, the direct molecular target of puerarin and its underlying mechanisms in DKD remain unknown. In this study, we confirmed that puerarin also improved DKD in type 2 diabetic db/db mice. Through RNA-sequencing odf isolated glomeruli, we found that differentially expressed genes (DEGs) that were altered in the glomeruli of these diabetic mice but reversed by puerarin treatment were involved mostly in oxidative stress, inflammatory and fibrosis. Further analysis of these reversed DEGs revealed protein kinase A (PKA) was among the top pathways. By utilizing the drug affinity responsive target stability method combined with mass spectrometry analysis, we identified guanine nucleotide-binding protein Gi alpha-1 (Gnai1) as the direct binding partner of puerarin. Gnai1 is an inhibitor of cAMP production which is known to have protection against podocyte injury. In vitro, we showed that puerarin not only interacted with Gnai1 but also increased cAMP production in human podocytes and mouse diabetic kidney in vivo. Puerarin also enhanced CREB phosphorylation, a downstream transcription factor of cAMP/PKA. Overexpression of CREB reduced high glucose-induced podocyte apoptosis. Inhibition of PKA by Rp-cAMP also diminished the effects of puerarin on high glucose-induced podocyte apoptosis. We conclude that the renal protective effects of puerarin are likely through inhibiting Gnai1 to activate cAMP/PKA/CREB pathway in podocytes.
Collapse
Affiliation(s)
- Qingqing Zhu
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shumin Yang
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chengguo Wei
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Geming Lu
- Division of Endocrinology, Diabetes and Bone Diseases, Icahn School of Medicine at Mount SinaiDiabetes, Obesity and Metabolism InstituteNew YorkNew YorkUSA,Icahn School of Medicine at Mount SinaiMindich Child Health and Development InstituteNew YorkNew YorkUSA
| | - Kyung Lee
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Cijiang He
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ruijie Liu
- Department of Medicine, Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yifei Zhong
- Division of NephrologyLonghua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
16
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
17
|
Protective Effect of Pueraria lobate (Willd.) Ohwi root extract on Diabetic Nephropathy via metabolomics study and mitochondrial homeostasis-involved pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Chen H, Peng T, Shang H, Shang X, Zhao X, Qu M, Song X. RNA-Seq Analysis Reveals the Potential Molecular Mechanisms of Puerarin on Intramuscular Fat Deposition in Heat-Stressed Beef Cattle. Front Nutr 2022; 9:817557. [PMID: 35387191 PMCID: PMC8978796 DOI: 10.3389/fnut.2022.817557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effect of Puerarin on intramuscular fat deposition in heat-stressed beef cattle and its underlying mechanism. Thirty-two healthy Jinjiang bulls were randomly divided into four groups and dietary with 0 (Control), 200 (Pue200), 400 (Pue400), and 800 (Pue800) mg/kg Puerarin in the feed concentrate. The results showed that Puerarin treatment enhanced the concentration of crude fat, fatty acid (C14:1 and C17:1), and the activity of fatty acid synthase in Longissimus thoracis (LT), but decreased the levels of blood leptin (P < 0.05). High-throughput sequencing of mRNA technology (RNA-Seq) was used and the analysis showed that 492 genes were down-regulated and 341 genes were up-regulated in LT, and these genes were significantly enriched to the pathways related to lipid metabolism. These results indicated that dietary supplemental with Puerarin enhanced intramuscular fat deposition by regulating lipid metabolism of heat-stressed beef cattle.
Collapse
|
19
|
Jiang Z, Cui X, Qu P, Shang C, Xiang M, Wang J. Roles and mechanisms of puerarin on cardiovascular disease:A review. Biomed Pharmacother 2022; 147:112655. [DOI: 10.1016/j.biopha.2022.112655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
|
20
|
Puerarin Attenuates Obesity-Induced Inflammation and Dyslipidemia by Regulating Macrophages and TNF-Alpha in Obese Mice. Biomedicines 2022; 10:biomedicines10010175. [PMID: 35052852 PMCID: PMC8773888 DOI: 10.3390/biomedicines10010175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity causes low-grade inflammation that results in dyslipidemia and insulin resistance. We evaluated the effect of puerarin on obesity and metabolic complications both in silico and in vivo and investigated the underlying immunological mechanisms. Twenty C57BL/6 mice were divided into four groups: normal chow, control (HFD), HFD + puerarin (PUE) 200 mg/kg, and HFD + atorvastatin (ATO) 10 mg/kg groups. We examined bodyweight, oral glucose tolerance test, serum insulin, oral fat tolerance test, serum lipids, and adipocyte size. We also analyzed the percentage of total, M1, and M2 adipose tissue macrophages (ATMs) and the expression of F4/80, tumor necrosis factor-α (TNF-α), C-C motif chemokine ligand 2 (CCL2), CCL4, CCL5, and C-X-C motif chemokine receptor 4. In silico, we identified the treatment-targeted genes of puerarin and simulated molecular docking with puerarin and TNF, M1, and M2 macrophages based on functionally enriched pathways. Puerarin did not significantly change bodyweight but significantly improved fat pad weight, adipocyte size, fat area in the liver, free fatty acids, triglycerides, total cholesterol, and HDL-cholesterol in vivo. In addition, puerarin significantly decreased the ATM population and TNF-α expression. Therefore, puerarin is a potential anti-obesity treatment based on its anti-inflammatory effects in adipose tissue.
Collapse
|
21
|
He H, Peng S, Song X, Jia R, Zou Y, Li L, Yin Z. Protective effect of isoflavones and triterpenoid saponins from pueraria lobata on liver diseases: A review. Food Sci Nutr 2022; 10:272-285. [PMID: 35035928 PMCID: PMC8751448 DOI: 10.1002/fsn3.2668] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/30/2023] Open
Abstract
In recent years, with the improvement of people's living standard and the change of diet structure, liver disease and its related complications have become a significant public health problem globally. Pueraria lobata (Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep) belongs to the genus Pueraria, which is widely planted and used as medicine and food in Asia with a long history. A variety of natural active products, including puerarin, daidzein, formononetin, genistein, and soyasaponin, have been isolated and identified from pueraria lobata. A large number of studies have shown that various natural active products of pueraria lobata can play a protective role in different types of liver diseases by regulating oxidative stress, inflammatory response, lipid metabolism, etc. In this review, we focused on the protective effects of isoflavones and triterpenoid saponins from pueraria lobata on the liver through different targeted therapeutic mechanisms. What's more, we summarized their therapeutic potential for different types of liver diseases to provide evidence for their clinical application.
Collapse
Affiliation(s)
- Heng He
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Shuwei Peng
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Xu Song
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Yuanfeng Zou
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Lixia Li
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Zhongqiong Yin
- Natural Medicine Research CenterCollege of Veterinary MedicineSichuan Agricultural UniversityChengduChina
| |
Collapse
|
22
|
Zhang L, Liu L, Wang M. Effects of puerarin on chronic inflammation: Focus on the heart, brain, and arteries. Aging Med (Milton) 2021; 4:317-324. [PMID: 34964013 PMCID: PMC8711227 DOI: 10.1002/agm2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
Age-associated increases in physical and mental stress, known as allostatic load, could lead to a chronic low-grade inflammation in the heart, brain, and arteries. This low-grade inflammation potentially contributes to adverse structural and functional remodeling, such as intimal medial thickening, endothelial dysfunction, arterial stiffening, cardiac hypertrophy and ischemia, and cognitive decline. These cellular and tissue remodeling is the fertile soil for the development of age-associated structural and functional disorders in the cardiovascular and cerebrovascular systems in the pathogenesis of obesity, type II diabetes, hypertension, atherosclerosis, heart dysfunction, and cognitive decline. Growing evidence indicates that puerarin, a polyphenol, extracted from Puerara Labota, efficiently alleviates the initiation and progression of obesity, type II diabetes, hypertension, atherosclerosis, cardiac ischemia, cardiac arrythmia, cardiac hypertrophy, ischemic stroke, and cognition decline via suppression of oxidative stress and inflammation. This mini review focuses on recent advances in the effects of puerarin on the oxidative and inflammatory molecular, cellular, tissue events in the heart, brain, and arteries.
Collapse
Affiliation(s)
- Li Zhang
- Department of CardiologyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Lisheng Liu
- National Centre for Cardiovascular DiseaseThe Beijing Hypertension League InstituteBeijingChina
| | - Mingyi Wang
- Laboratory of Cardiovascular ScienceIntramural Research ProgramNational Institute on AgingNational Institutes of HealthBRCBaltimoreMarylandUSA
| |
Collapse
|
23
|
Silva SP, Beserra-Filho JIA, Kubota MC, Cardoso GN, Freitas FRS, Gonçalves BSM, Vicente-Silva W, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Maria-Macêdo A, Santos JR, Estadella D, Ribeiro AM. Palatable high-fat diet intake influences mnemonic and emotional aspects in female rats in an estrous cycle-dependent manner. Metab Brain Dis 2021; 36:1717-1727. [PMID: 34406559 DOI: 10.1007/s11011-021-00812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
Worldwide, the excessive consumption of fat and/or sugar has increased considerably. Palatable high-fat diets (HFDs) lead to metabolic disturbances and obesity, and impact emotional and cognitive processes. Previous studies in rodent models suggested that HFDs often cause multiple behavioral alterations, such as learning and memory deficits, and anxiety-like behaviors. Different sexes imply different behavioral and cognitive abilities; yet, most of these studies dealt with male or ovariectomized rats. We evaluated HFD effects in female rats submitted to different behavioral tasks, considering the effects of endogenous hormonal variations throughout estrous cycle. Female Wistar rats in each phase of the estrous cycle using commercial chow (CC) or HFD for 32 days. During treatment, behavioral assessments using sucrose preference (SP), elevated plus-maze (EPM), open field (OF) and novel-object recognition (NOR). At the end of the behavioral tests, animals were euthanized, and performed an immunohistochemical analysis of the brains by brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase (TH). The main results demonstrated that (1) HFD-fed rats had higher body mass gain and food intake, without altering caloric intake, (2) rats in diestrus had lower sucrose intake, (3) females in metestrus and diestrus showed deficits in the novel-object recognition memory. Furthermore, TH-immunoreactivity decreased in the dorsal striatum and BDNF in the hippocampus in HFD-fed females. These results suggest that HFD alters neurochemical and metabolic aspects that may induce phase-dependent behavioral changes in female rats.
Collapse
Affiliation(s)
- Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - José Ivo Araújo Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Melina Chiemi Kubota
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Gabriela Nascimento Cardoso
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Francisca Rayanne Silva Freitas
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Bianca Santos Martins Gonçalves
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Wilson Vicente-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Ana Claúdia Custódio-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Debora Estadella
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim 136, Edifício Central, CEP 11015-020, Santos, SP, Brazil.
| |
Collapse
|
24
|
Prasain JK, Barnes S, Wyss JM. Kudzu isoflavone C‐glycosides: Analysis, biological activities, and metabolism. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jeevan K. Prasain
- Departments of Pharmacology and Toxicology University of Alabama Birmingham Alabama United States
| | - Stephen Barnes
- Departments of Pharmacology and Toxicology University of Alabama Birmingham Alabama United States
| | - J. Michael Wyss
- Department of Cell Development and Integrative Biology University of Alabama Birmingham Alabama United States
| |
Collapse
|
25
|
Peng T, Shang H, Yang M, Li Y, Luo J, Qu M, Zhang X, Song X. Puerarin improved growth performance and postmortem meat quality by regulating lipid metabolism of cattle under hot environment. Anim Sci J 2021; 92:e13543. [PMID: 33738872 DOI: 10.1111/asj.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the effect of puerarin on performance, meat quality, and serum indexes of beef cattle under hot environment. Thirty-two bulls were divided into four groups and fed diet supplemented with puerarin at 0, 200, 400, or 800 mg/kg. Results showed that heat stress was employed for 54 out of 60 days, 400 mg/kg group declined serum cortisol (COR) contents, all treatments increased the contents of total cholesterol, high density lipoprotein cholesterol, and total superoxide dismutase activity; in addition, glutathione peroxidase activity of 200 mg/kg group were enhanced, only 800 mg/kg group enhanced immunoglobulin (IgA, IgM, and IgG) and low density lipoprotein cholesterol contents compared with the control (p < .05). Moreover, 400-mg/kg puerarin increased serum growth hormone levels compared with 200 mg/kg group but declined COR concentrations compared with 200 mg/kg and 800 mg/kg groups (p < .05). More importantly, average daily gain and daily matter intake, and intramuscular fat contents of 400 mg/kg group were enhanced, but the shear force of beef in 400 mg/kg and 800 mg/kg groups were declined compared with the control (p < .05). These findings indicated that supplemental with puerarin enhanced immune and antioxidant, and 400 mg/kg of puerarin improved performance and meat quality by normalizing levels of stress hormones and increasing intramuscular fat deposition of beef cattle under hot environment.
Collapse
Affiliation(s)
- Tao Peng
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Hanle Shang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingrui Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xinyu Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
26
|
Yang L, Zhu Y, Zhong S, Zheng G. Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating AMPK in high-fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:573-581. [PMID: 32673411 DOI: 10.1002/jsfa.10669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Caffeine has an anti-obesity effect, although chronic excessive caffeine consumption also causes caffeinism, which is marked by increased anxiety or depression, amongst other symptoms. The present study aimed to investigate whether the addition of flavonoids such as astilbin can reduce the caffeine dose needed to inhibit obesity. RESULTS ICR mice (n = 80) were fed with normal diet, high-fat diet (HFD), HFD supplemented with astilbin, caffeine, or astilbin + caffeine for 12 weeks. When diets supplemented with astilbin, 0.3 g kg-1 diet caffeine had the same effect as 0.6 g kg-1 diet caffeine alone, and 0.6 g kg-1 diet caffeine combined with astilbin most effectively inhibited HFD-induced obesity. Astilbin improved the anti-obesity effects of caffeine on lipid accumulation via the activation of AMP-activated protein kinase α (AMPKα). (i) Activated AMPKα decreased lipid biosynthesis by suppressing the activity or mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element binding protein 1c and its target gene fatty acid synthase. (ii) Activated AMPKα also up-regulated lipolysis by enhancing the expression of adipose triglyceride lipase and increasing the phosphorylation of hormone-sensitive lipase. (iii) Finally, activated AMPKα increased carnitine acyltransferase and acyl-CoA oxidase activities, which further promoted fatty acid β-oxidation. CONCLUSION The results obtained in the present study indicate that astilbin may decrease the effective dose of caffeine needed for an anti-obesity effect and also suggest that it suppresses fat accumulation via the activation of AMPK. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yanping Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shusheng Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
27
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
28
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
29
|
Song J, Kim YS, Lee D, Kim H. Safety evaluation of root extract of Pueraria lobata and Scutellaria baicalensis in rats. BMC Complement Med Ther 2020; 20:226. [PMID: 32680504 PMCID: PMC7368675 DOI: 10.1186/s12906-020-02998-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background The roots of Pueraria lobata and Scutellaria baicalensis, herbal medicines with a long history of widespread use, have been traditionally prescribed in combination to treat stroke, diabetes, and acute infectious diarrhea in East Asia. Nevertheless, toxicological data on these herbs and their combination are limited. This study investigated the acute and 13-week subchronic toxicity of root extract of P. lobata and S. baicalensis (HT047) for stroke treatment in male and female Sprague-Dawley rats. Methods In the acute toxicity study, HT047 was administered orally at a single dose of 5000 mg/kg. In the subchronic toxicity study, HT047 was administered orally at repeated daily doses of 800, 2000, and 5000 mg/kg/day for 13 weeks, followed by a 4-week recovery period. Results In the acute toxicity study, there were no deaths or toxicologically significant changes in clinical signs, body weight, and necropsy findings. In the subchronic toxicity study, HT047 at all doses caused no death and no treatment-related adverse effects on food consumption; organ weight; ophthalmologic, urinalysis, and hematological parameters; and necropsy findings of both rat sexes. There were some treatment-related alterations in clinical signs, body weight, and serum biochemistry and histopathological parameters; however, these changes were not considered toxicologically significant because they were resolved during the recovery period or resulted from the pharmacological effects of P. lobata and S. baicalensis. Conclusions The oral approximate lethal dose (the lowest dose that causes mortality) of HT047 was greater than 5000 mg/kg in male and female rats. The oral no-observed-adverse-effect level of HT047 was greater than 5000 mg/kg/day in rats of both sexes, and no target organs were identified. The present findings support the safety of an herbal extract of P. lobata and S. baicalensis as a therapeutic agent for stroke and further confirm the safety of the combined use of P. lobata and S. baicalensis in clinical practice.
Collapse
Affiliation(s)
- Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Young-Sik Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
30
|
Zhou Y, Xue R, Wang J, Ren H. Puerarin inhibits hepatocellular carcinoma invasion and metastasis through miR-21-mediated PTEN/AKT signaling to suppress the epithelial-mesenchymal transition. Braz J Med Biol Res 2020; 53:e8882. [PMID: 32294699 PMCID: PMC7162583 DOI: 10.1590/1414-431x20198882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary malignant tumors of the liver worldwide. Liver resection and transplantation are currently the only effective treatments; however, recurrence and metastasis rates are still high. Previous studies have shown that the epithelial-mesenchymal transition (EMT) is a key step in HCC invasion and metastasis. Inhibition of EMT has become a new therapeutic strategy for tumors. Recently, puerarin, a well-characterized component of traditional Chinese medicine, has been isolated from Pueraria radix and exerts positive effects on many diseases, particularly cancers. In this study, CCK-8, EdU immunofluorescence, colony formation, wound healing, and migration assays were used to detect the effects of puerarin on HCC cells. We further analyzed the relationship between puerarin and miR-21/PTEN/EMT markers in HCC cell lines. Our results showed that HCC cell proliferation, migration, invasion, tumor formation, and metastasis were reduced by puerarin in vitro and in vivo. Additionally, puerarin inhibited the EMT process of HCC by affecting the expression of Slug and Snail. Moreover, oncogenic miR-21 was inhibited by puerarin, coupled with an increase in the tumor suppressor gene PTEN. Increasing miR-21 expression or decreasing PTEN expression reversed the inhibition effects of puerarin in HCC. These data confirmed that puerarin affects HCC through the miR-21/PTEN/EMT regulatory axis. Overall, puerarin may represent a chemopreventive and/or chemotherapeutic agent for HCC treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Ruifeng Xue
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Choi Y, Bose S, Shin NR, Song EJ, Nam YD, Kim H. Lactate-Fortified Puerariae Radix Fermented by Bifidobacterium breve Improved Diet-Induced Metabolic Dysregulation via Alteration of Gut Microbial Communities. Nutrients 2020; 12:E276. [PMID: 31973042 PMCID: PMC7070547 DOI: 10.3390/nu12020276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/15/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puerariae Radix (PR), the dried root of Pueraria lobata, is reported to possess therapeutic efficacies against various diseases including obesity, diabetes, and hypertension. Fermentation-driven bioactivation of herbal medicines can result in improved therapeutic potencies and efficacies. METHODS C57BL/6J mice were fed a high-fat diet and fructose in water with PR (400 mg/kg) or PR fermented by Bifidobacterium breve (400 mg/kg) for 10 weeks. Histological staining, qPCR, Western blot, and 16s rRNA sequencing were used to determine the protective effects of PR and fermented PR (fPR) against metabolic dysfunction. RESULTS Treatment with both PR and fPR for 10 weeks resulted in a reduction in body weight gain with a more significant reduction in the latter group. Lactate, important for energy metabolism and homeostasis, was increased during fermentation. Both PR and fPR caused significant down-regulation of the intestinal expression of the MCP-1, IL-6, and TNF-α genes. However, for the IL-6 and TNF-α gene expressions, the inhibitory effect of fPR was more pronounced (p < 0.01) than that of PR (p < 0.05). Oral glucose tolerance test results showed that both PR and fPR treatments improved glucose homeostasis. In addition, there was a significant reduction in the expression of hepatic gene PPARγ, a key regulator of lipid and glucose metabolism, following fPR but not PR treatment. Activation of hepatic AMPK phosphorylation was significantly enhanced by both PR and fPR treatment. In addition, both PR and fPR reduced adipocyte size in highly significant manners (p < 0.001). Treatment by fPR but not PR significantly reduced the expression of PPARγ and low-density lipoproteins in adipose tissue. CONCLUSION Treatment with fPR appears to be more potent than that of PR in improving the pathways related to glucose and lipid metabolism in high-fat diet (HFD)+fructose-fed animals. The results revealed that the process of fermentation of PR enhanced lactate and facilitated the enrichment of certain microbial communities that contribute to anti-obesity and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yura Choi
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | | | - Na Rae Shin
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| | - Eun-Ji Song
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Young-Do Nam
- Research Group of Gut Microbiome, Korea Food Research Institute, Wanju-gun 24 55365, Korea; (E.-J.S.); (Y.-D.N.)
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju-gun 34113, Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 27 Donggukro, Ilsan-donggu, Goyang 10326, Korea; (Y.C.); (N.R.S.)
| |
Collapse
|
32
|
Liang T, Xu X, Ye D, Chen W, Gao B, Huang Y. Caspase/AIF/apoptosis pathway: a new target of puerarin for diabetes mellitus therapy. Mol Biol Rep 2019; 46:4787-4797. [PMID: 31228042 PMCID: PMC8782775 DOI: 10.1007/s11033-019-04925-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β cell damage is one of the crucial factors responsible for the development of type 2 diabetes mellitus (T2DM). Previous studies have suggested that puerarin (PR) could regulate the activities of the mitochondrial respiratory chain complex in diabetic nephropathy (DN); however, whether PR can inhibit pancreatic β-cell apoptosis in T2DM remains to be elucidated. In the present study, T2DM mice induced by high-fat diet and streptozotocin (STZ) injection were used as a working model to investigate the mechanism of PR on pancreatic β cell apoptosis. The results showed that PR decreased the serum fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels but significantly increased the fasting blood insulin (FINS) and high-density lipoprotein (HDL) levels. Furthermore, decreased caspase-3, 8, 9 and apoptosis-inducing factor (AIF) proteins in the pancreas were detected by Western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining demonstrated that the pancreatic β cell apoptosis was inhibited by PR. Furthermore, PR improved the histopathological changes in pancreatic tissue in T2DM mice. Collectively, the data show that PR can protect the β cells from apoptotic death in a mouse model of T2DM through regulating the expression of apoptosis-related protein-AIF and caspase family proteins.
Collapse
Affiliation(s)
- Tao Liang
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xiaohui Xu
- Affiliated Tumor Hospital of Guangxi Medical University, Institute of Cancer Prevention and Treatment of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Ye
- Department of Clinical Pharmacy, Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenxia Chen
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Biyun Gao
- College of Stomatology of Guangxi Medical University, No. 10, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yanjun Huang
- Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
33
|
He J, Wang H, Vijg J. New Insights into Bioactive Compounds of Traditional Chinese Medicines for Insulin Resistance Based on Signaling Pathways. Chem Biodivers 2019; 16:e1900176. [PMID: 31368177 DOI: 10.1002/cbdv.201900176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes is a serious metabolic disease as a long-term threat to human health. Insulin resistance is not only the basis and major feature of type 2 diabetes, but also the main etiology of diseases such as hypertension, hyperlipidemia and coronary heart disease. It has been shown that Traditional Chinese Medicines (TCMs) play an important role in the treatment of type 2 diabetes, through attenuating insulin resistance, whereas the mechanism involved is not yet well understood. Therefore, it is important to elucidate the pharmacological mechanism of these bioactive compounds so that one can pave the way for the modernization of TCMs. In this review, we focus on the recent progresses of some bioactive ingredients from TCMs with different functional groups, which exhibit therapeutic potential for the treatment of diabetic insulin resistance. It is expected that this review can provide new references for developing TCM-derived drugs against diabetes and insulin resistance in the future.
Collapse
Affiliation(s)
- Jian He
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hui Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
34
|
He M, Long P, Guo L, Zhang M, Wang S, He H. Fushiming Capsule Attenuates Diabetic Rat Retina Damage via Antioxidation and Anti-Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5376439. [PMID: 31396288 PMCID: PMC6668547 DOI: 10.1155/2019/5376439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
Abstract
AIMS Diabetic retinopathy (DR) remains one of the leading causes of acquired blindness. Fushiming capsule (FSM), a compound traditional Chinese medicine, is clinically used for DR treatment in China. The present study was to investigate the effect of FSM on retinal alterations, inflammatory response, and oxidative stress triggered by diabetes. MAIN METHODS Diabetic rat model was induced by 6-week high-fat and high-sugar diet combined with 35 mg/kg streptozotocin (STZ). 30 days after successful establishment of diabetic rat model, full field electroretinography (ffERG) and optical coherence tomography (OCT) were performed to detect retinal pathological alterations. Then, FSM was administered to diabetic rats at different dosages for 42-day treatment and diabetic rats treated with Calcium dobesilate (CaD) capsule served as the positive group. Retinal function and structure were observed, and retinal vascular endothelial growth factor-α (VEGF-α), glial fibrillary acidic (GFAP), and vascular cell adhesion protein-1 (VCAM-1) expressions were measured both on mRNA and protein levels, and a series of blood metabolic indicators were also assessed. KEY FINDINGS In DR rats, FSM (1.0 g/kg and 0.5 g/kg) treatment significantly restored retinal function (a higher amplitude of b-wave in dark-adaptation 3.0 and OPs2 wave) and prevented the decrease of retinal thickness including inner nuclear layer (INL), outer nuclear layer (ONL), and entire retina. Additionally, FSM dramatically decreased VEGF-α, GFAP, and VCAM-1 expressions in retinal tissues. Moreover, FSM notably improved serum antioxidative enzymes glutathione peroxidase, superoxide dismutase, and catalase activities, whereas it reduced serum advanced glycation end products, methane dicarboxylic aldehyde, nitric oxide, and total cholesterol and triglycerides levels. SIGNIFICANCE FSM could ameliorate diabetic rat retina damage possibly via inhibiting inflammation and improving antioxidation.
Collapse
Affiliation(s)
- Mengshan He
- Department of Chinese Material Medical and Natural Medicines, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Pan Long
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lunfeng Guo
- Department of Pharmacy, Central Hospital of Ankang City, Ankang 725000, Shaanxi, China
| | - Mingke Zhang
- Xi'an Lejian Biological Technology Co., Ltd., Xi'an 710032, Shaanxi, China
| | - Siwang Wang
- Department of Chinese Material Medical and Natural Medicines, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongling He
- Academic Journals Publishing Center of Education Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
35
|
Yun J, Yu Y, Zhou G, Luo X, Jin H, Zhao Y, Cao Y. Effects of puerarin on the AKT signaling pathway in bovine preadipocyte differentiation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:4-11. [PMID: 31208179 PMCID: PMC6946994 DOI: 10.5713/ajas.19.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/04/2019] [Indexed: 01/29/2023]
Abstract
Objective Puerarin has the potential of regulating the differentiation of preadipocytes, but its mechanism of action has not yet been elucidated. Adipocytes found in adipose tissue, the main endocrine organ, are the main sites of lipid deposition, and are widely used as a cell model in the study of in vitro fat deposition. This study aimed to investigate the effects of puerarin on adipogenesis in vitro. Methods Puerarin was added to the culture medium during the process of adipogenesis. The proliferation and differentiation of bovine preadipocytes was measured through cell viability and staining with Oil Red O. The content of triacylglycerol (TG) was measured using a triglyceride assay kit. The mRNA and protein expression levels of adipogenic genes, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Results The addition of puerarin significantly increased adipogenesis of bovine preadipocytes and enhanced the mRNA and protein level expression of PPARγ (p<0.01). The expression of P-Akt increased after adipogenic hormonal induction, whereas puerarin significantly increased PPARγ expression by promoting the Akt signaling component, P-Akt. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473, which may activate the downstream signaling of the Akt pathway. Conclusion Puerarin was able to promote the differentiation of preadipocytes and improve fat deposition in cattle. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473.
Collapse
Affiliation(s)
- Jinyan Yun
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun 130033, China
| | - Yongsheng Yu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun 130033, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaotong Luo
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yumin Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun 130033, China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun 130033, China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun 130033, China
| |
Collapse
|
36
|
Shen Y, Yang S, Hu X, Zhang M, Ma X, Wang Z, Hou Y, Bai G. Natural product puerarin activates Akt and ameliorates glucose and lipid metabolism dysfunction in hepatic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Yang L, Zhao Y, Pan Y, Li D, Zheng G. Dietary supplement of Smilax china L. ethanol extract alleviates the lipid accumulation by activating AMPK pathways in high-fat diet fed mice. Nutr Metab (Lond) 2019; 16:6. [PMID: 30679938 PMCID: PMC6341655 DOI: 10.1186/s12986-019-0333-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background Obesity has become a public health concern worldwide because it is linked to numerous metabolic disorders, such as hyperlipidemia, hypertension and cardiovascular disease. Therefore, there is an urgent need to develop new therapeutic strategies that are efficacious and have minimal side effects in obesity treatment. This study examined the effect of dietary supplement of Smilax china L. ethanol extract (SCLE) on high-fat diet (HFD) induced obesity. Methods Fifty ICR mice were fed a normal diet, high-fat diet (HFD) or HFD supplemented with 0.25, 0.5% or 1% SCLE for 8 weeks. Body weight, intraperitioneal adipose tissue (IPAT) weight, serum biochemical parameters, and liver lipids were measured. Activity, mRNA and protein expressions of lipid metabolism-related enzymes were analyzed. Results Over 0.5% SCLE had reduced cholesterol biosynthesis by the activation of AMP-activated protein kinase (AMPK), which subsequently suppressed the mRNA expression of both sterol regulatory element binding protein-2 and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Thus, the plasma and liver cholesterol concentrations in the HFD-fed mice were decreased. AMPK activation caused by SCLE also significantly upregulated lipolysis by enhancing adipose triglyceride lipase and hormone-sensitive lipase activities. This accelerated triglyceride hydrolysis and fatty acid release. Finally, SCLE increased carnitine palmitoyltransferase 1 and acyl-CoA oxidase activities, which further promoted fatty acid β-oxidation. Conclusion SCLE could lead to a decrease in body weight gain and fat mass by inhibiting the lipid synthesis and promoting lipolysis and β-oxidation in HFD fed mice. The underlying mechanism is probably associated with regulating AMPK pathway.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yongfang Pan
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Dongming Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
38
|
Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr Diabetes 2018; 8:1. [PMID: 29330446 PMCID: PMC5851431 DOI: 10.1038/s41387-017-0009-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Type 2 diabetes is characterized by dyslipidemia and the accumulation of lipids in non-adipose tissue, including skeletal muscle. Puerarin, which is a natural isoflavonoid isolated from the root of the plant Pueraria lobata, has been shown to have antidiabetic activity. However, the lipid-reducing effect of puerarin, in particular in skeletal muscle, has not yet been addressed. METHODS We examined the effect of puerarin on mitochondrial function and the oxidation of fatty acids in the skeletal muscle of high-fat diet/streptozotocin-induced diabetic rats. RESULTS Puerarin effectively alleviated dyslipidemia and decreased the accumulation of intramyocellular lipids by upregulating the expression of a range of genes involved in mitochondrial biogenesis, oxidative phosphorylation, the detoxification of reactive oxygen species, and the oxidation of fatty acids in the muscle of diabetic rats. Also, the effect of puerarin on mitochondrial biogenesis might partially involve the function of the μ-opioid receptor. In addition, puerarin decreased the trafficking of fatty acid translocase/CD36 to the plasma membrane to reduce the uptake of fatty acids by myocytes. In vitro studies confirmed that puerarin acted directly on muscle cells to promote the oxidation of fatty acids in insulin-resistant myotubes treated with palmitate. CONCLUSIONS Puerarin improved the performance of mitochondria in muscle and promoted the oxidation of fatty acids, which thus prevented the accumulation of intramyocellular lipids in diabetic rats. Our findings will be beneficial both for elucidating the mechanism of the antidiabetic activity of puerarin and for promoting the therapeutic potential of puerarin in the treatment of diabetes.
Collapse
|
39
|
Liu JL, Yang LC, Zhu XJ, Wang WJ, Zheng GD. Combinational Effect of Pine Needle Polysaccharide and Kudzu Flavonoids on Cell Differentiation and Fat Metabolism in 3T3-L1 Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ji-Luan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Li-Cong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Xiao-Juan Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - We-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University
| |
Collapse
|
40
|
Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF- β1/Smad2-Mediated Endothelial-to-Mesenchymal Transition. PPAR Res 2017. [PMID: 28638404 PMCID: PMC5468594 DOI: 10.1155/2017/2647129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Puerarin is a kind of flavonoids and is extracted from Chinese herb Kudzu root. Puerarin is widely used as an adjuvant therapy in Chinese clinics. But little is known about its effects on regulating cardiac fibrosis. Methods Mice were subjected to transverse aorta constriction (TAC) for 8 weeks; meanwhile puerarin was given 1 week after TAC. Cardiac fibrosis was assessed by pathological staining. The mRNA and protein changes of CD31 and vimentin in both animal and human umbilical vein endothelial cells (HUVECs) models were detected. Immunofluorescence colocalization of CD31 and vimentin and scratch test were carried out to examine TGF-β1-induced changes in HUVECs. The agonist and antagonist of peroxisome proliferator-activated receptor-γ (PPAR-γ) were used to explore the underlying mechanism. Results Puerarin mitigated TAC-induced cardiac fibrosis, accompanied with suppressed endothelial-to-mesenchymal transition (EndMT). The consistent results were achieved in HUVECs model. TGF-β1/Smad2 signaling pathway was blunted and PPAR-γ expression was upregulated in puerarin-treated mice and HUVECs. Pioglitazone could reproduce the protective effect in HUVECs, while GW9662 reversed this effect imposed by puerarin. Conclusion Puerarin protected against TAC-induced cardiac fibrosis, and this protective effect may be attributed to the upregulation of PPAR-γ and the inhibition of TGF-β1/Smad2-mediated EndMT.
Collapse
|
41
|
Jung HW, Kang AN, Kang SY, Park YK, Song MY. The Root Extract of Pueraria lobata and Its Main Compound, Puerarin, Prevent Obesity by Increasing the Energy Metabolism in Skeletal Muscle. Nutrients 2017; 9:nu9010033. [PMID: 28054981 PMCID: PMC5295077 DOI: 10.3390/nu9010033] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/21/2022] Open
Abstract
Radix Pueraria lobata (RP) has been reported to prevent obesity and improve glucose metabolism; however, the mechanism responsible for these effects has not been elucidated. The mechanism underlying anti-obesity effect of RP was investigated in high-fat diet (HFD) induced obese mice and skeletal muscle cells (C2C12). Five-week-old C5BL/6 mice were fed a HFD containing or not containing RP (100 or 300 mg/kg) or metformin (250 mg/kg) for 16 weeks. RP reduced body weight gain, lipid accumulation in liver, and adipocyte and blood lipid levels. In addition, RP dose-dependently improved hyperglycemia, insulinemia, and glucose tolerance, and prevented the skeletal muscle atrophy induced by HFD. Furthermore, RP increased the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) expression and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle tissues. RP and its main component, puerarin, increased mitochondrial biogenesis and myotube hypertrophy in C2C12 cells. The present study demonstrates that RP can prevent diet-induced obesity, glucose tolerance, and skeletal muscle atrophy in mouse models of obesity. The mechanism responsible for the effect of RP appears to be related to the upregulation of energy metabolism in skeletal muscle, which at the molecular level may be associated with PGC-1α and AMPK activation.
Collapse
Affiliation(s)
- Hyo Won Jung
- Department of Herbology, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
- Korean Medicine R&D Center, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
| | - An Na Kang
- Department of Herbology, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
- Korean Medicine R&D Center, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
| | - Seok Yong Kang
- Department of Herbology, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
- Korean Medicine R&D Center, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
| | - Yong-Ki Park
- Department of Herbology, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
- Korean Medicine R&D Center, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
| | - Mi Young Song
- Korean Medicine R&D Center, College of Korean medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
- Department of Rehabilitation Medicine of Korean Medicine, College of Korean Medicine, Dongguk University, Dongdaero 123, Gyeongju-si 38066, Korea.
| |
Collapse
|
42
|
Long-chain bases from Cucumaria frondosa inhibit adipogenesis and regulate lipid metabolism in 3T3-L1 adipocytes. Food Sci Biotechnol 2016; 25:1753-1760. [PMID: 30263471 DOI: 10.1007/s10068-016-0267-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
This study aims to investigate anti-adipogenic effects of long-chain bases from Cucumaria frondosa (Cf-LCBs) in vitro. Results showed that Cf-LCBs inhibited adipocyte differentiation and the expressions of CCAAT/enhancer binding proteins (C/EBPs) and peroxisome proliferators-activated receptor γ (PPARγ). Cf-LCBs increased β-catenin mRNA and nuclear translocation and increased its target genes, cyclin D1 and c-myc. Cf-LCBs enhanced fizzled and lipoprotein-receptor-related protein5/6 (LRP5/6) expressions, whereas wingless-type MMTV integration site10b (WNT10b) and glycogen syntheses kinase 3β (GSK3β) remained unchanged. Cf-LCBs also reduced adipogenesis and recovered WNT/β-catenin signaling in the cells suffering from 21H7, a β-catenin inhibitor. In addition, Cf-LCBs decreased triglyceride content and the expressions of lipogenesis genes. Cf-LCBs increased FFA levels and the expressions of lipidolytic factors. Cf-LCBs promoted the phosphorylation of adenosine-monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase. These findings indicate that Cf-LCBs inhibit adipogenesis through activation of WNT/β-catenin signaling and regulate lipid metabolism via activation of AMPK pathway.
Collapse
|
43
|
Hong XP, Chen T, Yin NN, Han YM, Yuan F, Duan YJ, Shen F, Zhang YH, Chen ZB. Puerarin Ameliorates D-Galactose Induced Enhanced Hippocampal Neurogenesis and Tau Hyperphosphorylation in Rat Brain. J Alzheimers Dis 2016; 51:605-17. [PMID: 26890737 DOI: 10.3233/jad-150566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced neurogenesis has been reported in the hippocampus of patients with Alzheimer's disease (AD), the most common neurodegenerative disorder characterized with amyloid-β (Aβ) aggregation, tau hyperphosphorylation, and progressive neuronal loss. Previously we reported that tau phosphorylation played an essential role in adult hippocampal neurogenesis, and activation of glycogen synthase kinase (GSK-3), a crucial tau kinase, could induce increased hippocampal neurogenesis. In the present study, we found that treatment of D-galactose rats with Puerarin could significantly improve behavioral performance and ameliorate the enhanced neurogenesis and microtubule-associated protein tau hyperphosphorylation in the hippocampus of D-galactose rat brains. FGF-2/GSK-3 signaling pathway might be involved in the effects of Puerarin on hippocampal neurogenesis and tau hyperphosphorylation. Our finding provides primary in vivo evidence that Puerarin can attenuate AD-like enhanced hippocampal neurogenesis and tau hyperphosphorylation. Our finding also suggests Puerarin can be served as a treatment for age-related neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Xiao-Ping Hong
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Tao Chen
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Ni-Na Yin
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yong-Ming Han
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Fang Yuan
- Central Laboratory of College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yan-Jun Duan
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Feng Shen
- Department of Acupuncture and Moxibustion, College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Yan-Hong Zhang
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Ze-Bin Chen
- Department of Anatomy and Histology, College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
44
|
Zhu X, Yang L, Xu F, Lin L, Zheng G. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Exp Ther Med 2016; 13:688-694. [PMID: 28352352 DOI: 10.3892/etm.2016.3975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Catechins and caffeine, which are green tea components, have a slimming effect; however, the combinational effect of fat metabolism in 3T3-L1 cells remains unclear. In the present study, 3T3-L1 cells were treated with catechins and caffeine in combination, and it was found that combination therapy with catechins and caffeine markedly reduced intracellular fat accumulation, mRNA expression levels of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein α in the early stage of cell differentiation were significantly reduced, and mRNA expression of fatty acid synthetase(FAS) andglycerol-3-phosphate dehydrogenase protein expression levels of FAS were downregulated. Noradrenaline-induced lipolysis was enhanced by caffeine, which markedly increased the protein expression of adipose triglyceride lipase and hormone sensitive lipase. These results indicated that combination therapy with catechins and caffeine synergistically inhibited lipid accumulation by regulating the gene and protein expression levels of lipid metabolism-related enzymes. Therefore, catechins and caffeine combination therapy has potential as a functional food that may be used to prevent obesity and lifestyle-associated diseases.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Feng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R. China
| |
Collapse
|
45
|
Yang ZW, Ouyang KH, Zhao J, Chen H, Xiong L, Wang WJ. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol 2016. [DOI: https://doi.org/:10.1016/j.ijbiomac.2016.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Yang ZW, Ouyang KH, Zhao J, Chen H, Xiong L, Wang WJ. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol 2016; 91:1073-1080. [PMID: 27343704 DOI: 10.1016/j.ijbiomac.2016.06.063] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
Polysaccharide is one of the important active ingredients of Cyclocarya paliurus (Batal.) Iljinskaja leaves. The aims of this work were to analyze the structure of the polysaccharide of Cyclocarya paliurus (Batal.) Iljinskaja leaves (CPP), and to investigate the antihyperlipidemic effect of CPP on high-fat emulsion (HFE)-induced hyperlipidaemic rats. CPP, comprised of two polysaccharides with average molecular weight (Mw) of 1.35×10(5)Da and 9.34×10(3)Da, was consisted of rhamnose, arabinose, xylose, mannose, glucose and galactose in the molar ratio of 1.00:2.23:0.64:0.49:0.63:4.16. Oral administration of CPP could significantly decrease levels of serum total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), increase high density lipoprotein (HDL-C) in hyperlipidemic rats. CPP exerts therapeutic effects on hyperlipidaemic rats, by up-regulating expressions of adipose triglyceride lipase (ATGL) and peroxisome proliferator-activated receptor alpha (PPARα), via down-regulating fatty acid synthase (FAS) and hydroxy methylglutaryl coenzyme A reductase (HMG-CoA). This study demonstrates that CPP may be beneficial for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Zhan-Wei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
47
|
Baldini SF, Wavelet C, Hainault I, Guinez C, Lefebvre T. The Nutrient-Dependent O -GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase. J Mol Biol 2016; 428:3295-3304. [DOI: 10.1016/j.jmb.2016.04.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
|
48
|
Synergistic effects of caffeine and catechins on lipid metabolism in chronically fed mice via the AMP-activated protein kinase signaling pathway. Eur J Nutr 2016; 56:2309-2318. [DOI: 10.1007/s00394-016-1271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
|