1
|
Milani GP, Ronchi A, Agostoni C, Marchisio P, Chidini G, Pesenti N, Bellotti AS, Cugliari M, Crimi R, Fabiano V, Pietrasanta C, Pugni L, Mosca F. Viral Codetection and Clinical Outcomes of Infants Hospitalized With Bronchiolitis: A Multicenter Cohort Study. Pediatr Infect Dis J 2025; 44:526-531. [PMID: 39898632 PMCID: PMC12058360 DOI: 10.1097/inf.0000000000004738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The simultaneous identification of multiple respiratory viruses is common in infants hospitalized with respiratory tract infections. Respiratory syncytial virus (RSV) is one of the main pathogens in bronchiolitis, although codetection of rhinovirus, influenza and other respiratory viruses may occur in about one-third of cases. The relevance of viral codetection on disease severity is still controversial. This multicenter cohort study aimed to assess the clinical outcomes of infants under 24 months hospitalized with bronchiolitis, comparing those testing positive for RSV alone, RSV plus another virus and ≥2 viruses distinct from RSV. METHODS Data were collected across 13 hospitals in Lombardy, Italy, both in the prepandemic and pandemic years. Random effect regression models were also employed to test the association between 3 groups (infants testing positive for RSV alone, RSV plus another respiratory virus and no RSV but ≥2 respiratory viruses other than RSV) and course of bronchiolitis, adjusted for potential confounders. RESULTS Among 1788 infants, 86.7% tested positive for RSV alone, 6.9% for RSV plus another virus and 6.3% for ≥2 other viruses. Significant differences were found in clinical outcomes: infants with multiple non-RSV viruses had shorter oxygen supplementation, intensive care and hospital stay compared with those with RSV alone. Notably, codetection of RSV and another virus was associated with a higher risk of radiologically confirmed pneumonia, whereas detection of ≥2 non-RSV viruses was inversely associated with pneumonia. CONCLUSIONS These findings point out that codetection of viruses other than RSV is associated with milder disease courses than detection of RSV alone in infants with bronchiolitis. On the other hand, patients with RSV and another virus are at higher risk of pneumonia than infants affected by RSV alone. Further research is required to understand the underlying mechanisms and optimize management strategies in infants with bronchiolitis testing positive for multiple viruses.
Collapse
Affiliation(s)
- Gregorio Paolo Milani
- From the Pediatric Unit
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | | | - Carlo Agostoni
- From the Pediatric Unit
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Paola Marchisio
- From the Pediatric Unit
- Department of Pathophysiology and Transplantation
| | - Giovanna Chidini
- Department of Anaesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Anita Sofia Bellotti
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Marco Cugliari
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Riccardo Crimi
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Fabiano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | | | - Fabio Mosca
- Neonatal Intensive Care Unit
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Han Y, Wang D, Wang Q, Liu Y, Yan M, Ren F, Hu X, Gong R, Li H, He J, Jia Y, Wan J, Long G, Nan K, Huang C, Xu C, Yao Q, Zhang D. Seasonal shifts in respiratory pathogen co-infections and the associated differential induction of cytokines in children. Cytokine 2025; 186:156847. [PMID: 39731898 DOI: 10.1016/j.cyto.2024.156847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
In the post-pandemic era, research on respiratory diseases should refocus on pathogens other than the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Respiratory pathogens, highly infectious to children, with to different modes of infection, such as single-pathogen infections and co-infections. Understanding the seasonal patterns of these pathogens, alongside identifying single infections and co-infections and their impact on the pediatric immune status, is crucial for clinical diagnosis, treatment, and prognosis in children. Our study found that from December 2023 to April 2024, the main co-infection combinations in children shifted from Mycoplasma pneumonia and influenza virus A (MP + IVA) to Bordetella pertussis and rhinovirus (BP + RhV). To explore the impact of these infections, two cohorts were established to analyze the effects of single and co-infections of four respiratory pathogens, MP, IVA, BP, and RhV, on the immune status of pediatric patients. Using multi-cytokine analysis, cytokines, such as PDGF-BB, that were differentially expressed between patients with single and co-infections were identified. Additionally, we observed that children with single-pathogen infections generally exhibited more severe conditions, as evidenced by higher overall cytokine expression than those with co-infections. Our findings provide an important theoretical basis for understanding the pathogenic mechanisms of single and co-infections of respiratory pathogens and clinically differentiating pediatric patients with various respiratory infections.
Collapse
Affiliation(s)
- Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Wuhan, Hubei 430023, China
| | - Delong Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, USTC, Hefei, Anhui 230001, China
| | - Qian Wang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Liu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Mingzhe Yan
- Clinical Laboratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Fuli Ren
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Rui Gong
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huadong Li
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Jingwen He
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Yaling Jia
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Jun Wan
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Gangyu Long
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Kaidi Nan
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China
| | - Congrui Xu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China.
| | - Qun Yao
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China.
| | - Dingyu Zhang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Haeberer M, López-Ibáñez de Aldecoa A, Seabroke S, Ramirez Agudelo JL, Mora L, Sarabia L, Meroc E, Aponte-Torres Z, Sato R, Law AW. Economic burden of children hospitalized with respiratory syncytial virus infection in Spain, 2016-2019. Vaccine 2025; 43:126512. [PMID: 39515196 DOI: 10.1016/j.vaccine.2024.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This retrospective observational study aimed to quantify the costs associated with hospitalized respiratory syncytial virus (RSV) in children <18 years admitted to the Spanish National Healthcare System between 2016 and 2019 and contrast them with the costs of unspecified bronchiolitis/bronchitis/pneumonia (UBP) and influenza. The mean cost per hospitalization episode was reported by age group, risk category and prematurity. Total annual hospitalization costs were calculated from population incidence rates and the mean cost per episode. A total of 41,934 children were hospitalized with RSV, 70,160 with UBP and 8525 with influenza during 2016-2019. The highest incidence of hospitalization for RSV, UBP, and influenza occurred among infants <6 months. The mean cost per episode was highest for RSV cases aged <6 months with at least one risk factor (€4760 high vs €2827 low risk), while the mean cost ranged from €3704-4352 for high-risk and €2687-3475 for low-risk children of other ages, and from €4300-44,594 for preterm infants. In the 0-5 months age group, the mean cost per episode for UBP was €4189 and €2666 for high and low risk, and for influenza it was €3134 and €2081, respectively; while the mean cost of co-infected RSV-influenza cases was €4809 and €2887, respectively. The mean total annual estimated cost for RSV for children aged 0-17 years was €39.3 M based only on reported cases, rising to €53.8 M if we correct for under-diagnosis and all RSV-attributable cases are considered. In contrast, the mean total annual cost for influenza was €5.9 M. Compared to influenza, RSV has a substantially higher economic burden; nevertheless, the Spanish immunization schedule recommends influenza vaccine between 6 and 59 months of age and RSV monoclonal antibody only for those aged <6 months. RSV immunization is still to be implemented in older children, considering that 37 % of RSV hospitalized patients were aged ≥6 months.
Collapse
Affiliation(s)
| | | | - S Seabroke
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | | | - L Mora
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | - L Sarabia
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | - E Meroc
- P95 Epidemiology & Pharmacovigilance, Leuven, Belgium
| | | | - R Sato
- Pfizer Inc, Collegeville, PA, USA
| | - A W Law
- Pfizer Inc, New York, NY, USA
| |
Collapse
|
4
|
Siqueira BA, Bredariol KO, Boschiero MN, Marson FAL. Viral co-detection of influenza virus and other respiratory viruses in hospitalized Brazilian patients during the first three years of the coronavirus disease (COVID)-19 pandemic: an epidemiological profile. Front Microbiol 2024; 15:1462802. [PMID: 39479210 PMCID: PMC11521903 DOI: 10.3389/fmicb.2024.1462802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction In Brazil, few studies were performed regarding the co-detection of respiratory viruses in hospitalized patients. In this way, the study aimed to describe the epidemiological profile of hospitalized patients due to influenza virus infection that presented co-detection with another respiratory virus. Methods The epidemiological analysis was made by collecting data from Open-Data-SUS. The study comprised patients infected by the influenza A or B virus with positive co-detection of another respiratory virus, such as adenovirus, bocavirus, metapneumovirus, parainfluenza virus (types 1, 2, 3, and 4), rhinovirus, and respiratory syncytial virus (RSV). The markers [gender, age, clinical signs and symptoms, comorbidities, need for intensive care unit (ICU) treatment, and need for ventilatory support] were associated with the chance of death. The data was collected during the first three years of the coronavirus disease (COVID)-19 pandemic-from December 19, 2019, to April 06, 2023. Results A total of 477 patients were included, among them, the influenza A virus was detected in 400 (83.9%) cases. The co-detection occurred, respectively, for RSV (53.0%), rhinovirus (14.0%), adenovirus (13.4%), parainfluenza virus type 1 (10.7%), parainfluenza virus type 3 (5.2%), metapneumovirus (3.8%), parainfluenza virus type 2 (3.6%), bocavirus (3.4%), and parainfluenza virus type 4 (1.5%). The co-detection rate was higher in the male sex (50.7%), age between 0-12 years of age (65.8%), and white individuals (61.8%). The most common clinical symptoms were cough (90.6%), dyspnea (78.8%), and fever (78.6%). A total of 167 (35.0%) people had at least one comorbidity, mainly cardiopathy (14.3%), asthma (8.4%), and diabetes mellitus (7.3%). The need for ICU treatment occurred in 147 (30.8%) cases, with most of them needing ventilatory support (66.8%), mainly non-invasive ones (57.2%). A total of 33 (6.9%) patients died and the main predictors of death were bocavirus infection (OR = 14.78 [95%CI = 2.84-76.98]), metapneumovirus infection (OR = 8.50 [95%CI = 1.86-38.78]), race (other races vs. white people) (OR = 3.67 [95%CI = 1.39-9.74]), cardiopathy (OR = 3.48 [95%CI = 1.13-10.71]), and need for ICU treatment (OR = 7.64 [95%CI = 2.44-23.92]). Conclusion Co-detection between the influenza virus and other respiratory viruses occurred, mainly with RSV, rhinovirus, and adenovirus being more common in men, white people, and in the juvenile phase. Co-detection of influenza virus with bocavirus and metapneumovirus was associated with an increased chance of death. Other factors such as race, cardiopathy, and the need for an ICU were also associated with a higher chance of death.
Collapse
Affiliation(s)
- Bianca Aparecida Siqueira
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
- LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista, Brazil
| | - Ketlyn Oliveira Bredariol
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
- LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista, Brazil
| | - Matheus Negri Boschiero
- LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista, Brazil
- Medical Resident of Infectious Diseases at the Federal University of São Paulo, São Paulo, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Molecular Biology and Genetics, São Francisco University, Bragança Paulista, Brazil
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
- LunGuardian Research Group—Epidemiology of Respiratory and Infectious Diseases, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
5
|
Bulata-Pop I, Simionescu B, Bulata B, Junie LM. Epidemiology and Diagnostic Accuracy of Respiratory Pathogens in Pediatric Populations: Insights From Global Studies. Cureus 2024; 16:e68652. [PMID: 39371774 PMCID: PMC11451835 DOI: 10.7759/cureus.68652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) are the most common cause for going to the doctor's at pediatric age. Respiratory infections are still of interest because they are widespread, significantly impact public health by potentially leading to pandemics, drive antimicrobial resistance through antibiotic misuse, more often spread globally due to traveling, and benefit from ongoing advancements in diagnostics and research for better management. This paper's main aim was to offer a systematic review of the literature published over the last 10 years on the etiology of LRTIs. The search strategy was based on reviewing original articles, systematic reviews, position papers, and guidelines published in MEDLINE, EMBASE, Cochrane Library, and PubMed. The review was previously registered with PROSPERO. The final review included 27 articles that met the eligibility criteria (studies identifying the etiology of inferior respiratory infections in children, according to the WHO definition, published in the last 10 years). Statistical analysis was performed using Microsoft Excel Version 2406 (Microsoft Corporation, Redmond, Washington, USA) and SPSS Statistics V.23 (IBM Corp., Armonk, New York, USA). The total number of patients was 2,193,978. Eight articles focused on children younger than five years, and two included children under the age of two. The results revealed that Mycoplasma pneumoniae and respiratory syncytial virus (RSV) are significant respiratory pathogens with seasonal peaks and age-specific prevalence and that nasopharyngeal aspirates (NPAs) are more reliable than throat swabs for confirming infections due to their higher positive predictive value (PPV). The impact of COVID-19 interventions led to reduced infections from RSV, adenovirus, and influenza viruses, but an increase in rhinovirus post-reopening, with high co-infection rates. Co-infections are common, particularly with pathogens like human bocavirus (HBoV) and RSV, underscoring the need for comprehensive diagnostic approaches. The impact of non-pharmaceutical interventions during the COVID-19 pandemic significantly reduced the prevalence of many respiratory pathogens, except for rhinovirus, which increased post-reopening. Understanding these dynamics is crucial for managing respiratory infections, especially in pediatric populations.
Collapse
Affiliation(s)
- Irina Bulata-Pop
- Microbiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Bianca Simionescu
- Pediatrics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| | - Bogdan Bulata
- Pediatrics, Emergency Clinical Hospital for Children, Cluj-Napoca, ROU
| | - Lia Monica Junie
- Microbiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, ROU
| |
Collapse
|
6
|
Wilson R, Kovacs D, Crosby M, Ho A. Global Epidemiology and Seasonality of Human Seasonal Coronaviruses: A Systematic Review. Open Forum Infect Dis 2024; 11:ofae418. [PMID: 39113828 PMCID: PMC11304597 DOI: 10.1093/ofid/ofae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background We characterized the global epidemiology and seasonality of human coronaviruses (HCoVs) OC43, NL63, 229E, and HKU1. Methods In this systematic review, we searched MEDLINE, EMBASE, Web of Science, SCOPUS, CINAHL, and backward citations for studies published until 1 September 2023. We included studies with ≥12 months of consecutive data and tested for ≥1 HCoV species. Case reports, review articles, animal studies, studies focusing on SARS-CoV-1, SARS-CoV-2, and/or Middle East respiratory syndrome, and those including <100 cases were excluded. Study quality and risk of bias were assessed using Joanna Briggs Institute Critical Appraisal Checklist tools. We reported the prevalence of all HCoVs and individual species. Seasonality was reported for studies that included ≥100 HCoVs annually. This study is registered with PROSPERO, CRD42022330902. Results A total of 201 studies (1 819 320 samples) from 68 countries were included. A high proportion were from China (19.4%; n = 39), whereas the Southern Hemisphere was underrepresented. Most were case series (77.1%, n = 155) with samples from secondary care (74.1%, n = 149). Seventeen (8.5%) studies included asymptomatic controls, whereas 76 (37.8%) reported results for all 4 HCoV species. Overall, OC43 was the most prevalent HCoV. Median test positivity of OC43 and NL63 was higher in children, and 229E and HKU1 in adults. Among 18 studies that described seasonality (17 from the Northern Hemisphere), circulation of all HCoVs mostly peaked during cold months. Conclusions In our comprehensive review, few studies reported the prevalence of individual HCoVs or seasonality. Further research on the burden and circulation of HCoVs is needed, particularly from Africa, South Asia, and Central/South America.
Collapse
Affiliation(s)
- Rory Wilson
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dory Kovacs
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Crosby
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Lin GL, Drysdale SB, Snape MD, O'Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Ansari MA, Bonsall D, Bray JE, Jolley KA, Bowden R, Aerssens J, Bont L, Openshaw PJM, Martinon-Torres F, Nair H, Golubchik T, Pollard AJ. Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus. Nat Commun 2024; 15:2379. [PMID: 38493135 PMCID: PMC10944482 DOI: 10.1038/s41467-024-46648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants <12 months in Spain, the UK, and the Netherlands during 2017-20. We show, using targeted metagenomic sequencing of >100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03-9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Esther Mellado-Gomez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Technopole, Milan, Italy
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- ReSViNET Foundation, Zeist, Netherlands
| | | | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Sydney Infectious Diseases Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
8
|
Wozniak PS, Makhoul L, Botros MM. Bronchopulmonary dysplasia in adults: Exploring pathogenesis and phenotype. Pediatr Pulmonol 2024; 59:540-551. [PMID: 38050796 DOI: 10.1002/ppul.26795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
This review highlights both the longstanding impact of bronchopulmonary dysplasia (BPD) on the health of adult survivors of prematurity and the pressing need for prospective, longitudinal studies of this population. Conservatively, there are an estimated 1,000,000 survivors of BPD in the United States alone. Unfortunately, most of the available literature regarding outcomes of lung disease due to prematurity naturally focuses on pediatric patients in early or middle childhood, and the relative amount of literature on adult survivors is scant. As the number of adult survivors of BPD continues to increase, it is essential that both adult and pediatric pulmonologists have a comprehensive understanding of the pathophysiology and underlying disease process, including the molecular signaling pathways and pro-inflammatory modulators that contribute to the pathogenesis of BPD. We summarize the most common presenting symptoms for adults with BPD and identify the critical challenges adult pulmonologists face in managing the care of survivors of prematurity. Specifically, these challenges include the wide variability of the clinical presentation of adult patients, comorbid cardiopulmonary complications, and the paucity of longitudinal data available on these patients. Adult survivors of BPD have even required lung transplantation, indicating the high burden of morbidity that can result from premature birth and subsequent lung injury. In addition, we analyze the disparate symptoms and management approach to adults with "old" BPD versus "new" BPD. The aim of this review is to assist pulmonologists in understanding the underlying pathophysiology of BPD and to improve clinical recognition of this increasingly common pulmonary disease.
Collapse
Affiliation(s)
- Phillip S Wozniak
- Department of Internal Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Lara Makhoul
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Mena M Botros
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Osborne CM, Langelier C, Kamm J, Williamson K, Ambroggio L, Reeder RW, Locandro C, Kirk Harris J, Wagner BD, Maddux AB, Caldera S, Lyden A, Soesanto V, Simões EAF, Leroue MK, Carpenter TC, Hall MW, Zuppa AF, Carcillo JA, Meert KL, Pollack MM, McQuillen PS, Notterman DA, DeRisi J, Mourani PM. Viral Detection by Reverse Transcriptase Polymerase Chain Reaction in Upper Respiratory Tract and Metagenomic RNA Sequencing in Lower Respiratory Tract in Critically Ill Children With Suspected Lower Respiratory Tract Infection. Pediatr Crit Care Med 2024; 25:e1-e11. [PMID: 37732845 PMCID: PMC10756702 DOI: 10.1097/pcc.0000000000003336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Viral lower respiratory tract infection (vLRTI) contributes to substantial morbidity and mortality in children. Diagnosis is typically confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) of nasopharyngeal specimens in hospitalized patients; however, it is unknown whether nasopharyngeal detection accurately reflects presence of virus in the lower respiratory tract (LRT). This study evaluates agreement between viral detection from nasopharyngeal specimens by RT-PCR compared with metagenomic next-generation RNA sequencing (RNA-Seq) from tracheal aspirates (TAs). DESIGN This is an analysis of of a seven-center prospective cohort study. SETTING Seven PICUs within academic children's hospitals in the United States. PATIENTS Critically ill children (from 1 mo to 18 yr) who required mechanical ventilation via endotracheal tube for greater than or equal to 72 hours. INTERVENTIONS We evaluated agreement in viral detection between paired upper and LRT samples. Results of clinical nasopharyngeal RT-PCR were compared with TA RNA-Seq. Positive and negative predictive agreement and Cohen's Kappa were used to assess agreement. MEASUREMENTS AND MAIN RESULTS Of 295 subjects with paired testing available, 200 (68%) and 210 (71%) had positive viral testing by RT-PCR from nasopharyngeal and RNA-Seq from TA samples, respectively; 184 (62%) were positive by both nasopharyngeal RT-PCR and TA RNA-Seq for a virus, and 69 (23%) were negative by both methods. Nasopharyngeal RT-PCR detected the most abundant virus identified by RNA-Seq in 92.4% of subjects. Among the most frequent viruses detected, respiratory syncytial virus demonstrated the highest degree of concordance (κ = 0.89; 95% CI, 0.83-0.94), whereas rhinovirus/enterovirus demonstrated lower concordance (κ = 0.55; 95% CI, 0.44-0.66). Nasopharyngeal PCR was more likely to detect multiple viruses than TA RNA-Seq (54 [18.3%] vs 24 [8.1%], p ≤ 0.001). CONCLUSIONS Viral nucleic acid detection in the upper versus LRT reveals good overall agreement, but concordance depends on the virus. Further studies are indicated to determine the utility of LRT sampling or the use of RNA-Seq to determine LRTI etiology.
Collapse
Affiliation(s)
- Christina M Osborne
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Charles Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Jack Kamm
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Kayla Williamson
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Lilliam Ambroggio
- Department of Epidemiology, University of Colorado School of Medicine, Aurora, CO
- Department of Pediatrics, Section of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | | | - J Kirk Harris
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Aline B Maddux
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | | | - Amy Lyden
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Victoria Soesanto
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Eric A F Simões
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew K Leroue
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Todd C Carpenter
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH
| | - Athena F Zuppa
- Anesthesiology and Critical Care, Hospital of the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph A Carcillo
- Department of Anesthesia and Critical Care Medicine, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Kathleen L Meert
- Department of Pediatrics, Critical Care Medicine, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Murray M Pollack
- Department of Pediatrics, Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA
| | | | | | - Peter M Mourani
- Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR
| |
Collapse
|
10
|
Fry S, Chokephaibulkit K, Pallem S, Henry O, Pu Y, Akawung A, Kim JH, Yanni E, Tullio AN, Aurpibul L, Lee CMF, Ceballos A, Zaman K, Abadía de Regalado I, Ahmed K, Arias Fernandez DA, Taher SW, Caccavo J, Coutinho CM, D’Andrea Nores U, De León T, D’Silva EC, De Bernardi M, Dieser P, Falaschi A, Flores Acosta CDC, Gentile A, Teo IH, Kotze S, López-Medina E, Luca R, Lucion MF, Mantaring JBIIIV, Marín B, Moelo M, Mussi-Pinhata MM, Pinto J, Puthanakit T, Reyes O, Roa MF, Rodriguez Brieschke MT, Rodriguez CE, Rodriguez Niño JN, Schwarzbold AV, Sierra Garcia A, Sivapatham L, Soon R, Tinoco JC, Velásquez Penagos JA, Dos Santos G. Incidence of Respiratory Syncytial Virus-Associated Lower Respiratory Tract Illness in Infants in Low- and Middle-Income Regions During the Coronavirus Disease 2019 Pandemic. Open Forum Infect Dis 2023; 10:ofad553. [PMID: 38088983 PMCID: PMC10715683 DOI: 10.1093/ofid/ofad553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 12/30/2023] Open
Abstract
Background Incidence data of respiratory syncytial virus-associated lower respiratory tract illness (RSV-LRTI) are sparse in low- and middle-income countries (LMICs). We estimated RSV-LRTI incidence rates (IRs) in infants in LMICs using World Health Organization case definitions. Methods This prospective cohort study, conducted in 10 LMICs from May 2019 to October 2021 (largely overlapping with the coronavirus disease 2019 [COVID-19] pandemic), followed infants born to women with low-risk pregnancies for 1 year from birth using active and passive surveillance to detect potential LRTIs, and quantitative reverse-transcription polymerase chain reaction on nasal swabs to detect RSV. Results Among 2094 infants, 32 (1.5%) experienced an RSV-LRTI (8 during their first 6 months of life, 24 thereafter). Seventeen (0.8%) infants had severe RSV-LRTI and 168 (8.0%) had all-cause LRTI. IRs (95% confidence intervals [CIs]) of first RSV-LRTI episode were 1.0 (.3-2.3), 0.8 (.3-1.5), and 1.6 (1.1-2.2) per 100 person-years for infants aged 0-2, 0-5, and 0-11 months, respectively. IRs (95% CIs) of the first all-cause LRTI episode were 10.7 (8.1-14.0), 11.7 (9.6-14.0), and 8.7 (7.5-10.2) per 100 person-years, respectively. IRs varied by country (RSV-LRTI: 0.0-8.3, all-cause LRTI: 0.0-49.6 per 100 person-years for 0- to 11-month-olds). Conclusions RSV-LRTI IRs in infants in this study were relatively low, likely due to reduced viral circulation caused by COVID-19-related nonpharmaceutical interventions. Clinical Trials Registration NCT03614676.
Collapse
Affiliation(s)
- Samantha Fry
- Department of Paediatrics and Child Health, Family Centre for Research with Ubuntu, Stellenbosch University, Cape Town, South Africa
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | - Linda Aurpibul
- Research Institute for Health Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Ana Ceballos
- Instituto Médico Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease Research (icddr, b), Dhaka, Bangladesh
| | | | - Khatija Ahmed
- Setshaba Research Centre, Soshanguve, South Africa
- Faculty of Health Sciences, Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | | | | | - Juliana Caccavo
- Donación Francisco Santojanni Hospital, Buenos Aires, Argentina
| | - Conrado Milani Coutinho
- Department of Gynecology and Obstetrics, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Tirza De León
- Maternity Hospital José Domingo De Obaldia, San Pablo Viejo, Panama
| | | | | | - Pablo Dieser
- Instituto Médico Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea Falaschi
- Dr Ramon Carrillo Hospital, Mendoza, Argentina
- Dr Diego Paroissien Hospital, Mendoza, Argentina
| | | | - Angela Gentile
- Epidemiology Department, Hospital de Niños Dr Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Sheena Kotze
- Synexus Stanza Clinical Research Centre, Pretoria, South Africa
| | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Department of Pediatrics, Universidad del Valle, Valle del Cauca, Colombia
- Clinica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Ruben Luca
- Hospital F. F. Santojanni C1407, Buenos Aires, Argentina
| | - Maria Florencia Lucion
- Epidemiology Department, Hospital de Niños Dr Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Jacinto Blas III V Mantaring
- Department of Clinical Epidemiology, University of the Philippines, Philippine General Hospital, Manila, Philippines
| | | | | | | | - Jorge Pinto
- Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thanyawee Puthanakit
- Department of Pediatrics and Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Osvaldo Reyes
- Santo Tomás Hospital, Panama City, Panama
- Centro de Vacunación Internacional S.A., La Chorrera, Panama
- Member of the Sistema Nacional de Investigadores (SNI), Panama City, Panama
| | - Maria Fernanda Roa
- Department of Pediatrics, University Hospital Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Camilo Enrique Rodriguez
- Department of Gynecology and Obstetrics, University Hospital Fundación Santa Fe de Bogotá, Bogotá, Colombia
- School of Medicine, University of the Andes, Bogotá, Colombia
| | | | - Alexandre Vargas Schwarzbold
- Hospital Universitário de Santa Maria, Centro de Pesquisa Clínica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alexandra Sierra Garcia
- Centro de Estudios en Infectología Pediátrica, Department of Pediatrics, Universidad del Valle, Valle del Cauca, Colombia
- Clinica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Lavitha Sivapatham
- Department of Obstetrics and Gynecology, Ampang Hospital, Ampang, Malaysia
| | - Ruey Soon
- Department of Obstetrics and Gynecology, Sabah Women's and Children's Hospital, Kota Kinabalu, Malaysia
| | | | | | | |
Collapse
|
11
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions during Viral-Viral Coinfection Can Shape Infection Kinetics. Viruses 2023; 15:1303. [PMID: 37376603 PMCID: PMC10301061 DOI: 10.3390/v15061303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory viral infections are a leading global cause of disease with multiple viruses detected in 20-30% of cases, and several viruses simultaneously circulating. Some infections with unique viral copathogens result in reduced pathogenicity, while other viral pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV), followed by influenza A virus (IAV) after 3 days. The results suggest that IAV reduced the rate of RSV production, while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios that had not been examined experimentally, including a different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight-loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis shows that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to the slower clearance of IAV-infected cells by the other viruses. The improved outcome when IAV followed RV, on the other hand, could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
Affiliation(s)
- Lubna Pinky
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph R. DeAguero
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID 83844, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
12
|
Pinky L, DeAguero JR, Remien CH, Smith AM. How Interactions During Viral-Viral Coinfection Can Shape Infection Kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535744. [PMID: 37066297 PMCID: PMC10104040 DOI: 10.1101/2023.04.05.535744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Respiratory virus infections are a leading cause of disease worldwide with multiple viruses detected in 20-30% of cases and several viruses simultaneously circulating. Some infections with viral copathogens have been shown to result in reduced pathogenicity while other virus pairings can worsen disease. The mechanisms driving these dichotomous outcomes are likely variable and have only begun to be examined in the laboratory and clinic. To better understand viral-viral coinfections and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV) followed by influenza A virus (IAV) after 3 days. The results suggested that IAV reduced the rate of RSV production while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of possible dynamics for scenarios not examined experimentally, including different infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single infections together with murine weight loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this analysis showed that the increased disease severity observed during murine IAV-RV or IAV-CoV2 coinfection was likely due to slower clearance of IAV infected cells by the other viruses. On the contrary, the improved outcome when IAV followed RV could be replicated when the rate of RV infected cell clearance was reduced by IAV. Simulating viral-viral coinfections in this way provides new insights about how viral-viral interactions can regulate disease severity during coinfection and yields testable hypotheses ripe for experimental evaluation.
Collapse
|
13
|
Klivleyeva N, Lukmanova G, Glebova T, Shamenova M, Ongarbayeva N, Saktaganov N, Baimukhametova A, Baiseiit S, Ismagulova D, Kassymova G, Rachimbayeva A, Murzagaliyeva A, Xetayeva G, Isabayeva R, Sagatova M. Spread of Pathogens Causing Respiratory Viral Diseases Before and During CoVID-19 Pandemic in Kazakhstan. Indian J Microbiol 2023; 63:129-138. [PMID: 37168842 PMCID: PMC9972336 DOI: 10.1007/s12088-023-01064-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/11/2023] [Indexed: 03/06/2023] Open
Abstract
Analyze clinical samples collected and determine the etiology of viral pathogens and the dynamics of their spread. Acute respiratory viral infections remain one of the key health problems worldwide. They constitute etiologically independent diseases, with similar clinical infection manifestations and a single mechanism for the transmission of pathogens. 4712 nasopharyngeal swabs were collected from people before and during the COVID-19 pandemic with acute respiratory infections that tested negative for COVID-19 and were examined in this study. The collected samples were screened by a real-time polymerase chain reaction on a Rotor-Gene Q6 plex instrument. Statistical processing of the results, tabular, and graphical data were analyzed in the MS Excel. The largest number of the nasopharyngeal swabs were collected from children under 17 years of age (60.75%). In 702 samples (9.85%) pathogens of respiratory infections of non-influenza etiology were detected, including adenovirus, bocavirus, coronavirus, metapneumovirus, paramyxovirus types I–IV, respiratory syncytial virus, and rhinovirus. At the same time, both before and during the COVID-19 pandemic, different influenza virus variants co-circulation (A/H1N1, A/H3N2, and type B) were discovered, with a predominance of viruses with the antigenic formula A/H1N1. The results of the study indicate the need for continuous monitoring of the viral pathogens spread, which will expand the existing knowledge of the viral etiology of respiratory diseases and highlight the importance of viruses in the respiratory infections occurrence.
Collapse
Affiliation(s)
- Nailya Klivleyeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Galina Lukmanova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Tatyana Glebova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Mira Shamenova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nuray Ongarbayeva
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Nurbol Saktaganov
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Assem Baimukhametova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Sagadat Baiseiit
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | - Dariya Ismagulova
- The Laboratory of Viral Biochemistry, The Research and Production Center for Microbiology and Virology LLP, 105 Bogenbai Batyr Street, Almaty, Kazakhstan
| | | | - Almagul Rachimbayeva
- The Almaty Branch of National Center for Expertise, 3 Zhibek Zholy Avenue, Almaty, Kazakhstan
| | - Ardak Murzagaliyeva
- The West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe, Kazakhstan
| | - Gulzakira Xetayeva
- The Children’s City Clinical Infectious Diseases Hospital, SOPE On REM, ChCCIDH, 299a Baizakova Street, Almaty, Kazakhstan
| | - Rauna Isabayeva
- The Communal State Enterprise Regional Region Clinical Hospital (CSE RCH) of Karaganda Regional Health Department, 41/43 Erubaev Street, Karaganda, Kazakhstan
| | - Madisha Sagatova
- The East Kazakhstan Regional Branch of National Center for Expertise, 17 Independence Avenue, Ust-Kamenogorsk, Kazakhstan
| |
Collapse
|
14
|
Chiu YT, Tien N, Lin HC, Wei HM, Lai HC, Chen JA, Low YY, Lin HH, Hsu YL, Hwang KP. Detection of respiratory pathogens by application of multiplex PCR panel during early period of COVID-19 pandemic in a tertiary hospital in Central Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1144-1150. [PMID: 34674956 PMCID: PMC8493640 DOI: 10.1016/j.jmii.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Respiratory tract infections (RTIs) represent a major cause of clinical visits worldwide. Viral epidemiology of RTIs in adults has been less studied compared to children. FilmArray respiratory panel (FA-RP), a multiplex, real time polymerase chain reaction method can simultaneously detect the nucleic acids of multiple pathogens. The purpose of this study is to analyze the epidemiology and clinical presentations of an RTI cohort. METHODS This retrospective cohort study was conducted at China Medical University Hospital (CMUH) and China Medical University Children's Hospital (CMUCH), from January 2020 to June 2020. The FA-RP results were collected and analyzed according to upper versus lower RTIs. RESULTS Among 253 respiratory samples tested, 135 (53.4%) were from adults and 118 (46.6%) from children. A total positive rate of 33.9% (86/253) was found, with 21.48% (29/135) in adults and 48.31% (57/118) in children. Human rhinovirus/Enterovirus (HRV/EV) was detected in most of the age groups and was more common in URIs. HRV/EV was found as a frequent co-detection virus. Among children, HRV/EV was the most detected pathogen of URIs, while the most predominant pathogen in LRIs was Mycoplasma pneumoniae. CONCLUSIONS FA-RP has the potential to improve the detection rate of respiratory pathogens. The positive rate of FA-RP was higher in children compared to adults, which likely corresponds to the higher incidence of viral RTIs in children. Different pathogens may lead to different types of respiratory infections.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Chuan Lin
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiu-Mei Wei
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Huan-Cheng Lai
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Jiun-An Chen
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yan-Yi Low
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Hsiu-Hsien Lin
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan,Corresponding author. Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, No. 2, Yude Rd., North Dist., Taichung City, 40447, Taiwan. Fax: +886 4 22032798
| | - Kao-Pin Hwang
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan,Corresponding author. Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, No. 2, Yude Rd., North Dist., Taichung City, 40447, Taiwan. Fax: +886 4 22064008
| |
Collapse
|
15
|
Ogunbayo AE, Mogotsi MT, Sondlane H, Nkwadipo KR, Sabiu S, Nyaga MM. Pathogen Profile of Children Hospitalised with Severe Acute Respiratory Infections during COVID-19 Pandemic in the Free State Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610418. [PMID: 36012053 PMCID: PMC9408356 DOI: 10.3390/ijerph191610418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 05/30/2023]
Abstract
Severe acute respiratory infections (SARI) contribute to mortality in children ≤5 years. Their microbiological aetiologies are often unknown and may be exacerbated in light of coronavirus disease 19 (COVID-19). This study reports on respiratory pathogens in children ≤5 years (n = 84) admitted with SARI during and between the second and third waves of COVID-19 infection in South Africa. Nasopharyngeal/oropharyngeal swabs collected were subjected to viral detection using QIAstat-Dx® Respiratory SARS-CoV-2 Panel. The results revealed viral positivity and negativity detection rates of 88% (74/84) and 12% (10/84), respectively. Of the 21 targeted pathogens, human rhinovirus/enterovirus (30%), respiratory syncytial virus (RSV; 26%), and severe acute respiratory syndrome coronavirus 2 (24%) were mostly detected, with other viruses being 20% and a co-infection rate of 64.2% (54/84). Generally, RSV-positive samples had lower Ct values, and fewer viruses were detected during the third wave. Changes in the circulation patterns of respiratory viruses with total absence of influenza virus could be attributed to measures against COVID-19 transmission, which may result in waned immunity, thereby increasing susceptibility to severe infections in the following season. High viral co-infection rate, as detected, may complicate diagnosis. Nonetheless, accurate identification of the pathogens may guide treatment decisions and infection control.
Collapse
Affiliation(s)
- Ayodeji E. Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Milton T. Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Kelebogile R. Nkwadipo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Martin M. Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
16
|
Xu D, Ji L, Chen L, Wu X. Molecular typing and epidemiology profiles of human adenovirus infection among children with severe acute respiratory infection in Huzhou, China. Lett Appl Microbiol 2022; 75:1225-1231. [PMID: 35861697 DOI: 10.1111/lam.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Human adenoviruses (HAdVs) are prevalent worldwide and are a common cause of respiratory tract infection in people of all ages. However, little is known about HAdV infection among children with severe acute respiratory infection (SARI). The present study retrospectively analyzed the molecular typing and epidemiological characteristics of HAdV-positive samples from children with SARI from January 2017 to December 2021 in Huzhou. The results showed that 89 (8.27%) of 1078 SARI pediatric patients were positive for HAdVs. Children < 5 years of age accounted for 87.64% of the positive cases. The peak seasons for HAdV infection were the first quarter and the fourth quarter. In addition, HAdV-B and HAdV-C were circulating among pediatric patients with SARI, of which the B3 genotype (n = 30, 51.72%) was the most prevalent and was detected every year, indicating that B3 is the main epidemic strain in the Huzhou area, followed by C1 (n = 9, 15.52%), C2 (n = 7, 12.07%), and B7 (n = 5, 8.62%). These findings provide a benchmark for future epidemiology and prevention strategies for HAdVs.
Collapse
Affiliation(s)
- Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Lei C, Lou CT, Io K, SiTou KI, Ip CP, U H, Pan B, Ung COL. Viral etiology among children hospitalized for acute respiratory tract infections and its association with meteorological factors and air pollutants: a time-series study (2014-2017) in Macao. BMC Infect Dis 2022; 22:588. [PMID: 35786346 PMCID: PMC9250746 DOI: 10.1186/s12879-022-07585-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background The associations between viral etiology of acute respiratory infections (ARI) with meteorological factors and air pollutants among children is not fully understood. This study aimed to explore the viral etiology among children hospitalized for ARI and the association of meteorological factors and air pollutants with children hospitalization due to viral ARI. Methods Electronic health record data about children (aged between 1 month and 14 years) admitted for ARI at Kiang Wu Hospital in Macao between 2014 and 2017 was analyzed retrospectively. xMAP multiplex assays were used to detect viruses in the nasopharyngeal swab and distributed-lag nonlinear model (DLNM) was used to evaluate associations. Results Among the 4880 cases of children hospitalization due to ARI, 3767 (77.2%) were tested positive for at least one virus and 676 (18%) exhibited multiple infections. Enterovirus (EV)/rhinovirus (HRV), adenovirus (ADV), respiratory syncytial virus (RSV) and influenza virus (IFV) were the most common viral pathogens associated with ARI and human bocavirus (hBOV) exhibited the highest multiple infection rates. Meteorological factors and air pollutants (PM10, PM2.5 and NO2) were associated with the risk of viral ARI hospitalization. The relative risk of viral infection increased with daily mean temperature but plateaued when temperature exceeded 23 °C, and increased when the relative humidity was < 70% and peaked at 50%. The effect of solar radiation was insignificant. Air pollutants (including PM10, PM2.5, NO2 and O3) showed strong and immediate effect on the incidence of viral infection. Conclusions The effects of mean temperature, relative humidity and air pollutants should be taken into account when considering management of ARI among children. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07585-y.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - Cheong Tat Lou
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - King Io
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - Kin Ian SiTou
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - Chong Pak Ip
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - HongJin U
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - Baoquan Pan
- Department of Pediatrics, Kiang Wu Hospital, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China. .,Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
18
|
Kamata K, Thein KN, Di Ja L, Win NC, Win SMK, Suzuki Y, Ito A, Osada H, Chon I, Phyu WW, Aizawa Y, Ikuse T, Ota T, Kyaw Y, Tin HH, Shobugawa Y, Watanabe H, Saito R, Saitoh A. Clinical manifestations and outcome of viral acute lower respiratory infection in hospitalised children in Myanmar. BMC Infect Dis 2022; 22:350. [PMID: 35395744 PMCID: PMC8992414 DOI: 10.1186/s12879-022-07342-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/25/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Acute lower respiratory infection (ALRI) remains the leading cause of death in children worldwide, and viruses have been the major cause of ALRI. In Myanmar, ALRI is associated with high morbidity and mortality in children, and detailed information on ALRI is currently lacking. METHODS This prospective study investigated the viral aetiologies, clinical manifestations, and outcomes of ALRI in hospitalised children aged 1 month to 12 years at the Yankin Children Hospital, Yangon, Myanmar from May 2017 to April 2019. The sample size was set to 300 patients for each year. Two nasopharyngeal swabs were obtained for the patients with suspected viral ALRI; one for rapid tests for influenza and respiratory syncytial virus (RSV), and the other for real-time PCR for the 16 ALRI-causing viruses. Pneumococcal colonization rates were also investigated using real-time PCR. Clinical information was extracted from the medical records, and enrolled patients were categorised by age and severity for comparison. RESULTS Among the 5463 patients admitted with a diagnosis of ALRI, 570 (10.4%) were enrolled in this study. The median age of the patients was 8 months (interquartile range, 4-15 months). The most common symptoms were cough (93%) and difficulty in breathing (73%), while the most common signs of ALRI were tachypnoea (78%) and chest indrawing (67%). A total of 16 viruses were detected in 502 of 570 patients' samples (88%), with RSV B (36%) and rhinovirus (28%) being the most commonly detected. Multiple viruses were detected in 221 of 570 samples (37%) collected from 570 patients. Severe ALRI was diagnosed in 107 of 570 patients (19%), and RSV B and human rhinovirus were commonly detected. The mortality rate was 5%; influenza virus A (29%) and RSV B (21%) were commonly detected, and stunting and lack of immunization were frequently observed in such cases. Additionally, 45% (259/570) of the patients had pneumococcal colonization. CONCLUSIONS Viral ALRI in hospitalised children with a median of 8 months has significant morbidity and mortality rates in Myanmar. RSV and rhinovirus were the most commonly detected from nasopharyngeal swabs, while influenza virus and RSV were the most frequently associated with fatal cases.
Collapse
Grants
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
- 15fm0108009h0001, 19fm0108009h0005 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Kazuhiro Kamata
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | | | - Lasham Di Ja
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
| | - Yuko Suzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Ai Ito
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Hidekazu Osada
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
- Division of International Health, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Irina Chon
- Division of International Health, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Wint Wint Phyu
- Division of International Health, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Yuta Aizawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Tatsuki Ikuse
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Tomomi Ota
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
| | - Yadanar Kyaw
- Respiratory Medicine Department, Thingangyun Sanpya General Hospital, Yangon, Myanmar
| | - Htay Htay Tin
- Department of Medical Services, National Health Laboratory, Ministry of Health and Sports, Yangon, Myanmar
| | - Yugo Shobugawa
- Division of International Health, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University in Myanmar, Yangon, Myanmar
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
| |
Collapse
|
19
|
Ahmed A, Alsenaidy AM, Mobaireek KF, AlSaadi MM. Viral etiology of acute respiratory infections during 2014–16 in Riyadh, Saudi Arabia. Future Virol 2022. [DOI: 10.2217/fvl-2020-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Viral etiology of respiratory infections is not well understood in Saudi Arabia. This study was conceptualized to understand viral etiology in children with acute respiratory tract infections (ARTI) from Riyadh. Patients and methods: Respiratory viruses were detected by real-time PCR in nasopharyngeal aspirates or swab from 580 children aged ≤5 years. Results: Respiratory viruses were detected in 64% of the samples with 6% mixed viral infections. Respiratory syncytial virus, adenovirus, influenza, parainfluenza and human metapneumovirus infections accounted for 42, 20, 16, 12 and 10%, respectively. Maximum prevalence (37%) was among the lowest age group followed by 30% among the 7- to 12-month age group. Conclusion: The prevalence and determinants of viral etiology are in line with the previous report from the region. No major shift in the viral etiologies was observed in the 2-year study period.
Collapse
Affiliation(s)
- Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman M Alsenaidy
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Fahad Mobaireek
- Pediatric Emergency Department, Children’s Hospital, King Fahad Medical City, Riyadh, 12231, Saudi Arabia
| | - Muslim Mohammed AlSaadi
- Department of Pediatrics, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
20
|
Kohns Vasconcelos M, Loens K, Sigfrid L, Iosifidis E, Epalza C, Donà D, Matheeussen V, Papachristou S, Roilides E, Gijon M, Rojo P, Minotti C, Da Dalt L, Islam S, Jarvis J, Syggelou A, Tsolia M, Nyirenda Nyang'wa M, Keers S, Renk H, Gemmel AL, D'Amore C, Ciofi Degli Atti M, Rodríguez-Tenreiro Sánchez C, Martinón-Torres F, Burokienė S, Goetghebuer T, Spoulou V, Riordan A, Calvo C, Gkentzi D, Hufnagel M, Openshaw PJ, de Jong MD, Koopmans M, Goossens H, Ieven M, Fraaij PLA, Giaquinto C, Bielicki JA, Horby P, Sharland M. Aetiology of acute respiratory infection in preschool children requiring hospitalisation in Europe-results from the PED-MERMAIDS multicentre case-control study. BMJ Open Respir Res 2021; 8:8/1/e000887. [PMID: 34326154 PMCID: PMC8323363 DOI: 10.1136/bmjresp-2021-000887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Background Both pathogenic bacteria and viruses are frequently detected in the nasopharynx (NP) of children in the absence of acute respiratory infection (ARI) symptoms. The aim of this study was to estimate the aetiological fractions for ARI hospitalisation in children for respiratory syncytial virus (RSV) and influenza virus and to determine whether detection of specific respiratory pathogens on NP samples was associated with ARI hospitalisation. Methods 349 children up to 5 years of age hospitalised for ARI (following a symptom-based case definition) and 306 hospital controls were prospectively enrolled in 16 centres across seven European Union countries between 2016 and 2019. Admission day NP swabs were analysed by multiplex PCR for 25 targets. Results RSV was the leading single cause of ARI hospitalisations, with an overall population attributable fraction (PAF) of 33.4% and high seasonality as well as preponderance in younger children. Detection of RSV on NP swabs was strongly associated with ARI hospitalisation (OR adjusted for age and season: 20.6, 95% CI: 9.4 to 45.3). Detection of three other viral pathogens showed strong associations with ARI hospitalisation: influenza viruses had an adjusted OR of 6.1 (95% CI: 2.5 to 14.9), parainfluenza viruses (PIVs) an adjusted OR of 4.6 (95% CI: 1.8 to 11.3) and metapneumoviruses an adjusted OR of 4.5 (95% CI: 1.3 to 16.1). Influenza viruses had a PAF of 7.9%, PIVs of 6.5% and metapneumoviruses of 3.0%. In contrast, most other pathogens were found in similar proportions in cases and controls, including Streptococcus pneumoniae, which was weakly associated with case status, and endemic coronaviruses. Conclusion RSV is the predominant cause of ARI hospitalisations in young children in Europe and its detection, as well as detection of influenza virus, PIV or metapneumovirus, on NP swabs can establish aetiology with high probability. PAFs for RSV and influenza virus are highly seasonal and age dependent.
Collapse
Affiliation(s)
- Malte Kohns Vasconcelos
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK .,Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katherine Loens
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Louise Sigfrid
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Cristina Epalza
- Paediatric Infectious Diseases Unit, Department of Paediatrics, Hospital Universitario 12 de Octubre and Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padova, Italy
| | - Veerle Matheeussen
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Savvas Papachristou
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Aristotle University School of Health Sciences, Hippokration General Hospital, Thessaloniki, Greece
| | - Manuel Gijon
- Paediatric Infectious Diseases Unit, Department of Paediatrics, Hospital Universitario 12 de Octubre and Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Pablo Rojo
- Paediatric Infectious Diseases Unit, Department of Paediatrics, Hospital Universitario 12 de Octubre and Red de Investigación Traslacional en Infectología Pediátrica (RITIP), Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | - Chiara Minotti
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padova, Italy
| | - Liviana Da Dalt
- Paediatric Emergency Department, Department of Women's and Children's Health, University Hospital of Padua, Padova, Italy
| | - Samsul Islam
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Jessica Jarvis
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Aggeliki Syggelou
- 2nd Department of Paediatrics, National and Kapodistrian University of Athens (NKUA) School of Medicine, P. and A. Kyriakou Children's Hospital, Athens, Greece
| | - Maria Tsolia
- 2nd Department of Paediatrics, National and Kapodistrian University of Athens (NKUA) School of Medicine, P. and A. Kyriakou Children's Hospital, Athens, Greece
| | - Maggie Nyirenda Nyang'wa
- Paediatric Department, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, London, UK
| | - Sophie Keers
- Paediatric Department, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, London, UK
| | - Hanna Renk
- Department of Paediatric Cardiology, Pulmonology and Intensive Care Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Anna-Lena Gemmel
- Department of Paediatric Cardiology, Pulmonology and Intensive Care Medicine, University Children's Hospital Tübingen, Tübingen, Germany
| | - Carmen D'Amore
- Clinical Pathways and Epidemiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marta Ciofi Degli Atti
- Clinical Pathways and Epidemiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Carmen Rodríguez-Tenreiro Sánchez
- Translational Paediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Servizo Galego de Saude, Santiago de Compostela, Spain.,Genetics, Vaccines and Infectious Diseases Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Servizo Galego de Saude, Santiago de Compostela, Spain.,Genetics, Vaccines and Infectious Diseases Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sigita Burokienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Tessa Goetghebuer
- Department of Paediatrics, St-Pierre Hospital Brussels, Brussels, Belgium
| | - Vana Spoulou
- 1st Department of Paediatrics, National and Kapodistrian University of Athens (NKUA) School of Medicine, Agia Sophia Children's Hospital of Athens, Athens, Greece
| | - Andrew Riordan
- Department of Paediatric Infectious Diseases, Alder Hey Children's Hospital, Liverpool, UK
| | - Cristina Calvo
- Paediatrics and Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
| | - Despoina Gkentzi
- Department of Paediatrics, University General Hospital of Patras, Patras Medical School, Patras, Greece
| | - Markus Hufnagel
- Division of Paediatric Infectious Diseases and Rheumatology, Department of Paediatrics and Adolescent Medicine, University Medical Centre, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Peter J Openshaw
- National Heart and Lung Division, Faculty of Medicine, Imperial College London, London, UK
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, ErasmusMC, Rotterdam, The Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | | | - Carlo Giaquinto
- Division of Paediatric Infectious Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padova, Italy
| | - Julia A Bielicki
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK.,Department of Infectious Diseases and Vaccinology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Sharland
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St. George's, University of London, London, UK
| |
Collapse
|
21
|
Mendes ET, Paranhos HL, Santos ICM, Souza LBD, Aquino JLBD, Leandro-Merhi VA, Silva RVD, Lima MPJS. Prognosis of hospitalized children under 2 years of age with co-detection of influenza A and respiratory syncytial virus at the healthcare facility. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2021. [DOI: 10.1590/1806-93042021000200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Objectives: the aim of this study is to evaluate the impact of co-detection of Flu A and RSV using rapid immunochromatographic tests at the point of care, in pediatric patients under 2 years of age in a general hospital. Methods: a retrospective cohort study was conducted to analyze clinical outcomes in hospitalized infants with viral respiratory disease with positive results of rapid immunochromatographic test for RSV and/or Flu-A, from 2013 to 2018. A logistic regression model was adjusted to analyze predictors of orotracheal intubation during hospitalization. Results: we analyzed 220 cases: RSV (192), Flu-A (9), co-detection (19). Lethality rate was 1.8% (2 cases), and 88% (194) were under 1 year of age. Mean time of hospitalizations was higher in patients with co-detection. Variables significantly associated with orotracheal intubation were: younger age in months, comorbidities, RSV and Flu-A co-detection, and bacterial pneumonia during hospitalization. Conclusions: RSV and Flu-Aco-detection was associated with the least favorable clinical prognoses in this study. Rapid test diagnosis may provide important information at the point of care, because molecular panels are not widely accessible in general hospitals. Rapid diagnosis allows timely evaluation and treatment.
Collapse
|
22
|
Chatterjee A, Mavunda K, Krilov LR. Current State of Respiratory Syncytial Virus Disease and Management. Infect Dis Ther 2021; 10:5-16. [PMID: 33660239 PMCID: PMC7928170 DOI: 10.1007/s40121-020-00387-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/25/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of hospitalizations due to pneumonia and bronchiolitis. Substantial morbidity and socioeconomic burden are associated with RSV infection worldwide. Populations with higher susceptibility to developing severe RSV include premature infants, children with chronic lung disease of prematurity (CLDP) or congenital heart disease (CHD), elderly individuals aged > 65 years, and immunocompromised individuals. In the pediatric population, RSV can lead to long-term sequelae such as wheezing and asthma, which are associated with increased health care costs and reduced quality of life. Treatment for RSV is mainly supportive, and general preventive measures such as good hygiene and isolation are highly recommended. Although vaccine development for RSV has been a global priority, attempts to date have failed to yield a safe and effective product for clinical use. Currently, palivizumab is the only immunoprophylaxis (IP) available to prevent severe RSV in specific high-risk pediatric populations. Well-controlled, randomized clinical trials have established the efficacy of palivizumab in reducing RSV hospitalization (RSVH) in high-risk infants including moderate- to late-preterm infants. However, the American Academy of Pediatrics (AAP), in its 2014 policy, stopped recommending RSV IP use for ≥ 29 weeks' gestational age infants. Revisions to the AAP policy for RSV IP have largely narrowed the proportion of pediatric patients eligible to receive RSV IP and have been associated with an increase in RSVH and morbidity. On the other hand, after reviewing the recent evidence on RSV burden, the National Perinatal Association, in its 2018 clinical practice guidelines, recommended RSV IP use for a wider pediatric population. As the AAP recommendations drive insurance reimbursements for RSV IP, they should be revised to help further mitigate RSV disease burden.
Collapse
Affiliation(s)
- Archana Chatterjee
- Department of Pediatrics, Sanford Children's Specialty Clinic, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Kunjana Mavunda
- Department of Pulmonary Medicine, Kidz Medical Services, Coral Gables, FL, USA
| | - Leonard R Krilov
- Department of Pediatrics, NYU Langone Hospital-Long Island, NYU Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
23
|
Juliana AE, Tang MJ, Kemps L, Noort AC, Hermelijn S, Plötz FB, Zonneveld R, Wilschut JC. Viral causes of severe acute respiratory infection in hospitalized children and association with outcomes: A two-year prospective surveillance study in Suriname. PLoS One 2021; 16:e0247000. [PMID: 33606795 PMCID: PMC7894877 DOI: 10.1371/journal.pone.0247000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Viruses are the most frequent cause of severe acute respiratory infection (SARI) in children. It is currently unknown whether presence of a virus, the number of viruses, or type of virus, are associated with clinical outcomes of pediatric SARI in developing countries. METHODS Between 2012 and 2014 nasopharyngeal swabs and demographic and clinical variables were prospectively collected for surveillance of viral causes of SARI in Surinamese children within 48 hours after hospitalization. These swabs were tested for 18 respiratory viruses using a multiplex polymerase chain reaction (PCR) panel to identify the specific viral causes of SARI, unknown to the treating physicians. In post hoc analyses we evaluated if the PCR results, and demographic and clinical characteristics, were associated with course of disease, duration of respiratory support, and length of stay (LOS). RESULTS Of a total of 316 analyzed children, 290 (92%) had one or more viruses. Rhinovirus/enterovirus (43%) and respiratory syncytial virus (34%) were most prevalent. Course of disease was mild in 234 (74%), moderate in 68 (22%), and severe in 14 (4%) children. Neither presence of a single virus, multiple viruses, or the type of virus, were different between groups. Prematurity and lower weight-for-age-z-score were independent predictors of a severe course of disease, longer duration of respiratory support, and longer LOS. CONCLUSIONS Viruses are common causes of pediatric SARI in Suriname, yet not necessarily associated with clinical outcomes. In developing countries, demographic and clinical variables can help to identify children at-risk for worse outcome, while PCR testing may be reserved to identify specific viruses, such as influenza, in specific patient groups or during outbreaks.
Collapse
Affiliation(s)
- Amadu E. Juliana
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
- * E-mail:
| | - Ming-Jan Tang
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Lex Kemps
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Albert C. Noort
- Faculty of Economics and Business, University of Groningen, Groningen, The Netherlands
| | - Sandra Hermelijn
- Department of Medical Microbiology, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Frans B. Plötz
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rens Zonneveld
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Jan C. Wilschut
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Cimolai N. Complicating Infections Associated with Common Endemic Human Respiratory Coronaviruses. Health Secur 2020; 19:195-208. [PMID: 33186086 DOI: 10.1089/hs.2020.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses OC43, 229E, NL63, and HKU1 are endemic human respiratory coronaviruses that typically cause mild to moderate upper respiratory infections, similar to the common cold. They also may cause simple and complicated lower respiratory infections, otitis media, asthma exacerbations, gastroenteritis, and a few systemic complications. These viruses are usually seasonal (with winter dominance) and affect nearly all age groups. The seasonal and annual variation in virus prevalence has implications for understanding the concept of acquired immunity and its persistence or diminution. Coronaviruses generally have outbreak potential in susceptible populations of any age, particularly in patients with comorbidities, who tend to have increased clinical disease. These 4 coronaviruses are often found in the context of what appears to be coinfection with other pathogens, but especially other viruses. If coronaviruses are not specifically tested for, the sole detection of a viral copathogen would suggest the pathogen is the causative agent, when a coronavirus may be culpable, or both. The detection of these viruses in circumstances where respiratory viruses are generally sought in clinical samples is, therefore, justified. These pathogens can be chronically shed from the respiratory tract, which is more likely to occur among immunocompromised and complicated patients. These viruses share the potential for genetic drift. The genome is among the largest of RNA viruses, and the capability of these viruses to further change is likely underestimated. Given the potential disease among humans, it is justified to search for effective antiviral chemotherapy for these viruses and to consider uses in niche situations should effective therapy be defined. Whereas SARS-CoV-2 may follow the epidemiological pattern of SARS-CoV and extinguish slowly over time, there is yet concern that SARS-CoV-2 may establish itself as an endemic human respiratory coronavirus similar to OC43, 2299E, NL63, and HKU1. Until sufficient data are acquired to better understand the potential of SARS-CoV-2, continued work on antiviral therapy and vaccination is imperative.
Collapse
Affiliation(s)
- Nevio Cimolai
- Nevio Cimolai, MD, FRCPC, is a Professor, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia; he is also Medical Staff, Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia; both in Vancouver, Canada
| |
Collapse
|
25
|
Analytical Performances of the Panther Fusion System for the Detection of Respiratory Viruses in the French National Reference Centre of Lyon, France. Microorganisms 2020; 8:microorganisms8091371. [PMID: 32906749 PMCID: PMC7563737 DOI: 10.3390/microorganisms8091371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
Respiratory infection are mainly caused by viral pathogens. During the 2017-2018 epidemic season, Panther Fusion® Respiratory kits (Influenza virus A&B (FluA&B), respiratory syncytial virus (RSV), adenovirus (ADV), metapneumovirus (MPV), rhinovirus (RV), parainfluenzae virus (PIV), were compared to the Respiratory MultiWells System r-gene. Respiratory clinical specimens were tested retrospectively (n = 268) and prospectively (n = 463). Analytical performances were determined (sensitivity -Sep-, specificity -Spe- and κ) considering concordances of ≥2 molecular testing specific to each viral target (discrepant results were verified at the National Reference Centres for Enteroviruses or Respiratory viruses, Lyon, France). After retrospective (and prospective) testing, Sep, Spe, and κ were 100% (97.7%), 100% (99%) and 100% (94%) for FluA: 100% (95.5%), 100% (99.3%) and 100% (94%) for FluB, and 100% (88.5%), 100% (98.7%) and 100% (89%) for RSV; 82.1% (41.7%), 100% (99.5%) and 86% (54%) for ADV; 94.7% (73.7%), 96.1% (98.0%) and 91% (65%) for MPV; 96.1% (94.6%), 90.2% (98.5%) and 86% (91%) for HRV; and 90% (72.7%), 100% (99.3%) and 91% (72%), respectively, for PIV. Analytical performances were above 85% for all viruses except for ADV, MPV and PIV, confirming the analytical performance of the Panther Fusion system, a high throughput system with reduced turn-around-time, when compared to non-automated systems.
Collapse
|
26
|
Rijsbergen LC, Rennick LJ, Laksono BM, van Run PRWA, Kuiken T, Duprex WP, de Swart RL, de Vries RD. In vivo comparison of a laboratory-adapted and clinical-isolate-based recombinant human respiratory syncytial virus. J Gen Virol 2020; 101:1037-1046. [PMID: 32692644 DOI: 10.1099/jgv.0.001468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the leading cause of severe respiratory tract disease in infants. Most HRSV infections remain restricted to the upper respiratory tract (URT), but in a small percentage of patients the infection spreads to the lower respiratory tract, resulting in bronchiolitis or pneumonia. We have a limited understanding of HRSV pathogenesis and what factors determine disease severity, partly due to the widespread use of tissue-culture-adapted viruses. Here, we studied early viral dissemination and tropism of HRSV in cotton rats, BALB/cJ mice and C57BL/6 mice. We used a novel recombinant (r) strain based on a subgroup A clinical isolate (A11) expressing EGFP [rHRSVA11EGFP(5)]. A recombinant laboratory-adapted HRSV strain [rHRSVA2EGFP(5)] was used as a direct comparison. Our results show that rHRSVA11EGFP(5) replicated to higher viral titres than laboratory-adapted rHRSVA2EGFP(5) in the URT of cotton rats and mice. HRSV-infected cells were detected as early as 2 days post-inoculation in both species in the nasal septa and lungs. Infection was predominantly present in ciliated epithelial cells in cotton rats and in the olfactory mucosa of mice. In our opinion, this study highlights that the choice of virus strain is important when studying HRSV pathogenesis in vivo and demonstrates that A11 is a representative clinical-based virus. Additionally, we show critical differences in tropism and inflammation when comparing HRSV infection of cotton rats and mice.
Collapse
Affiliation(s)
- Laurine C Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Linda J Rennick
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brigitta M Laksono
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Peter R W A van Run
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - W Paul Duprex
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rik L de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Kim GY, Rheem I, Joung YH, Kim JK. Investigation of occurrence patterns of respiratory syncytial virus A and B in infected-patients from Cheonan, Korea. Respir Res 2020; 21:191. [PMID: 32682419 PMCID: PMC7368615 DOI: 10.1186/s12931-020-01456-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Respiratory infections caused by viruses affect the lower respiratory tract; these infections are severe in patients with underlying diseases and can even lead to death. Respiratory syncytial virus (RSV), one of the causative agents of respiratory viral infections, is the most common cause of pneumonia and bronchiolitis in children and adults. METHODS Respiratory specimens (nasopharyngeal aspirate, nasal swab, throat swab, etc.), which were sent to the Department of laboratory medicine from January 2012 to December 2018 for detection of respiratory viruses via real time reverse transcription PCR (Real time RT-PCR) were used in this study. RSV detected by real-time RT-PCR were analyzed on the basis of co-infection, sex and age of the patients, and year and month of sample collection. RESULTS During the study period, we observed that the RSV detection rate was 12.8% (n = 1150/9010); the detection rate of RSV-A (7.1%) was higher than that of RSV-B (5.8%). The detection rate of RSV was the highest at 36.5% in December, and RSV-A and RSV-B were in vogue every year. Co-infection rate of RSVs was the highest in the patients over 80 years of age; RSVs showed the highest Co-infection with Rhinoviruses. CONCLUSIONS During the study period, prevalence was different among the two subtypes of RSV, and the average age of RSV-B-positive patients was higher than that of RSV-A. Co-infection rate tended to increase every year. RSVs cause mild as well as severe infections. There are reports of serious clinical progress as RSVs cause overlapping infections with other viruses and increase the risk of secondary bacterial infections. Thus, further research on RSV should be done.
Collapse
Affiliation(s)
- Ga-Yeon Kim
- Department of of Public Health, Dankook University Graduate School, Cheonan, South Korea
| | - Insoo Rheem
- Department of Laboratory Medicine, Dankook University College of Medicine, Cheonan, South Korea
| | - You Hyun Joung
- Department of Biomedical Laboratory Science, Dankook University College of Health Sciences, Cheonan, South Korea
| | - Jae Kyung Kim
- Department of Biomedical Laboratory Science, Dankook University College of Health Sciences, Cheonan, South Korea.
| |
Collapse
|
28
|
Barral-Arca R, Gómez-Carballa A, Cebey-López M, Currás-Tuala MJ, Pischedda S, Viz-Lasheras S, Bello X, Martinón-Torres F, Salas A. RNA-Seq Data-Mining Allows the Discovery of Two Long Non-Coding RNA Biomarkers of Viral Infection in Humans. Int J Mol Sci 2020; 21:ijms21082748. [PMID: 32326627 PMCID: PMC7215422 DOI: 10.3390/ijms21082748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.
Collapse
Affiliation(s)
- Ruth Barral-Arca
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Miriam Cebey-López
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - María José Currás-Tuala
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sara Pischedda
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Sandra Viz-Lasheras
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Xabier Bello
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; (R.B.-A.); (A.G.-C.); (M.C.-L.); (M.J.C.-T.); (S.P.); (S.V.-L.); (X.B.)
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Galicia, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS) and Universidad de Santiago de Compostela (USC), 15706 Galicia, Spain;
- Correspondence:
| |
Collapse
|
29
|
Ganzenmueller T, Kaiser R, Baier C, Wehrhane M, Hilfrich B, Witthuhn J, Flucht S, Heim A. Comparison of the performance of the Panther Fusion respiratory virus panel to R-Gene and laboratory developed tests for diagnostic and hygiene screening specimens from the upper and lower respiratory tract. J Med Microbiol 2020; 69:427-435. [DOI: 10.1099/jmm.0.001133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction. Diagnosis of acute respiratory infections (ARIs) can be facilitated by the Panther Fusion (PF) automatic, random access PCR system for the detection of influenzavirus A (Flu A) and B (Flu B), parainfluenzavirus (Paraflu), respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinovirus (RV) and human adenovirus (AdV) in nasopharyngeal swabs.
Aim. To evaluate the performance of PF in comparison with established methods, including subsets of (1) lower respiratory tract (LRT) specimens and (2) upper respiratory tract (URT) hygiene screening specimens of patients without ARI symptoms.
Methodology. The performance characteristics of PF were compared with bioMérieux R-Gene and laboratory-developed PCR tests (LDTs). Overall, 1544 specimens with 6658 individual diagnostic requests were analysed.
Results. The overall concordances of PF and LDTs for Flu A, Flu B and AdV were 98.4, 99.9 and 96.1%, respectively; by re-testing of discrepant specimens concordances increased to 99.4, 99.9 and 98.0%, respectively. Initial concordances of PF and R-Gene assays for RSV, Paraflu, hMPV and RV were 98.4, 96.3, 99.3 and 96.0%, respectively, and retest concordances were 99.7, 97.9, 99.9 and 98.9%, respectively. No differences to the overall performance were found for the subgroups of LRT and hygiene screening specimens. PCR cycle threshold (Ct) values correlated very well between methods, indicating that a semi-quantitative diagnostic approach using Ct values (e.g. highly vs. weakly positive) could augment the diagnostic information.
Conclusion. PF performed similar to R-Gene and LDTs not only for its intended use but also for LRT and hygiene screening specimens with shorter hands-on and turnaround times.
Collapse
Affiliation(s)
- Tina Ganzenmueller
- Institute for Medical Virology, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Rolf Kaiser
- Institute for Virology, University Hospital Cologne, Cologne, Germany
| | - Claas Baier
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marlies Wehrhane
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Jenny Witthuhn
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Sandra Flucht
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Albert Heim
- Institute for Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Abstract
Purpose of Review This investigation aims to understand the role and burden of viral co-infections for acute respiratory illnesses in children. Co-infection can be either viral-viral or viral-bacterial and with new technology there is more information on the role they play on the health of children. Recent Findings With the proliferation of multiplex PCR for rapid diagnosis of multiple viruses as well as innovations on identification of bacterial infections, research has been attempting to discover how these co-infections affect each other and the host. Studies are aiming to discern if the epidemiology of viruses seen at a population level is related to the interaction between different viruses on a host level. Studies are also attempting to discover the burden of morbidity and mortality of these viral-viral co-infections on the pediatric population. It is also becoming important to understand the interplay of certain viruses with specific bacteria and understanding the impact of viral-bacterial co-infections. Summary RSV continues to contribute to a large burden of disease for pediatric patients with acute respiratory illnesses. However, recent literature suggests that viral-viral co-infections do not add to this burden and might, in some cases, be protective of severe disease. Viral-bacterial co-infections, on the other hand, are most likely adding to the burden of morbidity in pediatric patients because of the synergistic way they can infect the nasopharyngeal space. Future research needs to focus on confirming these conclusions as it could affect hospital cohorting, role of molecular testing, and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah D Meskill
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA.
| | - Shelease C O'Bryant
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA
| |
Collapse
|
31
|
Zandstra J, van de Geer A, Tanck MWT, van Stijn-Bringas Dimitriades D, Aarts CEM, Dietz SM, van Bruggen R, Schweintzger NA, Zenz W, Emonts M, Zavadska D, Pokorn M, Usuf E, Moll HA, Schlapbach LJ, Carrol ED, Paulus S, Tsolia M, Fink C, Yeung S, Shimizu C, Tremoulet A, Galassini R, Wright VJ, Martinón-Torres F, Herberg J, Burns J, Levin M, Kuijpers TW. Biomarkers for the Discrimination of Acute Kawasaki Disease From Infections in Childhood. Front Pediatr 2020; 8:355. [PMID: 32775314 PMCID: PMC7388698 DOI: 10.3389/fped.2020.00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Kawasaki disease (KD) is a vasculitis of early childhood mimicking several infectious diseases. Differentiation between KD and infectious diseases is essential as KD's most important complication-the development of coronary artery aneurysms (CAA)-can be largely avoided by timely treatment with intravenous immunoglobulins (IVIG). Currently, KD diagnosis is only based on clinical criteria. The aim of this study was to evaluate whether routine C-reactive protein (CRP) and additional inflammatory parameters myeloid-related protein 8/14 (MRP8/14 or S100A8/9) and human neutrophil-derived elastase (HNE) could distinguish KD from infectious diseases. Methods and Results: The cross-sectional study included KD patients and children with proven infections as well as febrile controls. Patients were recruited between July 2006 and December 2018 in Europe and USA. MRP8/14, CRP, and HNE were assessed for their discriminatory ability by multiple logistic regression analysis with backward selection and receiver operator characteristic (ROC) curves. In the discovery cohort, the combination of MRP8/14+CRP discriminated KD patients (n = 48) from patients with infection (n = 105), with area under the ROC curve (AUC) of 0.88. The HNE values did not improve discrimination. The first validation cohort confirmed the predictive value of MRP8/14+CRP to discriminate acute KD patients (n = 26) from those with infections (n = 150), with an AUC of 0.78. The second validation cohort of acute KD patients (n = 25) and febrile controls (n = 50) showed an AUC of 0.72, which improved to 0.84 when HNE was included. Conclusion: When used in combination, the plasma markers MRP8/14, CRP, and HNE may assist in the discrimination of KD from both proven and suspected infection.
Collapse
Affiliation(s)
- Judith Zandstra
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Annemarie van de Geer
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diana van Stijn-Bringas Dimitriades
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cathelijn E M Aarts
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sanne M Dietz
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nina A Schweintzger
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Werner Zenz
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Marieke Emonts
- Pediatric Infectious Diseases and Immunology Department, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dace Zavadska
- Department of Pediatrics, Riga Stradins University, Riga, Latvia
| | - Marko Pokorn
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Effua Usuf
- Medical Research Council Unit the Gambia (MRCG) at LSHTM, Serrekunda, Gambia
| | - Henriette A Moll
- Department of General Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Lady Cilento Children's Hospital, Pediatric Critical Care Research Group, Brisbane, QLD, Australia
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Stephane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Maria Tsolia
- Second Department of Pediatrics, P. & A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Shunmay Yeung
- Department of Clinical Research, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Rachel Galassini
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Victoria J Wright
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, University of Santiago, Santiago de Compostela, Spain
| | - Jethro Herberg
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jane Burns
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Michael Levin
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
32
|
Folgueira L, Moral N, Pascual C, Delgado R. Comparison of the Panther Fusion and Allplex assays for the detection of respiratory viruses in clinical samples. PLoS One 2019; 14:e0226403. [PMID: 31881030 PMCID: PMC6934309 DOI: 10.1371/journal.pone.0226403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Respiratory viral infections are the most frequent clinical syndrome affecting both children and adults, and early detection is fundamental to avoid infection-related risks and reduce the healthcare costs incurred by unnecessary antibiotic treatments. In this study, performance characteristics of two commercial methods, the Panther Fusion® assay (Hologic Inc., San Diego, CA, USA) were compared to Allplex™ respiratory panels (Seegene, Seoul, South Korea) for the detection of influenza A (Flu A), influenza B (Flu B), respiratory syncytial virus (RSV), parainfluenza virus (PIV), human metapneumovirus (hMPV), rhinovirus (RV) and adenovirus (AdV) targets. A total of 865 specimens collected prospectively and retrospectively were included, and discordant results were further examined using another commercial product, R-GENE™ respiratory kits (bioMérieux, Marcy l'Etoile, France). There was high agreement between both methods, with 98.6% concordance and a kappa (k) value of 0.9 (95% CI: 0.89-0.92). A specific analysis of both methods for each viral agent demonstrated comparable sensitivity and specificity, both ranging from 0.83 to 1 with good predictive values for the prospective part of the study. Good agreement between both methods was also found for the κ values obtained (ranging from 97.55% to 98.9%), with the lowest for hMPV (k = 0.83, 95% CI: 0.75-0.91) and RV (k = 0.73, 95% CI: 0.65-0.81). Amplification efficiency, measured according to the value of the cycle threshold (Ct) obtained in each of the amplifications in both tests, was significantly better with Panther Fusion for Flu A, Flu B, hMPV and RV. Regarding discordant results, R-GENE showed higher agreement with Panther Fusion-positive specimens (negative for Allplex; n = 28/71, 34.9%) than with Allplex-positive samples (negative for Panther Fusion; n = 7/49, 14.3%). In summary, Panther Fusion proved to be a more efficient fully-automated methodology, requiring shorter hands-on and turnaround times than Allplex.
Collapse
Affiliation(s)
- Lola Folgueira
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Noelia Moral
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Consuelo Pascual
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Delgado
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
33
|
Ljubin-Sternak S, Meštrović T, Ivković-Jureković I, Kolarić B, Slović A, Forčić D, Tot T, Mijač M, Vraneš J. The Emerging Role of Rhinoviruses in Lower Respiratory Tract Infections in Children - Clinical and Molecular Epidemiological Study From Croatia, 2017-2019. Front Microbiol 2019; 10:2737. [PMID: 31849887 PMCID: PMC6901631 DOI: 10.3389/fmicb.2019.02737] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023] Open
Abstract
Rhinoviruses (RVs) are increasingly implicated not only in mild upper respiratory tract infections, but also in more severe lower respiratory tract infections; however, little is known about species diversity and viral epidemiology of RVs among the infected children. Therefore, we investigated the rhinovirus (RV) infection prevalence over a 2-year period, compared it with prevalence patterns of other common respiratory viruses, and explored clinical and molecular epidemiology of RV infections among 590 children hospitalized with acute respiratory infection in north-western and central parts of Croatia. For respiratory virus detection, nasopharyngeal and pharyngeal flocked swabs were taken from each patient and subsequently analyzed with multiplex RT-PCR. To determine the RV species in a subset of positive children, 5'UTR in RV-positive samples has been sequenced. Nucleotide sequences of referent RV strains were retrieved by searching the database with Basic Local Alignment Tool, and used to construct alignments and phylogenetic trees using MAFFT multiple sequence alignment tool and the maximum likelihood method, respectively. In our study population RV was the most frequently detected virus, diagnosed in 197 patients (33.4%), of which 60.4% was detected as a monoinfection. Median age of RV-infected children was 2.25 years, and more than half of children infected with RV (55.8%) presented with lower respiratory tract infections. Most RV cases were detected from September to December, and all three species co-circulated during the analyzed period (2017-2019). Sequence analysis based on 5'UTR region yielded 69 distinct strains; the most prevalent was RV-C (47.4%) followed by RV-A (44.7%) and RV-B (7.9%). Most of RV-A sequences formed a distinct phylogenetic group; only strains RI/HR409-18 (along with a reference strain MF978777) clustered with RV-C strains. Strains belonging to the group C were the most diverse (41.6% identity among strains), while group B was the most conserved (71.5% identity among strains). Despite such differences in strain groups (hitherto undescribed in Croatia), clinical presentation of infected children was rather similar. Our results are consistent with newer studies that investigated the etiology of acute respiratory infections, especially those focused on children with lower respiratory tract infections, where RVs should always be considered as potentially serious pathogens.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Polyclinic “Dr. Zora Profozić”, Zagreb, Croatia
- University Centre Varaždin, University North, Varaždin, Croatia
| | - Irena Ivković-Jureković
- Department of Pulmonology, Allergy, Immunology and Rheumatology, Children’s Hospital Zagreb, Zagreb, Croatia
- Faculty for Dental Medicine and Healthcare/School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Branko Kolarić
- Department of Epidemiology, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Anamarija Slović
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Center of Excellence for Virus Immunology and Vaccines, Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Tatjana Tot
- Department of Microbiology, General Hospital Karlovac, Karlovac, Croatia
| | - Maja Mijač
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jasmina Vraneš
- Molecular Microbiology Department, Dr. Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
34
|
Abstract
BACKGROUND Influenza virus is one of the most common respiratory pathogens for all age groups and may cause seasonal outbreaks. Our aim was to identify risk groups and factors associated with severe clinical course including mortality in children with influenza-related lower respiratory tract infection (LRTI). METHODS We conducted a retrospective study in children hospitalized with influenza virus LRTI from 2008 to 2018. Data on demographic features, influenza type, viral coinfection, primary and secondary bacterial infections (SBIs), time of onset of antiviral treatment, comorbidities, hospitalization length, pediatric intensive care unit admission/invasive mechanical ventilation (IMV) need and mortality were collected from medical records. RESULTS There were 280 patients hospitalized with LRTI and median hospitalization length was 9 days. Congenital heart disease, neuromuscular disease, SBIs and late-onset antiviral treatment were independent risk factors for prolonged hospital stay (P < 0.05). Pediatric intensive care unit admission was present in 20.4% (57) of the patients and 17.1% (48) of all patients required IMV. SBIs, lymphopenia, neutrophilia, immunosuppression and human bocavirus coinfection were independent risk factors for IMV support (P < 0.05). Eighteen patients died and immunosuppression, lymphopenia and SBIs were independent risk factors for mortality (P < 0.05). CONCLUSIONS Presence of comorbidity, SBIs, neutrophilia and lymphopenia at admission identified as risk factors for severe influenza infections including need for IMV and death. Although several studies showed that antiviral treatment reduce hospitalization, complications and mortality, there is a lack of prospective trials and patients for antiviral therapy should be carefully chosen by the clinician.
Collapse
|
35
|
Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection. Cell Rep 2019; 22:411-426. [PMID: 29320737 DOI: 10.1016/j.celrep.2017.12.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/03/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways.
Collapse
|
36
|
Cardoso AM, Resende PC, Paixao ES, Tavares FG, Farias YN, Barreto CTG, Pantoja LN, Ferreira FL, Martins AL, Lima ÂB, Fernandes DA, Sanches PM, Almeida WAF, Rodrigues LC, Siqueira MM. Investigation of an outbreak of acute respiratory disease in an indigenous village in Brazil: Contribution of Influenza A(H1N1)pdm09 and human respiratory syncytial viruses. PLoS One 2019; 14:e0218925. [PMID: 31283762 PMCID: PMC6613774 DOI: 10.1371/journal.pone.0218925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/13/2019] [Indexed: 11/18/2022] Open
Abstract
Analyses of the 2009 H1N1 influenza pandemic and post-pandemic years showed high attack rates and severity among indigenous populations. This study presents the characteristics of the first documented influenza outbreak in indigenous peoples in Brazil, that occurred from 30th March to 14th April 2016 in a Guarani village in Southeast Region. Acute respiratory infections were prospectively investigated. The majority of the 73 cases were influenza-like illness (ILI) (63.0%) or severe acute respiratory infection (SARI) (20.5%). The ILI+SARI attack rate (35.9%) decreased with increasing age. There was a high influenza vaccination rate (86.3%), but no statistically significant difference in vaccination rates between severe and non-severe cases was seen (p = 0.334). Molecular analyses of 19.2% of the cases showed 100% positivity for influenza A(H1N1)pdm09 and/or hRSV. Influenza A(H1N1)pdm09 was included in the 6B.1 genetic group, a distinct cluster with 13 amino acid substitutions of A/California/07/2009-like. The hRSV were clustered in the BA-like genetic group. The early arrival of the influenza season overlapping usual hRSV season, the circulation of a drifted influenza virus not covered by vaccine and the high prevalence of risk factors for infection and severity in the village jointly can explain the high attack rate of ARI, even with a high rate of influenza vaccination. The results reinforce the importance of surveillance of respiratory viruses, timely vaccination and controlling risk factors for infection and severity of in the indigenous populations in order to preventing disease and related deaths, particularly in children.
Collapse
Affiliation(s)
- Andrey Moreira Cardoso
- Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | | | - Enny S. Paixao
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ferreira HLDS, Costa KLP, Cariolano MS, Oliveira GS, Felipe KKP, Silva ESA, Alves MS, Maramaldo CEC, de Sousa EM, Rego JS, Silva ICPA, Albuquerque RKS, Araújo NSC, Amorim AMM, Costa LD, Pinheiro CS, Guimarães VA, Santos MC, Mello WA, Falcai A, Lima-Neto LG. High incidence of rhinovirus infection in children with community-acquired pneumonia from a city in the Brazilian pre-Amazon region. J Med Virol 2019; 91:1751-1758. [PMID: 31230362 PMCID: PMC7166869 DOI: 10.1002/jmv.25524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/18/2019] [Indexed: 11/17/2022]
Abstract
Community‐acquired pneumonia (CAP) is the leading cause of child death worldwide. Viruses are the most common pathogens associated with CAP in children, but their incidence varies greatly. This study investigated the presence of respiratory syncytial virus (RSV), adenovirus, human rhinovirus (HRV), human metapneumovirus (HMPV), human coronavirus (HCoV‐OC43 and HCoV‐NL63), and influenza A virus (FluA) in children with CAP and the contributing risk factors. Here, children with acute respiratory infections were screened by pediatrics; and a total of 150 radiographically‐confirmed CAP patients (aged 3 months to 10 years) from two clinical centers in Sao Luis, Brazil were recruited. Patient's clinical and epidemiological data were recorded. Nasopharyngeal swab and tracheal aspirate samples were collected to extract viral nucleic acid. RSV, adenovirus, rhinovirus, FluA, HMPV, HCoV‐OC43, and HCoV‐NL63 were detected by real‐time polymerase chain reaction. The severe CAP was associated with ages between 3 and 12 months. Viruses were detected in 43% of CAP patients. Rhinovirus infections were the most frequently identified (68%). RSV, adenovirus, FluA, and coinfections were identified in 14%, 14%, 5%, and 15% of children with viral infection, respectively. Rhinovirus was associated with nonsevere CAP (P = .014); RSV, FluA, and coinfections were associated with severe CAP (P < .05). New strategies for prevention and treatment of viral respiratory infections, mainly rhinovirus and RSV infections, are necessary. This is the first study conducted in a city in the Brazilian pre‐Amazon region to identify viruses in children with CAP. Rhinovirus infections were the most frequently identified. RSV, adenovirus, FluA, and co‐infections were associated with severe CAP.
Collapse
Affiliation(s)
| | | | | | - Gustavo S Oliveira
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | - Karen K P Felipe
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | - Elen S A Silva
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | - Matheus S Alves
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | | | - Eduardo M de Sousa
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | - Joseany S Rego
- Complexo Hospitalar Materno Infantil do Maranhão Hospital Dr. Juvêncio Mattos Maternidade Benedito Leite, São Luís, Maranhão, Brasil
| | - Ilana C P A Silva
- Programa de Pós-Graduação, Universidade CEUMA, São Luís, Maranhão, Brasil
| | | | | | - Angela M M Amorim
- Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brasil
| | - Luciane D Costa
- Hospital da Criança Dr. Odorico de Amaral Matos, São Luís, Maranhão, Brasil
| | | | - Vinícius A Guimarães
- Hospital Universitário, Universidade Federal do Maranhão, São Luís, Maranhão, Brasil
| | - Mirleide C Santos
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brasil
| | - Wyller A Mello
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brasil
| | - Angela Falcai
- Mestrado em Meio Ambiente, Universidade CEUMA, São Luís, Maranhão, Brasil
| | | |
Collapse
|
38
|
Obando-Pacheco P, Justicia-Grande AJ, Rivero-Calle I, Rodríguez-Tenreiro C, Sly P, Ramilo O, Mejías A, Baraldi E, Papadopoulos NG, Nair H, Nunes MC, Kragten-Tabatabaie L, Heikkinen T, Greenough A, Stein RT, Manzoni P, Bont L, Martinón-Torres F. Respiratory Syncytial Virus Seasonality: A Global Overview. J Infect Dis 2019; 217:1356-1364. [PMID: 29390105 DOI: 10.1093/infdis/jiy056] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 01/24/2018] [Indexed: 11/12/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infections in children. By the age of 1 year, 60%-70% of children have been infected by RSV. In addition, early-life RSV infection is associated with the development of recurrent wheezing and asthma in infancy and childhood. The need for precise epidemiologic data regarding RSV as a worldwide pathogen has been growing steadily as novel RSV therapeutics are reaching the final stages of development. To optimize the prevention, diagnosis, and treatment of RSV infection in a timely manner, knowledge about the differences in the timing of the RSV epidemics worldwide is needed. Previous analyses, based on literature reviews of individual reports obtained from medical databases, have failed to provide global country seasonality patterns. Until recently, only certain countries have been recording RSV incidence through their own surveillance systems. This analysis was based on national RSV surveillance reports and medical databases from 27 countries worldwide. This is the first study to use original-source, high-quality surveillance data to establish a global, robust, and homogeneous report on global country-specific RSV seasonality.
Collapse
Affiliation(s)
- Pablo Obando-Pacheco
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Antonio José Justicia-Grande
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Carmen Rodríguez-Tenreiro
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain
| | - Peter Sly
- Children's Lung Environment and Asthma Research, Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Octavio Ramilo
- Respiratory syncytial virus network (ReSViNET), Zeist.,Department of Pediatrics, Division of Infectious Diseases, Ohio State University, Columbus.,Center for Vaccines and Immunity at Nationwide Children's Hospital, Ohio State University, Columbus
| | - Asunción Mejías
- Respiratory syncytial virus network (ReSViNET), Zeist.,Department of Pediatrics, Division of Infectious Diseases, Ohio State University, Columbus.,Center for Vaccines and Immunity at Nationwide Children's Hospital, Ohio State University, Columbus
| | - Eugenio Baraldi
- Respiratory syncytial virus network (ReSViNET), Zeist.,Women's and Children's Health Department, University of Padova, Torino, Italy
| | - Nikolaos G Papadopoulos
- Respiratory syncytial virus network (ReSViNET), Zeist.,Department of Allergy, 2nd Pediatric Clinic, University of Athens, Greece.,Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Johannesburg, South Africa
| | - Harish Nair
- Respiratory syncytial virus network (ReSViNET), Zeist.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Johannesburg, South Africa
| | - Marta C Nunes
- Respiratory syncytial virus network (ReSViNET), Zeist.,Respiratory and Meningeal Pathogens Research Unit, Johannesburg, South Africa.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of Witwatersrand, Johannesburg, South Africa
| | - Leyla Kragten-Tabatabaie
- Respiratory syncytial virus network (ReSViNET), Zeist.,Julius Clinical, University Medical Center Utrecht, Zeist
| | - Terho Heikkinen
- Respiratory syncytial virus network (ReSViNET), Zeist.,Department of Pediatrics, University of Turku and Turku University Hospital, Finl
| | - Anne Greenough
- Respiratory syncytial virus network (ReSViNET), Zeist.,MRC & Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London, Johannesburg, South Africa.,Department of Women and Children's Health, School of Life Course Sciences.,Faculty of Life Sciences and Medicine, King's College London
| | - Renato T Stein
- Respiratory syncytial virus network (ReSViNET), Zeist.,Pediatric Pulmonology Unit, Pontifícia Universidade Católica RS, Porto Alegre, Brazil
| | - Paolo Manzoni
- Respiratory syncytial virus network (ReSViNET), Zeist.,Neonataology and Neonatal Intensive Care Unit, S Anna Hospital, Torino, Italy
| | - Louis Bont
- Respiratory syncytial virus network (ReSViNET), Zeist.,Department of Pediatrics, University Medical Center Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago.,GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Galicia, Spain.,Respiratory syncytial virus network (ReSViNET), Zeist
| |
Collapse
|
39
|
Mohammadi M, Yavarian J, Karbasizade V, Moghim S, Esfahani BN, Hosseini NS. Phylogenetic analysis of human bocavirus in children with acute respiratory infections in Iran. Acta Microbiol Immunol Hung 2019; 66:485-497. [PMID: 31146533 DOI: 10.1556/030.66.2019.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human bocavirus (HBoV) was first characterized in nasopharyngeal aspirates from young children with acute respiratory infections. It is prevalent among children with acute wheezing. This study was carried out in order to analyze the infection frequency and coinfection rates of HBoV with respiratory syncytial virus (RSV) and to perform phylogenetic analysis of HBoV in samples of children with acute respiratory infection in Isfahan, Iran. During the time period 2016-2017, altogether 75 respiratory samples from children hospitalized with acute respiratory infection were collected. The samples were first screened for RSV by direct immunofluorescence method and then subjected to detect HBoV DNA by PCR. Genotyping of HBoV-positive samples was conducted by direct sequencing of PCR products using NP and VP1/VP2 genes. Out of 75 respiratory samples, 20 (26.7%) and 10 (13.3%) were positive for RSV and HBoV, respectively. The coinfection rate was 40% (p = 0.048). Considering the seasonal distribution, winter has the highest extent outbreak (p = 0.036). Sequence analysis of positive samples exhibits that all of the isolated HBoV were related to genotype 1 (HBoV-1) with minimal sequence variations. Increasing frequency of HBoV suggests that the virus is related to acute respiratory infection in children. A single genetic lineage of HBoV1 seems to be the major genotype in Iran.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- 1 Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jila Yavarian
- 2 Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajihe Karbasizade
- 1 Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- 1 Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- 1 Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
40
|
Mennechet FJD, Paris O, Ouoba AR, Salazar Arenas S, Sirima SB, Takoudjou Dzomo GR, Diarra A, Traore IT, Kania D, Eichholz K, Weaver EA, Tuaillon E, Kremer EJ. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines 2019; 18:597-613. [PMID: 31132024 DOI: 10.1080/14760584.2019.1588113] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human adenovirus (HAdV)-derived vectors have been used in numerous pre-clinical and clinical trials during the last 40 years. Current research in HAdV-based vaccines focuses on improving transgene immunogenicity and safety. Because pre-existing humoral immunity against HAdV types correlate with reduced vaccine efficacy and safety, many groups are exploring the development of HAdV types vectors with lower seroprevalence. However, global seroepidemiological data are incomplete. Areas covered: The goal of this review is to centralize 65 years of research on (primarily) HAdV epidemiology. After briefly addressing adenovirus biology, we chronical HAdV seroprevalence studies and highlight major milestones. Finally, we analyze data from about 50 studies with respect to HAdVs types that are currently used in the clinic, or are in the developmental pipeline. Expert opinion: Vaccination is among the most efficient tools to prevent infectious disease. HAdV-based vaccines have undeniable potential, but optimization is needed and antivector immunity remains a challenge if the same vectors are to be administrated to different populations. Here, we identify gaps in our knowledge and the need for updated worldwide epidemiological data.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Océane Paris
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Aline Raissa Ouoba
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France.,b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France.,c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Sofia Salazar Arenas
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Sodiomon B Sirima
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso.,e Groupe de Recherche Action en Santé (GRAS) , Ouagadougou , Burkina Faso
| | - Guy R Takoudjou Dzomo
- f Complexe Hospitalo Universitaire « Le Bon Samaritain » , N'Djamena , Republic of Chad
| | - Amidou Diarra
- d Centre National de Recherche et de Formation sur le Paludisme , Ouagadougou , Burkina Faso
| | - Isidore T Traore
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Dramane Kania
- c Département des sciences et de la recherche clinique , Centre Muraz , Bobo-Dioulasso , Burkina Faso
| | - Karsten Eichholz
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| | - Eric A Weaver
- g University of Nebraska-Lincoln, School of Biological Sciences , Lincoln , NE , USA
| | - Edouard Tuaillon
- b UMR 1058, Pathogenesis and Control of Chronic Infections , INSERM - University of Montpellier - Establishment Français du Sang - Centre Hospitalier Universitaire de Montpellier , Montpellier , France
| | - Eric J Kremer
- a Institut de Génétique Moléculaire de Montpellier , University of Montpellier - CNRS , Montpellier , France
| |
Collapse
|
41
|
Brini Khalifa I, Hannachi N, Guerrero A, Orth-Höller D, Bhiri S, Bougila J, Boughamoura L, Merchaoui SN, Sboui H, Mahdhaoui N, Schiela B, Laer DHV, Boukadida J, Stoiber H. Demographic and seasonal characteristics of respiratory pathogens in neonates and infants aged 0 to 12 months in the Central-East region of Tunisia. J Med Virol 2018; 91:570-581. [PMID: 30351487 PMCID: PMC6492255 DOI: 10.1002/jmv.25347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/17/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND This study aimed to characterize the epidemiology of pathogenic respiratory agents in patients aged 0 to 12 months and hospitalized for acute respiratory infections in Tunisia between 2013 and 2014. METHODS A total of 20 pathogens, including viruses, Mycoplasma pneumoniae, and Streptococcus pneumoniae, were detected using molecular sensitive assays, and their associations with the patient's demographic data and season were analyzed. RESULTS Viral infectious agents were found in 449 (87.2%) of 515 specimens. Dual and multiple infectious agents were detected in 31.4% and 18.6% of the samples, respectively. Viral infection was predominant in the pediatric environment (90.8%, P < 0.001), male patients (88.0%), and spring (93.8%). Rhinovirus was the most detected virus (51.8%) followed by respiratory syncytial virus A/B (34.4%), coronavirus group (18.5%), adenovirus (17.9%), and parainfluenza viruses 1-4 (10.9%). Respiratory Syncytial virus A/B was significantly associated with gender (38.0% male cases vs 28.3% female cases, P = 0.02). Infections by Adenovirus, Bocavirus, and Metapneumovirus A/B increased with increasing age of patients (predominated cases aged 6-12 months, P < 0.001). S. pneumoniae was detected in 30.9% of th tested samples. In 18.2% of the negative viral infections, only S. pneumoniae was identified. CONCLUSION A predominance of the rhinovirus infection was observed in this study. Coronavirus subtypes were described for the first time in Tunisia. The observed different pathogenic profiles across age groups could be helpful to avoid the misclassification of patients presenting with ARIs at the triage level when no standardized protocol is available. This study will provide clues for physicians informing decisions regarding preventive strategies and medication in Tunisia.
Collapse
Affiliation(s)
- Ines Brini Khalifa
- Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia.,Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia.,Doctoral School of Biological Sciences, Biotechnology and Health, Higher Institute of Biotechnology of Monastir, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Naila Hannachi
- Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia.,Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Aida Guerrero
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Sana Bhiri
- Department of Epidemiology and Medical Statistics, Division of Medical Statistics, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Jihene Bougila
- Pediatric Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Lamia Boughamoura
- Pediatric Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | | | - Hassen Sboui
- Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Nabiha Mahdhaoui
- Neonatology Ward, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Britta Schiela
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Jalel Boukadida
- Department of Microbiology, Immunology, and Parasitology, Laboratory of Microbiology, Sousse Medical University, University of Sousse, Sousse, Tunisia.,Department of Microbiology, Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
42
|
Razanajatovo NH, Guillebaud J, Harimanana A, Rajatonirina S, Ratsima EH, Andrianirina ZZ, Rakotoariniaina H, Andriatahina T, Orelle A, Ratovoson R, Irinantenaina J, Rakotonanahary DA, Ramparany L, Randrianirina F, Richard V, Heraud JM. Epidemiology of severe acute respiratory infections from hospital-based surveillance in Madagascar, November 2010 to July 2013. PLoS One 2018; 13:e0205124. [PMID: 30462659 PMCID: PMC6248916 DOI: 10.1371/journal.pone.0205124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/19/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Few comprehensive data exist regarding the epidemiology of severe acute respiratory infections (SARI) in low income countries. This study aimed at identifying etiologies and describing clinical features of SARI-associated hospitalization in Madagascar. METHODS It is a prospective surveillance of SARI in 2 hospitals for 3 years. Nasopharyngeal swabs, sputum, and blood were collected from SARI patients enrolled and tested for viruses and bacteria. Epidemiological and clinical information were obtained from case report forms. RESULTS Overall, 876 patients were enrolled in the study, of which 83.1% (728/876) were tested positive for at least one pathogen. Viral and bacterial infections occurred in 76.1% (667/876) and 35.8% (314/876) of tested samples, respectively. Among all detected viruses, respiratory syncytial virus (RSV) was the most common (37.7%; 348/924) followed by influenza virus A (FLUA, 18.4%; 170/924), rhinovirus (RV, 13.5%; 125/924), and adenovirus (ADV, 8.3%; 77/924). Among bacteria, Streptococcus pneumoniae (S. pneumoniae, 50.3%, 189/370) was the most detected followed by Haemophilus influenzae type b (Hib, 21.4%; 79/370), and Klebsiella (4.6%; 17/370). Other Streptococcus species were found in 8.1% (30/370) of samples. Compared to patients aged less than 5 years, older age groups were significantly less infected with RSV. On the other hand, patients aged more than 64 years (OR = 3.66) were at higher risk to be infected with FLUA, while those aged 15-29 years (OR = 3.22) and 30-64 years (OR = 2.39) were more likely to be infected with FLUB (influenza virus B). CONCLUSION The frequency of influenza viruses detected among SARI patients aged 65 years and more highlights the need for health authorities to develop strategies to reduce morbidity amongst at-risk population through vaccine recommendation. Amongst young children, the demonstrated burden of RSV should guide clinicians for a better case management of children. These findings reveal the need to develop point-of-care tests to avoid overuse of antibiotics and to promote vaccine that could reduce drastically the RSV hospitalizations.
Collapse
Affiliation(s)
| | - Julia Guillebaud
- National Influenza Centre, Virology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | - Aina Harimanana
- Epidemiology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | | | | | | | | | | | - Arnaud Orelle
- National Influenza Centre, Virology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | - Rila Ratovoson
- Epidemiology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | | | | | - Lovasoa Ramparany
- Center for Biological Analysis, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | | | - Vincent Richard
- Epidemiology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| | - Jean-Michel Heraud
- National Influenza Centre, Virology Unit, Pasteur Institute of Madagascar, Antananarivo, Madagascar
| |
Collapse
|
43
|
Kurskaya O, Ryabichenko T, Leonova N, Shi W, Bi H, Sharshov K, Kazachkova E, Sobolev I, Prokopyeva E, Kartseva T, Alekseev A, Shestopalov A. Viral etiology of acute respiratory infections in hospitalized children in Novosibirsk City, Russia (2013 - 2017). PLoS One 2018; 13:e0200117. [PMID: 30226876 PMCID: PMC6143185 DOI: 10.1371/journal.pone.0200117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory infections (ARIs) cause a considerable morbidity and mortality worldwide especially in children. However, there are few studies of the etiological structure of ARIs in Russia. In this work, we analyzed the etiology of ARIs in children (0–15 years old) admitted to Novosibirsk Children’s Municipal Clinical Hospital in 2013–2017. Methods We tested nasal and throat swabs of 1560 children with upper or lower respiratory infection for main respiratory viruses (influenza viruses A and B, parainfluenza virus types 1–4, respiratory syncytial virus, metapneumovirus, four human coronaviruses, rhinovirus, adenovirus and bocavirus) using a RT-PCR Kit. Results We detected 1128 (72.3%) samples were positive for at least one virus. The most frequently detected pathogens were respiratory syncytial virus (358/1560, 23.0%), influenza virus (344/1560, 22.1%), and rhinovirus (235/1560, 15.1%). Viral co-infections were found in 163 out of the 1128 (14.5%) positive samples. We detected significant decrease of the respiratory syncytial virus-infection incidence in children with increasing age, while the reverse relationship was observed for influenza viruses. Conclusions We evaluated the distribution of respiratory viruses in children with ARIs and showed the prevalence of respiratory syncytial virus and influenza virus in the etiological structure of infections. This study is important for the improvement and optimization of diagnostic tactics, control and prevention of the respiratory viral infections.
Collapse
Affiliation(s)
- Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Ryabichenko
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Natalya Leonova
- Department of Children’s Diseases, Novosibirsk Children’s Municipal Clinical Hospital №6, Novosibirsk, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Taian, Shandong, China
| | - Hongtao Bi
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, Xining, China
| | - Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Eugenia Kazachkova
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Elena Prokopyeva
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Tatiana Kartseva
- Department of Propaedeutic of Childhood Diseases, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
44
|
Evaluation of Performance Characteristics of Panther Fusion Assays for Detection of Respiratory Viruses from Nasopharyngeal and Lower Respiratory Tract Specimens. J Clin Microbiol 2018; 56:JCM.00787-18. [PMID: 29793965 DOI: 10.1128/jcm.00787-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022] Open
Abstract
Accurate and rapid diagnosis is needed for timely intervention and clinical management of acute respiratory infections. This study evaluated performance characteristics of the Panther Fusion assay for the detection of influenza A virus (Flu A), influenza B virus (Flu B), respiratory syncytial virus (RSV), parainfluenza viruses 1 to 3 (Para 1 to 3), human metapneumovirus (hMPV), rhinovirus (RV), and adenovirus (Adeno) targets in comparison to those of the eSensor and Lyra assays using 395 nasopharyngeal (NP) and 104 lower respiratory tract (LRT) specimens. Based on the consensus positive result established (positive result in 2 of the 3 assays), the NP specimens for the Fusion and eSensor assays had 100% positive percent agreement (PPA) for all the analytes and the Lyra assays had 100% PPA for Flu A and Adeno analytes. A 100% negative percent agreement (NPA) was observed for all the Lyra analytes, whereas those for the Fusion targets ranged from 98.4 to 100% and those for the eSensor ranged from 99.4 to 100% for all the analytes except RV. For the LRT specimens, Fusion had 100% PPA and 100% NPA for all the targets except hMPV. There was a 100% PPA for eSensor analytes; the NPA ranged from 98 to 100%, except for RV. For the Lyra assays, the PPA ranged between 50 and 100%, while the NPA was 100% for all the targets except Adeno. The Fusion assay performed similarly to the eSensor assay for majority of the targets tested and provides laboratories with a fully automated random-access system to test for a broad array of viral respiratory pathogens.
Collapse
|
45
|
Tsagarakis NJ, Sideri A, Makridis P, Triantafyllou A, Stamoulakatou A, Papadogeorgaki E. Age-related prevalence of common upper respiratory pathogens, based on the application of the FilmArray Respiratory panel in a tertiary hospital in Greece. Medicine (Baltimore) 2018; 97:e10903. [PMID: 29851817 PMCID: PMC6392546 DOI: 10.1097/md.0000000000010903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The FilmArray Respiratory Panel (FA-RP) is an FDA certified multiplex PCR that can detect 17 viruses and 3 bacteria responsible for upper respiratory tract infections, thus it is potentially useful to the assessment of the age-related prevalence of these pathogens.In this observational study, we retrospectively analyzed the results of all the respiratory samples, which had been processed during 1 year-period (November 2015 to November 2016) with the FA-RP, in the Central Laboratories of Hygeia & Mitera General Hospitals of Athens, Greece. In order to have an age-related distribution, the following age groups were implemented: (<2), (≥2, <5), (≥5, <10), (≥10, <18), (≥18, <45), (≥45, <65), and (≥65) years old.Among 656 respiratory samples tested, 362 (55%) were from male and 294 (45%) from female patients, while 356 (54.3%) were positive and 300 (45.7%) negative. In the first age-group (<2), 41/121 samples (33.9%) revealed human rhinovirus/enterovirus (HRV) and 16 (13.2%) adenovirus (Adv), followed by respiratory syncytial virus (RSV), coronavirus, human metapneumovirus (Hmpv), and parainfluenza viruses (PIV). In the age-group (≥2, <5), Adv predominated with 37/147 samples (25.2%), followed by HRV, RSV, coronavirus (all types), and influenza, Hmpv and PIV. In the age-group (≥5, <10), HRV was identified in 25/80 samples (31.3%), Adv in 18 (22.5%), influenza in 11 (13.8%), and Hmpv in 6 (7.5%). Influenza predominated in the age-group (≥10, <18), with 4/22 samples (18.2%), while in the remaining age-groups (≥18), HRV was the commonest isolated pathogen, 33/286 (11.5%), followed by influenza with 20 (7%) (influenza A H1-2009, 11/20).In our patient series, HRV seemed to prevail in most age-groups, followed by Adv, although Influenza was the second most frequent pathogen isolated in the age-groups (≥18). Moreover, increasing age corresponded to increasing possibility of having a negative sample, indicating that FilmArray may be more useful before adolescence.
Collapse
|
46
|
A 2-transcript host cell signature distinguishes viral from bacterial diarrhea and it is influenced by the severity of symptoms. Sci Rep 2018; 8:8043. [PMID: 29795312 PMCID: PMC5966427 DOI: 10.1038/s41598-018-26239-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Recently, a biomarker signature consisting of 2-transcript host RNAs was proposed for discriminating bacterial from viral infections in febrile children. We evaluated the performance of this signature in a different disease scenario, namely a cohort of Mexican children (n = 174) suffering from acute diarrhea of different infectious etiologies. We first examined the admixed background of the patients, indicating that most of them have a predominantly Native American genetic ancestry with a variable amount of European background (ranging from 0% to 57%). The results confirm that the RNA test can discriminate between viral and bacterial causes of infection (t-test; P-value = 6.94×10−11; AUC = 80%; sensitivity: 68% [95% CI: 55%–79%]; specificity: 84% [95% CI: 78%–90%]), but the strength of the signal differs substantially depending on the causal pathogen, with the stronger signal being that of Shigella (P-value = 3.14 × 10−12; AUC = 89; sensitivity: 70% [95% CI: 57%–83%]; specificity: 100% [95% CI: 100%–100%]). The accuracy of this test improves significantly when excluding mild cases (P-value = 2.13 × 10−6; AUC = 85%; sensitivity: 79% [95% CI: 58%–95%]; specificity: 78% [95% CI: 65%–88%]). The results broaden the scope of previous studies by incorporating different pathogens, variable levels of disease severity, and different ancestral background of patients, and add confirmatory support to the clinical utility of these 2-transcript biomarkers.
Collapse
|
47
|
Whole Exome Sequencing Identifies New Host Genomic Susceptibility Factors in Empyema Caused by Streptococcus pneumoniae in Children: A Pilot Study. Genes (Basel) 2018; 9:genes9050240. [PMID: 29751582 PMCID: PMC5977180 DOI: 10.3390/genes9050240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Pneumonia is the leading cause of death amongst infectious diseases. Streptococcus pneumoniae is responsible for about 25% of pneumonia cases worldwide, and it is a major cause of childhood mortality. We carried out a whole exome sequencing (WES) study in eight patients with complicated cases of pneumococcal pneumonia (empyema). An initial assessment of statistical association of WES variation with pneumonia was carried out using data from the 1000 Genomes Project (1000G) for the Iberian Peninsula (IBS) as reference controls. Pseudo-replication statistical analyses were carried out using different European control groups. Association tests pointed to single nucleotide polymorphism (SNP) rs201967957 (gene MEIS1; chromosome 2; p-valueIBS = 3.71 × 10-13) and rs576099063 (gene TSPAN15; chromosome 10; p-valueIBS = 2.36 × 10-8) as the best candidate variants associated to pneumococcal pneumonia. A burden gene test of pathogenicity signaled four genes, namely, OR9G9, MUC6, MUC3A and APOB, which carry significantly increased pathogenic variation when compared to controls. By analyzing various transcriptomic data repositories, we found strong supportive evidence for the role of MEIS1, TSPAN15 and APOBR (encoding the receptor of the APOB protein) in pneumonia in mouse and human models. Furthermore, the association of the olfactory receptor gene OR9G9 has recently been related to some viral infectious diseases, while the role of mucin genes (MUC6 and MUC3A), encoding mucin glycoproteins, are well-known factors related to chronic obstructive airway disease. WES emerges as a promising technique to disentangle the genetic basis of host genome susceptibility to infectious respiratory diseases.
Collapse
|
48
|
Nishimura H, Sato K, Kadji FMN, Ohmiya S, Ito H, Kubo T, Hashimoto S. Case study-based time-course analysis of symptoms of respiratory syncytial virus infections followed by acute sinusitis in otherwise-healthy adults. J Thorac Dis 2018; 10:E322-E327. [PMID: 29997985 DOI: 10.21037/jtd.2018.04.74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reports on respiratory syncytial virus (RSV) infections are abundant in pediatric and geriatric populations but not many in healthy adults, and particularly, those which demonstrated the illness throughout its time course are rare. We report two otherwise-healthy adult cases, showing a number of evidence essential for confirmation of exclusive infections with RSV, and document their clinical features from the onset of the disease to recovery, including secondary sinusitis with magnetic resonance (MR) and computed tomography (CT) images. The infection was proven by isolating RSV belonging to subgroup B and by observing elevated anti-RSV antibody titer in the paired sera. Possible contribution of other pathogens including almost all respiratory viruses and representative bacteria, was excluded by negative results in multiplex PCR examination. In the first case, illness initiated with pharyngeal pain, followed by symptoms of sneezing, severe rhinorrhea and coughing, which peaked at approximately 5-7 days and persisted for 12 days. The patient experienced a slight chill, but the body temperature did not exceed 37 °C during illness. The patient showed no significant finding but only a slight increase in serum C-reactive protein level in the routine clinical laboratory examinations. On the 9th day of illness, a dull headache started persisting for at least a week after which it gradually waned. Sinusitis was found by chance on MR images of maxillary sinus 8 days after the headache started, and the finding disappeared on CT images taken after 6 months. In the second case, the symptoms included severe rhinorrhea and dull facial pain around the upper nose; the pain also occurred on the 9th day of illness and the symptom was clinically diagnosed to be acute sinusitis during a visit to a physician.
Collapse
Affiliation(s)
- Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| | - Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| | - Francois Marie Ngako Kadji
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| | - Hiroko Ito
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| | - Toru Kubo
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Nagasaki Genbaku Isahaya Hospital, Isahaya, Nagasaki, Japan
| | - Sho Hashimoto
- Department of Otolaryngology, Sendai Medical Center, National Hospital Organization, Sendai, Miyagi, Japan
| |
Collapse
|
49
|
Barnadas C, Schmidt DJ, Fischer TK, Fonager J. Molecular epidemiology of human adenovirus infections in Denmark, 2011-2016. J Clin Virol 2018; 104:16-22. [PMID: 29704734 PMCID: PMC7106356 DOI: 10.1016/j.jcv.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
We developed new primers to improve genotyping of HAdV D. Six out of seven HAdV species from at least 13 HAdV types were identified. Young children (<5 years old) were more likely to be positive for HAdV. Co-infections with other gastrointestinal or respiratory viruses were common. A HAdV surveillance system is required to monitor circulating species and types.
Background Human adenoviruses (HAdVs) can cause respiratory tract infections, conjunctivitis, diarrhoea and outbreaks have been reported. However, little is known about the disease burden and the molecular epidemiology of HAdV. Objectives To retrospectively perform a molecular characterization of HAdV positive samples received at Statens Serum Institut during the period 2011–2016 and to compare this with demographic information, geographic location, sample collection date and type and co-infection with other viral pathogens. Study design 152 HAdV positive samples were genotyped by Sanger sequencing of a fragment of the hexon gene using published primers along with a newly developed primer set for enhanced genotyping of HAdV D. Phylogenetic analysis was used for genotyping and genotypes were compared with epidemiological information. In addition, HAdV burden and co-infection was evaluated for samples tested in laboratory analysis packages. Results Six out of seven HAdV species were identified and represented by 13 types. Young children (<5 years old) were more likely to be positive for HAdV and co-infections with other gastrointestinal or respiratory viruses were common. Possible outbreaks of ocular infections due to HAdV D could not be confirmed. Conclusion A diverse set of HAdV species were circulating in Denmark in the study period and although possible transmission clusters were identified, this could not be verified with current genotyping methods Young children were commonly affected by HAdV infection and co-infections with other viral pathogens were frequent suggesting a possible underestimation of the real HAdV burden.
Collapse
Affiliation(s)
- Céline Barnadas
- European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden; Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness, Statens Serum Institute, Copenhagen, Denmark
| | - Dennis Jelsbak Schmidt
- Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness, Statens Serum Institute, Copenhagen, Denmark
| | - Thea K Fischer
- Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness, Statens Serum Institute, Copenhagen, Denmark; Department of Infectious Diseases and Centre for Global Health, University of Southern Denmark, Denmark
| | - Jannik Fonager
- Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness, Statens Serum Institute, Copenhagen, Denmark.
| |
Collapse
|
50
|
Brini I, Guerrero A, Hannachi N, Bouguila J, Orth-Höller D, Bouhlel A, Boughamoura L, Hetzer B, Borena W, Schiela B, Von Laer D, Boukadida J, Stoiber H. Epidemiology and clinical profile of pathogens responsible for the hospitalization of children in Sousse area, Tunisia. PLoS One 2017; 12:e0188325. [PMID: 29149199 PMCID: PMC5693464 DOI: 10.1371/journal.pone.0188325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
This study aimed to identify a broad spectrum of respiratory pathogens from hospitalized and not-preselected children with acute respiratory tract infections in the Farhat Hached University-hospital of Sousse, Tunisia. Between September 2013 and December 2014, samples from 372 children aged between 1 month and 5 years were collected, and tested using multiplex real-time RT-PCR by a commercial assay for 21 respiratory pathogens. In addition, samples were screened for the presence of Streptococcus pneumoniae 16S rDNA using real-time PCR. The viral distribution and its association with clinical symptoms were statistically analyzed. Viral pathogens were detected in 342 (91.93%) of the samples of which 28.76% were single positive and 63.17% had multiple infections. The most frequent detected viruses were rhinovirus (55.64%), respiratory syncytial virus A/B (33.06%), adenovirus (25.00%), coronavirus NL63, HKU1, OC43, and 229E (21.50%), and metapneumovirus A/B (16.12%). Children in the youngest age group (1–3 months) exhibited the highest frequencies of infection. Related to their frequency of detection, RSV A/B was the most associated pathogen with patient’s demographic situation and clinical manifestations (p<0.05). Parainfluenza virus 1–4 and parechovirus were found to increase the risk of death (p<0.05). Adenovirus was statistically associated to the manifestation of gastroenteritis (p = 0.004). Rhinovirus infection increases the duration of oxygen support (p = 0.042). Coronavirus group was statistically associated with the manifestation of bronchiolitis (p = 0.009) and laryngitis (p = 0.017). Streptococcus pneumoniae DNA was detected in 143 (38.44%) of tested samples. However, only 53 samples had a concentration of C-reactive protein from equal to higher than 20 milligrams per liter, and 6 of them were single positive for Streptocuccus pneumoniae. This study confirms the high incidence of respiratory viruses in children hospitalized for acute respiratory tract infections in the Sousse area, Tunisia.
Collapse
Affiliation(s)
- Ines Brini
- Laboratory of Microbiology and Immunology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
- Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
- Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (IB); (HS)
| | - Aida Guerrero
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Naila Hannachi
- Laboratory of Microbiology and Immunology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
- Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Jihene Bouguila
- Pediatric Service, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Amira Bouhlel
- Pediatric Service, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Lamia Boughamoura
- Pediatric Service, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | | | - Wegene Borena
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Britta Schiela
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Dorothee Von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Jalel Boukadida
- Laboratory of Microbiology and Immunology, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
- Research Unit for Genomic Characterization of Infectious Agents UR12SP34, University-Hospital of Farhat Hached of Sousse, Sousse, Tunisia
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (IB); (HS)
| |
Collapse
|