1
|
Dykes GE, He Y, Jin T, Fan X, Lee J, Reed S, Capobianco J. Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response. Int J Mol Sci 2025; 26:3254. [PMID: 40244107 PMCID: PMC11989795 DOI: 10.3390/ijms26073254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium's extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death.
Collapse
Affiliation(s)
| | - Yiping He
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, USDA-ARS-ERRC, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA (T.J.); (X.F.); (J.L.); (S.R.); (J.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Winters AD, Francescutti DM, Kracht DJ, Chaudhari DS, Zagorac B, Angoa-Perez M. The Gut Microbiome Regulates the Psychomotor Effects and Context-Dependent Rewarding Responses to Cocaine in Germ-Free and Antibiotic-Treated Animal Models. Microorganisms 2025; 13:77. [PMID: 39858845 PMCID: PMC11767876 DOI: 10.3390/microorganisms13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Cocaine use disorder remains a major global health concern, with growing evidence that the gut microbiome modulates drug-related behaviors. This study examines the microbiome's role in cocaine-induced psychomotor activation and context-dependent reward responses using germ-free (GF) and antibiotic-treated (ABX) models. In GF mice, the absence of a microbiome blunted cocaine-induced psychomotor activation (p = 0.013), which was restored after conventionalization. GF mice also showed reduced cocaine-conditioned place preference (CPP) (p = 0.002), which normalized after conventionalization. Dopaminergic function, critical for psychomotor responses and reward, was microbiome-dependent, with increased dopamine levels (p = 0.009) and normalized turnover ratios after conventionalization. In the ABX model, microbiome depletion reduced both cocaine-induced locomotion and CPP responses (p ≤ 0.009), further supporting the role of gut microbes in modulating psychomotor and reward behaviors. ABX-treated mice also showed significant declines in microbial diversity, shifts in bacterial structure, and dysregulation in metabolic, immune, and neurotransmitter pathways (p ≤ 0.0001), including alterations in short-chain fatty acids and gamma-aminobutyric acid metabolism. These findings highlight the gut microbiome's critical role in regulating cocaine's psychomotor and rewarding effects, offering insights into potential therapeutic strategies for cocaine use disorder.
Collapse
Affiliation(s)
- Andrew D. Winters
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Dina M. Francescutti
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - David J. Kracht
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Diptaraj S. Chaudhari
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Branislava Zagorac
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Mariana Angoa-Perez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Di J, Xi Y, Wu Y, Di Y, Xing X, Zhang Z, Xiang C. Gut microbiota metabolic pathways: Key players in knee osteoarthritis development. Exp Gerontol 2024; 196:112566. [PMID: 39226947 DOI: 10.1016/j.exger.2024.112566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE To confirm the causality of gut microbiota pathway abundance and knee osteoarthritis (KOA). METHODS Microbial metabolic pathways were taken as exposures, with data from the Dutch Microbiome Project (DMP). Data on KOA from the UK Biobank were utilized as endpoints. In addition, we extracted significant and independent single nucleotide polymorphisms as instrumental variables. Two-sample Mendelian randomization (MR) analysis was applied to explore the causal relationship between gut microbiota pathway abundance and KOA, and MR-Egger and weighted median were used as additional validation of the MR results. Meanwhile, Cochran Q, MR-Egger intercept, MR-PRESSO, and leave-one-out were used to perform sensitivity analyses on the MR results. RESULTS MR results showed that enterobactin biosynthesis, diacylglycerol biosynthesis I, Clostridium acetobutylicum acidogenic fermentation, glyoxylate bypass and tricarboxylic acid cycle were the risk factors for KOA. (OR = 1.13,95%CI = 1.04-1.23;OR = 1.12,95%CI = 1.04-1.20;OR = 1.14,95%CI = 1.04-1.26; OR = 1.06,95%CI = 1.00-1.12) However, adenosylcobalamin salvage from cobinamide I, hexitol fermentation to lactate formate ethanol and acetate, purine nucleotides degradation II aerobic, L tryptophan biosynthesis and inosine 5 phosphate biosynthesis III pathway showed significant protection against KOA. (OR = 0.93,95%CI = 0.86-1.00;OR = 0.94,95%CI = 0.88-1.00;OR = 0.91,95%CI = 0.86-0.97;OR = 0.95,95%CI = 0.92-0.99; OR = 0.91, 95%CI = 0.85-0.98) Further multiplicity and sensitivity analyses demonstrated the robustness of the results. CONCLUSION Our study identified specific metabolic pathways in gut microbiota that promote or inhibit KOA, which provides the most substantial evidence-based medical evidence for the pathogenesis and prevention of KOA.
Collapse
Affiliation(s)
- Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujia Xi
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yawen Wu
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yijing Di
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinglong Xing
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhibo Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Thadtapong N, Chaturongakul S, Tangphatsornruang S, Sonthirod C, Ngamwongsatit N, Aunpad R. Four New Sequence Types and Molecular Characteristics of Multidrug-Resistant Escherichia coli Strains from Foods in Thailand. Antibiotics (Basel) 2024; 13:935. [PMID: 39452202 PMCID: PMC11505251 DOI: 10.3390/antibiotics13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The presence of antibiotic-resistant Escherichia coli in food is a serious and persistent problem worldwide. In this study, 68 E. coli strains isolated from Thai food samples were characterized. Based on antibiotic susceptibility assays, 31 of these isolates (45.59%) showed multiple antibiotic resistance (MAR) index values > 0.2, indicating high exposure to antibiotics. Among these, strain CM24E showed the highest resistance (it was resistant to ten antibiotics, including colistin and imipenem). Based on genome sequencing, we identified four isolates (namely, CF25E, EF37E, NM10E1, and SF50E) with novel Achtman-scheme multi-locus sequence types (STs) (ST14859, ST14866, ST14753, and ST14869, respectively). Clermont phylogrouping was used to subtype the 68 researched isolates into five Clermont types, mainly A (51.47%) and B1 (41.18%). The blaEC gene was found only in Clermont type A, while the blaEC-13 gene was predominant in Clermont type B1. A correlation between genotypes and phenotypes was found only in Clermont type B1, which showed a strong positive correlation between the presence of an afa operon and yersiniabactin-producing gene clusters with the colistin resistance phenotype. Strain SM47E1, of Clermont type B2, carried the highest number of predicted virulence genes. In summary, this study demonstrates the pressing problems posed by the prevalence and potential transmission of antimicrobial resistance and virulence genes in the food matrix.
Collapse
Affiliation(s)
- Nalumon Thadtapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| | - Soraya Chaturongakul
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (C.S.)
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (C.S.)
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| |
Collapse
|
6
|
Arnold E. Non-classical roles of bacterial siderophores in pathogenesis. Front Cell Infect Microbiol 2024; 14:1465719. [PMID: 39372500 PMCID: PMC11449898 DOI: 10.3389/fcimb.2024.1465719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Within host environments, iron availability is limited, which instigates competition for this essential trace element. In response, bacteria produce siderophores, secondary metabolites that scavenge iron and deliver it to bacterial cells via specific receptors. This role in iron acquisition contributes significantly to bacterial pathogenesis, thereby designating siderophores as virulence factors. While prior research has primarily focused on unravelling the molecular mechanisms underlying siderophore biosynthesis, uptake, and iron sequestration, recent investigations have unveiled additional non-iron chelating functions of siderophores. These emerging roles are being consistently shown to support bacterial pathogenesis. In this review, we present the current understanding of siderophores in various roles: acquiring non-iron metal ions, supporting tolerance to metal-induced and reactive oxygen species (ROS)-induced stresses, mediating siderophore signalling, inducing ROS formation, and functioning in class IIb microcins. By integrating recent findings, this review aims to provide an overview of the diverse roles of siderophores in bacterial pathogenesis.
Collapse
|
7
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
8
|
Al Mamun AAM, Kissoon K, Li YG, Hancock E, Christie PJ. The F plasmid conjutome: the repertoire of E. coli proteins translocated through an F-encoded type IV secretion system. mSphere 2024; 9:e0035424. [PMID: 38940509 PMCID: PMC11288057 DOI: 10.1128/msphere.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Kimberley Kissoon
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Erin Hancock
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas, USA
| |
Collapse
|
9
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
10
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Hitomi K, Ishii Y, Ying BW. Experimental evolution for the recovery of growth loss due to genome reduction. eLife 2024; 13:RP93520. [PMID: 38690805 PMCID: PMC11062635 DOI: 10.7554/elife.93520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.
Collapse
Affiliation(s)
- Kenya Hitomi
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoichiro Ishii
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| |
Collapse
|
12
|
Khilyas IV, Markelova MI, Valeeva LR, Ivoilova TM, Shagimardanova E, Laikov AV, Elistratova AA, Berkutova ES, Lochnit G, Sharipova MR. Genomic insights and anti-phytopathogenic potential of siderophore metabolome of endolithic Nocardia mangyaensis NH1. Sci Rep 2024; 14:5676. [PMID: 38453942 PMCID: PMC10920908 DOI: 10.1038/s41598-024-54095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Actinobacteria are one of the predominant groups that successfully colonize and survive in various aquatic, terrestrial and rhizhospheric ecosystems. Among actinobacteria, Nocardia is one of the most important agricultural and industrial bacteria. Screening and isolation of Nocardia related bacteria from extreme habitats such as endolithic environments are beneficial for practical applications in agricultural and environmental biotechnology. In this work, bioinformatics analysis revealed that a novel strain Nocardia mangyaensis NH1 has the capacity to produce structurally varied bioactive compounds, which encoded by non-ribosomal peptide synthases (NRPS), polyketide synthase (PKS), and post-translationally modified peptides (RiPPs). Among NRPS, five gene clusters have a sequence homology with clusters encoding for siderophore synthesis. We also show that N. mangyaensis NH1 accumulates both catechol- and hydroxamate-type siderophores simultaneously under iron-deficient conditions. Untargeted LC-MS/MS analysis revealed a variety of metabolites, including siderophores, lipopeptides, cyclic peptides, and indole-3-acetic acid (IAA) in the culture medium of N. mangyaensis NH1 grown under iron deficiency. We demonstrate that four CAS (chrome azurol S)-positive fractions display variable affinity to metals, with a high Fe3+ chelating capability. Additionally, three of these fractions exhibit antioxidant activity. A combination of iron scavenging metabolites produced by N. mangyaensis NH1 showed antifungal activity against several plant pathogenic fungi. We have shown that the pure culture of N. mangyaensis NH1 and its metabolites have no adverse impact on Arabidopsis seedlings. The ability of N. mangyaensis NH1 to produce siderophores with antifungal, metal-chelating, and antioxidant properties, when supplemented with phytohormones, has the potential to improve the release of macro- and micronutrients, increase soil fertility, promote plant growth and development, and enable the production of biofertilizers across diverse soil systems.
Collapse
Affiliation(s)
- Irina V Khilyas
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.
| | - Maria I Markelova
- Laboratory of Multiomics Technologies of Living Systems, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Tatiana M Ivoilova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Elena Shagimardanova
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russian Federation
| | - Alexander V Laikov
- Laboratory of Multiomics Technologies of Living Systems, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Anna A Elistratova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Ekaterina S Berkutova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| |
Collapse
|
13
|
Kong Y, Cai X, Li Y, Sun R, Yang H, Jiang T, Cheng S, Song L, Yang B, Zhang C, Shi C. Synergistic bactericidal effect and mechanism of ultrasound combined with Lauroyl Arginate Ethyl against Salmonella Typhimurium and its application in the preservation of onions. Int J Food Microbiol 2024; 413:110611. [PMID: 38308880 DOI: 10.1016/j.ijfoodmicro.2024.110611] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
In the present study, the synergistic bactericidal effect and mechanism of ultrasound (US) combined with Lauroyl Arginate Ethyl (LAE) against Salmonella Typhimurium were investigated. On this basis, the effect of US+LAE treatment on the washing of S. Typhimurium on the surface of onions and on the physical and chemical properties of onion during fresh-cutting and storage were studied. The results showed that treatment with US+LAE could significantly (P < 0.05) reduce the number of S. Typhimurium compared to US and LAE treatments alone, especially the treatment of US+LAE (230 W/cm2, 8 min, 71 μM) reduced S. Typhimurium by 8.82 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release and N-phenyl-l-naphthylamine (NPN) assays demonstrated that US+LAE disrupted the integrity and permeability of S. Typhimurium cell membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) assays indicated that US+LAE exacerbated oxidative stress and lipid peroxidation in cell membranes. Field emission scanning electron microscopy (FESEM) demonstrated that US+LAE treatment caused loss of cellular contents and led to cell crumpling and even lost the original cell morphology. US+LAE treatment caused a significant (P < 0.05) decrease in the number of S. Typhimurium on onions, but there was no significant (P > 0.05) effect on the color, hardness, weight and ascorbic acid content of onions. This study elucidated the synergistic antibacterial mechanism of US+LAE and verified the feasibility of bactericidal effect on the surface of onions, providing a theoretical basis for improving the safety of fresh produce in the food industry and to propose a new way to achieve the desired results.
Collapse
Affiliation(s)
- Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Luna-Bulbarela A, Romero-Gutiérrez MT, Tinoco-Valencia R, Ortiz E, Martínez-Romero ME, Galindo E, Serrano-Carreón L. Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity. Microbiol Res 2024; 280:127592. [PMID: 38199003 DOI: 10.1016/j.micres.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.
Collapse
Affiliation(s)
- Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - María Teresa Romero-Gutiérrez
- Technological Innovation Department, Tlajomulco University Center, University of Guadalajara, 45641 Tlajomulco de Zúñiga, Jalisco, Mexico; Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430 Guadalajara, Jalisco, Mexico
| | - Raunel Tinoco-Valencia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - María Esperanza Martínez-Romero
- Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
15
|
Janthanom R, Kikuchi Y, Kanto H, Hirose T, Tahara A, Ishii T, Thamchaipenet A, Inahashi Y. A new analog of dihydroxybenzoic acid from Saccharopolyspora sp. KR21-0001. Beilstein J Org Chem 2024; 20:497-503. [PMID: 38440171 PMCID: PMC10910382 DOI: 10.3762/bjoc.20.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Actinomycetes are well-known as the main producers of bioactive compounds such as antibiotics, anticancers, and immunosuppressants. Screening of natural products from actinomycetes has been an essential part of several drug discovery programs. Finding such novel biologically active metabolites is immensely important because of their beneficial health effects. Recently, the discovery of new compounds has diverted attention to rare actinomycetes, since they are rich sources of natural products. In this study, a collection of rare actinomycetes at Kitasato University has been screened for potential novel compound producers. Among the rare actinomycetes, Saccharopolyspora sp. KR21-0001 isolated from soil on Ōha Island, Okinawa, Japan was selected as a potential producer. The strain was cultured in 20 L of production medium in a jar fermenter and the culture broth was extracted. Further purification revealed the presence of a new compound designated KR21-0001A (1). The structure was elucidated by NMR, and the absolute stereochemistry was determined by advanced Marfey's method. The results indicated that 1 is a new analog of dihydroxybenzoic acid. 1 has no antimicrobial activity against bacteria and fungi but showed potent antioxidant activity.
Collapse
Affiliation(s)
- Rattiya Janthanom
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuta Kikuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroki Kanto
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Arisu Tahara
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takahiro Ishii
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Yuki Inahashi
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
16
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
18
|
Rayner B, Verderosa AD, Ferro V, Blaskovich MAT. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med Chem 2023; 14:800-822. [PMID: 37252105 PMCID: PMC10211321 DOI: 10.1039/d2md00465h] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 10/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to society due to the increasing emergence of multi-drug resistant bacteria that are not susceptible to our last line of defence antibiotics. Exacerbating this issue is a severe gap in antibiotic development, with no new clinically relevant classes of antibiotics developed in the last two decades. The combination of the rapidly increasing emergence of resistance and scarcity of new antibiotics in the clinical pipeline means there is an urgent need for new efficacious treatment strategies. One promising solution, known as the 'Trojan horse' approach, hijacks the iron transport system of bacteria to deliver antibiotics directly into cells - effectively tricking bacteria into killing themselves. This transport system uses natively produced siderophores, which are small molecules with a high affinity for iron. By linking antibiotics to siderophores, to make siderophore antibiotic conjugates, the activity of existing antibiotics can potentially be reinvigorated. The success of this strategy was recently exemplified with the clinical release of cefiderocol, a cephalosporin-siderophore conjugate with potent antibacterial activity against carbapenem-resistant and multi-drug resistant Gram-negative bacilli. This review discusses the recent advancements in siderophore antibiotic conjugates and the challenges associated with the design of these compounds that need to be overcome to deliver more efficacious therapeutics. Potential strategies have also been suggested for new generations of siderophore-antibiotics with enhanced activity.
Collapse
Affiliation(s)
- Beth Rayner
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Anthony D Verderosa
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
| | - Vito Ferro
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, University of Queensland Brisbane Queensland Australia
- Australian Infectious Disease Research Centre, The University of Queensland Brisbane Queensland Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland Australia
| |
Collapse
|
19
|
Charron-Lamoureux V, Haroune L, Pomerleau M, Hall L, Orban F, Leroux J, Rizzi A, Bourassa JS, Fontaine N, d'Astous ÉV, Dauphin-Ducharme P, Legault CY, Bellenger JP, Beauregard PB. Pulcherriminic acid modulates iron availability and protects against oxidative stress during microbial interactions. Nat Commun 2023; 14:2536. [PMID: 37137890 PMCID: PMC10156857 DOI: 10.1038/s41467-023-38222-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Siderophores are soluble or membrane-embedded molecules that bind the oxidized form of iron, Fe(III), and play roles in iron acquisition by microorganisms. Fe(III)-bound siderophores bind to specific receptors that allow microbes to acquire iron. However, certain soil microbes release a compound (pulcherriminic acid, PA) that, upon binding to Fe(III), forms a precipitate (pulcherrimin) that apparently functions by reducing iron availability rather than contributing to iron acquisition. Here, we use Bacillus subtilis (PA producer) and Pseudomonas protegens as a competition model to show that PA is involved in a peculiar iron-managing system. The presence of the competitor induces PA production, leading to precipitation of Fe(III) as pulcherrimin, which prevents oxidative stress in B. subtilis by restricting the Fenton reaction and deleterious ROS formation. In addition, B. subtilis uses its known siderophore bacillibactin to retrieve Fe(III) from pulcherrimin. Our findings indicate that PA plays multiple roles by modulating iron availability and conferring protection against oxidative stress during inter-species competition.
Collapse
Affiliation(s)
| | - Lounès Haroune
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Institut de pharmacologie de Sherbrooke, Faculté de médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maude Pomerleau
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Léo Hall
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Orban
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Leroux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Adrien Rizzi
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Sébastien Bourassa
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Fontaine
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Élodie V d'Astous
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Claude Y Legault
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascale B Beauregard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
20
|
Lai YH, Franke R, Pinkert L, Overwin H, Brönstrup M. Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS Infect Dis 2023; 9:567-581. [PMID: 36763039 PMCID: PMC10012262 DOI: 10.1021/acsinfecdis.2c00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Achieving cellular uptake is a central challenge for novel antibiotics targeting Gram-negative bacterial pathogens. One strategy is to hijack the bacterial iron transport system by siderophore-antibiotic conjugates that are actively imported into the cell. This was realized with the MECAM-ampicillin conjugate LP-600 we recently reported that was highly active against E. coli. In the present study, we investigate a paradoxical regrowth of E. coli upon treatment of LP-600 at concentrations 16-32 times above the minimum inhibitory concentration (MIC). The phenomenon, coined "Eagle-effect" in other systems, was not due to resistance formation, and it occurred for the siderophore conjugate but not for free ampicillin. To investigate the molecular imprint of the Eagle effect, a combined transcriptome and untargeted metabolome analysis was conducted. LP-600 induced the expression of genes involved in iron acquisition, SOS response, and the e14 prophage upon regrowth conditions. The Eagle effect was diminished in the presence of sulbactam, which we ascribe to a putative synergistic antibiotic action but not to β-lactamase inhibition. The study highlights the relevance of the Eagle effect for siderophore conjugates. Through the first systematic -omics investigations, it also demonstrates that the Eagle effect manifests not only in a paradoxical growth but also in unique gene expression and metabolite profiles.
Collapse
Affiliation(s)
- Yi-Hui Lai
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lukas Pinkert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Heike Overwin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159 Hannover, Germany
| |
Collapse
|
21
|
The Role of the Yersiniachelin Siderophore in the Physiology of <i>Yersinia pestis</i>. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-75-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Pathogenic bacteria use low-molecular-weight iron chelators – siderophores – to assimilate iron in the host body. Being recognized as virulence factors, these molecules, differing in structural and functional properties, are the subject of the most intensive research in medical microbiology. The present study is devoted to the investigation of yersiniachelin siderophore (Ych) found in the causative agent of plague, Yersinia pestis. The aim of the work was to clarify the role of Ych in the physiology of Y. pestis by comparing the properties of three strains of the plague microbe, differing in Ych production. Materials and methods. Three variants of Y. pestis EV76 strain were used in the experiments: parent strain Y. pestis EV76, its mutant that does not produce Ych due to deletion of three siderophore biosynthesis genes (analogues of ypo1530–1532 in Y. pestis CO92 strain) and a complemented mutant that was transformed by a recombinant pSC-A-5EV plasmid containing Ych biosynthesis genes cloned into the high-copy plasmid vector pSC-A-amp/kan. Comparative analysis of the three strains was carried out in terms of colony morphology, siderophore activity, growth rate, and sensitivity to hydrogen peroxide. Results and discussion. The comparison of these strains has revealed that the secretion of Ych by bacteria at 26 °С ensures the assimilation of iron. At 37 °С, Ych is not secreted into the medium and protects bacteria from the bactericidal action of reactive oxygen compounds. Thus, the study shows that yersiniachelin is able to stimulate the assimilation of iron by bacteria under iron-deficit conditions and has antioxidant properties.
Collapse
|
22
|
Yang JC, Jacobs JP, Hwang M, Sabui S, Liang F, Said HM, Skupsky J. Biotin Deficiency Induces Intestinal Dysbiosis Associated with an Inflammatory Bowel Disease-like Phenotype. Nutrients 2023; 15:264. [PMID: 36678135 PMCID: PMC9866305 DOI: 10.3390/nu15020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Biotin is an essential vitamin and critical cofactor in several metabolic pathways, and its deficiency has been linked to several disorders including inflammatory bowel disease (IBD). We previously reported that biotin deficiency (BD) in mice, whether modeled through intestine-specific deletion of biotin transporter (SMVT-icKO) or through a biotin-deficient diet, resulted in intestinal inflammation consistent with an IBD-like phenotype. To assess whether the gut microbiome is associated with these BD-induced changes, we collected stool and intestinal samples from both of these mouse models and utilized them for 16S rRNA gene sequencing. We find that both diet-mediated and deletion-mediated BD result in the expansion of opportunistic microbes including Klebsiella, Enterobacter, and Helicobacter, at the expense of mucus-resident microbes including Akkermansia. Additionally, microbiome dysbiosis resulting from diet-mediated BD precedes the onset of the IBD-like phenotypic changes. Lastly, through the use of predictive metagenomics, we report that the resulting BD-linked microbiome perturbations exhibit increased biotin biosynthesis in addition to several other perturbed metabolic pathways. Altogether, these results demonstrate that biotin deficiency results in a specific microbiome composition, which may favor microbes capable of biotin synthesis and which may contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Julianne C. Yang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Michael Hwang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Fengting Liang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hamid M. Said
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Division of Gastroenterology, Department of Medicine, Tibor Rubin VA Medical Center, Long Beach, CA 90822, USA
| | - Jonathan Skupsky
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Division of Gastroenterology, Department of Medicine, Tibor Rubin VA Medical Center, Long Beach, CA 90822, USA
| |
Collapse
|
23
|
Camus A, Espinosa E, Zapater Baras P, Singh P, Quenech’Du N, Vickridge E, Modesti M, Barre FX, Espéli O. The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli. Front Microbiol 2023; 14:1146496. [PMID: 37168111 PMCID: PMC10165496 DOI: 10.3389/fmicb.2023.1146496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli. We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR.
Collapse
Affiliation(s)
- Adrien Camus
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elena Espinosa
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | | | - Parul Singh
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Nicole Quenech’Du
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
| | - Elise Vickridge
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - François Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Olivier Espéli
- CIRB, Collège de France, INSERM U1050, CNRS UMR 7241, Université PSL, Paris, France
- *Correspondence: Olivier Espéli,
| |
Collapse
|
24
|
Serratia marcescens DUF1471-Containing Protein SrfN Is Needed for Adaptation to Acid and Oxidative Stresses. mSphere 2022; 7:e0021222. [PMID: 36218346 PMCID: PMC9769812 DOI: 10.1128/msphere.00212-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacteria can quickly adapt to constantly changing environments through a number of mechanisms, including secretion of secondary metabolites, peptides, and proteins. Serratia marcescens, an emerging pathogen with growing clinical importance due to its intrinsic resistance to several classes of antibiotics, can cause an array of infections in immunocompromised individuals. To better control the spread of S. marcescens infections, it is critical to identify additional targets for bacterial growth inhibition. We found that extracellular metabolites produced by the wild-type organism in response to peroxide exposure had a protective effect on an otherwise-H2O2-sensitive ΔmacAB indicator strain. Detailed analysis of the conditioned medium demonstrated that the protective effect was associated with a low-molecular-weight heat-sensitive and proteinase K-sensitive metabolite. Furthermore, liquid chromatography-tandem mass spectrometry analysis of the low-molecular-weight proteins present in the conditioned medium led to identification of the previously uncharacterized DUF1471-containing protein TBU67220 (SrfN). We found that loss of the srfN gene did not have an impact on the production of extracellular enzymes. However, the S. marcescens mutant lacking SrfN was significantly more sensitive to growth in medium with a low pH and to exposure to oxidative stress. Both defects were fully rescued by complementation. Thus, our results indicate that SrfN, a low-molecular-weight DUF1471-containing protein, is involved in S. marcescens SM6 adaptation to adverse environmental conditions. IMPORTANCE Serratia marcescens is ubiquitous in the environment and can survive in water, soil, plants, insects, and animals, and it can also cause infections in humans. In the face of disturbances such as oxidative or low-pH stress, bacteria adapt, survive, and recover through several mechanisms, including changes in their secretome. We show that a hydrogen peroxide-exposed S. marcescens milieu contains a small previously uncharacterized DUF1471-containing protein similar to the SrfN protein in Salmonella enterica serovar Typhimurium, and we illustrate the role of this protein in bacterial survival during acid and oxidative stresses.
Collapse
|
25
|
Hrapovic N, Richard T, Messaraa C, Li X, Abbaspour A, Fabre S, Mavon A, Andersson B, Khmaladze I. Clinical and metagenomic profiling of hormonal acne-prone skin in different populations. J Cosmet Dermatol 2022; 21:6233-6242. [PMID: 35810346 DOI: 10.1111/jocd.15225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Acne is one of the most common skin concerns of unknown etiology, often connected to the menstrual cycle in women, and possibly to the microbial profile and function. OBJECTIVE We aimed to investigate how hormonal fluctuation affects hormonal acne-prone skin in different populations in relation to skin clinical parameters and microbial profiles. METHODS We evaluated skin features by using biophysical and topographical tools. For microbial profiling, we sequenced facial skin microbiota and associated the findings with the skin clinical parameters during the different phases of the menstrual cycle. RESULTS We identified differences between and within hormonal phases in women of Chinese and Caucasian origin. Changes were discovered in transepidermal water loss (TEWL), sebum level, hydration level, and pore volume. The most abundant identifiable genera in both ethnicities were Cutibacterium, Staphylococcus, and Streptococcus, without any significant abundant differences within the menstrual cycle. Interestingly, 11 bacterial metabolic pathways were downregulated in Chinese compared to Caucasian skin during the follicular phase. The majority of these pathways were associated with skin redox balance, perhaps indicating a weaker oxidative stress response in Chinese versus Caucasian skin. Novosphingobium taxa were increased in the Chinese skin microbiome, which has been reported to protect skin from pollution-mediated oxidative stress. CONCLUSION Thus, this pilot study explored some of the clinical and metagenomic changes in acne-prone skin, and provide guidance to tailor-personalized skin care regimes during the menstrual cycle. Also, the skin redox status in acne-prone skin, provides more opportunity to tailor-personalized skin care regimes.
Collapse
Affiliation(s)
| | | | | | - Xi Li
- Oriflame Cosmetics AB, Stockholm, Sweden
| | - Afrouz Abbaspour
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Björn Andersson
- Department of Cellular and molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Wu J, Chen J, Wang Y, Meng Q, Zhao J. Siderophore iucA of hypermucoviscous Klebsiella pneumoniae promotes liver damage in mice by inducing oxidative stress. Biochem Biophys Rep 2022; 32:101376. [PMID: 36340868 PMCID: PMC9634269 DOI: 10.1016/j.bbrep.2022.101376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The hypermucoviscosity/hypervirulent K. pneumoniae (hvKP) is a dominant cause of pyogenic liver abscess (PLA) and has contributed to the endemicity of disease in Asian country. The siderophore aerobactin (iucA) is highly expressed in hvKP and acting virulence role during hvKP infection. However, its role in the PLA is poorly understood. We constructed iucA deletion mutant (ΔiucA-hvKP852) and used animal study to characterize the role of siderophore iucA in K. pneumoniae liver abscess. The animal experiments showed that ΔiucA-hvKP852 strain had lower virulence in mice compared to hvKP852 wild type strain. At 24 h after infection, only two of ten mice developed liver abscess during infection with ΔiucA-hvKP852 strain, while nine of ten mice infected with wild type hvKP852 strain showed multiple lesions of liver abscess. The liver tissue infected with ΔiucA-hvKP852 exhibited low reactive oxygen stress levels compared to those infected by wild type hvKP852 strain (P < 0.05). The results suggest that siderophore iucA play an important role in the liver abscess by inducing oxidative stress. iucA positive strains produces more siderophore than iucA negative hvK. pneumoniae. Siderophore production is positively related with Oxidative stress in hvK. pneumoniae. iucA enhances oxidative stress in liver and forms liver abscess during hvK. pneumoniae infection.
Collapse
Affiliation(s)
- Jinyin Wu
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Jie Chen
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying Wang
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Qingtai Meng
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Jizi Zhao
- Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China,Corresponding author. Wu Lien Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
27
|
Gehrer CM, Hoffmann A, Hilbe R, Grubwieser P, Mitterstiller AM, Talasz H, Fang FC, Meyron-Holtz EG, Atkinson SH, Weiss G, Nairz M. Availability of Ferritin-Bound Iron to Enterobacteriaceae. Int J Mol Sci 2022; 23:13087. [PMID: 36361875 PMCID: PMC9657528 DOI: 10.3390/ijms232113087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2023] Open
Abstract
The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heribert Talasz
- Biocenter, Institute of Medical Biochemistry, Medical Universitiy of Innsbruck, 6020 Innsbruck, Austria
| | - Ferric C. Fang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195-7110, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine Research Coast, KEMRI-Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Su R, Guo P, Zhang Z, Wang J, Guo X, Guo D, Wang Y, Lü X, Shi C. Antibacterial Activity and Mechanism of Linalool against Shigella sonnei and Its Application in Lettuce. Foods 2022. [PMCID: PMC9602298 DOI: 10.3390/foods11203160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shigella sonnei (S. sonnei) infection accounted for approximately 75% of annual outbreaks of shigellosis, with the vast majority of outbreaks due to the consumption of contaminated foods (e.g., fresh vegetables, potato salad, fish, beef, etc.). Thus, we investigated the antibacterial effect and mechanism of linalool on S. sonnei and evaluated the effect of linalool on the sensory quality of lettuce. The minimum inhibitory concentration (MIC) of linalool against S. sonnei ATCC 25931 was 1.5 mg/mL. S. sonnei was treated with linalool at 1× MIC for 30 min and the amount of bacteria was decreased below the detection limit (1 CFU/mL) in phosphate-buffered saline (PBS) and Luria-Bertani (LB) medium. The bacterial content of the lettuce surface was reduced by 4.33 log CFU/cm2 after soaking with linalool at 2× MIC. Treatment with linalool led to increased intracellular reactive oxygen species (ROS) levels, decreased intracellular adenosine-triphosphate (ATP) content, increased membrane lipid oxidation, damaged cell membrane integrity, and hyperpolarized cell membrane potential in S. sonnei. The application of linalool to lettuce had no effect on the color of lettuce compared to the control. The sensory evaluation results showed that linalool had an acceptable effect on the sensory quality of lettuce. These findings indicate that linalool played an antibacterial effect against S. sonnei and had potential as a natural antimicrobial for the inhibition of this foodborne pathogen.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ziruo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jingzi Wang
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xinyi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
29
|
Peralta DR, Farizano JV, Bulacio Gil N, Corbalán NS, Pomares MF, Vincent PA, Adler C. Less is more: Enterobactin concentration dependency in copper tolerance and toxicity. Front Mol Biosci 2022; 9:961917. [PMID: 36052165 PMCID: PMC9426971 DOI: 10.3389/fmolb.2022.961917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
The ability of siderophores to play roles beyond iron acquisition has been recently proven for many of them and evidence continues to grow. An earlier work showed that the siderophore enterobactin is able to increase copper toxicity by reducing Cu2+ to Cu+, a form of copper that is more toxic to cells. Copper toxicity is multifaceted. It involves the formation of reactive oxygen species (ROS), mismetallation of enzymes and possibly other mechanisms. Given that we previously reported on the capacity of enterobactin to alleviate oxidative stress caused by various stressors other than copper, we considered the possibility that the siderophore could play a dual role regarding copper toxicity. In this work, we show a bimodal effect of enterobactin on copper toxicity (protective and harmful) which depends on the siderophore concentration. We found that the absence of enterobactin rendered Escherichia coli cells more sensitive to copper, due to the reduced ability of those cells to cope with the metal-generated ROS. Consistently, addition of low concentrations of the siderophore had a protective effect by reducing ROS levels. We observed that in order to achieve this protection, enterobactin had to enter cells and be hydrolyzed in the cytoplasm. Further supporting the role of enterobactin in oxidative stress protection, we found that both oxygen and copper, induced the expression of the siderophore and also found that copper strongly counteracted the well-known downregulation effect of iron on enterobactin synthesis. Interestingly, when enterobactin was present in high concentrations, cells became particularly sensitive to copper most likely due to the Cu2+ to Cu+ reduction, which increased the metal toxicity leading to cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conrado Adler
- *Correspondence: Paula Andrea Vincent, ; Conrado Adler,
| |
Collapse
|
30
|
Emri T, Sümegi-Győri VM, Páll K, Gila BC, Pócsi I. Effect of the combinatorial iron-chelation and oxidative stress on the growth of Aspergillus species. Res Microbiol 2022; 173:103969. [PMID: 35863560 DOI: 10.1016/j.resmic.2022.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
The growth of 14 Aspergillus strains belonging to nine species was studied under combinatorial deferriprone - H2O2 (iron-chelation - oxidative) stress. When deferriprone pretreated mycelia were subjected to even a weak oxidative stress, the growth inhibitory effect of iron-chelation stress was enhanced in 10 out of 14 strains. In contrast, oxidative stress pretreatment of conidia increased their deferriprone tolerance in 10 strains. Applying iron-chelators as antifungal agent or adjuvant can enhance the efficiency of the combinatorial iron withdrawal - oxidative stress strategy of our immune system and may reduce the survival of conidia escaped from the oxidative attack of pulmonary macrophages.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary.
| | - Veronika M Sümegi-Győri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary.
| | - Krisztián Páll
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary.
| | - Barnabás Cs Gila
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary.
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary.
| |
Collapse
|
31
|
Chukamnerd A, Pomwised R, Jeenkeawpiam K, Sakunrang C, Chusri S, Surachat K. Genomic insights into bla NDM-carrying carbapenem-resistant Klebsiella pneumoniae clinical isolates from a university hospital in Thailand. Microbiol Res 2022; 263:127136. [PMID: 35870342 DOI: 10.1016/j.micres.2022.127136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates is a serious threat to global health. Here, we elucidate the genetic features of blaNDM-carrying CRKP clinical isolates from a university hospital in Thailand. The entire genomes of 19 CRKP isolates were extracted and then sequenced using the MGISEQ200 platform. Using various bioinformatics tools, we analyzed the antimicrobial resistance (AMR), virulence factors, gene transfer, bacterial defense mechanisms, and genomic diversity of the CRKP isolates. The sequence type (ST) 16 was found in most of the isolates, along with carriages of the blaNDM-1, blaOXA-232, and blaCTX-M-15 genes. The IncFIB(pQil), Col440II, and ColKP3 plasmids were identified with high frequency. The CRKP isolates harbored genes encoding for virulence factors such as adherence, biofilm formation, immune evasion, and iron uptake. The CRISPR-Cas region in the CRKP9 isolate consisted of 28 distinct spacer sequences. The genomes of the CRKP isolates presented restriction-modification (R-M) sites (M.Kpn34618Dcm and M.Kpn928I) and integrated bacteriophage genomes (Klebsiella phage ST16-OXA48phi5.4 and Enterobacteria phage mEp390). Bottromycin and sactipeptides were also identified. The isolates could be separated into three clades according to STs and pairwise single nucleotide polymorphism (SNP) distance. Pairwise average nucleotide identity (ANI) values revealed intra-species. These findings support the importance of whole-genome sequencing (WGS) to the rapid and accurate genomic analysis of clinical isolates of CRKP.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
32
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
33
|
Hisyam Bin Ismail CMK, Raihan Mohammad Shabani N, Chuah C, Hassan Z, Bakar Abdul Majeed A, Herng Leow C, Kaur Banga Singh K, Yee Leow C. Shigella iron-binding proteins: An insight into molecular physiology, pathogenesis, and potential target vaccine development. Vaccine 2022; 40:3991-3998. [PMID: 35660036 DOI: 10.1016/j.vaccine.2022.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/21/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Shigella is a well-known etiological agent responsible for intestinal infection among children, the elderly, and immunocompromised people ranging from mild to severe cases. Shigellosis remains endemic in Malaysia and yet there is no commercial vaccine available to eradicate the disease. Iron is an essential element for the survival of Shigella within the host. Hence, it is required for regulating metabolic mechanisms and virulence determinants. Alteration of iron status in the extracellular environment directly triggers the signal in enteropathogenic bacterial, providing information that they are in a hostile environment. To survive in an iron-limited environment, molecular regulation of iron-binding proteins plays a vital role in facilitating the transportation and utilization of sufficient iron sources. Given the importance of iron molecules for bacterial survival and pathogenicity, this review summarizes the physiological role of iron-binding proteins in bacterial survival and their potential use in vaccine and therapeutic developments.
Collapse
Affiliation(s)
| | - Nor Raihan Mohammad Shabani
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Candy Chuah
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Kuala Selangor, Selangor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
34
|
Secretion of the siderophore rhizoferrin is regulated by the cAMP-PKA pathway and is involved in the virulence of Mucor lusitanicus. Sci Rep 2022; 12:10649. [PMID: 35739200 PMCID: PMC9226013 DOI: 10.1038/s41598-022-14515-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Mucormycosis is a fungal infection caused by Mucorales, with a high mortality rate. However, only a few virulence factors have been described in these organisms. This study showed that deletion of rfs, which encodes the enzyme for the biosynthesis of rhizoferrin, a siderophore, in Mucor lusitanicus, led to a lower virulence in diabetic mice and nematodes. Upregulation of rfs correlated with the increased toxicity of the cell-free supernatants of the culture broth (SS) obtained under growing conditions that favor oxidative metabolism, such as low glucose levels or the presence of H2O2 in the culture, suggesting that oxidative metabolism enhances virulence through rhizoferrin production. Meanwhile, growing M. lusitanicus in the presence of potassium cyanide, N-acetylcysteine, a higher concentration of glucose, or exogenous cAMP, or the deletion of the gene encoding the regulatory subunit of PKA (pkaR1), correlated with a decrease in the toxicity of SS, downregulation of rfs, and reduction in rhizoferrin production. These observations indicate the involvement of the cAMP-PKA pathway in the regulation of rhizoferrin production and virulence in M. lusitanicus. Moreover, rfs upregulation was observed upon macrophage interaction or during infection with spores in mice, suggesting a pivotal role of rfs in M. lusitanicus infection.
Collapse
|
35
|
Pita-Grisanti V, Chasser K, Sobol T, Cruz-Monserrate Z. Understanding the Potential and Risk of Bacterial Siderophores in Cancer. Front Oncol 2022; 12:867271. [PMID: 35785195 PMCID: PMC9248441 DOI: 10.3389/fonc.2022.867271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Trevor Sobol
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Zobeida Cruz-Monserrate,
| |
Collapse
|
36
|
Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, Mu A, Hofstaedter CE, Varisco D, McConville TH, Drikic M, Fowler B, Urso A, Shi W, Fucich D, Annavajhala MK, Khan IN, Oussenko I, Francoeur N, Smith ML, Stockwell BR, Lewis IA, Hachani A, Upadhyay Baskota S, Uhlemann AC, Ahn D, Ernst RK, Howden BP, Sebra R, Prince A. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 2022; 34:761-774.e9. [PMID: 35413274 PMCID: PMC9081115 DOI: 10.1016/j.cmet.2022.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.
Collapse
Affiliation(s)
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andre Mu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - David Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Brandon Fowler
- Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Andreacarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wei Shi
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Dario Fucich
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Ibrahim N Khan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Irina Oussenko
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | | | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA; Sema4: A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
37
|
The stress sigma factor σS/RpoS counteracts Fur repression of genes involved in iron and manganese metabolism and modulates the ionome of Salmonella enterica serovar Typhimurium. PLoS One 2022; 17:e0265511. [PMID: 35358211 PMCID: PMC8970401 DOI: 10.1371/journal.pone.0265511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.
Collapse
|
38
|
Roth M, Jaquet V, Lemeille S, Bonetti EJ, Cambet Y, François P, Krause KH. Transcriptomic Analysis of E. coli after Exposure to a Sublethal Concentration of Hydrogen Peroxide Revealed a Coordinated Up-Regulation of the Cysteine Biosynthesis Pathway. Antioxidants (Basel) 2022; 11:antiox11040655. [PMID: 35453340 PMCID: PMC9026346 DOI: 10.3390/antiox11040655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a key defense component of host-microbe interaction. However, H2O2 concentrations generated by immune cells or epithelia are usually insufficient for bacterial killing and rather modulate bacterial responses. Here, we investigated the impact of sublethal H2O2 concentration on gene expression of E. coli BW25113 after 10 and 60 min of exposure. RNA-seq analysis revealed that approximately 12% of bacterial genes were strongly dysregulated 10 min following exposure to 2.5 mM H2O2. H2O2 exposure led to the activation of a specific antioxidant response and a general stress response. The latter was characterized by a transient down-regulation of genes involved in general metabolism, such as nucleic acid biosynthesis and translation, with a striking and coordinated down-regulation of genes involved in ribosome formation, and a sustained up-regulation of the SOS response. We confirmed the rapid transient and specific response mediated by the transcription factor OxyR leading to up-regulation of antioxidant systems, including the catalase-encoding gene (katG), that rapidly degrade extracellular H2O2 and promote bacterial survival. We documented a strong and transient up-regulation of genes involved in sulfur metabolism and cysteine biosynthesis, which are under the control of the transcription factor CysB. This strong specific transcriptional response to H2O2 exposure had no apparent impact on bacterial survival, but possibly replenishes the stores of oxidized cysteine and glutathione. In summary, our results demonstrate that different stress response mechanisms are activated by H2O2 exposure and highlight the cysteine synthesis as an antioxidant response in E. coli.
Collapse
Affiliation(s)
- Myriam Roth
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- Correspondence: ; Tel.: +41-223-794-257
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| | - Eve-Julie Bonetti
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Yves Cambet
- REaders, Assay Development & Screening Unit (READS Unit), Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland;
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals Geneva Medical Center, Michel-Servet 1, 1211 Geneva, Switzerland; (E.-J.B.); (P.F.)
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, 1211 Geneva, Switzerland; (V.J.); (S.L.); (K.-H.K.)
| |
Collapse
|
39
|
Schäfer F, Görner P, Woltemate S, Brandenberger C, Geffers R, Ziesing S, Schlüter D, Vital M. The Resistance Mechanism Governs Physiological Adaptation of Escherichia coli to Growth With Sublethal Concentrations of Carbapenem. Front Microbiol 2022; 12:812544. [PMID: 35173695 PMCID: PMC8841762 DOI: 10.3389/fmicb.2021.812544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Factors governing resistance in carbapenem-resistant Enterobacteriaceae are manifold. Despite ample research efforts, underlying molecular mechanisms are still only partly understood. Furthermore, little is known on (eco)physiological consequences from resistance acquisition originating from distinct mechanisms in respective bacteria. In this study, we examined physiological adaptation of Escherichia coli clinical isolates exhibiting two distinct resistance mechanisms–either carrying a carbapenemase (n = 4, CARB) or alterations in porin-encoding genes (n = 6, POR)–during growth with sublethal concentrations of ertapenem in chemostat culture. Basic growth parameters based on optical density and flow-cytometric analyses as well as global gene expression patterns using RNA-Seq were recorded. We demonstrate that strategies to deal with the antibiotic were distinct between strains of the two groups, where (increased) expression of carbapenemases was the major response in CARB, whereas wide-spread alterations in gene-expression that promoted a survival-like phenotype was observed in POR. The response in POR was accompanied with “costs of resistance” resulting in reduced growth efficiencies compared with CARB that are intrinsic to that group and were also observed during growth without antibiotic challenge, however, at lower levels. All strains showed similar minimal inhibitory concentrations and did not form phylogenetic groups, indicating that results cannot be attributed to distinct resistance levels or phylogenetic relationships, but are indeed based on the resistance mechanism.
Collapse
Affiliation(s)
- Franca Schäfer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Pia Görner
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Sabrina Woltemate
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | | | - Robert Geffers
- Genomics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Ziesing
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- *Correspondence: Marius Vital,
| |
Collapse
|
40
|
Vaishampayan A, Grohmann E. Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights. Microorganisms 2021; 10:microorganisms10010061. [PMID: 35056511 PMCID: PMC8779550 DOI: 10.3390/microorganisms10010061] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotic resistance and infections caused by multidrug-resistant bacteria are global health concerns. Reducing the overuse and misuse of antibiotics is the primary step toward minimizing the antibiotic resistance crisis. Thus, it is imperative to introduce and implement novel antimicrobial strategies. Recently, several alternative antimicrobials targeting oxidative stress in bacteria have been studied and shown to be promising. Oxidative stress occurs when bacterial cells fail to detoxify the excessive reactive oxygen species (ROS) accumulated in the cells. Bacteria deploy numerous defense mechanisms against oxidative stress. The oxidative stress response is not essential for the normal growth of bacteria, but it is crucial for their survival. This toxic oxidative stress is created by the host immune response or antimicrobials generating ROS. ROS possess strong oxidation potential and cause serious damage to nucleic acids, lipids, and proteins. Since ROS-based antimicrobials target multiple sites in bacteria, these antimicrobials have attracted the attention of several researchers. In this review, we present recent ROS-based alternative antimicrobials and strategies targeting oxidative stress which might help in mitigating the problem of antibiotic resistance and dissemination.
Collapse
|
41
|
Oliveira F, Lima T, Correia A, Silva AM, Soares C, Morais S, Weißelberg S, Vilanova M, Rohde H, Cerca N. Siderophore-Mediated Iron Acquisition Plays a Critical Role in Biofilm Formation and Survival of Staphylococcus epidermidis Within the Host. Front Med (Lausanne) 2021; 8:799227. [PMID: 35004774 PMCID: PMC8738164 DOI: 10.3389/fmed.2021.799227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Iron acquisition through siderophores, a class of small, potent iron-chelating organic molecules, is a widely spread strategy among pathogens to survive in the iron-restricted environment found in the host. Although these molecules have been implicated in the pathogenesis of several species, there is currently no comprehensive study addressing siderophore production in Staphylococcus epidermidis. Staphylococcus epidermidis is an innocuous skin commensal bacterium. The species, though, has emerged as a leading cause of implant-associated infections, significantly supported by an inherent ability to form biofilms. The process of adaptation from skin niche environments to the hostile conditions during invasion is yet not fully understood. Herein, we addressed the possible role of siderophore production in S. epidermidis virulence. We first identified and deleted a siderophore homolog locus, sfaABCD, and provided evidence for its involvement in iron acquisition. Our findings further suggested the involvement of siderophores in the protection against oxidative stress-induced damage and demonstrated the in vivo relevance of a siderophore-mediated iron acquisition during S. epidermidis infections. Conclusively, this study addressed, for the first time in this species, the underlying mechanisms of siderophore production, highlighting the importance of a siderophore-mediated iron acquisition under host relevant conditions and, most importantly, its contribution to survival within the host.
Collapse
Affiliation(s)
- Fernando Oliveira
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Tânia Lima
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Margarida Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristina Soares
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nuno Cerca
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
42
|
Alves JA, Previato-Mello M, Barroso KCM, Koide T, da Silva Neto JF. The MarR family regulator OsbR controls oxidative stress response, anaerobic nitrate respiration, and biofilm formation in Chromobacterium violaceum. BMC Microbiol 2021; 21:304. [PMID: 34736409 PMCID: PMC8567585 DOI: 10.1186/s12866-021-02369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Chromobacterium violaceum is an environmental opportunistic pathogen that causes rare but deadly infections in humans. The transcriptional regulators that C. violaceum uses to sense and respond to environmental cues remain largely unknown. Results Here, we described a novel transcriptional regulator in C. violaceum belonging to the MarR family that we named OsbR (oxidative stress response and biofilm formation regulator). Transcriptome profiling by DNA microarray using strains with deletion or overexpression of osbR showed that OsbR exerts a global regulatory role in C. violaceum, regulating genes involved in oxidative stress response, nitrate reduction, biofilm formation, and several metabolic pathways. EMSA assays showed that OsbR binds to the promoter regions of several OsbR-regulated genes, and the in vitro DNA binding activity was inhibited by oxidants. We demonstrated that the overexpression of osbR caused activation of ohrA even in the presence of the repressor OhrR, which resulted in improved growth under organic hydroperoxide treatment, as seem by growth curve assays. We showed that the proper regulation of the nar genes by OsbR ensures optimal growth of C. violaceum under anaerobic conditions by tuning the reduction of nitrate to nitrite. Finally, the osbR overexpressing strain showed a reduction in biofilm formation, and this phenotype correlated with the OsbR-mediated repression of two gene clusters encoding putative adhesins. Conclusions Together, our data indicated that OsbR is a MarR-type regulator that controls the expression of a large number of genes in C. violaceum, thereby contributing to oxidative stress defense (ohrA/ohrR), anaerobic respiration (narK1K2 and narGHJI), and biofilm formation (putative RTX adhesins). Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02369-x.
Collapse
Affiliation(s)
- Júlia A Alves
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maristela Previato-Mello
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Kelly C M Barroso
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
43
|
Gorshkov V, Parfirova O, Petrova O, Gogoleva N, Kovtunov E, Vorob’ev V, Gogolev Y. The Knockout of Enterobactin-Related Gene in Pectobacterium atrosepticum Results in Reduced Stress Resistance and Virulence towards the Primed Plants. Int J Mol Sci 2021; 22:ijms22179594. [PMID: 34502502 PMCID: PMC8431002 DOI: 10.3390/ijms22179594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Siderophores produced by microorganisms to scavenge iron from the environment have been shown to contribute to virulence and/or stress resistance of some plant pathogenic bacteria. Phytopathogenic bacteria of Pectobacterium genus possess genes for the synthesis of siderophore enterobactin, which role in plant-pathogen interactions has not been elucidated. In the present study we characterized the phenotype of the mutant strain of Pba deficient for the enterobactin-biosynthetic gene entA. We showed that enterobactin may be considered as a conditionally beneficial virulence factor of Pba. The entA knockout did not reduce Pba virulence on non-primed plants; however, salicylic acid-primed plants were more resistant to ΔentA mutant than to the wild type Pba. The reduced virulence of ΔentA mutant towards the primed plants is likely explained by its compromised resistance to oxidative stress.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Evgeny Kovtunov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
| | - Vladimir Vorob’ev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (O.P.); (O.P.); (N.G.); (E.K.); (V.V.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
44
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
45
|
Mei QX, Hu JH, Huang ZH, Fan JJ, Huang CL, Lu YY, Wang XP, Zeng Y. Pretreatment with chitosan oligosaccharides attenuate experimental severe acute pancreatitis via inhibiting oxidative stress and modulating intestinal homeostasis. Acta Pharmacol Sin 2021; 42:942-953. [PMID: 33495520 PMCID: PMC8149410 DOI: 10.1038/s41401-020-00581-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Severe acute pancreatitis (SAP) is a severe acute abdominal disease. Recent evidence shows that intestinal homeostasis is essential for the management of acute pancreatitis. Chitosan oligosaccharides (COS) possess antioxidant activity that are effective in treating various inflammatory diseases. In this study we explored the potential therapeutic effects of COS on SAP and underlying mechanisms. Mice were treated with COS (200 mg·kg-1·d-1, po) for 4 weeks, then SAP was induced in the mice by intraperitoneal injection of caerulein. We found that COS administration significantly alleviated the severity of SAP: the serum amylase and lipase levels as well as pancreatic myeloperoxidase activity were significantly reduced. COS administration suppressed the production of proinflammatory cytokines (TNF-α, IL-1β, CXCL2 and MCP1) in the pancreas and ileums. Moreover, COS administration decreased pancreatic inflammatory infiltration and oxidative stress in SAP mice, accompanied by activated Nrf2/HO-1 and inhibited TLR4/NF-κB and MAPK pathways. We further demonstrated that COS administration restored SAP-associated ileal damage and barrier dysfunction. In addition, gut microbiome analyses revealed that the beneficial effect of COS administration was associated with its ability to improve the pancreatitis-associated gut microbiota dysbiosis; in particular, probiotics Akkermansia were markedly increased, while pathogenic bacteria Escherichia-Shigella and Enterococcus were almost eliminated. The study demonstrates that COS administration remarkably attenuates SAP by reducing oxidative stress and restoring intestinal homeostasis, suggesting that COS might be a promising prebiotic agent for the treatment of SAP.
Collapse
Affiliation(s)
- Qi-Xiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Jun-Hui Hu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Ze-Hua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Jun-Jie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Chun-Lan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Ying-Ying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China
| | - Xing-Peng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China.
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201600, China.
| |
Collapse
|
46
|
Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC, Dallow E, Remick B, Barton GM, David LA, McCann JR, Armstrong SC, Malkus P, Valdivia RH. Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. mBio 2021; 12:e00478-21. [PMID: 34006653 PMCID: PMC8262928 DOI: 10.1128/mbio.00478-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
The mucophilic anaerobic bacterium Akkermansia muciniphila is a prominent member of the gastrointestinal (GI) microbiota and the only known species of the Verrucomicrobia phylum in the mammalian gut. A high prevalence of A. muciniphila in adult humans is associated with leanness and a lower risk for the development of obesity and diabetes. Four distinct A. muciniphila phylogenetic groups have been described, but little is known about their relative abundance in humans or how they impact human metabolic health. In this study, we isolated and characterized 71 new A. muciniphila strains from a cohort of children and adolescents undergoing treatment for obesity. Based on genomic and phenotypic analysis of these strains, we found several phylogroup-specific phenotypes that may impact the colonization of the GI tract or modulate host functions, such as oxygen tolerance, adherence to epithelial cells, iron and sulfur metabolism, and bacterial aggregation. In antibiotic-treated mice, phylogroups AmIV and AmII outcompeted AmI strains. In children and adolescents, AmI strains were most prominent, but we observed high variance in A. muciniphila abundance and single phylogroup dominance, with phylogroup switching occurring in a small subset of patients. Overall, these results highlight that the ecological principles determining which A. muciniphila phylogroup predominates in humans are complex and that A. muciniphila strain genetic and phenotypic diversity may represent an important variable that should be taken into account when making inferences as to this microbe's impact on its host's health.IMPORTANCE The abundance of Akkermansia muciniphila in the gastrointestinal (GI) tract is linked to multiple positive health outcomes. There are four known A. muciniphila phylogroups, yet the prevalence of these phylogroups and how they vary in their ability to influence human health is largely unknown. In this study, we performed a genomic and phenotypic analysis of 71 A. muciniphila strains and identified phylogroup-specific traits such as oxygen tolerance, adherence, and sulfur acquisition that likely influence colonization of the GI tract and differentially impact metabolic and immunological health. In humans, we observed that single Akkermansia phylogroups predominate at a given time but that the phylotype can switch in an individual. This collection of strains provides the foundation for the functional characterization of A. muciniphila phylogroup-specific effects on the multitude of host outcomes associated with Akkermansia colonization, including protection from obesity, diabetes, colitis, and neurological diseases, as well as enhanced responses to cancer immunotherapies.
Collapse
Affiliation(s)
- Bradford Becken
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Hospital, Durham, North Carolina, USA
| | - Lauren Davey
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Dustin R Middleton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katherine D Mueller
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Agastya Sharma
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Eric Dallow
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Brenna Remick
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Gregory M Barton
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Jessica R McCann
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Sarah C Armstrong
- Department of Pediatrics, Duke University Hospital, Durham, North Carolina, USA
| | - Per Malkus
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
47
|
Borker SS, Thakur A, Kumar S, Kumari S, Kumar R, Kumar S. Comparative genomics and physiological investigation supported safety, cold adaptation, efficient hydrolytic and plant growth-promoting potential of psychrotrophic Glutamicibacter arilaitensis LJH19, isolated from night-soil compost. BMC Genomics 2021; 22:307. [PMID: 33910515 PMCID: PMC8082909 DOI: 10.1186/s12864-021-07632-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Night-soil compost (NSC) has traditionally been conserving water and a source of organic manure in northwestern Himalaya. Lately, this traditional method is declining due to modernization, its unhygienic conditions, and social apprehensions. Reduction in the age-old traditional practice has led to excessive chemical fertilizers and water shortage in the eco-sensitive region. In the current study, a bacterium has been analyzed for its safety, cold-adaptation, efficient degradation, and plant growth-promoting (PGP) attributes for its possible application as a safe bioinoculant in psychrotrophic bacterial consortia for improved night-soil composting. RESULTS Glutamicibacter arilaitensis LJH19, a psychrotrophic bacterium, was isolated from the NSC of Lahaul valley in northwestern Himalaya. The strain exhibited amylase (186.76 ± 19.28 U/mg), cellulase (21.85 ± 0.7 U/mg), and xylanase (11.31 ± 0.51 U/mg) activities at 10 °C. Possessing efficient hydrolytic activities at low-temperature garners the capability of efficient composting to LJH19. Additionally, the strain possessed multiple PGP traits such as indole acetic acid production (166.11 ± 5.7 μg/ml), siderophore production (85.72 ± 1.06% psu), and phosphate solubilization (44.76 ± 1.5 μg/ml). Enhanced germination index and germination rate of pea seeds under the LJH19 inoculation further supported the bacterium's PGP potential. Whole-genome sequencing (3,602,821 bps) and genome mining endorsed the cold adaptation, degradation of polysaccharides, and PGP traits of LJH19. Biosynthetic gene clusters for type III polyketide synthase (PKS), terpene, and siderophore supplemented the endorsement of LJH19 as a potential PGP bacterium. Comparative genomics within the genus revealed 217 unique genes specific to hydrolytic and PGP activity. CONCLUSION The physiological and genomic evidence promotes LJH19 as a potentially safe bio-inoculant to formulate psychrotrophic bacterial consortia for accelerated degradation and improved night-soil compost.
Collapse
Affiliation(s)
- Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Sareeka Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
48
|
Lauxen AI, Kobauri P, Wegener M, Hansen MJ, Galenkamp NS, Maglia G, Szymanski W, Feringa BL, Kuipers OP. Mechanism of Resistance Development in E. coli against TCAT, a Trimethoprim-Based Photoswitchable Antibiotic. Pharmaceuticals (Basel) 2021; 14:ph14050392. [PMID: 33919397 PMCID: PMC8143356 DOI: 10.3390/ph14050392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
During the last decades, a continuous rise of multi-drug resistant pathogens has threatened antibiotic efficacy. To tackle this key challenge, novel antimicrobial therapies are needed with increased specificity for the site of infection. Photopharmacology could enable such specificity by allowing for the control of antibiotic activity with light, as exemplified by trans/cis-tetra-ortho-chloroazobenzene-trimethoprim (TCAT) conjugates. Resistance development against the on (irradiated, TCATa) and off (thermally adapted, TCATd) states of TCAT were compared to that of trimethoprim (TMP) in Escherichia coli mutant strain CS1562. Genomics and transcriptomics were used to explore the acquired resistance. Although TCAT shows TMP-like dihydrofolate reductase (DHFR) inhibition in vitro, transcriptome analyses show different responses in acquired resistance. Resistance against TCATa (on) relies on the production of exopolysaccharides and overexpression of TolC. While resistance against TCATd (off) follows a slightly different gene expression profile, both indicate hampering the entrance of the molecule into the cell. Conversely, resistance against TMP is based on alterations in cell metabolism towards a more persister-like phenotype, as well as alteration of expression levels of enzymes involved in the folate biosynthesis. This study provides a deeper understanding of the development of new therapeutic strategies and the consequences on resistance development against photopharmacological drugs.
Collapse
Affiliation(s)
- Anna I. Lauxen
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Michael Wegener
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
| | - Nicole S. Galenkamp
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Giovanni Maglia
- Groningen Biomolecular Science & Biotechnology Institute, University of Groningen, Nijenborg 4, 9747 AG Groningen, The Netherlands; (N.S.G.); (G.M.)
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; (P.K.); (M.W.); (M.J.H.)
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands;
- Correspondence: (W.S.); (B.L.F.); (O.P.K.)
| |
Collapse
|
49
|
Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci Rep 2021; 11:6112. [PMID: 33731833 PMCID: PMC7969968 DOI: 10.1038/s41598-021-85509-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.
Collapse
Affiliation(s)
- Heather S Deter
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tahmina Hossain
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Nicholas C Butzin
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA.
| |
Collapse
|
50
|
Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob Agents Chemother 2020; 65:AAC.01118-20. [PMID: 33020161 DOI: 10.1128/aac.01118-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating bla CMY-2 in Australia, I1/ST113 carrying bla CTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying bla CMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
Collapse
|