1
|
Nabakhteh S, Lotfi A, Afsartaha A, Khodadadi ES, Abdolghaderi S, Mohammadpour M, Shokri Y, Kiani P, Ehtiati S, Khakshournia S, Khatami SH. Nutritional Interventions in Amyotrophic Lateral Sclerosis: From Ketogenic Diet and Neuroprotective Nutrients to the Microbiota-Gut-Brain Axis Regulation. Mol Neurobiol 2025:10.1007/s12035-025-04830-8. [PMID: 40097762 DOI: 10.1007/s12035-025-04830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with significant challenges in diagnosis and treatment. Recent research has highlighted the complex nature of ALS, encompassing behavioral impairments in addition to its neurological manifestations. While several medications have been approved to slow disease progression, ongoing research is focused on identifying new therapeutic targets. The current review focuses on emerging therapeutic strategies and personalized approaches aimed at improving patient outcomes. Recent advancements highlight the importance of targeting additional pathways such as mitochondrial dysfunction and neuroinflammation to develop more effective treatments. Personalized medicine, including genetic testing and biomarkers, is proving valuable in stratifying patients and tailoring treatment options. Complementary therapies, such as nutritional interventions like the ketogenic diet and microbiome modulation, also show promise. This review emphasizes the need for a multidisciplinary approach that integrates early diagnosis, targeted treatments, and supportive care to address the multisystemic nature of ALS and improve the quality of life for patients.
Collapse
Affiliation(s)
- Samira Nabakhteh
- Department of Biochemistry, School of Basic Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Anahita Lotfi
- Department of Food Sciences and Industry, School of Agricultural Sciences and Natural Resources, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Arman Afsartaha
- Department of Nutrition, Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Sadat Khodadadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, 35122, Italy
| | - Siavash Abdolghaderi
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadpour
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Shokri
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Fang M, Zhou Y, He K, Lu Y, Tao F, Huang H. Glucose Metabolic Reprogramming in Microglia: Implications for Neurodegenerative Diseases and Targeted Therapy. Mol Neurobiol 2025:10.1007/s12035-025-04775-y. [PMID: 39987285 DOI: 10.1007/s12035-025-04775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
As intrinsic immune cells in the central nervous system, microglia play a crucial role in maintaining brain homeostasis. Microglia can transition from homeostasis to various responsive states in reaction to different external stimuli, undergoing corresponding alterations in glucose metabolism. In neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), microglial glucose metabolic reprogramming is widespread. This reprogramming leads to changes in microglial function, exacerbating neuroinflammation and the accumulation of pathological products, thereby driving the progression of neurodegeneration. This review summarizes the specific alterations in glucose metabolism within microglia in AD, PD, ALS, and MS, as well as the corresponding treatments aimed at reprogramming glucose metabolism. Compounds that inhibit key glycolytic enzymes like hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2), or activate regulators of energy metabolism such as AMP-activated protein kinase (AMPK), have shown significant potential in the treatment of various neurodegenerative diseases. However, current research faces numerous challenges, including side effects and blood-brain barrier (BBB) penetration of compounds. Screening relevant drugs from natural products, especially flavonoids, is a reliable approach. On the one hand, longtime herbal medical practices provide a certain degree of assurance regarding clinical safety, and their chemical properties contribute to effective BBB permeability. On the other hand, the concurrent anti-tumor and anti-neuroinflammatory activities of flavonoids suggest that regulation of glucose metabolism reprogramming might be a potential common mechanism of action. Notably, considering the dynamic nature of microglial metabolism, there is an urgent need to develop technologies for real-time monitoring of glucose metabolism processes, which would significantly advance research in this field.
Collapse
Affiliation(s)
- Mengqi Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China
| | - Keren He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yangyuxiao Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Fangfang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Hong Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Cigliano L, De Palma F, Petecca N, Fasciolo G, Panico G, Venditti P, Lombardi A, Spagnuolo MS. 1,3-butanediol administration as an alternative strategy to calorie restriction for neuroprotection - Insights into modulation of stress response in hippocampus of healthy rats. Biomed Pharmacother 2025; 182:117774. [PMID: 39693909 DOI: 10.1016/j.biopha.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024] Open
Abstract
Ketogenic diet has a wide range of beneficial effects but presents practical limitations due to its low compliance, hence dietary supplements have been developed to induce ketosis without nutrient deprivation. The alcohol 1,3-butanediol (BD) is a promising molecule for its ability to induce ketosis, but its effects on brain have been investigated so far only in disease models, but never in physiological conditions. To support BD use to preserve brain health, the analysis of its activity is mandatory. Therefore, we investigated, in healthy rats, the effect of a fourteen-days BD-administration on the hippocampus, an area particularly vulnerable to oxidative and inflammatory damage. Since BD treatment has been reported to reduce energy intake, results were compared with those obtained from rats undergoing a restricted dietary regimen, isoenergetic with BD group (pair fed, PF). Reduced pro-inflammatory signaling pathways and glial activation were revealed in hippocampus of BD treated rats in comparison to control (C) and PF groups. ROS content and the extent of protein oxidative damage were lower in BD and PF groups than in C. Interestingly, higher amounts of nuclear factor erythroid 2-related factor 2 (Nrf2), decreased level of lipid hydroperoxides, lower susceptibility to oxidative insult, higher amounts of superoxide dismutase-2, glutathione reductase and glutathione peroxidase (GPx), and increased GPx activity were observed in BD animals. BD administration, but not dietary restriction, attenuated endoplasmic reticulum stress, reduced autophagic response activation, and was associated with an increase of both the neurotrophin BDNF and pre-synaptic proteins synaptophysin and synaptotagmin. Our results highlight that BD plays a neuroprotective role in healthy conditions, thus emerging as an effective strategy to support brain function without the need of implementing ketogenic nutritional interventions.
Collapse
Affiliation(s)
- Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Francesca De Palma
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Natasha Petecca
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Gianluca Fasciolo
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Giuliana Panico
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Paola Venditti
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples 80121, Italy.
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Portici, 80055, Italy.
| |
Collapse
|
4
|
Shahpasand S, Khatami SH, Ehtiati S, Alehossein P, Salmani F, Toutounchi AH, Zarei T, Shahmohammadi MR, Khodarahmi R, Aghamollaii V, Tafakhori A, Karima S. Therapeutic potential of the ketogenic diet: A metabolic switch with implications for neurological disorders, the gut-brain axis, and cardiovascular diseases. J Nutr Biochem 2024; 132:109693. [PMID: 38880191 DOI: 10.1016/j.jnutbio.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The Ketogenic Diet (KD) is a dietary regimen that is low in carbohydrates, high in fats, and contains adequate protein. It is designed to mimic the metabolic state of fasting. This diet triggers the production of ketone bodies through a process known as ketosis. The primary objective of KD is to induce and sustain ketosis, which has been associated with numerous health benefits. Recent research has uncovered promising therapeutic potential for KD in the treatment of various diseases. This includes evidence of its effectiveness as a dietary strategy for managing intractable epilepsy, a form of epilepsy that is resistant to medication. We are currently assessing the efficacy and safety of KD through laboratory and clinical studies. This review focuses on the anti-inflammatory properties of the KD and its potential benefits for neurological disorders and the gut-brain axis. We also explore the existing literature on the potential effects of KD on cardiac health. Our aim is to provide a comprehensive overview of the current knowledge in these areas. Given the encouraging preliminary evidence of its therapeutic effects and the growing understanding of its mechanisms of action, randomized controlled trials are warranted to further explore the rationale behind the clinical use of KD. These trials will ultimately enhance our understanding of how KD functions and its potential benefits for various health conditions. We hope that our research will contribute to the body of knowledge in this field and provide valuable insights for future studies.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of general surgery,Imam Hosein medical and educational center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Tayebe Zarei
- Clinical Trial Department, Behbalin Co., Ltd., Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
5
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
6
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol 2022; 5:1340. [PMID: 36477191 PMCID: PMC9729297 DOI: 10.1038/s42003-022-04295-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of amyotrophic lateral sclerosis and Huntington's disease. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are associated with fatty acid metabolism and mitochondrial β-oxidation. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial β-oxidation. Our findings encourage the exploration of L. rhamnosus HA-114 derived interventions to modify the progression of neurodegenerative diseases.
Collapse
|
8
|
Swim Training Affects on Muscle Lactate Metabolism, Nicotinamide Adenine Dinucleotides Concentration, and the Activity of NADH Shuttle Enzymes in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms231911504. [PMID: 36232801 PMCID: PMC9569676 DOI: 10.3390/ijms231911504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.
Collapse
|
9
|
Nelson AT, Trotti D. Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1102-1118. [PMID: 35773551 PMCID: PMC9587161 DOI: 10.1007/s13311-022-01262-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew T Nelson
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Loganathan S, Wilson BA, Carey SB, Manzo E, Joardar A, Ugur B, Zarnescu DC. TDP-43 Proteinopathy Causes Broad Metabolic Alterations including TCA Cycle Intermediates and Dopamine Levels in Drosophila Models of ALS. Metabolites 2022; 12:metabo12020101. [PMID: 35208176 PMCID: PMC8876928 DOI: 10.3390/metabo12020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
ALS is a fatal, complex neurodegenerative disorder that causes selective degeneration of motor neurons. ALS patients exhibit symptoms consistent with altered cellular energetics such as hypermetabolism, weight loss, dyslipidemia, insulin resistance, and altered glucose tolerance. Although evidence supports metabolic changes in ALS patients, metabolic alterations at a cellular level remain poorly understood. Here, we used a Drosophila model of ALS based on TDP-43 expression in motor neurons that recapitulates hallmark features of motor neuron disease including TDP-43 aggregation, locomotor dysfunction, and reduced lifespan. To gain insights into metabolic changes caused by TDP-43, we performed global metabolomic profiling in larvae expressing TDP-43 (WT or ALS associated mutant variant, G298S) and identified significant alterations in several metabolic pathways. Here, we report alterations in multiple metabolic pathways and highlight upregulation of TCA cycle metabolites and defects in neurotransmitter levels. We also show that modulating TCA cycle flux either genetically or by dietary intervention mitigates TDP-43-dependent locomotor defects. In addition, dopamine levels are significantly reduced in the context of TDP-43G298S, and we find that treatment with pramipexole, a dopamine agonist, improves locomotor function in vivo in Drosophila models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Suvithanandhini Loganathan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
| | - Bryce A. Wilson
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
| | - Sara B. Carey
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
| | - Ernesto Manzo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
| | - Archi Joardar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
| | - Berrak Ugur
- Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Daniela C. Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (S.L.); (B.A.W.); (S.B.C.); (E.M.); (A.J.)
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
- Correspondence:
| |
Collapse
|
11
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Brunner B, Ari C, D’Agostino DP, Kovács Z. Adenosine Receptors Modulate the Exogenous Ketogenic Supplement-Evoked Alleviating Effect on Lipopolysaccharide-Generated Increase in Absence Epileptic Activity in WAG/Rij Rats. Nutrients 2021; 13:nu13114082. [PMID: 34836344 PMCID: PMC8623289 DOI: 10.3390/nu13114082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-βHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.
Collapse
Affiliation(s)
- Brigitta Brunner
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary;
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovács
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| |
Collapse
|
13
|
De Marchi F, Collo A, Scognamiglio A, Cavaletto M, Bozzi Cionci N, Biroli G, Di Gioia D, Riso S, Mazzini L. Study protocol on the safety and feasibility of a normocaloric ketogenic diet in people with amyotrophic lateral sclerosis. Nutrition 2021; 94:111525. [PMID: 34864433 DOI: 10.1016/j.nut.2021.111525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This study evaluates the safety and feasibility of a normocaloric ketogenic diet (KD) in people with amyotrophic lateral sclerosis (ALS) for reducing hyperexcitability levels and modulating neuroinflammation. METHODS This is a prospective, open-label pilot study involving men and women diagnosed with ALS, ages 18 to 75 y. The primary outcome is the safety and reproducibility of the KD in people with ALS. We will monitor secondary clinical outcomes with the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale score, forced vital capacity, the Amyotrophic Lateral Sclerosis Assessment Questionnaire, blood parameters, and gut microbiota analyses. All participants will follow the KD for 8 wk. During the diet, the clinical status of all participants will be monitored every 15 d through neurologic and nutritional visits and biochemical markers. The research ethics committee approved the study. RESULTS Safety will be assessed by measuring the number and severity of adverse events, including death, and any changes in blood chemistry, vital signs, and clinical exam results. Tolerability will be assessed to complete the proposed 8 wk of treatment while maintaining adequate nutritional status without inducing malnutrition. CONCLUSIONS Adequate caloric intake is essential in ALS, because insufficient intake induces loss of body mass. We hope that the proposed study will provide a positive result in terms of the safety and feasibility of a KD in people ALS, with the purpose of developing a patient-centered diet program to limit disease progression and possibly improve survival.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| | - Alessandro Collo
- Clinical Nutrition and Dietetic Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Ada Scognamiglio
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Maria Cavaletto
- Department of "Scienze e Innovazione Tecnologica-DiSIT," University of Piemonte Orientale, Vercelli, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giampaolo Biroli
- Clinical Nutrition and Dietetic Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sergio Riso
- Clinical Nutrition and Dietetic Unit, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Caldwell S, Rothman DL. 1H Magnetic Resonance Spectroscopy to Understand the Biological Basis of ALS, Diagnose Patients Earlier, and Monitor Disease Progression. Front Neurol 2021; 12:701170. [PMID: 34512519 PMCID: PMC8429815 DOI: 10.3389/fneur.2021.701170] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
At present, limited biomarkers exist to reliably understand, diagnose, and monitor the progression of amyotrophic lateral sclerosis (ALS), a fatal neurological disease characterized by motor neuron death. Standard MRI technology can only be used to exclude a diagnosis of ALS, but 1H-MRS technology, which measures neurochemical composition, may provide the unique ability to reveal biomarkers that are specific to ALS and sensitive enough to diagnose patients at early stages in disease progression. In this review, we present a summary of current theories of how mitochondrial energetics and an altered glutamate/GABA neurotransmitter flux balance play a role in the pathogenesis of ALS. The theories are synthesized into a model that predicts how pathogenesis impacts glutamate and GABA concentrations. When compared with the results of all MRS studies published to date that measure the absolute concentrations of these neurochemicals in ALS patients, results were variable. However, when normalized for neuronal volume using the MRS biomarker N-acetyl aspartate (NAA), there is clear evidence for an elevation of neuronal glutamate in nine out of thirteen studies reviewed, an observation consistent with the predictions of the model of increased activity of glutamatergic neurons and excitotoxicity. We propose that this increase in neuronal glutamate concentration, in combination with decreased neuronal volume, is specific to the pathology of ALS. In addition, when normalized to glutamate levels, there is clear evidence for a decrease in neuronal GABA in three out of four possible studies reviewed, a finding consistent with a loss of inhibitory regulation contributing to excessive neuronal excitability. The combination of a decreased GABA/Glx ratio with an elevated Glx/NAA ratio may enhance the specificity for 1H-MRS detection of ALS and ability to monitor glutamatergic and GABAergic targeted therapeutics. Additional longitudinal studies calculating the exact value of these ratios are needed to test these hypotheses and understand how ratios may change over the course of disease progression. Proposed modifications to the experimental design of the reviewed 1H MRS studies may also increase the sensitivity of the technology to changes in these neurochemicals, particularly in early stages of disease progression.
Collapse
Affiliation(s)
- Sarah Caldwell
- Departments of Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Douglas L Rothman
- Departments of Radiology and Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Abstract
Triheptanoin (Dojolvi™), a synthetic medium-chain triglyceride, is being developed by Ultragenyx Pharmaceutical as a pharmaceutical-grade anaplerotic compound for use in the treatment of inherited metabolic disorders. In June 2020, triheptanoin received its first regulatory approval, in the USA, for use as a source of calories and fatty acids for the treatment of pediatric and adult patients with molecularly confirmed long-chain fatty acid oxidation disorders (LC-FAOD). Triheptanoin has also been investigated for use as a treatment in a range of other metabolic disorders or other diseases where energy deficiency is implicated. This article summarizes the milestones in the development of triheptanoin leading to this first regulatory approval for use in the treatment of pediatric and adult patients with LC-FAOD.
Collapse
Affiliation(s)
- Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
16
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
17
|
Delaye JB, Lanznaster D, Veyrat-Durebex C, Fontaine A, Bacle G, Lefevre A, Hergesheimer R, Lecron JC, Vourc'h P, Andres CR, Maillot F, Corcia P, Emond P, Blasco H. Behavioral, Hormonal, Inflammatory, and Metabolic Effects Associated with FGF21-Pathway Activation in an ALS Mouse Model. Neurotherapeutics 2021; 18:297-308. [PMID: 33021723 PMCID: PMC8116478 DOI: 10.1007/s13311-020-00933-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), motor neuron degeneration occurs simultaneously with systemic metabolic dysfunction and neuro-inflammation. The fibroblast growth factor 21 (FGF21) plays an important role in the regulation of both phenomena and is a major hormone of energetic homeostasis. In this study, we aimed to determine the relevance of FGF21 pathway stimulation in a male mouse model of ALS (mutated SOD1-G93A mice) by using a pharmacological agonist of FGF21, R1Mab1. Mice (SOD1-WT and mutant SOD1-G93A) were treated with R1Mab1 or vehicle. Longitudinal data about clinical status (motor function, body weight) and biological parameters (including hormonal, immunological, and metabolomics profiles) were collected from the first symptoms to euthanasia at week 20. Multivariate models were performed to identify the main parameters associated with R1Mab1 treatment and to link them with clinical status, and metabolic pathways involving the discriminant metabolites were also determined. A beneficial clinical effect of R1Mab1 was revealed on slow rotarod (p = 0.032), despite a significant decrease in body weight of ALS mice (p < 0.001). We observed a decrease in serum TNF-α, MCP-1, and insulin levels (p = 0.0059, p = 0.003, and p = 0.01, respectively). At 16 weeks, metabolomics analyses revealed a clear discrimination (CV-ANOVA = 0.0086) according to the treatment and the most discriminant pathways, including sphingolipid metabolism, butanoate metabolism, pantothenate and CoA biosynthesis, and the metabolism of amino acids like tyrosine, arginine, proline, glycine, serine, alanine, aspartate, and glutamate. Mice treated with R1Mab1 had mildly higher performance on slow rotarod despite a decrease on body weight and could be linked with the anti-inflammatory effect of R1Mab1. These results indicate that FGF21 pathway is an interesting target in ALS, with a slight improvement in motor function combined with metabolic and anti-inflammatory effects.
Collapse
Affiliation(s)
- J B Delaye
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France.
| | - D Lanznaster
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - C Veyrat-Durebex
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - A Fontaine
- Service d'anatomie et cytologie pathologique, Centre Hospitalier Régional Universitaire de Tours, hôpital Bretonneau, 37044, Tours, France
| | - G Bacle
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de chirurgie orthopédique, Centre Hospitalier Régional Universitaire de Tours, hôpital Trousseau, 37044, Tours, France
| | - A Lefevre
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - R Hergesheimer
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - J C Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines Université de Poitiers Equipe d'acceuil 4331, 86073, Poitiers, France
| | - P Vourc'h
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - C R Andres
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| | - F Maillot
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de médecine interne, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - P Corcia
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Centre SLA, Service de Neurologie, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - P Emond
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
- Service de Médecine Nucléaire in vitro, Centre Hospitalier Régional Universitaire de Tours, 37044, Tours, France
| | - H Blasco
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire de Tours, 2 Bd Tonnellé, 37044, Tours Cedex, France
- Unité mixte de recherche 1253, iBrain, University of Tours, Inserm, 37044, Tours, France
| |
Collapse
|
18
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
19
|
Yuan X, Wang L, Tandon N, Sun H, Tian J, Du H, Pascual JM, Guo L. Triheptanoin Mitigates Brain ATP Depletion and Mitochondrial Dysfunction in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 78:425-437. [PMID: 33016909 PMCID: PMC8502101 DOI: 10.3233/jad-200594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain energy failure is an early pathological event associated with synaptic dysfunction in Alzheimer's disease (AD). Thus, mitigation or enhancement of brain energy metabolism may offer a therapeutic avenue. However, there is uncertainty as to what metabolic process(es) may be more appropriate to support or augment since metabolism is a multiform process such that each of the various metabolic precursors available is utilized via a specific metabolic pathway. In the brain, these pathways sustain not only a robust rate of energy production but also of carbon replenishment. OBJECTIVE Triheptanoin, an edible odd-chain fatty acid triglyceride, is uncommon in that it replenishes metabolites in the tricarboxylic acid cycle (TCA) cycle via anaplerosis in addition to fueling the cycle via oxidation, thus potentially leading to both carbon replenishment and enhanced mitochondrial ATP production. METHODS To test the hypothesis that triheptanoin is protective in AD, we supplied mice with severe brain amyloidosis (5×FAD mice) with dietary triheptanoin for four and a half months, followed by biological and biochemical experiments to examine mice metabolic as well as synaptic function. RESULTS Triheptanoin treatment had minimal impact on systemic metabolism and brain amyloidosis as well as tauopathy while attenuating brain ATP deficiency and mitochondrial dysfunction including respiration and redox balance in 5×FAD mice. Synaptic density, a disease hallmark, was also preserved in hippocampus and neocortex despite profound amyloid deposition. None of these effects took place in treated control mice. CONCLUSION These findings support the energy failure hypothesis of AD and justify investigating the mechanisms in greater depth with ultimate therapeutic intent.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Health Management Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Neha Tandon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA.,Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA
| |
Collapse
|
20
|
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19:609-633. [PMID: 32709961 PMCID: PMC7948516 DOI: 10.1038/s41573-020-0072-x] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.
Collapse
Affiliation(s)
- Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Research Center on Aging, Sherbrooke, QC, Canada.
| | | | - Cecilie Morland
- Department of Pharmaceutical Biosciences, Institute of Pharmacy, University of Oslo, Oslo, Norway
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University of Dusseldorf, Dusseldorf, Germany
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M Flint Beal
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Linda H Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | - Jenni Harvey
- Ninewells Hospital, University of Dundee, Dundee, UK
- Medical School, University of Dundee, Dundee, UK
| | - Ross Jeggo
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - Jack H Jhamandas
- Department of Medicine, University of Albeta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Albeta, Edmonton, AB, Canada
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Clothide Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France
| | - William F Martin
- Institute of Molecular Evolution, University of Dusseldorf, Dusseldorf, Germany
| | | | - Paula I Moreira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Klaus-Armin Nave
- Department of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Tal Nuriel
- Columbia University Medical Center, New York, NY, USA
| | - Stéphane H R Oliet
- Neurocentre Magendie, INSERM U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Frédéric Saudou
- University of Grenoble Alpes, Grenoble, France
- INSERM U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy sur Seine, France.
| |
Collapse
|
21
|
Blasco H, Lanznaster D, Veyrat-Durebex C, Hergesheimer R, Vourch P, Maillot F, Andres CR, Pradat PF, Corcia P. Understanding and managing metabolic dysfunction in Amyotrophic Lateral Sclerosis. Expert Rev Neurother 2020; 20:907-919. [PMID: 32583696 DOI: 10.1080/14737175.2020.1788389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron disease that leads to death after a median survival of 36 months. The development of an effective treatment has proven to be extremely difficult due to the inadequate understanding of the pathogenesis of ALS. Energy metabolism is thoroughly involved in the disease based on the discoveries of hypermetabolism, lipid/glucose metabolism, the tricarboxylic acid (TCA) cycle, and mitochondrial impairment. AREA COVERED Many perturbed metabolites within these processes have been identified as promising therapeutic targets. However, the therapeutic strategies targeting these pathways have failed to produce clinically significant results. The authors present in this review the metabolic disturbances observed in ALS and the derived-therapeutics. EXPERT OPINION The authors suggest that this is due to the insufficient knowledge of the relationship between the metabolic targets and the type of ALS of the patient, depending on genetic and environmental factors. We must improve our understanding of the pathological mechanisms and pay attention to the subtle hidden effects of changing diet, for example, and to use this strategy in addition to other drugs or to use metabolism status to determine subgroups of patients.
Collapse
Affiliation(s)
- Helene Blasco
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Debora Lanznaster
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France
| | - Charlotte Veyrat-Durebex
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Rudolf Hergesheimer
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France
| | - Patrick Vourch
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Francois Maillot
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Service de Médecine Interne, CHRU de Tours , Tours, France
| | - Christian R Andres
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Laboratoire de Biochimie et Biologie Moléculaire, CHRU de Tours , Tours, France
| | - Pierre-François Pradat
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Biomedical Imaging Laboratory, CNRS, INSERM, Sorbonne University , Paris, France.,APHP, Department of Neurology, Paris ALS Center, Pitié Salpêtrière Hospital , Paris, France
| | - Phillipe Corcia
- Unité INSERM U1253, équipe, neurogénomique et physiopathologie neuronale, Université de Tours , Tours, France.,Service de Neurologie, CHRU de Tours , Tours, France
| |
Collapse
|
22
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
23
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
24
|
Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, Bonomo RA. The Role of the Microbiota-Gut-Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms 2020; 8:E784. [PMID: 32456229 PMCID: PMC7285349 DOI: 10.3390/microorganisms8050784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
: The human gut hosts a wide and diverse ecosystem of microorganisms termed the microbiota, which line the walls of the digestive tract and colon where they co-metabolize digestible and indigestible food to contribute a plethora of biochemical compounds with diverse biological functions. The influence gut microbes have on neurological processes is largely yet unexplored. However, recent data regarding the so-called leaky gut, leaky brain syndrome suggests a potential link between the gut microbiota, inflammation and host co-metabolism that may affect neuropathology both locally and distally from sites where microorganisms are found. The focus of this manuscript is to draw connection between the microbiota-gut-brain (MGB) axis, antibiotics and the use of "BUGS AS DRUGS" for neurodegenerative diseases, their treatment, diagnoses and management and to compare the effect of current and past pharmaceuticals and antibiotics for alternative mechanisms of action for brain and neuronal disorders, such as Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS), mood disorders, schizophrenia, autism spectrum disorders and others. It is a paradigm shift to suggest these diseases can be largely affected by unknown aspects of the microbiota. Therefore, a future exists for applying microbial, chemobiotic and chemotherapeutic approaches to enhance translational and personalized medical outcomes. Microbial modifying applications, such as CRISPR technology and recombinant DNA technology, among others, echo a theme in shifting paradigms, which involve the gut microbiota (GM) and mycobiota and will lead to potential gut-driven treatments for refractory neurologic diseases.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Hayden Jaworski
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Tara Tadimalla
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adil Mistry
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Lorraine Sykes
- Department of Laboratory Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA;
| | - George Perry
- Department of Biology University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
25
|
Wehbe Z, Tucci S. Therapeutic potential of triheptanoin in metabolic and neurodegenerative diseases. J Inherit Metab Dis 2020; 43:385-391. [PMID: 31778232 DOI: 10.1002/jimd.12199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
In the past 15 years the potential of triheptanoin for the treatment of several human diseases in the area of clinical nutrition has grown considerably. Use of this triglyceride of the odd-chain fatty acid heptanoate has been proposed and applied for the treatment of several conditions in which the energy supply from citric acid cycle intermediates or fatty acid degradation are impaired. Neurological diseases due to disturbed glucose metabolism or metabolic diseases associated with impaired β-oxidation of long chain fatty acid may especially take advantage of alternative substrate sources offered by the secondary metabolites of triheptanoin. Epilepsy due to deficiency of the GLUT1 transporter, as well as diseases associated with dysregulation of neuronal signalling, have been treated with triheptanoin supplementation, and very recently the advantages of this oil in long-chain fatty acid oxidation disorders have been reported. The present review summarises the published literature on the metabolism of triheptanoin including clinical reports related to the use of triheptanoin.
Collapse
Affiliation(s)
- Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Caplliure‐Llopis J, Peralta‐Chamba T, Carrera‐Juliá S, Cuerda‐Ballester M, Drehmer‐Rieger E, López‐Rodriguez MM, de la Rubia Ortí JE. Therapeutic alternative of the ketogenic Mediterranean diet to improve mitochondrial activity in Amyotrophic Lateral Sclerosis (ALS): A Comprehensive Review. Food Sci Nutr 2020; 8:23-35. [PMID: 31993129 PMCID: PMC6977418 DOI: 10.1002/fsn3.1324] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease which is pathogenically based on the mitochondrial alteration of motor neurons, causing progressive neuron death. While ALS is characterized by enormous oxidative stress, the Mediterranean diet has been seen to have high antioxidant power. Therefore, the aim of this study is to determine how the Mediterranean diet can improve mitochondrial activity, establishing the specific nutrients and, in addition, observing the pathogenic mechanisms related to the disease that would achieve this improvement. To this end, a comprehensive review of the literature was performed using PubMed. KBs have been observed to have a neuroprotective effect to improve energy balance, increasing survival and the number of motor neurons. This ketogenesis can be achieved after following a Mediterranean diet which is associated with great benefits in other neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and ALS. These benefits are due to the high antioxidant power especially based on polyphenols contained mainly in olive oil, wine, nuts, or berries. In short, KBs could be considered as a promising option to treat ALS, representing an alternative source to glucose in motor neurons by providing neuroprotection. In addition, treatment results can be improved as ketogenesis can be achieved (increase in KBs) by following a Mediterranean diet, thanks to the high antioxidant properties which, at the same time, would improve the high oxidative stress that characterizes the disease.
Collapse
Affiliation(s)
- Jordi Caplliure‐Llopis
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- University Hospital la RiberaAlziraSpain
| | | | - Sandra Carrera‐Juliá
- Doctoral Degree's SchoolCatholic University of ValenciaValenciaSpain
- Faculty of Medicine and OdontologyCatholic. University of ValenciaValenciaSpain
| | | | - Eraci Drehmer‐Rieger
- Department of Health and Functional ValorizationCatholic University of ValenciaValenciaSpain
| | | | | |
Collapse
|
27
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
28
|
Tefera TW, Borges K. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Cereb Blood Flow Metab 2019; 39:1710-1724. [PMID: 29553298 PMCID: PMC6727138 DOI: 10.1177/0271678x18764775] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1-13C]glucose and [1,2-13C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1H and 13C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3-13C]lactate, total alanine and [3-13C]alanine, but not cortical glucose and [1-13C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1-13C]glucose-derived [4-13C]glutamate, [4-13C]glutamine and [2-13C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3-13C]pyruvate entry into the TCA cycle. Lack of changes in [1,2-13C]acetate-derived [4,5-13C]glutamate, [4,5-13C]glutamine and [1,2-13C]GABA levels indicate unchanged astrocytic 13C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2-13C] and [4-13C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1G93A mouse model at symptomatic disease stages.
Collapse
Affiliation(s)
- Tesfaye W Tefera
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Ravera S, Torazza C, Bonifacino T, Provenzano F, Rebosio C, Milanese M, Usai C, Panfoli I, Bonanno G. Altered glucose catabolism in the presynaptic and perisynaptic compartments of SOD1 G93A mouse spinal cord and motor cortex indicates that mitochondria are the site of bioenergetic imbalance in ALS. J Neurochem 2019; 151:336-350. [PMID: 31282572 DOI: 10.1111/jnc.14819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disease that develops because of motor neuron death. Several mechanisms occur supporting neurodegeneration, including mitochondrial dysfunction. Recently, we demonstrated that the synaptosomes from the spinal cord of SOD1G93A mice, an in vitro model of presynapses, displayed impaired mitochondrial metabolism at early pre-symptomatic stages of the disease, whereas perisynaptic astrocyte particles, or gliosomes, were characterized by mild energy impairment only at symptomatic stages. This work aimed to understand whether mitochondrial impairment is a consequence of upstream metabolic damage. We analyzed the critical pathways involved in glucose catabolism at presynaptic and perisynaptic compartments. Spinal cord and motor cortex synaptosomes from SOD1G93A mice displayed high activity of hexokinase and phosphofructokinase, key glycolysis enzymes, and of citrate synthase and malate dehydrogenase, key Krebs cycle enzymes, but did not display high lactate dehydrogenase activity, the key enzyme in lactate fermentation. This enhancement was evident in the spinal cord from the early stages of the disease and in the motor cortex at only symptomatic stages. Conversely, an increase in glycolysis and lactate fermentation activity, but not Krebs cycle activity, was observed in gliosomes from the spinal cord and motor cortex of SOD1G93A mice although only at the symptomatic stages of the disease. The cited enzymatic activities were enhanced in spinal cord and motor cortex homogenates, paralleling the time-course of the effect observed in synaptosomes and gliosomes. The observed metabolic modifications might be considered an attempt to restore altered energetic balance and indicate that mitochondria represent the ultimate site of bioenergetic impairment.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Laboratory of Biochemistry, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,IRCCS San Martino Policlinic Hospital, Genoa, Italy
| |
Collapse
|
30
|
Andersen JV, Skotte NH, Aldana BI, Nørremølle A, Waagepetersen HS. Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington's disease. Cell Mol Life Sci 2019; 76:2449-2461. [PMID: 30830240 PMCID: PMC11105563 DOI: 10.1007/s00018-019-03051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a hereditary and fatal disease causing profound neurodegeneration. Deficits in cerebral energy and neurotransmitter metabolism have been suggested to play a central role in the neuronal dysfunction and death associated with HD. The branched-chain amino acids (BCAAs), leucine, isoleucine and valine, are important for cerebral nitrogen homeostasis, neurotransmitter recycling and can be utilized as energy substrates in the tricarboxylic acid (TCA) cycle. Reduced levels of BCAAs in HD have been validated by several reports. However, it is still unknown how cerebral BCAA metabolism is regulated in HD. Here we investigate the metabolism of leucine and isoleucine in the R6/2 mouse model of HD. Acutely isolated cerebral cortical and striatal slices of control and R6/2 mice were incubated in media containing 15N- or 13C-labeled leucine or isoleucine and slice extracts were analyzed by gas chromatography-mass spectrometry (GC-MS) to determine isotopic enrichment of derived metabolites. Elevated BCAA transamination was found from incubations with [15N]leucine and [15N]isoleucine, in both cerebral cortical and striatal slices of R6/2 mice compared to controls. Metabolism of [U-13C]leucine and [U-13C]isoleucine, entering oxidative metabolism as acetyl CoA, was maintained in R6/2 mice. However, metabolism of [U-13C]isoleucine, entering the TCA cycle as succinyl CoA, was elevated in both cerebral cortical and striatal slices of R6/2 mice, suggesting enhanced metabolic flux via this anaplerotic pathway. To support the metabolic studies, expression of enzymes in the BCAA metabolic pathway was assessed from a proteomic resource. Several enzymes related to BCAA metabolism were found to exhibit augmented expression in the R6/2 brain, particularly related to isoleucine metabolism, suggesting an increase in the BCAA metabolic machinery. Our results show that the capacity for cerebral BCAA metabolism, predominantly of isoleucine, is amplified in the R6/2 brain and indicates that perturbations in cerebral BCAA homeostasis could have functional consequences for HD pathology.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Niels H Skotte
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
31
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
32
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
33
|
Tefera TW, Bartlett K, Tran SS, Hodson MP, Borges K. Impaired Pentose Phosphate Pathway in the Spinal Cord of the hSOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 56:5844-5855. [PMID: 30685842 DOI: 10.1007/s12035-019-1485-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Impairments in energy metabolism in amyotrophic lateral sclerosis (ALS) have long been known. However, the changes in the energy-producing pathways in ALS are not comprehensively understood. To investigate specific alterations in glucose metabolism in glycolytic, pentose phosphate, and TCA cycle pathways, we injected uniformly labeled [U-13C]glucose to wild-type and hSOD1G93A mice at symptom onset (80 days). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), levels of metabolites were determined in extracts of the cortex and spinal cord. In addition, the activities of several enzymes involved in glucose metabolism were quantified. In the spinal cord, the levels of pentose phosphate pathway (PPP) intermediate ribose 5-phosphate (p = 0.037) were reduced by 37% in hSOD1G93A mice, while the % 13C enrichments in glucose 6-phosphate were increased threefold. The maximal activities of the enzyme glucose 6-phosphate dehydrogenase were decreased by 24% in the spinal cord (p = 0.005), suggesting perturbations in the PPP. The total amount of pyruvate in the cortex (p = 0.039) was reduced by 20% in hSOD1G93A mice. Also, the activities of the glycolytic enzyme pyruvate kinase were reduced in the cortex by 31% (p = 0.002), indicating alterations in glycolysis. No significant differences were seen in the total amounts as well as % 13C enrichments in most TCA cycle intermediates, suggesting largely normal TCA cycle function. On the other hand, oxoglutarate dehydrogenase activity was decreased in the cortex, which may indicate increased oxidative stress. Overall, this study revealed decreased activity of the PPP in the spinal cord and alterations in glycolysis in hSOD1G93A mouse CNS tissues at the early symptomatic stage of disease.
Collapse
Affiliation(s)
- Tesfaye Wolde Tefera
- Neurological Disorders and Metabolism Lab, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Katherine Bartlett
- Neurological Disorders and Metabolism Lab, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shirley S Tran
- Neurological Disorders and Metabolism Lab, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark P Hodson
- Metabolomics Australia Queensland Node, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Australia.,Metabolomics Research Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Karin Borges
- Neurological Disorders and Metabolism Lab, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
34
|
Swim Training Modulates Mouse Skeletal Muscle Energy Metabolism and Ameliorates Reduction in Grip Strength in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2019; 20:ijms20020233. [PMID: 30634386 PMCID: PMC6359093 DOI: 10.3390/ijms20020233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming in skeletal muscles in the human and animal models of amyotrophic lateral sclerosis (ALS) may be an important factor in the diseases progression. We hypothesized that swim training, a modulator of cellular metabolism via changes in muscle bioenergetics and oxidative stress, ameliorates the reduction in muscle strength in ALS mice. In this study, we used transgenic male mice with the G93A human SOD1 mutation B6SJL-Tg (SOD1G93A) 1Gur/J and wild type B6SJL (WT) mice. Mice were subjected to a grip strength test and isolated skeletal muscle mitochondria were used to perform high-resolution respirometry. Moreover, the activities of enzymes involved in the oxidative energy metabolism and total sulfhydryl groups (as an oxidative stress marker) were evaluated in skeletal muscle. ALS reduces muscle strength (-70% between 11 and 15 weeks, p < 0.05), modulates muscle metabolism through lowering citrate synthase (CS) (-30% vs. WT, p = 0.0007) and increasing cytochrome c oxidase and malate dehydrogenase activities, and elevates oxidative stress markers in skeletal muscle. Swim training slows the reduction in muscle strength (-5% between 11 and 15 weeks) and increases CS activity (+26% vs. ALS I, p = 0.0048). Our findings indicate that swim training is a modulator of skeletal muscle energy metabolism with concomitant improvement of skeletal muscle function in ALS mice.
Collapse
|
35
|
Jawaid A, Khan R, Polymenidou M, Schulz PE. Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol Neurodegener 2018; 13:63. [PMID: 30509290 PMCID: PMC6278047 DOI: 10.1186/s13024-018-0294-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two fatal neurodegenerative disorders with considerable clinical, pathological and genetic overlap. Both disorders are characterized by the accumulation of pathological protein aggregates that contain a number of proteins, most notably TAR DNA binding protein 43 kDa (TDP-43). Surprisingly, recent clinical studies suggest that dyslipidemia, high body mass index, and type 2 diabetes mellitus are associated with better clinical outcomes in ALS. Moreover, ALS and FTLD patients have a significantly lower incidence of cardiovascular disease, supporting the idea that an unfavorable metabolic profile may be beneficial in ALS and FTLD. The two most widely studied ALS/FTLD models, super-oxide dismutase 1 (SOD1) and TAR DNA binding protein of 43 kDA (TDP-43), reveal metabolic dysfunction and a positive effect of metabolic strategies on disease onset and/or progression. In addition, molecular studies reveal a role for ALS/FTLD-associated proteins in the regulation of cellular and whole-body metabolism. Here, we systematically evaluate these observations and discuss how changes in cellular glucose/lipid metabolism may result in abnormal protein aggregations in ALS and FTLD, which may have important implications for new treatment strategies for ALS/FTLD and possibly other neurodegenerative conditions.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich (UZH)/ Swiss Federal Institute of Technology (ETH), Winterthurerstr. 190, 8057, Zurich, Switzerland. .,Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan.
| | - Romesa Khan
- Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | | - Paul E Schulz
- Department of Neurology, The McGovern Medical School of UT Health, Houston, TX, USA
| |
Collapse
|
36
|
Abstract
The current review highlights the evidence supporting the use of ketogenic diet therapies in the management of a growing number of neurological disorders in adults. An overview of the scientific literature supporting posited mechanisms of therapeutic efficacy is presented including effects on neurotransmission, oxidative stress, and neuro-inflammation. The clinical evidence supporting ketogenic diet use in the management of adult epilepsy, malignant glioma, Alzheimer's disease, migraine headache, motor neuron disease, and other neurologic disorders is highlighted and reviewed. Lastly, common adverse effects of ketogenic therapy in adults, including gastrointestinal symptoms, weight loss, and transient dyslipidemia are discussed.
Collapse
Affiliation(s)
- Tanya J W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, Maryland, 21287, USA
| | - Mackenzie C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, Maryland, 21287, USA.
| |
Collapse
|
37
|
Heptanoate is neuroprotective in vitro but triheptanoin post-treatment did not protect against middle cerebral artery occlusion in rats. Neurosci Lett 2018; 683:207-214. [PMID: 30076987 DOI: 10.1016/j.neulet.2018.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022]
Abstract
Triheptanoin, the medium-chain triglyceride of heptanoate, has been shown to be anticonvulsant and neuroprotective in several neurological disorders. In the gastrointestinal tract, triheptanoin is cleaved to heptanoate, which is then taken up by the blood and most tissues, including liver, heart and brain. Here we evaluated the neuroprotective effects of heptanoate and its effects on mitochondrial oxygen consumption in vitro. We also investigated the neuroprotective effects of triheptanoin compared to long-chain triglycerides when administered after stroke onset in rats. Heptanoate pre-treatment protected cultured neurons against cell death induced by oxygen glucose deprivation and N-methyl-D-aspartate. Incubation of cultured astrocytes with heptanoate for 2 h increased mitochondrial proton leak and also enhanced basal respiration and ATP turnover, suggesting that heptanoate protects against oxidative stress and is used as fuel. However, continuous 72 h infusion of triheptanoin initiated 1 h after middle cerebral artery occlusion in rats did not alter stroke volume at 3 days or neurological deficit at 1 and 3 days relative to long-chain triglyceride control treatment.
Collapse
|
38
|
Manzo E, O'Conner AG, Barrows JM, Shreiner DD, Birchak GJ, Zarnescu DC. Medium-Chain Fatty Acids, Beta-Hydroxybutyric Acid and Genetic Modulation of the Carnitine Shuttle Are Protective in a Drosophila Model of ALS Based on TDP-43. Front Mol Neurosci 2018; 11:182. [PMID: 29904341 PMCID: PMC5990617 DOI: 10.3389/fnmol.2018.00182] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
ALS patients exhibit dyslipidemia, hypermetabolism and weight loss; in addition, cellular energetics deficits have been detected prior to denervation. Although evidence that metabolism is altered in ALS is compelling, the mechanisms underlying metabolic dysregulation and the contribution of altered metabolic pathways to disease remain poorly understood. Here we use a Drosophila model of ALS based on TDP-43 that recapitulates hallmark features of the disease including locomotor dysfunction and reduced lifespan. We performed a global, unbiased metabolomic profiling of larvae expressing TDP-43 (wild-type, TDPWT or disease-associated mutant, TDPG298S) and identified several lipid metabolism associated alterations. Among these, we found a significant increase in carnitine conjugated long-chain fatty acids and a significant decrease in carnitine, acetyl-carnitine and beta-hydroxybutyrate, a ketone precursor. Taken together these data suggest a deficit in the function of the carnitine shuttle and reduced lipid beta oxidation. To test this possibility we used a combined genetic and dietary approach in Drosophila. Our findings indicate that components of the carnitine shuttle are misexpressed in the context of TDP-43 proteinopathy and that genetic modulation of CPT1 or CPT2 expression, two core components of the carnitine shuttle, mitigates TDP-43 dependent locomotor dysfunction, in a variant dependent manner. In addition, feeding medium-chain fatty acids or beta-hydroxybutyrate improves locomotor function, consistent with the notion that bypassing the carnitine shuttle deficit is neuroprotective. Taken together, our findings highlight the potential contribution of the carnitine shuttle and lipid beta oxidation in ALS and suggest strategies for therapeutic intervention based on restoring lipid metabolism in motor neurons.
Collapse
Affiliation(s)
- Ernesto Manzo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Abigail G O'Conner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Jordan M Barrows
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Dakotah D Shreiner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Gabriel J Birchak
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States.,Department of Neuroscience, University of Arizona, Tucson, AZ, United States.,Department of Neurology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
39
|
Swim Training Modulates Skeletal Muscle Energy Metabolism, Oxidative Stress, and Mitochondrial Cholesterol Content in Amyotrophic Lateral Sclerosis Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5940748. [PMID: 29849903 PMCID: PMC5924974 DOI: 10.1155/2018/5940748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Recently, in terms of amyotrophic lateral sclerosis (ALS), much attention has been paid to the cell structures formed by the mitochondria and the endoplasmic reticulum membranes (MAMs) that are involved in the regulation of Ca2+ signaling, mitochondrial bioenergetics, apoptosis, and oxidative stress. We assumed that remodeling of these structures via swim training may accompany the prolongation of the ALS lifespan. In the present study, we used transgenic mice with the G93A hmSOD1 gene mutation. We examined muscle energy metabolism, oxidative stress parameters, and markers of MAMs (Caveolin-1 protein level and cholesterol content in crude mitochondrial fraction) in groups of mice divided according to disease progression and training status. The progression of ALS was related to the lowering of Caveolin-1 protein levels and the accumulation of cholesterol in a crude mitochondrial fraction. These changes were associated with aerobic and anaerobic energy metabolism dysfunction and higher oxidative stress. Our data indicated that swim training prolonged the lifespan of ALS mice with accompanying changes in MAM components. Swim training also maintained mitochondrial function and lowered oxidative stress. These data suggest that modification of MAMs might play a crucial role in the exercise-induced deceleration of ALS development.
Collapse
|
40
|
Vandoorne T, De Bock K, Van Den Bosch L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol 2018; 135:489-509. [PMID: 29549424 PMCID: PMC5978930 DOI: 10.1007/s00401-018-1835-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven-University of Leuven, Campus Gasthuisberg O&N 4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
41
|
Veyrat-Durebex C, Reynier P, Procaccio V, Hergesheimer R, Corcia P, Andres CR, Blasco H. How Can a Ketogenic Diet Improve Motor Function? Front Mol Neurosci 2018; 11:15. [PMID: 29434537 PMCID: PMC5790787 DOI: 10.3389/fnmol.2018.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
A ketogenic diet (KD) is a normocaloric diet composed by high fat (80-90%), low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs) production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
| | | | - Philippe Corcia
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Service de Neurologie, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christian R. Andres
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Hélène Blasco
- INSERM 1083, CNRS, Equipe Mitolab, Institut MITOVASC, UMR 6015, Université d’Angers, Angers, France
- INSERM U930, Université François Rabelais de Tours, Tours, France
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire de Tours, Tours, France
| |
Collapse
|
42
|
Tan KN, Simmons D, Carrasco-Pozo C, Borges K. Triheptanoin protects against status epilepticus-induced hippocampal mitochondrial dysfunctions, oxidative stress and neuronal degeneration. J Neurochem 2018; 144:431-442. [PMID: 29222946 DOI: 10.1111/jnc.14275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Triheptanoin, the triglyceride of heptanoate, is anaplerotic (refills deficient tricarboxylic acid cycle intermediates) via the propionyl-CoA carboxylase pathway. It has been shown to be neuroprotective and anticonvulsant in several models of neurological disorders. Here, we investigated the effects of triheptanoin against changes of hippocampal mitochondrial functions, oxidative stress and cell death induced by pilocarpine-induced status epilepticus (SE) in mice. Ten days of triheptanoin pre-treatment did not protect against SE, but it preserved hippocampal mitochondrial functions including state 2, state 3 ADP, state 3 uncoupled respiration, respiration linked to ATP synthesis along with the activities of pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex 24 h post-SE. Triheptanoin prevented the SE-induced reductions of hippocampal mitochondrial superoxide dismutase activity and plasma antioxidant status as well as lipid peroxidation. It also reduced neuronal degeneration in hippocampal CA1 and CA3 regions 3 days after SE. In addition, heptanoate significantly reduced hydrogen peroxide-induced cell death in cultured neurons. In situ hybridization localized the enzymes of the propionyl-CoA carboxylase pathway, specifically Pccα, Pccβ and methylmalonyl-CoA mutase to adult mouse hippocampal pyramidal neurons and dentate granule cells, indicating that anaplerosis may occur in neurons. In conclusion, triheptanoin appears to have anaplerotic and antioxidant effects which contribute to its neuroprotective properties.
Collapse
Affiliation(s)
- Kah Ni Tan
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| | - David Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| | - Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile.,Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Qld., Australia
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Qld., Australia
| |
Collapse
|
43
|
Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM, Vaz AR, Brites D. Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at an Early Stage. Mol Neurobiol 2017; 55:4207-4224. [PMID: 28612258 DOI: 10.1007/s12035-017-0631-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.
Collapse
Affiliation(s)
- Carolina Cunha
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Santos
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cátia Gomes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Vaz
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
44
|
Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities. CURRENT GENETIC MEDICINE REPORTS 2017; 5:108-114. [PMID: 29057168 DOI: 10.1007/s40142-017-0123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. RECENT FINDINGS Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients' muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. SUMMARY These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics.
Collapse
|
45
|
Boyd PJ, Tu WY, Shorrock HK, Groen EJN, Carter RN, Powis RA, Thomson SR, Thomson D, Graham LC, Motyl AAL, Wishart TM, Highley JR, Morton NM, Becker T, Becker CG, Heath PR, Gillingwater TH. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet 2017; 13:e1006744. [PMID: 28426667 PMCID: PMC5417717 DOI: 10.1371/journal.pgen.1006744] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/04/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo.
Collapse
Affiliation(s)
- Penelope J. Boyd
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Wen-Yo Tu
- Sheffield Institute for Translation Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Hannah K. Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J. N. Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roderick N. Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - Rachael A. Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sophie R. Thomson
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Derek Thomson
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura C. Graham
- Division of Neurobiology, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna A. L. Motyl
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas M. Wishart
- Division of Neurobiology, Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Robin Highley
- Sheffield Institute for Translation Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas M. Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - Thomas Becker
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherina G. Becker
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul R. Heath
- Sheffield Institute for Translation Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Tefera TW, Borges K. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci 2017; 10:611. [PMID: 28119559 PMCID: PMC5222822 DOI: 10.3389/fnins.2016.00611] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS.
Collapse
Affiliation(s)
| | - Karin Borges
- Laboratory for Neurological Disorders and Metabolism, School of Biomedical Sciences, Department of Pharmacology, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
47
|
Tefera TW, Tan KN, McDonald TS, Borges K. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis. Neurochem Res 2016; 42:1610-1620. [PMID: 27868154 DOI: 10.1007/s11064-016-2106-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.
Collapse
Affiliation(s)
- Tesfaye W Tefera
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Kah Ni Tan
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Tanya S McDonald
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia
| | - Karin Borges
- Department of Pharmacology, School of Biomedical Sciences, The University of Queensland, Skerman Building 65, St Lucia, QLD, 4072, Australia.
| |
Collapse
|