1
|
Xie G, Wang H, Zhu M, Bi J, Yang L, Wan X, Li M, Xie E, Shi C, Yang B, Zhang Q, Li C, Huang J. A TaqMan-MGB Probe Quantitative PCR Assay Detecting Hematodinium perezi. JOURNAL OF FISH DISEASES 2025; 48:e14082. [PMID: 39831398 DOI: 10.1111/jfd.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Hematodinium perezi, a pathogenic dinoflagellate, is one of major epidemiological agents that lead to severe losses of cultured marine crustaceans in China. This study aimed to develop a novel, sensitive and specific detection method qualified for early surveillance and control of the disease caused by H. perezi. The present study established a TaqMan-MGB probe quantitative PCR (qPCR) method, targeting the first internal transcribed spacer 1 (ITS 1) region of H. perezi by optimising reaction components. A high correlation coefficient (R2 = 0.9996) was obtained in a standard curve with a 103.4% efficiency. No amplification was observed for the host's genome and pathogens other than H. perezi in the TaqMan-MGB probe qPCR assays, showing high specificity to H. perezi. When using the plasmid standard DNA as templates, the detection limit of the qPCR method was determined to be 5.66 copies/reaction and 10 times more sensitive than the conventional PCR. The TaqMan-MGB probe qPCR assays exhibited high repeatability, and the intra- and inter-assay coefficients of variation (CV) ranged from 0.11% to 2.25% over a wide dynamic range of detection from 5.66 × 100 to 5.66 × 109 copies of targeting gene. The application was also validated on clinical samples, including those with low infection with H. perezi. This novel one-step TaqMan-MGB probe qPCR provides an option for surveillance and epidemiological investigations of H. perezi infection, with an advantage at the early infection stage.
Collapse
Grants
- This work was funded by the National Natural Science Foundation of China (NSFC)-Shandong Joint-funding Program (U1906214), Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (NO.20603022023005), National Key R&D Program of China (2022YFD2401102), Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center (2022QNLM030001), Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO. 2023TD42), and the Project of Species Cons
- This work was funded by the National Natural Science Foundation of China (NSFC)-Shandong Joint-funding Program (U1906214), Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (NO.20603022023005), National Key R&D Program of China (2022YFD2401102), Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center (2022QNLM030001), Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO. 2023TD42 and 2024 GH02), and the Project of Species Cons
Collapse
Affiliation(s)
- Guosi Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | | | - Mengting Zhu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Jingnan Bi
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Liuxin Yang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Xiaoyuan Wan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Meng Li
- Laoshan Laboratory, Qingdao, Shandong, China
- Chinese Academy of Sciences (CAS) key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, CAS, Qingdao, China
| | - Enpei Xie
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Chengyin Shi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Bing Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Qingli Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| | - Caiwen Li
- Laoshan Laboratory, Qingdao, Shandong, China
- Chinese Academy of Sciences (CAS) key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, CAS, Qingdao, China
| | - Jie Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China
- Laoshan Laboratory, Qingdao, Shandong, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, Shandong, China
| |
Collapse
|
2
|
Ananphongmanee V, Tungwaravut S, Yingsunthonwattana W, Sangsuriya P, Tassanakajon A, Somboonwiwat K. Shrimp autophagy receptor protein PvTAX1BP1 regulates autophagy and facilitates white spot syndrome virus replication in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110386. [PMID: 40315936 DOI: 10.1016/j.fsi.2025.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Tax1 binding protein 1 (TAX1BP1) plays a role in autophagy regulation and proteasomal pathway across different species, though its function in shrimp is still being explored. In Penaeus vannamei, the homolog PvTAX1BP1 was characterized by a CALCOCO1 domain, a LC3-interacting region (LIR), two coiled-coil domains, and two ubiquitin-binding zinc finger regions (UBZs). It was ubiquitously expressed in shrimp tissues while its expression in hemocytes was notably downregulated following white spot syndrome virus (WSSV) infection. Silencing PvTAX1BP1 reduced WSSV replication and prolonged shrimp survival, suggesting its involvement in viral pathogenesis. Immunofluorescence assay revealed co-localization of PvTAX1BP1 with the autophagy-related protein PvLC3, indicating a potential interaction and its role in LC3-mediated autophagy. Additionally, knockdown of PvTAX1BP1 resulted in downregulation of the autophagy marker PvLC3-II in WSSV-infected shrimp, reinforcing its role in autophagy regulation during infection. Both yeast two-hybrid (Y2H) and immunofluorescence assays confirmed that PvTAX1BP1 directly interacts with three WSSV proteins: WSSV325, WSSV458, and WSSV517. These findings suggest that PvTAX1BP1 facilitates WSSV replication by modulating host LC3-mediated autophagy, potentially through its interactions with WSSV proteins. This highlights a mechanism by which viruses can exploit cellular processes for their own benefit.
Collapse
Affiliation(s)
- Vorawit Ananphongmanee
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Suttipong Tungwaravut
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Warumporn Yingsunthonwattana
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Pakkakul Sangsuriya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Wang Y, Lin ST, Zhao M, Di P, Zhou JF, Li SH, Huang YQ, Na Y, Li XC, Fang WH. Tissue and cell types infected by Ecytonucleospora hepatopenaei (EHP). J Invertebr Pathol 2025; 211:108344. [PMID: 40294744 DOI: 10.1016/j.jip.2025.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Ecytonucleospora hepatopenaei (EHP) is a microsporidian pathogen causing significant losses in shrimp aquaculture worldwide. The hepatopancreas is recognized as the primary target tissue, but the broader tissue and cell tropism of EHP and its ability to infect other components of the digestive system or non-digestive tissues remain unclear, especially when infections are intense and the host physiology is compromised. This study aimed to comprehensively investigate the histopathology of EHP infections in severely infected Penaeus vannamei to determine its tissue and cell tropism and assess the potential for systemic infection. The severity of infection was graded based on hepatopancreatic lesions. Histopathology showed that EHP spores were distributed in the digestive system of heavily infected shrimp, but not in non-digestive tissues such as gills, heart, gonad, nerves or skeletal muscle. EHP only infected the epithelial cells of the hepatopancreas, midgut, and midgut caeca, which lack the protective chitin layers. While the epithelial cells of the esophagus, stomach and hindgut were unaffected due to the protection of the inner chitinous layer, despite the presence of large numbers of EHP spores in these regions. Histopathology and ultrastructural pathology demonstrated that the R (reserve), F (fibrillar), B (blister), E (embryonic) and M (small midget) cells of the hepatopancreas were infected. These findings indicate that EHP does not cause systemic infection and has a strict cell tropism for the epithelium in the shrimp host.
Collapse
Affiliation(s)
- Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Shi-Ting Lin
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China; Shanghai Ocean University, Shanghai 201306, China
| | - Ming Zhao
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Peng Di
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Jun-Fang Zhou
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Shou-Hu Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Yan-Qing Huang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| | - Ying Na
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China.
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China.
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
4
|
Ying N, Wang Y, Qin B, Wu Y, Wang Z, Chen H, Song X, Su Z, Fang W. Lateral flow nucleic acid assay for Ecytonucleospora hepatopenaei based on recombinase polymerase amplification and strand displacement reaction. DISEASES OF AQUATIC ORGANISMS 2025; 162:17-26. [PMID: 40243272 DOI: 10.3354/dao03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The incidence of Ecytonucleospora hepatopenaei (EHP) infections in farmed shrimp has increased markedly in recent years, resulting in significant economic losses for the global shrimp farming industry. The lack of an efficacious drug for EHP infection has led to the development of a strategy based on the timely screening and elimination of EHP-carrying shrimp seeds as a means of preventing financial loss. This strategy requires portable, accurate and rapid detection methods for EHP, especially when applied to sites such as farms. However, the current lack of user-friendly devices capable of real-time detection under field conditions represents a significant challenge in the implementation of this strategy. In this study, an isothermal amplification nucleic acid biosensor for EHP detection was developed. The biosensor targeted the spore wall protein gene of EHP and amplified the target gene by recombinase polymerase amplification (RPA) combined with strand displacement reaction (SDR). The amplified products were applied on gold nanoparticle-based lateral flow nucleic acid strips (LFNAS) for visual signal conversion. The limit of detection of the SDR-RPA-LFNAS assay was 7 copies reaction-1, and the entire process could be completed in 30 min without cross-reaction. In contrast to existing conventional RPA-related detection methods, the introduction of SDR, which is used to eliminate the background signal produced by long primers, avoids the use of endonucleases and reduces costs. Moreover, the biosensor is straightforward to operate and does not require the use of expensive machinery, rendering it more suitable for the in situ detection of EHP in shrimp farms or aquaculture facilities.
Collapse
Affiliation(s)
- Na Ying
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Bo Qin
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Yanqing Wu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Zitong Wang
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Huijuan Chen
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xuefeng Song
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Zhixing Su
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| |
Collapse
|
5
|
Rajeshwar BN, Kumar TS, Jithendran KP, Bedekar MK, Kumar HS, Jeena K, Pathan MA, Rajendran KV. Experimentalinfection study reveals differential susceptibilities of Penaeus monodon and Penaeus vannamei to Enterocytozoon hepatopenaei. J Invertebr Pathol 2025; 211:108331. [PMID: 40199438 DOI: 10.1016/j.jip.2025.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Enterocytozoon hepatopenaei (EHP) is a significant pathogen affecting penaeid shrimp, particularly farmed whiteleg shrimp Penaeus vannamei, causing hepatopancreatic microsporidiosis (HPM). Although initially reported in tiger shrimp P. monodon, limited data exists on its current impact and pathogenic potential of EHP infection in tiger shrimp due to the shift toward farming P. vannamei. This study aimed to compare the susceptibility of P. monodon and P. vannamei via experimental oral EHP challenge. Challenge group shrimps were fed commercial feed mixed with minced EHP-infected hepatopancreatic tissue (1:1) containing 10⁶ copies/ng DNA for four days, while control groups received commercial pellet feed. Over 90 days, hepatopancreas and fecal samples were aseptically sampled and PCR-tested for EHP presence on days 7, 15, 30, 60, and 90 post-challenge (dpc). EHP loads, quantified using qPCR, were higher in P. vannamei (1.5-5.3 × 105 copies/μL DNA) compared to P. monodon (5.6-10.3 × 103 copies/μL DNA). Challenged P. monodon tested EHP-positive only in nested step SWP-PCR till 90 dpc. Further, infection was confirmed through wet mount, calcofluor white stain, histology, and in situ hybridization. EHP-challenged P. monodon had a higher survival rate (75 %) than P. vannamei (37.5 %). This first experimental report on EHP in P. monodon indicates it is less susceptible than P. vannamei, suggesting that the reintroduction of P. monodon can help deal with the EHP crisis the shrimp industry is currently going through.
Collapse
Affiliation(s)
- B Naveen Rajeshwar
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India
| | - T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai 600 028 Tamil Nadu, India
| | - K P Jithendran
- ICAR-Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A. Puram, Chennai 600 028 Tamil Nadu, India
| | - Megha K Bedekar
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India
| | - H Sanath Kumar
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India
| | - K Jeena
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India
| | - Mujahidkhan A Pathan
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off. Yari Road, Versova, Andheri West, Mumbai 400 061 Maharashtra, India.
| |
Collapse
|
6
|
Intriago P, Montiel B, Valarezo M, Cercado N, Montenegro A, Vásquez MM, del Barco M, Cataño Y. Co-Infection Dynamics of Baculovirus Penaei (BP-PvSNPV) in Penaeus vannamei Across Latin America. Viruses 2025; 17:374. [PMID: 40143302 PMCID: PMC11945342 DOI: 10.3390/v17030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Baculovirus penaei (BP) is an enteric virus infecting the hepatopancreas and anterior midgut of shrimp, particularly affecting early developmental stages and contributing to hatchery losses. While BP's role in co-infections is increasingly recognized, its impact on later life stages remains unclear. Despite advancements in molecular diagnostics, its high genetic diversity complicates reliable detection, often leading to discrepancies between PCR results and histological observations of occlusion bodies. This study evaluated seven primer pairs for BP detection in Penaeus vannamei. Among histologically confirmed cases, only 6% tested positive with the BPA/BPF primer and 3% with BPA/BPB, while the remaining primers failed to amplify BP, highlighting significant diagnostic limitations. Histopathology revealed bacterial co-infections alongside BP, with advanced cases showing intranuclear occlusion bodies, hepatopancreatic necrosis, and epithelial detachment. These findings underscore the urgent need for improved molecular diagnostics to accurately assess BP prevalence, its role in co-infections, and its overall impact on shrimp health in Latin America. Further research is essential to refine detection methods and determine BP's pathogenic significance beyond early developmental stages.
Collapse
Affiliation(s)
- Pablo Intriago
- South Florida Farming Corp, 13811 Old Sheridan St, Southwest Ranches, FL 33330, USA
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Bolivar Montiel
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Mauricio Valarezo
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Nicole Cercado
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Alejandra Montenegro
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - María Mercedes Vásquez
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Melany del Barco
- South Florida Farming Lab, Av. Miguel Yunez, Km 14.5 Via A Samborondón, Almax 3 Etapa 1-Lote 3 Bodega 2, Samborondón, Guayas, Ecuador; (B.M.); (M.V.); (N.C.); (A.M.); (M.M.V.); (M.d.B.)
| | - Yamilis Cataño
- Océanos S.A., Centro de Producción Laboratorio, Coveñas, Sucre, Colombia;
| |
Collapse
|
7
|
Kanitchinda S, Sritunyalucksana K, Chaijarasphong T. Multiplex CRISPR-Cas Assay for Rapid, Isothermal and Visual Detection of White Spot Syndrome Virus (WSSV) and Enterocytozoon hepatopenaei (EHP) in Penaeid Shrimp. JOURNAL OF FISH DISEASES 2025; 48:e14059. [PMID: 39628369 PMCID: PMC11837468 DOI: 10.1111/jfd.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 02/20/2025]
Abstract
White spot syndrome virus (WSSV) and Enterocytozoon hepatopenaei (EHP) represent the most economically destructive pathogens in the current shrimp industry. WSSV causes white spot disease (WSD) responsible for rapid shrimp mortality, while EHP stunts growth and therefore reduces overall productivity. Despite the importance of timely disease detection, current diagnostic methods for WSSV and EHP are typically singleplex, and those offering multiplex detection face issues such as complexity, low field compatibility and/or low sensitivity. Here, we introduce an orthogonal, multiplex CRISPR-Cas assay for concomitant detection of WSSV and EHP. This method combines recombinase polymerase amplification (RPA) for target DNA enrichment with Cas12a and Cas13a enzymes for fluorescent detection. This assay produces distinct fluorescent colours for different diagnostic outcomes, allowing naked eye visualisation without ambiguity. Further validation reveals that the assay detects as few as 20 and 200 copies of target DNA from EHP and WSSV, respectively, while producing no false positives with DNA from other shrimp pathogens. Moreover, the assay excellently agrees with established PCR methods in evaluation of clinical samples. Requiring only 37°C and less than an hour to complete, multiplex CRISPR-Cas assay presents a promising tool for onsite diagnostics, offering high accuracy while saving time and resources.
Collapse
Affiliation(s)
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of ScienceMahidol UniversityBangkokThailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
8
|
Meng X, Yu Y, Ma D, Mu M, Sun Q, Liu Q, Fan X, Li T, Chen J, Pan G, Zhou Z. Development of a colloidal gold immunochromatographic strip for the rapid on-site detection of Ecytonucleospora hepatopenaei (EHP). J Invertebr Pathol 2025; 209:108266. [PMID: 39701445 DOI: 10.1016/j.jip.2024.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The Pacific white shrimp (Penaeus vannamei), one of the world's most economically important aquatic species, is highly susceptible to Ecytonucleospora hepatopenaei (EHP), a pathogen that infects the hepatopancreas and causes hepatopancreatic microsporidiosis (HPM), leading to stunted growth and substantial economic losses in shrimp farming. Currently, no effective treatments for EHP exist, making rapid on-site detection and preventive measures essential for disease control. While nucleic acid-based detection methods are commonly employed, they require specialized equipment, controlled environments, and trained personnel, which increase costs. To address this limitation, we developed a colloidal gold immunochromatographic assay (GICA) strip for rapid on-site detection of EHP in shrimp farms. Using LC-MS/MS, 15 high-abundance EHP proteins were identified, with EhSWP3 ranked highest and selected as the optimal antigen detection target. Recombinant EhSWP3 was used to immunize mice, resulting in the development of monoclonal antibodies. The optimal capture and labeled antibody combination (1B6, 3A6) was identified and incorporated into the GICA strip. Testing with common shrimp pathogens and various microsporidia samples demonstrated the high specificity of the EHP test strip. The strip exhibited a sensitivity of 1.81 × 103 copies of the EHP-SSU rRNA gene for detecting EHP-infected shrimp and 1 × 104 purified EHP spores, indicating its strong sensitivity in practical applications. To facilitate on-site use, a simple GICA workflow was established using disposable pestles, Buffer A, and Buffer B, enabling detection within 15 min. Testing of 110 shrimp samples revealed a 90.0 % concordance between the GICA strip and qPCR results. This study marks the first development and application of an EHP antigen detection strip, offering a practical tool for rapid, on-site disease monitoring in shrimp farming.
Collapse
Affiliation(s)
- Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Yixiang Yu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Dandan Ma
- Chongqing Xinsaia Biotechnology Co., Ltd., No. 15, Ruihe Road, Chongqing 400799, PR China
| | - Mingxin Mu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Quan Sun
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Quanlin Liu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Xiaodong Fan
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, No. 37 University City Road, Chongqing 400047, PR China
| | - Tian Li
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China.
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, PR China; Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, No. 37 University City Road, Chongqing 400047, PR China
| |
Collapse
|
9
|
Arumugam U, Sudarsanan GB, Karuppannan AK, Palaniappan S. Metagenomic Studies Reveal the Evidence of Akkermansia muciniphila and Other Probiotic Bacteria in the Gut of Healthy and Enterocytozoon hepatopenaei (EHP)-Infected Farmed Penaeus vannamei. Probiotics Antimicrob Proteins 2025; 17:432-439. [PMID: 37749431 DOI: 10.1007/s12602-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.
Collapse
Affiliation(s)
- Uma Arumugam
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India.
| | - Ganesh Babu Sudarsanan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| | - Anbu Kumar Karuppannan
- Bioinformatics Center, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Vepery, Chennai, 600007, Tamil Nadu, India
| | - Subash Palaniappan
- State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Chennai, 600051, Tamil Nadu, India
| |
Collapse
|
10
|
Sathish Kumar T, Rajeshwar BN, Sivaramakrishnan T, Kumar S, Rajendran V, Kumar S, Pineda L, Rezvani M, Saravanan S. Evaluation of a synergistic blend of short- and medium-chain fatty acids as a dietary intervention for the effective management of Vibriosis in shrimp culture. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110098. [PMID: 39724995 DOI: 10.1016/j.fsi.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/30/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Vibriosis caused by Vibrio spp. is imposing severe havoc and adverse effects on shrimp culture. Antibiotics are the most widely used therapeutic measures against vibriosis. However, the uncontrolled use of antibiotics may spread the antibiotic residues and increase antibiotic-resistant bacteria. In this study, a product based on a synergistic blend of short- and medium-chain fatty acids (Selacid® GG, herein referred as Sel) was evaluated against vibriosis in shrimp, P. vannamei. The shrimps (n = 30 in triplicate per treatment) were fed with Sel (0.0 %, 0.1 %, 0.2 % or 0.3 %) for 14 days. The shrimp were challenged on 8th day by immersion, and the samples were collected on the 6th day post-challenge and the 14th day post-feeding. The shrimp fed with Sel (0.1 %, 0.2 %, and 0.3 %) diet showed significantly higher total haemocyte count, while the phenoloxidase activity was significantly increased in the Sel 0.2 % diet fed group. Histological analysis unveiled inflammatory responses with haemocytic infiltration, encapsulation, and granuloma in Sel 0.2 % diet-fed shrimps with less degeneration and necrosis of hepatopancreas tubules and epithelial cells. qPCR analysis of vibrio loads in hepatopancreas revealed significantly lower vibrio count in all Sel diet-fed groups and further confirmed by culture-dependent method which showed significantly lower total vibrio count in the hepatopancreas and haemolymph of Sel 0.2 % and Sel 0.3 % diet fed shrimp. Growth parameters showed significantly higher values in weight gain, specific growth rate, and survival rate in Sel 0.2 % diet-fed shrimps. Thus, the current study confirms the efficacy of Sel (0.2 %) against vibriosis by enhancing the immune and inflammatory responses, reducing vibrio load and improving the growth and survival. Hence Sel, can be used as an alternative therapeutic for managing vibriosis in shrimp aquaculture.
Collapse
Affiliation(s)
- T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India.
| | - B Naveen Rajeshwar
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - T Sivaramakrishnan
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - Sujeet Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - Vidya Rajendran
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | | | - Lane Pineda
- Trouw Nutrition, Nutreco, Amersfoort, the Netherlands
| | | | - S Saravanan
- Trouw Nutrition, Nutreco, Amersfoort, the Netherlands
| |
Collapse
|
11
|
Intriago P, Montiel B, Valarezo M, Gallardo J, Cataño Y. Advanced Pathogen Monitoring in Penaeus vannamei from Three Latin American Regions: Passive Surveillance Part 2. Viruses 2025; 17:187. [PMID: 40006942 PMCID: PMC11861540 DOI: 10.3390/v17020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
This study presents the second phase of a year-long investigation comparing multiple PCR analyses and histological examinations to confirm the presence of characteristic lesions of each pathogen in three different regions of Latin America. More than 20 agents, including DNA and RNA viruses, bacteria and microsporidia, have been targeted. In addition to wild Penaeus vannamei, which was studied previously, samples of wild P. stylirostris and P. monodon were included. Notably, a positive PCR test result alone does not confirm the presence of a viable pathogen or a disease state. Similarly, positive PCR results do not necessarily correlate with the presence of histological lesions characteristic of the targeted pathogen. Wenzhou shrimp virus 8 (WzSV8) was found to be widespread among shrimp in all regions, including both farm-raised and wild populations. Histopathological analysis indicated that shrimp typically presented coinfections, such as WzSV8, Decapod hepanhamaparvovirus (DHPV), chronic midgut inflammation, and tubule distension/epithelial atrophy, consistent with the toxicity of Pir A/B or another bacterial toxin. Bacterial muscle necrosis was also found in some regions. In general, bacterial infection was the dominant pathology in all three regions during the year. We also postulate that both WzSV8 and DHPV can infect not only hepatopancreatic cells but also cells in the ceca and intestine.
Collapse
Affiliation(s)
- Pablo Intriago
- South Florida Farming Corp., 13811 Old Sheridan St, Southwest Ranches, FL 33330, USA
- South Florida Farming Lab., Av. Miguel Yunez, km 14.5 via a Samborondón, Almax 3 Etapa 1 Lote 3 Bodega 2, Samborondón CP 092302, Guayas, Ecuador; (B.M.); (M.V.); (J.G.)
| | - Bolivar Montiel
- South Florida Farming Lab., Av. Miguel Yunez, km 14.5 via a Samborondón, Almax 3 Etapa 1 Lote 3 Bodega 2, Samborondón CP 092302, Guayas, Ecuador; (B.M.); (M.V.); (J.G.)
| | - Mauricio Valarezo
- South Florida Farming Lab., Av. Miguel Yunez, km 14.5 via a Samborondón, Almax 3 Etapa 1 Lote 3 Bodega 2, Samborondón CP 092302, Guayas, Ecuador; (B.M.); (M.V.); (J.G.)
| | - Jennifer Gallardo
- South Florida Farming Lab., Av. Miguel Yunez, km 14.5 via a Samborondón, Almax 3 Etapa 1 Lote 3 Bodega 2, Samborondón CP 092302, Guayas, Ecuador; (B.M.); (M.V.); (J.G.)
| | - Yamilis Cataño
- Océanos S.A., Centro de Producción Laboratorio, Coveñas, Colombia;
| |
Collapse
|
12
|
Abdoli A, Olfatifar M, Zaki L, Asghari A, Hatam-Nahavandi K, Nowak O, Pirestani M, Diaz D, Cherati MG, Eslahi AV, Badri M, Karanis P. The global prevalence of microsporidia infection in rabbits as a neglected public health concern: A systematic review and meta-analysis. Prev Vet Med 2025; 234:106380. [PMID: 39550830 DOI: 10.1016/j.prevetmed.2024.106380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Microsporidia are intracellular parasites with significant impact on both animal and human health. The prevalence of microsporidia infections in rabbits, including the genera Enterocytozoon and Encephalitozoon, underscores the importance of understanding their epidemiology for effective control strategies. This systematic review and meta-analysis estimated the global prevalence of microsporidia infection in rabbits using five databases (Scopus, PubMed, Embase, Web of Science, and Google Scholar) to retrieve articles published between 03 December 2003 and 26 March 2023. The global prevalence was estimated with a 95 % confidence interval. All statistical analyses conducted were based on meta-package of R (version 3.6.1). A p-value lower than 0.05 was interpreted as statistically significant. A total of 71 studies comprising 72 datasets were included, yielding a global pooled prevalence of microsporidia infections in rabbits at 0.312 (0.250-0.378). The prevalence varied significantly by continent with highest observed in North America (0.495, 0.151-0.842). Slovenia had the highest pooled prevalence (0.714, 0.654-0.773). Encephalitozoon cuniculi accounted for the highest prevalence (0.338, 0.271-0.407). The findings highlight the global distribution of microsporidia in rabbit populations, emphasizing the zoonotic potential and public health implications. The predominance of E. cuniculi underscores its importance as a widespread pathogen affecting both animal and human health. The data underscore the need for continued surveillance and monitoring, particularly in regions with high prevalence.
Collapse
Affiliation(s)
- Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Meysam Olfatifar
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Leila Zaki
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kareem Hatam-Nahavandi
- Department of Parasitology and Mycology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Oskar Nowak
- Institute of Human Biology and Evolution, Faculty of Biology, AdamMickiewicz University, Poznań, Poland
| | - Majid Pirestani
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Diaz
- Facultad de Ciencias, Universidad Nacional Autonoma deMexico, Copilco, Ciudad de Mexico, Mexico
| | | | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
13
|
Kumar V, Das BK, Dhar S, Bisai K, Pande GSJ, Zheng X, Parida SN, Adhikari A, Jana AK. Ecytonucleospora hepatopenaei (EHP) disease prevalence and mortality in Litopenaeus vannamei: a comparative study from Eastern India shrimp farms. BMC Microbiol 2024; 24:523. [PMID: 39695376 DOI: 10.1186/s12866-024-03681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts. Floating white feces were observed on the surface of the pond water. Suspecting a microbial infection, the shrimp samples were collected and aseptically brought to the ICAR-CIFRI laboratory for molecular confirmation. A nested PCR was used to screen shrimp tissue, feces, feed and environmental samples for the possible presence of hepatopancreatic microsporidiosis caused by Ecytonucleospora hepatopenaei. The results confirmed that the shrimp samples were positive for EHP. Histopathological investigation revealed mature spores in the HP tubule lumen and epithelial cells along with necrotic tubule in the symptomatic group. Further, the transcription analysis revealed that ProPO, Hsp70 and α2-macroglobulin genes were significantly upregulated, while decreased expression of LGBP, PXN and Integrin ß was observed in shrimp infected with Hepatopancreatic microsporidiosis. Furthermore, compared with the healthy group, significant intestinal bacteria changes were observed in the EHP-infected group. The in vivo survival assay, using crustacean animal model Artemia franciscana, suggests that symptomatic shrimp gut samples harbour pathogenic Vibrio parahaemolyticus, V. harveyi and V. campbellii. These results significantly advance our understanding of the molecular and ecological aspects of EHP pathobiology.
Collapse
Affiliation(s)
- Vikash Kumar
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India.
| | - Souvik Dhar
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Gde Sasmita Julyantoro Pande
- Department of Aquatic Resource Management, Faculty of Marine Science and Fisheries, Udayana University, Bali, Kuta Selatan, 80361, Indonesia
| | - Xiaoting Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Satya Narayan Parida
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Anupam Adhikari
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| | - Asim Kumar Jana
- Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India
| |
Collapse
|
14
|
Bagheri M, Dehghan S, Zahmatkesh A. Strategies for diagnosing Nosema bombycis (Microsporidia: Nosematidae); the agent of pebrine disease. Mol Biochem Parasitol 2024; 260:111645. [PMID: 38908801 DOI: 10.1016/j.molbiopara.2024.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Pebrine disease, caused by Nosema bombycis (N. bombycis), is the most important pathogen known to the silk industry. Historical evidence from several countries shows that the outbreaks of pebrine disease have largely caused the decline of the sericulture industry. Prevention is the first line to combat pebrine as a deadly disease in silkworm; however, no effective treatment has yet been presented to treat the disease. Many different methods have been used for detection of pebrine disease agent. This review focuses on the explanation and comparison of these methods, and describes their advantages and/or disadvantages. Also, it highlights the ongoing advances in diagnostic methods for N. bombycis that could enable efforts to halt this microsporidia infection. The detection methods are categorized as microscopic, immunological and nucleic acid-based approaches, each with priorities over the other methods; however, the suitability of each method depends on the available equipment in the laboratory, the mass of infection, and the speed and sensitivity of detection. The accessibility and economic efficiency are compared as well as the speed and the sensitivity for each method. Although, the light microscopy is the most common method for detection of N. bombycis, qPCR is the most preferred method for large data based on speed and sensitivity as well as early detection ability.
Collapse
Affiliation(s)
- Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Shirin Dehghan
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of Genetics, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Azadeh Zahmatkesh
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
15
|
Wang Y, Yu F, Zhang K, Shi K, Chen Y, Li J, Li X, Zhang L. End-point RPA-CRISPR/Cas12a-based detection of Enterocytozoon bieneusi nucleic acid: rapid, sensitive and specific. BMC Vet Res 2024; 20:540. [PMID: 39614269 DOI: 10.1186/s12917-024-04391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Enterocytozoon bieneusi is a common species of microsporidia that infects humans and animals. Current methods for detecting E. bieneusi infections have trade-offs in sensitivity, specificity, simplicity, cost and speed and are thus unacceptable for clinical application. We tested the effectiveness of a previously reported CRISPR/Cas12a-based method (ReCTC) when used for the nucleic acid detection of E. bieneusi. The limit of detection (LOD) and the specificity of the expanded ReCTC were evaluated using prepared target DNA, and the accuracy of the ReCTC-based detection of E. bieneusi in clinical samples was validated. The ReCTC method was successfully used for the nucleic acid detection of E. bieneusi. The sensitivity test indicated an LOD of 3.7 copies/µl for the ReCTC-based fluorescence and lateral flow strip methods. In specificity test involving other common enteric pathogens, a fluorescent signal and/or test line appeared only when the sample was positive for E. bieneusi. These results demonstrated that the ReCTC method can successfully detect E. bieneusi in clinical samples. The ReCTC method was successfully used to detect E. bieneusi nucleic acid with high sensitivity and specificity. It had excellent performance in clinical DNA samples and was superior to nested polymerase chain reaction. Furthermore, the ReCTC method demonstrated its capability for use in on-site detection.
Collapse
Affiliation(s)
- Yilin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Fuchang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
- College of Animal Science, Tarim University, Alar, Xinjiang, P. R. China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Ke Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China.
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China.
| |
Collapse
|
16
|
Guo XM, Gao W, Wang HL, Wongkhaluang P, Taengchaiyaphum S, Xie GS, Li C, Zhao RH, Sritunyalucksana K, Huang J. Chitinase and proteinase K treatments enhance the DNA yield of microsporidium Ecytonucleospora hepatopenaei spores. J Invertebr Pathol 2024; 207:108222. [PMID: 39413964 DOI: 10.1016/j.jip.2024.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Microsporidium Ecytonucleospora hepatopenaei (EHP) spores were purified from the hepatopancreas of Penaeus vannamei infected with EHP by percoll density gradient centrifugation and differential centrifugation. The EHP spores contain a thick chitin wall and might not rupture using the routine DNA extraction protocol. In this study, three enzymes were used, including chitinase, proteinase K, and DNase I. Chitinase or proteinase K digestions caused weakened fluorescence of chitin showing by a blurred edge of EHP spores stained with calcofluor white under a fluorescence microscope. Different combinations of these enzymes followed by DNA extraction with phenol-chloroform from EHP spores showed significant increases in the copy number of the EHP SSU gene per spore. The combination of the chitinase and proteinase K treatments resulted 4.46 ± 1.07 copies/spore detected, which is 31.6 ± 20.7 folds of no treatment groups, accounting to (55.7 ± 13.4)% of the total copies of the gene in the spore. The additional treatment with chitinase to the conventional extraction protocol with a proteinase K digestion step for feces and hepatopancreas samples of P. vannamei resulted in a significant difference in EHP copies in the DNA of (83.8 ± 64.1)% and (55.3 ± 88.0)% increases. The study proved that chitinase and proteinase K treatment enhance the DNA extraction from microsporidian spores resulting in high yield.
Collapse
Affiliation(s)
- Xiao-Meng Guo
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Wen Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Hai-Liang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Prapatsorn Wongkhaluang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Suparat Taengchaiyaphum
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Guo-Si Xie
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Chen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ruo-Heng Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jie Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| |
Collapse
|
17
|
Reyes G, Andrade B, Betancourt I, Panchana F, Preciado C, Bayot B. Bacterial communities and signatures in the stomach and intestine of juvenile P enaeus ( litopenaeus) vannamei shrimp affected by acute hepatopancreatic necrosis disease. Heliyon 2024; 10:e33034. [PMID: 39005895 PMCID: PMC11239581 DOI: 10.1016/j.heliyon.2024.e33034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Acute hepatopancreatic necrosis (AHPND) is a severe bacterial disease affecting farmed shrimp. Although various pathogenic bacteria associated with AHPND-affected shrimp have been described, little is known about the bacterial signatures in the stomachs and intestines when the disease occurs naturally. In this study, we characterized the microbiome of P. vannamei by high-throughput sequencing (HTS). Shrimp samples were collected from a commercial farm and divided into two groups: healthy and affected by AHPND, confirmed by PCR. Stomach and intestine samples were subjected to microbiome analysis targeting the V3-V4 region of the 16S rRNA gene. PERMANOVA analysis revealed a significant disparity in the bacterial diversity between the stomach and intestine microbiomes of these two health conditions. Our results suggest that the significant abundance of Vibrio brasiliensis and V. sinaloensis in the intestines of affected shrimp plays a role in AHPND infection. This imbalance could be mitigated by the presence of Pseudoalteromonas, Gilvimarinus, and other members of the phylum Pseudomonadota such as Cellvibrionaceae, Psychromonadaceae, and Halieaceae, which showed significant abundance in healthy intestines. This study highlights the significance of the microbial community in the differentiation of specific microbial signatures in different organs of P. vannamei. These findings offer a deeper understanding of the intricate dynamics within the shrimp microbiome under these conditions, enriching our view of AHPND progression and paving the way toward future identification of probiotics tailored for more efficient management of this disease.
Collapse
Affiliation(s)
- Guillermo Reyes
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
| | - Betsy Andrade
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
| | - Irma Betancourt
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
| | - Fanny Panchana
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
| | - Cristhian Preciado
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
| | - Bonny Bayot
- Centro Nacional de Acuicultura e Investigaciones Marinas, CENAIM, Escuela Superior Politécnica Del Litoral, ESPOL, Guayaquil, Ecuador
- Facultad de Ingeniería Marítima y Ciencias Del Mar, FIMCM, Escuela Superior Politécnica Del Litoral ESPOL, Guayaquil, Ecuador
| |
Collapse
|
18
|
Ma R, Zhu B, Xiong J, Chen J. The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei. Microorganisms 2024; 12:1208. [PMID: 38930590 PMCID: PMC11205940 DOI: 10.3390/microorganisms12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and mitochondrial condition of Litopenaeus vannamei were identified using transmission electron microscopy (TEM), real-time qPCR, an enzyme assay, and flow cytometry. The results showed that EHP spores, approximately 1 μm in size, were located on the cytoplasm of the hepatopancreas. The number of mitochondria increased significantly, and mitochondria morphology showed a condensed state in the high-concentration EHP-infected shrimp by TEM observation. In addition, there were some changes in mitochondrial potential, but apoptosis was not significantly different in the infected shrimp. The qPCR results showed that the gene expression levels of hexokinase and pyruvate kinase related to energy metabolism were both upregulated in the diseased L. vannamei. Enzymatic activity showed hexokinase and lactate dehydrogenase were significantly increased in the shrimp infected with EHP, indicating EHP infection can increase the glycolysis process and decrease the oxidative phosphorylation process of L. vannamei. Previous transcriptomic data analysis results also support this conclusion.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Bo Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
Intriago P, Montiel B, Valarezo M, Romero X, Arteaga K, Cercado N, Burgos M, Shinn AP, Montenegro A, Medina A, Gallardo J. Las Bolitas Syndrome in Penaeus vannamei Hatcheries in Latin America. Microorganisms 2024; 12:1186. [PMID: 38930568 PMCID: PMC11205452 DOI: 10.3390/microorganisms12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In September 2023, several hatcheries in Latin America experienced significant mortality rates, up to 90%, in zoea stage 2 of Penaeus vannamei. Observations of fresh mounts revealed structures resembling lipid droplets, similar to those seen in a condition known as "las bolitas syndrome". Routine histopathological examinations identified detached cells and tissues in the digestive tracts of affected zoea, contrasting with the typical algal cell contents seen in healthy zoea. Polymerase chain reaction (PCR) testing for over 20 known shrimp pathogens indicated minimal differences between diseased and healthy batches. Both groups tested negative for acute hepatopancreatic necrosis disease (AHPND) but positive for Vibrio species and Rickettsia-like bacteria in the diseased samples. Histological analyses of the affected zoea revealed characteristic tissue degeneration in the hepatopancreas, forming spheres that eventually migrated into the upper gut, midgut, and midgut caeca, a pathology identified as bolitas syndrome (BS). Microbiological assessments revealed Vibrio species at concentrations of 106 CFU zoea/g in affected zoea, approximately two orders of magnitude higher than in healthy zoea. Bacterial isolation from both healthy and BS-affected zoea on thiosulphate-citrate-bile salts-sucrose (TCBS) agar and CHROMagar™ (Paris, France), followed by identification using API 20E, identified six strains of Vibrio alginolyticus. Despite similarities to "las bolitas syndrome" in fresh mounts, distinct histopathological differences were noted, particularly the presence of sloughed cells in the intestines and variations in hepatopancreatic lobes. This study highlights the critical need for further research to fully understand the etiology and pathology of bolitas syndrome in zoea stage 2 of P. vannamei to develop effective mitigation strategies for hatchery operations.
Collapse
Affiliation(s)
- Pablo Intriago
- South Florida Farming Corporation, 13811 Old Sheridan St, Southwest Ranches, FL 33330, USA
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Bolivar Montiel
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Mauricio Valarezo
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Xavier Romero
- Ficus 302 y Antonio Sanchez, Calle 11 N-O, Guayaquil, Ecuador
| | - Kelly Arteaga
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Nicole Cercado
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Milena Burgos
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Andrew P. Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| | - Alejandra Montenegro
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Andrés Medina
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Jennifer Gallardo
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| |
Collapse
|
20
|
Lee JH, Jeon HJ, Seo S, Lee C, Kim B, Kwak DM, Rhee MH, Piamsomboon P, Nuraini YL, Je CU, Park SY, Kim JH, Han JE. The Use of the Internal Transcribed Spacer Region for Phylogenetic Analysis of the Microsporidian Parasite Enterocytozoon hepatopenaei Infecting Whiteleg Shrimp ( Penaeus vannamei) and for the Development of a Nested PCR as Its Diagnostic Tool. J Microbiol Biotechnol 2024; 34:1146-1153. [PMID: 38563108 PMCID: PMC11180916 DOI: 10.4014/jmb.2401.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The increasing economic losses associated with growth retardation caused by Enterocytozoon hepatopenaei (EHP), a microsporidian parasite infecting penaeid shrimp, require effective monitoring. The internal transcribed spacer (ITS)-1 region, the non-coding region of ribosomal clusters between 18S and 5.8S rRNA genes, is widely used in phylogenetic studies due to its high variability. In this study, the ITS-1 region sequence (~600-bp) of EHP was first identified, and primers for a polymerase chain reaction (PCR) assay targeting that sequence were designed. A newly developed nested-PCR method successfully detected the EHP in various shrimp (Penaeus vannamei and P. monodon) and related samples, including water and feces collected from Indonesia, Thailand, South Korea, India, and Malaysia. The primers did not cross-react with other hosts and pathogens, and this PCR assay is more sensitive than existing PCR detection methods targeting the small subunit ribosomal RNA (SSU rRNA) and spore wall protein (SWP) genes. Phylogenetic analysis based on the ITS-1 sequences indicated that the Indonesian strain was distinct (86.2% nucleotide sequence identity) from other strains collected from Thailand and South Korea, and also showed the internal diversity among Thailand (N = 7, divided into four branches) and South Korean (N = 5, divided into two branches) samples. The results revealed the ability of the ITS-1 region to determine the genetic diversity of EHP from different geographical origins.
Collapse
Affiliation(s)
- Ju Hee Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye Jin Jeon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangsu Seo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chorong Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bumkeun Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Mi Kwak
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Patharapol Piamsomboon
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Medical Aquatic Animal Research Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Yani Lestari Nuraini
- Fish Health and Environmental Laboratory, Brackishwater Aquaculture Development Center, Situbondo, Indonesia
| | - Chang Uook Je
- Ministry of Agriculture, Food and Rural Affairs, Sejong 30110, Republic of Korea
| | - Seon Young Park
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jee Eun Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Liu QL, Wang Y, Chen J, Pan GQ, Yue YF, Zhou ZY, Fang WH. Establishment of a TaqMan probe-based qPCR assay for detecting microsporidia Enterospora epinepheli in grouper. JOURNAL OF FISH DISEASES 2024; 47:e13893. [PMID: 38062566 DOI: 10.1111/jfd.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Enterospora epinepheli is an intranuclear microsporidian parasite causing serious emaciative disease in hatchery-bred juvenile groupers (Epinephelus spp.). Rapid and sensitive detection is urgently needed as its chronic infection tends to cause emaciation as well as white faeces syndrome and results in fry mortality. This study established a TaqMan probe-based real-time quantitative PCR assays targeting the small subunit rRNA (SSU) gene of E. epinepheli. The relationship between the standard curve of cycle threshold (Ct) and the logarithmic starting quantity (SQ) was determined as Ct = -3.177 lg (SQ) + 38.397. The correlation coefficient (R2 ) was 0.999, and the amplification efficiency was 106.4%. The detection limit of the TaqMan probe-based qPCR assay was 1.0 × 101 copies/μL and that is 100 times sensitive than the traditional PCR method. There is no cross-reaction with other aquatic microsporidia such as Ecytonucleospora hepatopenaei, Nucleospora hippocampi, Potaspora sp., Ameson portunus. The intra-assay and inter-assay showed great repeatability and reproducibility. In addition, the test of clinical samples showed that this assay effectively detected E. epinepheli in the grouper's intestine tissue. The established TaqMan qPCR assays will be a valuable diagnostic tool for the epidemiological investigation as well as prevention and control of E. epinepheli.
Collapse
Affiliation(s)
- Quan-Lin Liu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guo-Qing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yan-Feng Yue
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Ze-Yang Zhou
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
22
|
Yuanlae S, Prasartset T, Reamtong O, Munkongwongsiri N, Panphloi M, Preechakul T, Suebsing R, Thitamadee S, Prachumwat A, Itsathitphaisarn O, Taengchaiyaphum S, Kasamechotchung C. Shrimp injection with dsRNA targeting the microsporidian EHP polar tube protein reduces internal and external parasite amplification. Sci Rep 2024; 14:4830. [PMID: 38413745 PMCID: PMC10899260 DOI: 10.1038/s41598-024-55400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a major threat to shrimp health worldwide. Severe EHP infections in shrimp cause growth retardation and increase susceptibility to opportunistic infections. EHP produces spores with a chitin wall that enables them to survive prolonged environmental exposure. Previous studies showed that polar tube extrusion is a prerequisite for EHP infection, such that inhibiting extrusion should prevent infection. Using a proteomic approach, polar tube protein 2 of EHP (EhPTP2) was found abundantly in protein extracts obtained from extruded spores. Using an immunofluorescent antibody against EhPTP2 for immunohistochemistry, extruded spores were found in the shrimp hepatopancreas (HP) and intestine, but not in the stomach. We hypothesized that presence of EhPTP2 might be required for successful EHP spore extrusion. To test this hypothesis, we injected EhPTP2-specific double-stranded RNA (dsRNA) and found that it significantly diminished EHP copy numbers in infected shrimp. This indicated reduced amplification of EHP-infected cells in the HP by spores released from previously infected cells. In addition, injection of the dsRNA into EHP-infected shrimp prior to their use in cohabitation with naïve shrimp significantly (p < 0.05) reduced the rate of EHP transmission to naïve shrimp. The results revealed that EhPTP2 plays a crucial role in the life cycle of EHP and that dsRNA targeting EHP mRNA can effectively reach the parasite developing in host cells. This approach is a model for future investigations to identify critical genes for EHP survival and spread as potential targets for preventative and therapeutic measures in shrimp.
Collapse
Affiliation(s)
- Satika Yuanlae
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Tharinthon Prasartset
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Muthita Panphloi
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Thanchanok Preechakul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Rungkarn Suebsing
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Siripong Thitamadee
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Analytical Sciences and National Doping Test Institute, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand.
| | - Chanadda Kasamechotchung
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology Tawan-ok, Chonburi, 20110, Thailand.
| |
Collapse
|
23
|
Govindasamy T, Bhassu S, Raju CS. Enterocytozoon hepatopenaei Infection in Shrimp: Diagnosis, Interventions, and Food Safety Guidelines. Microorganisms 2023; 12:21. [PMID: 38257848 PMCID: PMC10820212 DOI: 10.3390/microorganisms12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 01/24/2024] Open
Abstract
The emergence of disease in shrimp has governed much concern in food safety and security among consumers with the recent reports on hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP). The microsporidians present in shrimp remain a silent pathogen that prevents optimal shrimp growth. However, the biggest threat is in its food safety concerns, which is the primary focus in ensuring food biosecurity and biosafety. Hence, the objective of this review is to summarise the current knowledge of EHP and its infection in shrimp with food safety concerns. This paper provides an analysis of the diagnostic methods for detecting EHP infections in shrimp aquaculture. Interventions with current molecular biology and biotechnology would be the second approach to addressing EHP diseases. Finally, a systematic guideline for shrimp food safety using diagnostic and intervention is proposed. Thus, this review was aimed to shed light on effective methods for the diagnosis and prevention of EHP infection in shrimp. We also include information on molecular and genomics tools as well as innate immune biomolecules as future targets in the intervention strategies on the microsporidsosis life cycle in shrimp and its environment. Overall, this will result in reduced disease outbreaks in shrimp aquaculture, ensuring the shrimp food safety in the future.
Collapse
Affiliation(s)
- Thenmoli Govindasamy
- Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Laboratory (AGAGEL), Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
24
|
Thepmanee O, Munkongwongsiri N, Prachumwat A, Saksmerprome V, Jitrakorn S, Sritunyalucksana K, Vanichviriyakit R, Chanarat S, Jaroenlak P, Itsathitphaisarn O. Molecular and cellular characterization of four putative nucleotide transporters from the shrimp microsporidian Enterocytozoon hepatopenaei (EHP). Sci Rep 2023; 13:20008. [PMID: 37974017 PMCID: PMC10654386 DOI: 10.1038/s41598-023-47114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that lost several enzymes required in energy production. The expansion of transporter families in these organisms enables them to hijack ATP from hosts. In this study, nucleotide transporters of the microsporidian Enterocytozoon hepatopenaei (EHP), which causes slow growth in economically valuable Penaeus shrimp, were characterized. Analysis of the EHP genome suggested the presence of four putative nucleotide transporter genes, namely EhNTT1, EhNTT2, EhNTT3, and EhNTT4. Sequence alignment revealed four charged amino acids that are conserved in previously characterized nucleotide transporters. Phylogenetic analysis suggested that EhNTT1, 3, and 4 were derived from one horizontal gene transfer event, which was independent from that of EhNTT2. Localization of EhNTT1 and EhNTT2 using immunofluorescence analysis revealed positive signals within the envelope of developing plasmodia and on mature spores. Knockdown of EhNTT2 by double administration of sequence specific double-stranded RNA resulted in a significant reduction in EHP copy numbers, suggesting that EhNTT2 is crucial for EHP replication in shrimp. Taken together, the insight into the roles of NTTs in microsporidian proliferation can provide the biological basis for the development of alternative control strategies for microsporidian infection in shrimp.
Collapse
Affiliation(s)
- Orawan Thepmanee
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Natthinee Munkongwongsiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Anuphap Prachumwat
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Vanvimon Saksmerprome
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Rd., Pathum Thani, Klong Neung, Klong Luang, 12120, Thailand
| | - Sarocha Jitrakorn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Rd., Pathum Thani, Klong Neung, Klong Luang, 12120, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Rama VI Rd. , Bangkok, 10400, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
25
|
Kang G, Woo WS, Kim KH, Son HJ, Sohn MY, Kong HJ, Kim YO, Kim DG, Kim EM, Noh ES, Park CI. Identification of Potential Hazards Associated with South Korean Prawns and Monitoring Results Targeting Fishing Bait. Pathogens 2023; 12:1228. [PMID: 37887744 PMCID: PMC10610149 DOI: 10.3390/pathogens12101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
This study detected two potential pathogens, Vibro parahaemolyticus, which causes acute hepatopancreatic necrosis disease (AHPND), and white spot syndrome virus (WSSV), in fishing bait in South Korea. However, their infectious nature was not confirmed, possibly due to the degradation caused by freezing/thawing or prolonged storage under frozen conditions. While infectivity was not confirmed in this study, there is still a significant risk of exposure to these aquatic products. Furthermore, fishing bait and feed should be handled with caution as they are directly exposed to water, increasing the risk of disease transmission. In Australia, cases of WSSV infection caused by imported shrimp intended for human consumption have occurred, highlighting the need for preventive measures. While freezing/thawing is a method for inactivating pathogens, there are still regulatory and realistic issues to be addressed.
Collapse
Affiliation(s)
- Gyoungsik Kang
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Won-Sik Woo
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Kyung-Ho Kim
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Ha-Jeong Son
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Min-Young Sohn
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Dong-Gyun Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun Mi Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (G.K.)
| |
Collapse
|
26
|
Reyes G, Andrade B, Betancourt I, Panchana F, Solórzano R, Preciado C, Sorroza L, Trujillo LE, Bayot B. Microbial signature profiles of Penaeus vannamei larvae in low-survival hatchery tanks affected by vibriosis. PeerJ 2023; 11:e15795. [PMID: 37671363 PMCID: PMC10476614 DOI: 10.7717/peerj.15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/05/2023] [Indexed: 09/07/2023] Open
Abstract
Vibriosis is caused by some pathogenic Vibrio and produces significant mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei larvae in commercial hatcheries. Acute hepatopancreatic necrosis disease (AHPND) is an emerging vibriosis affecting shrimp-producing countries worldwide. Zoea 2 syndrome is another type of vibriosis that affects the early stages of P. vannamei larvae. Although the pathogenesis of AHPND and zoea 2 syndrome is well known, there is scarce information about microbial composition and biomarkers of P.vannamei larvae affected by AHPND, and there is no study of the microbiome of larvae affected by zoea 2 syndrome. In this work, we characterized the microbiome of P. vannamei larvae collected from 12 commercial hatchery tanks by high-throughput sequencing. Seven tanks were affected by AHPND, and five tanks were affected by zoea 2 syndrome. Subsequently, all samples were selected for sequencing of the V3-V4 region of the16S rRNA gene. Similarity analysis using the beta diversity index revealed significant differences in the larval bacterial communities between disease conditions, particularly when Vibrio was analyzed. Linear discriminant analysis with effect size determined specific microbial signatures for AHPND and zoea 2 syndrome. Sneathiella, Cyclobacterium, Haliea, Lewinella, among other genera, were abundant in AHPND-affected larvae. Meanwhile, Vibrio, Spongiimonas, Meridianimaribacter, Tenacibaculum, among other genera, were significantly abundant in larvae affected by zoea 2 syndrome. The bacterial network at the phylum level for larvae collected from tanks affected by AHPND showed greater complexity and connectivity than in samples collected from tanks affected by zoea 2 syndrome. The bacterial connections inter Vibrio genera were higher in larvae from tanks affected by zoea 2 syndrome, also presenting other connections between the genera Vibrio and Catenococcus. The identification of specific biomarkers found in this study could be useful for understanding the microbial dynamics during different types of vibriosis.
Collapse
Affiliation(s)
- Guillermo Reyes
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Betsy Andrade
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Irma Betancourt
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Fanny Panchana
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Ramiro Solórzano
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Cristhian Preciado
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Lita Sorroza
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, 5.5 Av Panamericana, Machala, Ecuador
| | - Luis E. Trujillo
- Industrial Biotechnology Research Group, CENCINAT, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Bonny Bayot
- Centro Nacional de Acuacultura e Investigaciones Marinas, CENAIM -ESPOL, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
- Facultad de Ingeniería Marítima y Ciencias del Mar (FIMCM), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
27
|
Peña-Navarro N, López-Carvallo A, Chacón Perez B, Cruz-Flores R. Application of PCR-based diagnostic tools that target Enterocytozoon hepatopenaei for the molecular detection of a Vittaforma-like microsporidium that infects Penaeus vannamei from Costa Rica. J Invertebr Pathol 2023; 200:107958. [PMID: 37429541 DOI: 10.1016/j.jip.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Several PCR methodologies are available for the detection of Enterocytozoon hepatopenaei (EHP) that target the SSU rRNA gene. However, these methodologies are reported as unsuitable for the detection of EHP due to specificity issues. Here, we report the applicability of two commonly used SSU rRNA methodologies for the detection of additional microsporidia from the genus Vittaforma that is present in cultured Penaeus vannamei from Costa Rica. The molecular detection of DNA of the novel microsporidia can only be achieved using SSU rRNA targeting methodologies and does not cross-react with the highly specific spore wall protein gene PCR detection method.
Collapse
Affiliation(s)
- Nelson Peña-Navarro
- Laboratorio de Patología Acuícola, Universidad Técnica Nacional, Sede del Pacífico, Puntarenas 1902-4050, Costa Rica
| | - Antonio López-Carvallo
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja CA, México
| | - Brandon Chacón Perez
- Laboratorio de Patología Acuícola, Universidad Técnica Nacional, Sede del Pacífico, Puntarenas 1902-4050, Costa Rica
| | - Roberto Cruz-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja CA, México.
| |
Collapse
|
28
|
Dhar AK, Cruz-Flores R, Mai HN, Aranguren Caro LF, Intriago P, Romero X. Detection of a novel microsporidium with intranuclear localization in farmed Penaeus vannamei from Latin America. J Invertebr Pathol 2023; 200:107968. [PMID: 37429540 DOI: 10.1016/j.jip.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Microsporidia are emerging intracellular parasites of most known animal phyla in all ecological niches. In shrimp aquaculture, the microsporidium Enterocytozoon hepatopenaei (EHP) is a major cause of concern inflicting tremendous losses to shrimp producers in southeast Asia. During a histopathological examination of Penaeus vannamei samples originating in a country from Latin America presenting slow growth, we observed abnormal nuclei in the epithelial cells of the hepatopancreas. A PCR screening of the samples using DNA isolated from paraffin embedded tissues for the SSU rRNA gene of EHP provided a 149 bp amplicon. In situ hybridization using the SSU rRNA gene probe provided a positive signal in the nuclei instead of the cytoplasm. Sequence analysis of the SSU rRNA gene product revealed a 91.3 %, 89.2 % and 85.4 % sequence identity to Enterocytozoon bieneusi, E. hepatopenaei and Enterospora canceri respectively. Furthermore, phylogenetic analysis revealed the newly discovered microsporidium clustered with E. bieneusi. Considering the intranuclear location of the novel microsporidium and the differences in the sequence of the SSU rRNA, we tentatively consider this parasite a new member of the genus Enterospora sp. The pathogenicity and distribution of the shrimp Enterospora sp. are currently unknown. Our future efforts are focused on the characterization and development of diagnostic tools for this parasite to understand if it acts as an emergent pathogen that might require surveillance to prevent its spread.
Collapse
Affiliation(s)
- Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA.
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA; Centro de Investigación Científica y de Educación Superior de Ensenada, (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860 Ensenada, Baja California, Mexico
| | - Hung N Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | | | - Xavier Romero
- South Florida Farming Corp, Southwest Ranches, FL, USA
| |
Collapse
|
29
|
Proespraiwong P, Mavichak R, Imaizumi K, Hirono I, Unajak S. Evaluation of Bacillus spp. as Potent Probiotics with Reduction in AHPND-Related Mortality and Facilitating Growth Performance of Pacific White Shrimp ( Litopenaeus vannamei) Farms. Microorganisms 2023; 11:2176. [PMID: 37764020 PMCID: PMC10537061 DOI: 10.3390/microorganisms11092176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease affecting shrimp aquaculture worldwide. In this study, natural microbes were used in disease prevention and control. Probiotics derived from Bacillus spp. were isolated from the stomachs of AHPND-surviving Pacific white shrimp Litopenaeus vannamei (22 isolates) and mangrove forest soil near the shrimp farms (10 isolates). Bacillus spp. were genetically identified and characterized based on the availability of antimicrobial peptide (AMP)-related genes. The phenotypic characterization of all Bacillus spp. was determined based on their capability to inhibit AHPND-causing strains of Vibrio parahaemolyticus (VPAHPND). The results showed that Bacillus spp. without AMP-related genes were incapable of inhibiting VPAHPND in vitro, while other Bacillus spp. harboring at least two AMP-related genes exhibited diverse inhibition activities. Interestingly, K3 [B. subtilis (srfAA+ and bacA+)], isolated from shrimp, exerted remarkable inhibition against VPAHPND (80% survival) in Pacific white shrimp and maintained a reduction in shrimp mortality within different ranges of salinity (75-95% survival). Moreover, with different strains of VPAHPND, B. subtilis (K3) showed outstanding protection, and the survival rate of shrimp remained stable among the tested groups (80-95% survival). Thus, B. subtilis (K3) was further used to determine its efficiency in shrimp farms in different locations of Vietnam. Lower disease occurrences (2 ponds out of 30 ponds) and greater production efficiency were noticeable in the B. subtilis (K3)-treated farms. Taking the results of this study together, the heat-shock isolation and genotypic-phenotypic characterization of Bacillus spp. enable the selection of probiotics that control AHPND in Pacific white shrimp. Consequently, greater disease prevention and growth performance were affirmed to be beneficial in the use of these probiotics in shrimp cultivation, which will sustain shrimp aquaculture and be environmentally friendly.
Collapse
Affiliation(s)
- Porranee Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| | - Rapeepat Mavichak
- Charoen Pokphand Foods Public Co., Ltd., Aquatic Animal Health Research Center, Samut Sakhon 74000, Thailand;
| | - Kentaro Imaizumi
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (P.P.); (K.I.)
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
30
|
Liu H, Shen M, He Y, Li B, Pu L, Xia G, Yang M, Wang G. Analysis of differentially expressed proteins after EHP-infection and characterization of caspase 3 protein in the whiteleg shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108698. [PMID: 36958504 DOI: 10.1016/j.fsi.2023.108698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Whiteleg shrimp (Litopenaeus vannamei) is the most important species of shrimp farmed worldwide in terms of its economic value. Enterocytozoon hepatopenaei (EHP) infects the hepatopancreas, resulting in the hepatopancreatic microsporidiosis (HPM) of the host, which causes slow growth of the shrimp and poses a threat to the farming industry. In this study, differentially expressed proteins (DEPs) between EHP-infected and uninfected shrimp were investigated through proteomics sequencing. A total of 9908 peptides and 2092 proteins were identified. A total of 69 DEPs were identified in the hepatopancreas (HP), of which, 28 were upregulated and 41 were downregulated. Our results showed that the differences among the level of multiple proteins involved in the apoptosis were significant after the EHP infection, which indicated that the apoptosis pathway was activated in whiteleg shrimp. In addition, expression leve of caspase 3 gene were identified related to the EHP infection. Furthermore, predictions of spatial structure, analysis of phylogeny and chromosome-level linearity of the caspase 3 protein were performed as well. In conclusion, a relatively complete proteomic data set of hepatopancreas tissues in whiteleg shrimp were established in this study. Findings about genes involved in the apoptosis here will provide a further understanding of the molecular mechanism of EHP infection in the internal immunity of whiteleg shrimp.
Collapse
Affiliation(s)
- Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Minghui Shen
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Yugui He
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Bingshun Li
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Liyun Pu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Guangyuan Xia
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Mingqiu Yang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China.
| | - Guofu Wang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China.
| |
Collapse
|
31
|
Wan Sajiri WMH, Kua BC, Borkhanuddin MH. Detection of Enterocytozoon hepatopenaei (EHP) (microsporidia) in several species of potential macrofauna-carriers from shrimp (Penaeus vannamei) ponds in Malaysia. J Invertebr Pathol 2023; 198:107910. [PMID: 36889458 DOI: 10.1016/j.jip.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Infection by the microsporidian parasite Enterocytozoon hepatopenaei (EHP) has become a significant problem in the shrimp cultivation industry in Asian countries like Thailand, China, India, Vietnam, Indonesia, and Malaysia. The outbreak of this microsporidian parasite is predominantly related to the existence of macrofauna-carriers of EHP. However, information about potential macrofauna-carriers of EHP in rearing ponds is still limited. In this study, the screening of EHP in potential macrofauna-carriers was conducted in farming ponds of Penaeus vannamei in three states in Malaysia, namely Penang, Kedah, and Johor. A total of 82 macrofauna specimens (phyla: Arthropoda, Mollusca, and Chordata) were amplified through a polymerase chain reaction (PCR) assay targeting genes encoding spore wall proteins (SWP) of EHP. The PCR results showed an average prevalence of EHP (82.93%) from three phyla (Arthropoda, Mollusca and Chordata). The phylogenetic tree generated from the macrofauna sequences was revealed to be identical to the EHP-infected shrimp specimens from Malaysia (MW000458, MW000459, and MW000460), as well as those from India (KY674537), Thailand (MG015710), Vietnam (KY593132), and Indonesia (KY593133). These findings suggest that certain macrofauna species in shrimp ponds of P. vannamei are carriers of EHP spores and could be potential transmission vectors. This study provides preliminary information for the prevention of EHP infections that can be initiated at the pond stage by eradicating macrofauna species identified as potential vectors.
Collapse
Affiliation(s)
- Wan Muhammad Hazim Wan Sajiri
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; National Fish Health Research Division (NaFisH), Fisheries Research Institute, Department of Fisheries Malaysia, 11960 Batu Maung, Pulau Pinang, Malaysia
| | - Beng Chu Kua
- National Fish Health Research Division (NaFisH), Fisheries Research Institute, Department of Fisheries Malaysia, 11960 Batu Maung, Pulau Pinang, Malaysia.
| | - Muhammad Hafiz Borkhanuddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
32
|
Li J, Wang Y, Hu J, Bao Z, Wang M. An isothermal enzymatic recombinase amplification (ERA) assay for rapid and accurate detection of Enterocytozoon hepatopenaei infection in shrimp. J Invertebr Pathol 2023; 197:107895. [PMID: 36754116 DOI: 10.1016/j.jip.2023.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a kind of microsporidian parasite belonging to fungi, and poses a serious threat to prawn farmers. Due to the lack of effective treatments for EHP, the establishment of a rapid and sensitive detection method would be beneficial to the control and prevention of this prawn parasitic disease. In this study, an isothermal enzymatic recombinase amplification (EHP-ERA) assay that could diagnose EHP within 20 min at 42 °C was developed and evaluated. The determined final concentrations of primers and probe in the reaction system were 400 nM and 120 nM, respectively. EHP-ERA was carried out within 13 min (24.31 ± 0.37 Ct) with a detection limit of 10 copies/μL. The results of specificity test showed that EHP-ERA had no cross-reactivity with white spot syndrome virus (WSSV), Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (VpAHPND), and infectious hypodermal and hematopoietic necrosis virus (IHHNV) and specific pathogen free (SPF) shrimp. Using 32 clinical samples, the practical diagnostic results of EHP-ERA was consistent with nested PCR and real-time PCR (qPCR) under the premise of less time-consuming and simpler operation. In summary, we established a simple, rapid, and effective ERA assay for the detection of EHP, which had great potential to be widely used in both lab and practical usage.
Collapse
Affiliation(s)
- Jiaobing Li
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
33
|
Yang L, Guo B, Wang Y, Zhao C, Zhang X, Wang Y, Tang Y, Shen H, Wang P, Gao S. Pyrococcus furiosus Argonaute Combined with Recombinase Polymerase Amplification for Rapid and Sensitive Detection of Enterocytozoon hepatopenaei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:944-951. [PMID: 36548210 DOI: 10.1021/acs.jafc.2c06582] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is one of the most serious pathogens in shrimp farming. This study combines recombinase polymerase amplification (RPA) with the Argonaute from Pyrococcus furiosus (PfAgo) and establishes a sensitive and reliable method for on-site detection of EHP. With careful screening of gDNA and optimization of the reaction, the method shows a good specificity and reaches a sensitivity of single copy per reaction, which is higher than the sensitivity of the currently available molecular assays. The whole procedure can be finished within 1.5 h including the sample processing time and only requires minimum laboratory support, which is user-friendly for on-site environments. This is the first application of PfAgo for the diagnosis of infectious diseases in seafood supply chains. It provides a reliable method for on-site detection of EHP in shrimp farms and establishes a groundwork for multiplex detection of important pathogens in seafood farming using PfAgo.
Collapse
Affiliation(s)
- Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong 226007, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
34
|
Wang Y, Zhou J, Yin M, Ying N, Xiang Y, Liu W, Ye J, Li X, Fang W, Tan H. A modification of nested PCR method for detection of Enterocytozoon hepatopenaei (EHP) in giant freshwater prawn Macrobrachium rosenbergii. Front Cell Infect Microbiol 2022; 12:1013016. [PMID: 36211972 PMCID: PMC9538563 DOI: 10.3389/fcimb.2022.1013016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) has become a critical threat to the global shrimp aquaculture industry, thus necessitating early detection by screening. Development of a rapid and accurate assay is crucial both for the active surveillance and for the assessment of shrimp with EHP infection. In the present study, a distinct strain of E. hepatopenaei (EHPMr) was found in Macrobrachium rosenbergii. The SWP1 gene analysis revealed it was a new genotype that differed with the common strain isolated from the Litopenaeus vannamei (EHPLv). A nested SWP-PCR method was modified to fix the bug that the original inner primers could not recognize the EHPMr strain. The redesigned inner primers successfully amplified a product of 182 bp for both the EHPMr strain and the EHPLv strain. The new primers also had good specificity and high sensitivity, which may serve as an alternative for EHP genotyping. This study provided a method for detection of EHP in the biosecurity of Macrobrachium rosenbergii farming, and the developed protocol was proposed for the routine investigation and potential carrier screening, especially for molecular epidemiology.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - Jinyang Zhou
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - Menghe Yin
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Na Ying
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yang Xiang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wenchang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Junqiang Ye
- Fisheries Technology Promotion Station of Fengxian District, Shanghai, China
| | - Xincang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wenhong Fang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affair, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Wenhong Fang, ; Hongxin Tan,
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
- *Correspondence: Wenhong Fang, ; Hongxin Tan,
| |
Collapse
|
35
|
Sathish Kumar T, Ezhil Praveena P, Makesh M, Poornima M, Jithendran KP. Artificial germination of Enterocytozoon hepatopenaei (EHP) spores induced by ions under the scanning electron microscope. J Invertebr Pathol 2022; 194:107820. [PMID: 35988777 DOI: 10.1016/j.jip.2022.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Enterocytozoon hepatopenaei (EHP), is an emerging microsporidian pathogen responsible for hepatopancreatic microsporidiasis (HPM) in shrimps and is associated with severe growth retardation. The disease causes economic losses in shrimp aquaculture. In this study, EHP spore germination was induced and demonstrated with a scanning electron microscope (SEM). The ions (cations and anions) generated by high-energy electrons during frozen water radiolysis in the SEM specimen chamber induce EHP spore germination. This study is the first to demonstrate the induction of a microsporidian spore germination by ions generated under SEM. This study will enhance our understanding of EHP biology, life cycle and lead to the development of prophylactics and therapeutics for EHP control. Also, this method will help standardize the study of germination in other microsporidians.
Collapse
Affiliation(s)
- T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, MRC Nagar, Chennai, India.
| | - P Ezhil Praveena
- ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, MRC Nagar, Chennai, India
| | - M Makesh
- ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, MRC Nagar, Chennai, India
| | - M Poornima
- ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, MRC Nagar, Chennai, India
| | - K P Jithendran
- ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, MRC Nagar, Chennai, India
| |
Collapse
|
36
|
Bao J, Chen Y, Xing Y, Feng C, Hu Q, Li X, Jiang H. Development of a nested PCR assay for specific detection of Metschnikowia bicuspidata infecting Eriocheir sinensis. Front Cell Infect Microbiol 2022; 12:930585. [PMID: 35937694 PMCID: PMC9352885 DOI: 10.3389/fcimb.2022.930585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, the “milky disease” caused by Metschnikowia bicuspidata has seriously affected the Eriocheir sinensis culture industry. Discovering and blocking the transmission route has become the key to controlling this disease. The existing polymerase chain reaction (PCR) detection technology for M. bicuspidata uses the ribosomal DNA (rDNA) sequence, but low sensitivity and specificity lead to frequent false detections. We developed a highly specific and sensitive nested PCR method to detect M. bicuspidata, by targeting the hyphally regulated cell wall protein (HYR) gene. This nested HYR-PCR produced a single clear band, showed no cross-reaction with other pathogens, and was superior to rDNA-PCR in specificity and sensitivity. The sensitivity of nested HYR-PCR (6.10 × 101 copies/μL) was greater than those of the large subunit ribosomal RNA gene (LSU rRNA; 6.03 × 104 copies/μL) and internal transcribed spacer (ITS; 6.74 × 105 copies/μL) PCRs. The nested HYR-PCR also showed a higher positivity rate (71.1%) than those obtained with LSU rRNA (16.7%) and ITS rDNA (24.4%). In conclusion, we developed a new nested HYR-PCR method for the specific and sensitive detection of M. bicuspidata infection. This will help to elucidate the transmission route of M. bicuspidata and to design effective management and control measures for M. bicuspidata disease.
Collapse
Affiliation(s)
- Jie Bao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ye Chen
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qingbiao Hu
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hongbo Jiang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Hongbo Jiang,
| |
Collapse
|
37
|
Munkongwongsiri N, Prachumwat A, Eamsaard W, Lertsiri K, Flegel TW, Stentiford GD, Sritunyalucksana K. Propionigenium and Vibrio species identified as possible component causes of shrimp white feces syndrome (WFS) associated with the microsporidian Enterocytozoon hepatopenaei. J Invertebr Pathol 2022; 192:107784. [PMID: 35659607 DOI: 10.1016/j.jip.2022.107784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
White feces syndrome (WFS) in cultivated shrimp is characterized by white shrimp midguts (intestines) and white fecal strings that float as mats on pond surfaces. The etiology of WFS is complex, but one type called EHP-WFS is associated with the microsporidian Enterocytozoon hepatopenaei (EHP). The hepatopancreas (HP), midgut and fecal strings of EHP-WFS shrimp exhibit massive quantities of EHP spores together with mixed, unidentified bacteria. In EHP-WFS ponds, some EHP-infected shrimp show white midguts (WG) and produce white feces while other EHP-infected shrimp in the same pond show grossly normal midguts (NG) and produce no white feces. We hypothesized that comparison of the microbial flora between WG and NG shrimp would reveal probable combinations of microbes significantly associated with EHP-WFS. To test this, we selected a Penaeus vannamei cultivation pond exhibiting severe WFS and used microscopic and microbial profiling analyses to compare WG and NG samples. Histologically, EHP was confirmed in the HP and midgut of both WG and NG shrimp, but EHP burdens were higher and EHP tissue damage was more severe in WG shrimp. Further, intestinal microbiomes in WG shrimp were less diverse and had higher abundance of bacteria from the genera Vibrio and Propionigenium. Propionigenium burden in the HP of WG shrimp (9364 copies/100ng DNA) was significantly higher (P = 1.1 x 10-5) than in NG shrimp (12 copies/100ng DNA). These findings supported our hypothesis by revealing two candidate bacterial genera that should be tested in combination with EHP as potential component causes of EHP-WFS in P. vannamei.
Collapse
Affiliation(s)
- Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400.
| | - Wiraya Eamsaard
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400
| | - Kanokwan Lertsiri
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400
| | - Timothy W Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, 12120, Thailand
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400
| |
Collapse
|
38
|
Zhang H, Gong HY, Cao WW, Que MY, Ye L, Shi L. Duplex droplet digital PCR method for the detection of Enterocytozoon hepatopenaei and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease. JOURNAL OF FISH DISEASES 2022; 45:761-769. [PMID: 35322884 DOI: 10.1111/jfd.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (VPAHPND) are two of the diseases that have frequently infected farmed shrimp in recent years, causing great economic losses to the shrimp industry worldwide. In this study, we established a sensitive and accurate duplex droplet digital PCR (ddPCR) method that can simultaneously detect and quantify the two pathogens simultaneously. The results showed that the ddPCR methods could detect EHP and VPAHPND specifically. The sensitivity levels of ddPCR for EHP and VPAHPND were 2.3 copies/μl and 4.6 copies/μl, respectively, which were 10-fold higher than the sensitivity of the qPCR assay and showed good reproducibility. Twenty-six suspected diseased shrimp samples were used for practical determination. For EHP, the detection rates of ddPCR and qPCR were 53.84% and 42.31%, respectively; for VPAHPND, the detection rates of ddPCR and qPCR were both 23.08%. The results indicated that the ddPCR method shows superiority for detection in samples with low viral loads, which will facilitate monitoring of the source and transmission of EHP and VPAHPND and will help control shrimp epidemic disease.
Collapse
Affiliation(s)
- Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Han-Yue Gong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Wei-Wei Cao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Mu-Yi Que
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Chen WF, Fu YW, Zeng ZY, Guo SQ, Yan YL, Tu YF, Gou TG, Zhang QZ. Establishment and application of a TaqMan probe–based qPCR for the detection of Enterocytozoon hepatopenaei in shrimp Litopenaeus vannamei. Parasitol Res 2022; 121:2263-2274. [DOI: 10.1007/s00436-022-07559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
40
|
Infectivity and Transmissibility of Acute Hepatopancreatic Necrosis Disease Associated Vibrio parahaemolyticus in Frozen Shrimp Archived at −80 °C. FISHES 2022. [DOI: 10.3390/fishes7030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus (VpAHPND) has been reported in commodity shrimp, but the potential risk of its global spread via frozen shrimp in the shrimp trade is yet to be fully explored. We hypothesized that frozen shrimp with AHPND could be a source of VpAHPND transmission; thus, the infectivity of frozen shrimp with AHPND was evaluated using a shrimp bioassay. To prepare infected frozen shrimp, 12 Penaeus vannamei (average weight, 2 g) were exposed to VpAHPND by immersion in water with a VpAHPND concentration of 1.55 × 107 CFU mL−1; once dead, the shrimp were stored at −80 °C for further analysis. After two weeks, a PCR assay was used to confirm AHPND positivity in frozen shrimp (n = 2), and VpAHPND was reisolated from the hepatopancreases of these shrimp. For the infectivity test, 10 P. vannamei (average weight, 4 g) were fed with the hepatopancreases of VpAHPND -infected frozen shrimp (n = 10). After feeding, 70% of the shrimp died within 118 h, and the presence of VpAHPND was confirmed using a PCR assay and histopathology examination; moreover, VpAHPND was successfully reisolated from the hepatopancreases of the dead shrimp. We are the first to evaluate the potential transmissibility of VpAHPND in frozen shrimp, and our results suggest that frozen shrimp with AHPND are a potential source of disease spreading between countries during international trade.
Collapse
|
41
|
Moser RJ, Franz L, Firestone SM, Sellars MJ. Enterocytozoon hepatopenaei real-time and Shrimp MultiPathTM PCR assay validation for South-East Asian and Latin American strains of Penaeid shrimp. DISEASES OF AQUATIC ORGANISMS 2022; 149:11-23. [PMID: 35510817 DOI: 10.3354/dao03655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) infections are a global challenge for the Penaeid shrimp industry with a sharp rise in prevalence over the last 10 yr. EHP is known to cause sub-optimal growth, large size variation and reduced survival of shrimp. Molecular methods development has mainly focussed on 18S rRNA or spore wall protein 1 (SWP1). Due to the specificity and sensitivity issues with previously designed assays for both targets, new molecular assays are needed by the global shrimp industry and regulators to help manage the risks posed by EHP. This paper describes new real-time PCR (qPCR) methods developed for the novel EHP gene targets polar tube protein 2 (PTP2) and spore wall protein 26 (SWP26), whilst also presenting performance metrics of the new Shrimp MultiPathTM technology EHP assay. qPCR assays PTP2G and SWP26G show high amplification efficiency, a limit of detection (LOD) of between 1 and 4 copies, low assay variation and high diagnostic sensitivity (DSe) and specificity (DSp) compared to imperfect reference assays. Similar performance is seen with Shrimp MultiPathTM EHP showing an LOD of 8 copies, low assay variation and high DSe and DSp. These novel molecular targets for EHP and Shrimp MultiPathTM EHP strengthen global efforts to monitor and mitigate risks of EHP infections and outbreaks. Moreover, this study presents novel data on distribution of EHP in shrimp populations from South-East Asia and Latin America, and how sequence variations need to be considered when monitoring EHP in different geographies.
Collapse
Affiliation(s)
- R J Moser
- Genics Pty Ltd., Level 5, Gehrman Building, 60 Research Road, St Lucia, QLD 4067, Australia
| | | | | | | |
Collapse
|
42
|
Subash P, Uma A, Ahilan B. Early responses in Penaeus vannamei during experimental infection with Enterocytozoon hepatopenaei (EHP) spores by injection and oral routes. J Invertebr Pathol 2022; 190:107740. [PMID: 35257718 DOI: 10.1016/j.jip.2022.107740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
Abstract
Hepatopancreatic microsporidiosis caused by Enterocytozoon hepatopenaei (EHP) is associated with severe production losses in Penaeus vannamei farming. Early responses in P. vannamei experimentally infected with EHP was assessed in this study by feeding infected hepatopancreatic tissue and by injecting purified EHP spores (∼1 × 105 Spores/shrimp). Immune responses to EHP infection were assessed in the haemolymph by analysing the total haemocyte count (THC), superoxide dismutase (SOD) activity, prophenoloxidase activity (proPO), respiratory burst activity (RBA), catalase activity (CAT), lysozyme activity (LYS) and Toll gene expression in hepatopancreas at 0, 6, 12, 24, 36, 48, 60 and 72 h post-infection (hpi). Experimental infection with EHP resulted in a significant (p < 0.05) reduction in the immune parameters such THC, CAT and LYS at 6, 24 and 24 hpi respectively while there was a significant increase (p < 0.05) in the levels of SOD, proPO and RBA at 6 hpi. The expression of the Toll gene was significantly upregulated (p < 0.05) after experimental infection with EHP from 6 hpi. These findings on immune responses in P. vannamei during EHP infection will assist in the development of suitable management measures to reduce the negative impacts of EHP in P. vannamei farming. This is the first report on early responses in P. vannamei during EHP infection.
Collapse
Affiliation(s)
- Palaniappan Subash
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India
| | - Arumugam Uma
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India; State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Madhavaram milk colony 600051, Chennai, Tamil Nadu, India.
| | - Baboonsundaram Ahilan
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India
| |
Collapse
|
43
|
Oh C, Kim K, Araud E, Wang L, Shisler JL, Nguyen TH. A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads. WATER RESEARCH 2022; 212:118112. [PMID: 35091223 DOI: 10.1016/j.watres.2022.118112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Viruses are present at low concentrations in wastewater; therefore, an effective method for concentrating virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species, including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the final solution to that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency was significantly higher when calculated with virus titers than it was with genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk to humans who are inadvertently exposed to wastewater contaminated with infectious viruses. Furthermore, PCR inhibitors were not concentrated by PGM-MBs, suggesting that this tool will be successful for use with environmental samples. In addition, the PGM-MBs method is cost-effective (0.5 USD/sample) and has a fast turnaround time (3 h from virus concentration to genome quantification). Thus, this method can be implemented in high throughput facilities. Because of its strong performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, the PGM-MBs method can be successfully applied to WBE and ultimately provides valuable public health information.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States.
| | - Kyukyoung Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, United States
| | - Elbashir Araud
- Holonyak Micro & Nanotechnology Lab, University of Illinois at Urbana-Champaign
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
44
|
Diggles BK, Bass D, Bateman KS, Chong R, Daumich C, Hawkins KA, Hazelgrove R, Kerr R, Moody NJG, Ross S, Stentiford GD. Haplosporidium acetes n. sp. infecting the hepatopancreas of jelly prawns Acetes sibogae australis from Moreton Bay, Australia. J Invertebr Pathol 2022; 190:107751. [DOI: 10.1016/j.jip.2022.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
|
45
|
Lin HY, Yen SC, Tsai SK, Shen F, Lin JHY, Lin HJ. Combining Direct PCR Technology and Capillary Electrophoresis for an Easy-to-Operate and Highly Sensitive Infectious Disease Detection System for Shrimp. Life (Basel) 2022; 12:life12020276. [PMID: 35207563 PMCID: PMC8879573 DOI: 10.3390/life12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infectious diseases are considered the greatest threat to the modern high-density shrimp aquaculture industry. Specificity, rapidity, and sensitivity of molecular diagnostic methods for the detection of asymptomatic infected shrimp allows preventive measures to be taken before disease outbreaks. Routine molecular detection of pathogens in infected shrimp can be made easier with the use of a direct polymerase chain reaction (PCR). In this study, four direct PCR reagent brands were tested, and results showed that the detection signal of direct PCR in hepatopancreatic tissue was more severely affected. In addition, portable capillary electrophoresis was applied to improve sensitivity and specificity, resulting in a pathogen detection limit of 25 copies/PCR-reaction. Juvenile shrimp from five different aquaculture ponds were tested for white spot syndrome virus infection, and the results were consistent with the Organization for Animal Health’s certified standard method. Furthermore, this methodology could be used to examine single post larvae shrimp. The overall detection time was reduced by more than 58.2%. Therefore, the combination of direct PCR and capillary electrophoresis for on-site examination is valuable and has potential as a suitable tool for diagnostic, epidemiological, and pathological studies of shrimp aquaculture.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- BiOptic Inc., New Taipei City 23141, Taiwan;
| | | | - Fan Shen
- Giant Bio Technology Inc., New Taipei City 22101, Taiwan;
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| | - Han-Jia Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| |
Collapse
|
46
|
Proteomic Analysis of Spore Surface Proteins and Characteristics of a Novel Spore Wall Protein and Biomarker, EhSWP3, from the Shrimp Microsporidium Enterocytozoon hepatopenaei (EHP). Microorganisms 2022; 10:microorganisms10020367. [PMID: 35208822 PMCID: PMC8874471 DOI: 10.3390/microorganisms10020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Enterocytozoon hepatopenaei, a spore-forming and obligate intracellular microsporidium, mainly infects shrimp and results in growth retardation and body length variation, causing huge economic losses to the Asian shrimp aquaculture industry. However, the lack of a full understanding of the surface proteins of spores associated with host infection has hindered the development of technologies for the detection of EHP. In this study, the surface proteins of EHP spores were extracted using the improved SDS method, and 130 proteins were identified via LC-MS/MS analysis. Bioinformatic analysis revealed that these proteins were enriched in biological processes (67), cellular components (62), and molecular functions (71) based on GO terms. KEGG pathway analysis showed that 20 pathways, including the proteasome (eight proteins) and the fatty acid metabolism (15 proteins), were enriched. Among 15 high-abundance surface proteins (HASPs), EhSWP3 was identified as a novel spore wall protein (SWP), and was localized on the endospore of the EHP spores with an indirect immunofluorescence and immunoelectron microscopy assay. Polyclonal antibodies against EhSWP3 showed strong species specificity and high sensitivity to the hepatopancreas of EHP-infected shrimp. As a specific high-abundance protein, EhSWP3 is therefore a promising target for the development of immunoassay tools for EHP detection, and may play a crucial role in the invasion of EHP into the host.
Collapse
|
47
|
Chen Z, Zhao K, He Z, Luo X, Qin Z, Tan Y, Zheng X, Wu Z, Deng Y, Chen H, Guo Y, Li S. Development and evaluation of a thermostatic nucleic acid testing device based on magnesium pyrophosphate precipitation for detecting Enterocytozoon hepatopenaei. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
49
|
Han B, Takvorian PM, Weiss LM. The Function and Structure of the Microsporidia Polar Tube. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:179-213. [PMID: 35544004 PMCID: PMC10037675 DOI: 10.1007/978-3-030-93306-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Peter M Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
50
|
Dong X, Hu T, Ren Y, Meng F, Li C, Zhang Q, Chen J, Song J, Wang R, Shi M, Li J, Zhao P, Li C, Tang KFJ, Cowley JA, Shi W, Huang J. A Novel Bunyavirus Discovered in Oriental Shrimp ( Penaeus chinensis). Front Microbiol 2021; 12:751112. [PMID: 34899637 PMCID: PMC8652140 DOI: 10.3389/fmicb.2021.751112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we describe a novel bunyavirus, oriental wenrivirus 1 (OWV1), discovered in moribund oriental shrimp (Penaeus chinensis) collected from a farm in China in 2016. Like most bunyaviruses, OWV1 particles were enveloped, spherical- to ovoid-shaped, and 80-115 nm in diameter. However, its genome was found to comprise four segments of (-)ssRNA. These included an L RNA segment (6,317 nt) encoding an RNA-directed RNA polymerase (RdRp) of 2,052 aa, an M RNA segment (2,978 nt) encoding a glycoprotein precursor (GPC) of 922 aa, an S1 RNA segment (1,164 nt) encoding a nucleocapsid (N) protein of 243 aa, and an S2 RNA segment (1,382 nt) encoding a putative non-structural (NSs2) protein of 401 aa. All the four OWV1 RNA segments have complementary terminal decanucleotides (5'-ACACAAAGAC and 3'-UGUGUUUCUG) identical to the genomic RNA segments of uukuviruses and similar to those of phleboviruses and tenuiviruses in the Phenuiviridae. Phylogenetic analyses revealed that the RdRp, GPC, and N proteins of OWV1 were closely related to Wēnzhōu shrimp virus 1 (WzSV-1) and Mourilyan virus (MoV) that infect black tiger shrimp (P. monodon). Phylogenetic analyses also suggested that OWV1 could be classified into a second, yet to be established, species of the Wenrivirus genus in the Phenuiviridae. These wenriviruses also clustered with Wenling crustacean virus 7 from shrimps and bunya-like brown spot virus from white-clawed crayfish. Of note there were no homologs of the NSs2 of OWV1 and MoV/WzSV-1 in GenBank, and whether other crustacean phenuiviruses also possess a similar S2 RNA segment warrants further investigation. In addition, we established a TaqMan probe-based reverse-transcription quantitative PCR method for detection of OWV1, and it was detected as 1.17 × 102-1.90 × 107 copies/ng-RNA in gills of 23 out of 32 P. chinensis samples without an obvious gross sign. However, the discovery of OWV1 highlights the expanding genomic diversity of bunyaviruses.
Collapse
Affiliation(s)
- Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yanbei Ren
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fanzeng Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jiayuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jipeng Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ruoyu Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cixiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Kathy F. J. Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jeff A. Cowley
- Livestock and Aquaculture, CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| |
Collapse
|