1
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
2
|
Yang Y, Liu S, Li H, Liu Y, Ren P, Liu Y, Liu S, Guan L. The protective effect of Nostoc commune Vauch. polysaccharide on alcohol-induced acute alcoholic liver disease and gut microbiota disturbance in mice. J Gastroenterol Hepatol 2023; 38:2185-2194. [PMID: 37731216 DOI: 10.1111/jgh.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND In recent years, the incidence of alcoholic liver disease (ALD) has gradually increased, the development of ALD is attached great attentions. Nostoc commune Vauch. polysaccharide (NCVP) is beneficial to maintain the gut health, but the protective effect of NCVP on the liver has not been reported yet. PURPOSE To study the protective effect and the underlying mechanisms of NCVP on ALD, a mouse model of acute ALD was established. STUDY DESIGN AND METHODS We built an acute ALD mouse model and explored the protective effect of NCVP through the detection of cytokines, histological examination, determination of short chain fatty acids, and 16S rRNA analysis of gut microbiota. RESULTS NCVP had hepatoprotective effects on acute alcohol-induced mice by improving antioxidant capacity, reducing oxidative stress and the serum cytokine levels (IL-1β, IL-6, and TNF-α). Simultaneously, histopathological changes in liver indicated that NCVP could inhibit local hepatocyte necrosis, cytoplasmic vacuolation and inflammatory cell infiltration induced by alcohol. NCVP also increased the level of total short-chain fatty acids of acute ALD mice. In addition, NCVP could significantly decrease the Firmicutes/Bacteroidetes ratio and the abundance of Patescibacteria, Helicobacter, and Actinomycetes and increase the abundance of Lachospiraceae, Prevotellaceae-UCG-003, Lactobacillaceae, and Desulfovibrio. CONCLUSION Our study proved that NCVP had in vivo hepatoprotective effect on acute ALD mice and provided scientific evidences that NCVP might be a promising drug candidate for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Su Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yue Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shuming Liu
- Key Laboratory for Research and Development of New Veterinary Drugs, Changchun, 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| |
Collapse
|
3
|
Miao X, Ye H, Cui X, Guo X, Su F. Resveratrol attenuates efavirenz-induced hepatic steatosis and hypercholesterolemia in mice by inhibiting pregnane X receptor activation and decreasing inflammation. Nutr Res 2023; 119:119-131. [PMID: 37826994 DOI: 10.1016/j.nutres.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Efavirenz (EFV), a widely prescribed antiviral medication, has been implicated in dyslipidemia and can activate the pregnane X receptor (PXR), leading to hepatic steatosis and hypercholesterolemia in mice. Resveratrol (RES) can ameliorate hepatic steatosis and functions as a partial PXR agonist, capable of mitigating PXR expression induced by other PXR agonists. Therefore, we hypothesized that RES could attenuate EFV-induced hepatic steatosis and hypercholesterolemia by downregulating PXR expression and suppressing inflammatory cytokine production. Here, we conducted an in vivo study involving 6-week-old male mice, which were divided into 4 groups for a 7-day intervention: control (carrier solution), EFV (80 mg/kg), RES (50 mg/kg), and RES + EFV groups. Serum and hepatic tissue samples were collected to assess cholesterol and triglyceride concentrations. Hepatic lipid accumulation was evaluated through hematoxylin-eosin and oil red O staining. Polymerase chain reaction and western blot were performed to quantify hepatic inflammatory factors, lipogenic gene, and PXR expression. Our results indicated that hepatic lipid droplet accumulation was reduced in the RES + EFV group compared with the EFV group. Similarly, the expressions of hepatic inflammatory factors were attenuated in the RES + EFV group relative to the EFV group. Furthermore, RES counteracted the upregulation of hepatic lipid-metabolizing enzymes induced by EFV at both the transcriptional and protein levels. Importantly, PXR expression was downregulated in the RES + EFV group compared with the EFV group. Conclusively, our findings suggest that RES effectively mitigates EFV-induced hepatic steatosis and hypercholesterolemia by inhibiting PXR activation and decreasing inflammation.
Collapse
Affiliation(s)
- Xingguo Miao
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China; Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiaoya Cui
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Xiuxiu Guo
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China
| | - Feifei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Zhejiang, 325000, China; Department of Infectious Diseases, the Sixth People's Hospital of Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
4
|
Li TZ, Bai CY, Wu B, Zhang CY, Wang WT, Shi TW, Zhou J. The Elk-3 target Abhd10 ameliorates hepatotoxic injury and fibrosis in alcoholic liver disease. Commun Biol 2023; 6:682. [PMID: 37400491 DOI: 10.1038/s42003-023-05055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and other forms of chronic hepatotoxic injury can lead to transforming growth factor β1 (TGFβ1)-induced hepatic fibrosis and compromised liver function, underscoring the need to develop novel treatments for these conditions. Herein, our analyses of liver tissue samples from severe alcoholic hepatitis (SAH) patients and two murine models of ALD reveals that the ALD phenotype was associated with upregulation of the transcription factor ETS domain-containing protein (ELK-3) and ELK-3 signaling activity coupled with downregulation of α/β hydrolase domain containing 10 (ABHD10) and upregulation of deactivating S-palmitoylation of the antioxidant protein Peroxiredoxin 5 (PRDX5). In vitro, we further demonstrate that ELK-3 can directly bind to the ABHD10 promoter to inhibit its transactivation. TGFβ1 and epidermal growth factor (EGF) signaling induce ABHD10 downregulation and PRDX5 S-palmitoylation via ELK-3. This ELK-3-mediated ABHD10 downregulation drives oxidative stress and disrupts mature hepatocyte function via enhancing S-palmitoylation of PRDX5's Cys100 residue. In vivo, ectopic Abhd10 overexpression ameliorates liver damage in ALD model mice. Overall, these data suggest that the therapeutic targeting of the ABHD10-PRDX5 axis may represent a viable approach to treating ALD and other forms of hepatotoxicity.
Collapse
Affiliation(s)
- Tian-Zhu Li
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China.
| | - Chun-Ying Bai
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Bao Wu
- Department of Tissue and Embryology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Cong-Ying Zhang
- Department of Pharmacy, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Wen-Tao Wang
- Department of Pathogenic Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Tie-Wei Shi
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Jing Zhou
- Department of Molecular Biology, College of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
5
|
Han YH, He XM, Jin MH, Sun HN, Kwon T. Lipophagy: A potential therapeutic target for nonalcoholic and alcoholic fatty liver disease. Biochem Biophys Res Commun 2023; 672:36-44. [PMID: 37336123 DOI: 10.1016/j.bbrc.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xin-Mei He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Zhang X, Sun J, Zhou M, Li C, Zhu Z, Gan X. The role of mitochondria in the peri-implant microenvironment. Exp Physiol 2023; 108:398-411. [PMID: 36648334 PMCID: PMC10103875 DOI: 10.1113/ep090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we consider the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and bone resorption during osseointegration. What advances does it highlight? Mitochondria contribute to the behaviours of peri-implant cell lines based on metabolic and reactive oxygen species signalling modulations, which will contribute to the research field and the development of new treatment strategies for improving implant success. ABSTRACT Osseointegration is a dynamic biological process in the local microenvironment adjacent to a bone implant, which is crucial for implant performance and success of the implant surgery. Recently, the role of mitochondria in the peri-implant microenvironment during osseointegration has gained much attention. Mitochondrial regulation has been verified to be essential for cellular events in osseointegration and as a therapeutic target for peri-implant diseases in the peri-implant microenvironment. In this review, we summarize our current knowledge of the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and resorption during osseointegration, which will contribute to the research field and the development of new treatment strategies to improve implant success. In addition, we indicate limitations in our current understanding of the regulation of mitochondria in osseointegration and suggest topics for further study.
Collapse
Affiliation(s)
- Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Min Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Chen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoli Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
8
|
Li S, Feng F, Deng Y. Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α Expression. Diabetes Metab Syndr Obes 2023; 16:1063-1074. [PMID: 37090841 PMCID: PMC10115207 DOI: 10.2147/dmso.s403893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose To explore the underlying mechanism of the anti-diabetic effect of resveratrol (RSV) on regulating glycolipid metabolism in diabetic rats induced by streptozotocin (STZ) and a high-fat diet (HFD). Methods Male Wistar rats were randomized into three groups. Two groups were fed a high-fat diet and intraperitoneally injected with STZ (35 mg/kg), with one group also treated with RSV (30 mg/kg/d), and the third, control group was fed a normal diet. After 12 weeks, blood lipid levels and fasting blood glucose (FBG) were assessed. Histopathological changes were evaluated by hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining. The protein expression of hypoxia-inducible factor 1α (HIF-1α) was assessed by Western blotting and immunofluorescence, and the proteins level of 3-phosphoinositide-dependent protein kinase 1 (PDK1), phosphorylated-PDK1 (p-PDK1), phosphorylated-protein kinase B (p-AKT), glucose transporter 1 (GLUT1) and low-density lipoprotein receptor (LDLR) in the liver were analyzed by Western blotting. The mRNA levels of Hif-1α, Glut1 and Ldlr in the liver were determined by RT-qPCR. Results RSV treatment significantly reduced liver/body weight ratio (L/W, P < 0.05), FBG (P < 0.01) and serum concentrations of total cholesterol (TC, P < 0.05), triglycerides (TG, P < 0.01) and low-density lipoprotein-cholesterol (LDL-C, P < 0.05) in diabetic rats. RSV also improved diabetic symptoms, attenuated liver steatosis and increased liver glycogen accumulation. RSV treatment significantly downregulated the proteins expression of p-PDK1 and p-AKT (P < 0.01) and the levels of HIF-1α (P < 0.05) and GLUT1 (P < 0.01), while significantly upregulating the level of LDLR (P < 0.05). Conclusion RSV was effective in improving glycolipid metabolism in diabetic rats, probably by inhibiting the PDK1/AKT/HIF-1α pathway and regulation of its downstream target levels. These findings may provide new insight into the mechanism of action of RSV in the treatment of diabetes.
Collapse
Affiliation(s)
- Siyun Li
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Fuzhen Feng
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, People’s Republic of China
| | - Yanhui Deng
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Yanhui Deng, Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Road, Tianhe District, Guangzhou, 510630, People’s Republic of China, Tel +86 020 62784810, Email
| |
Collapse
|
9
|
Zhang S, Xu Y, Ye M, Ye W, Xiao J, Zhou H, Zhang W, Shu Y, Huang Y, Chen Y. Resveratrol in Liquor Exacerbates Alcoholic Liver Injury with a Reduced Therapeutic Effect in Mice: An Unsupervised Herbal Wine Habit Is Risky. Nutrients 2022; 14:nu14224752. [PMID: 36432440 PMCID: PMC9692393 DOI: 10.3390/nu14224752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
People in Eastern countries hold a tradition of soaking herbal medicine in wine; however, the efficacy and safety of herbal wine have not been rigorously assessed. By assessing the efficacy of resveratrol (RSV) in ethanol against alcoholic liver disease (ALD) in mice, we aimed to offer a perspective on the use of herbal wine. To simulate the behaviour of herbal wine users, RSV (15 mg/kg) soaked in ethanol (RSV-alcohol) was administrated via gavage to the mice, here with alcohol consumption-induced ALD. RSV soaked in water (RSV-water) was the treatment control. The efficacy and safety of RSV on ALD were evaluated. Compared with the RSV-water group, a higher rate of mortality was found in the RSV-alcohol group (50.0% vs. 20.0%), which also exhibited more severe liver injury. RSV significantly increased the exposure of alcohol by 126.0%, which was accompanied by a significant inhibition of the ethanol metabolic pathway. In contrast, alcohol consumption significantly reduced exposure to RSV by 95.0%. Alcohol consumption had little effect on the expression of drug-metabolizing enzymes in RSV; however, alcohol seemed to reduce the absorption of RSV. RSV in liquor exacerbates alcoholic liver injury and has a reduced therapeutic effect, suggesting that the habit of herbal wine use without supervision is risky.
Collapse
Affiliation(s)
- Songxia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Mengling Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Wenli Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (Y.H.); (Y.C.); Tel.: +86-137-8710-2228 (Y.H.); +86-731-8480-5380 (Y.C.)
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha 410008, China
- Correspondence: (Y.H.); (Y.C.); Tel.: +86-137-8710-2228 (Y.H.); +86-731-8480-5380 (Y.C.)
| |
Collapse
|
10
|
Yao H, Gao Y, Han J, Wang Y, Cai J, Rui Y, Ge X. MKK4 Knockdown Plays a Protective Role in Hemorrhagic Shock-Induced Liver Injury through the JNK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5074153. [PMID: 36164393 PMCID: PMC9509254 DOI: 10.1155/2022/5074153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Hemorrhagic shock (HS) triggers tissue hypoxia and organ failure during severe blood loss, and the liver is sensitive to HS. Mitogen-activated protein kinase kinase 4 (MKK4) activates the c-Jun NH2-terminal kinase (JNK) pathway, and its expression is upregulated in the serum of HS patients and mouse livers at 1 h post-HS. However, the function of MKK4 in HS-induced liver injury is unclear. The role of MKK4 was investigated in vivo using rat models of HS. Before HS, lentivirus harboring shRNA against MKK4 was injected into rats via the tail vein to knock down MKK4 expression. HS was induced by bloodletting via intubation of the femoral artery followed by resuscitation. The results showed that MKK4 knockdown reduced HS-induced apoptosis in the liver by decreasing Bax expression and the cleavage of caspase 3 and promoting Bcl-2 expression. Moreover, the generation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in the liver was promoted, while superoxide dismutase (SOD) activity was inhibited by HS. However, the effect of HS on oxidative stress was abrogated by MKK4 knockdown. Furthermore, MKK4 knockdown restored MMP and complex I and complex III activities and promoted ATP production, suggesting that HS-induced mitochondrial dysfunction in the liver was ameliorated by MKK4 knockdown. The inhibitory effect of MKK4 knockdown on the phosphorylation and activation of the JNK/c-Jun pathway was confirmed. Overall, MKK4 knockdown may suppress oxidative stress and subsequent apoptosis and improve mitochondrial function in the liver upon HS by inhibiting the JNK pathway. The MKK4/JNK axis was shown to be a therapeutic target for HS-induced liver injury in this study.
Collapse
Affiliation(s)
- Hao Yao
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yu Gao
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Jiahui Han
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yan Wang
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Jimin Cai
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Yongjun Rui
- Department of Traumatic Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| | - Xin Ge
- Department of ICU, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
11
|
Zhang C, Zhao Y, Yu M, Qin J, Ye B, Wang Q. Mitochondrial Dysfunction and Chronic Liver Disease. Curr Issues Mol Biol 2022; 44:3156-3165. [PMID: 35877442 PMCID: PMC9319137 DOI: 10.3390/cimb44070218] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengli Yu
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianru Qin
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| |
Collapse
|
12
|
Sharifi-Rad J, Quispe C, Durazzo A, Lucarini M, Souto EB, Santini A, Imran M, Moussa AY, Mostafa NM, El-Shazly M, Batiha GES, Qusti S, Alshammari EM, Sener B, Schoebitz M, Martorell M, Alshehri MM, Dey A, Cruz-Martins N. Resveratrol’ biotechnological applications: enlightening its antimicrobial and antioxidant properties. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Su CH, Wang HL, Tsai ML, Lin YC, Liao JM, Yen CC, Ting HC, Yu CH. Protective effect of microorganism biotransformation-produced resveratrol on the high fat diet-induced hyperlipidemia, hepatic steatosis and synaptic impairment in hamsters. Int J Med Sci 2022; 19:1586-1595. [PMID: 36185335 PMCID: PMC9515689 DOI: 10.7150/ijms.59018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Resveratrol, a natural antioxidant polyphenol, has the functions of anti-inflammation, anti-cancer, liver protection and cardioprotection. Microorganism biotransformation-produced resveratrol (MBR) product shows higher purity than the natural source of resveratrol and costs less than the chemically synthesized resveratrol. The aim of the present study was to investigate the protective effects of MBR in hamsters treated with a high-fat diet (HFD). Methods: MBR was obtained by the fermentative process of piceid. Hamsters were randomly divided into four groups: HFD plus oral administration of MBR 0 (C), 5 (L), 20 (M) or 50 mg/kg (H), respectively. After six-week of treatment, hamsters were sacrificed, and tissues were collected for further analysis. Results: MBR at these three dosages did not influence the appetite or growth of the hamsters. Liver enzymes, blood glucose, total cholesterol, triglyceride, and liver weight were significantly reduced in the MBR groups than in the control group. Additionally, high-density lipoprotein-cholesterol (HDL-C) was also elevated in all MBR groups. On the other hand, serum low-density lipoprotein-cholesterol (LDL-C) was decreased in the MBR groups. Triglyceride (TG) in liver tissue and fatty liver level were lower in group H. Memory-associated proteins, phosphorylation of calmodulin-dependent protein kinase II (p-CaMK II) and synaptophysin (SYP), were increased in the brains of MBR groups. Conclusion: The high yield- and short procedure-produced MBR has the potential to protect animals fed with HFD from hyperlipidemia, hepatic steatosis, hyperglycemia, and synaptic impairment, which might be beneficial for patients with these types of diseases.
Collapse
Affiliation(s)
- Chun-Hung Su
- Division of Cardiology, Department of internal medicine, Chung-Shan Medical University Hospital Taichung 40201.,Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201
| | - Ho-Lin Wang
- Graduate Institute of Bio-industry Management, College of Agriculture and Nature Resources, National Chung Hsing University, Taichung 40227
| | - Min-Ling Tsai
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201
| | - Yi-Chun Lin
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 40201
| | - Jiuan-Miaw Liao
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 40201
| | - Hung-Chih Ting
- Department of Early Childhood Educare, College of Health Sciences, TransWorld University, Douliu City, Yunlin County 64063
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
14
|
Ma Y, Lee G, Heo SY, Roh YS. Oxidative Stress Is a Key Modulator in the Development of Nonalcoholic Fatty Liver Disease. Antioxidants (Basel) 2021; 11:antiox11010091. [PMID: 35052595 PMCID: PMC8772974 DOI: 10.3390/antiox11010091] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and scientific studies consistently report that NAFLD development can be accelerated by oxidative stress. Oxidative stress can induce the progression of NAFLD to NASH by stimulating Kupffer cells, hepatic stellate cells, and hepatocytes. Therefore, studies are underway to identify the role of antioxidants in the treatment of NAFLD. In this review, we have summarized the origins of reactive oxygen species (ROS) in cells, the relationship between ROS and NAFLD, and have discussed the use of antioxidants as therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Gyurim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
| | - Su-Young Heo
- College of Veterinary Medicine, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (Y.M.); (G.L.)
- Correspondence: (S.-Y.H.); (Y.-S.R.)
| |
Collapse
|
15
|
Chupradit S, Bokov D, Zamanian MY, Heidari M, Hakimizadeh E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and anti- oxidative activities. Fundam Clin Pharmacol 2021; 36:468-485. [PMID: 34935193 DOI: 10.1111/fcp.12746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Being the most essential organ in the body, the liver performs critical functions. Hepatic disorders, such as alcoholic liver disease, hepatic steatosis, liver fibrosis, non-alcoholic fatty liver disease, hepatocellular carcinoma and hepatic failure, have an impact on the biochemical and physiological functions of the body. The main representative of the flavonoid subgroup of flavones, Resveratrol (RES), exhibits suitable pharmacological activities for treating various liver diseases, such as fatty hepatitis, liver steatosis, liver cancer and liver fibrosis. According to various studies, grapes and red wine are good sources of RES. RES has various health properties; it is anti-inflammatory, anti-apoptotic, anti-oxidative and hepatoprotective against several hepatic diseases and hepatoxicity. Therefore, we performed a thorough research and created a summary of the distinct targets of RES in various stages of liver diseases. We concluded that RES inhibited liver inflammation essentially by causing a significant decrease in the expression of various pro-inflammatory cytokines like TNF-α, IL-1α, IL-1β, and IL-6. It also inhibits the transcription factor nuclear NF-κB that brings about the inflammatory cascade. RES also inhibits the PI3K/Akt/mTOR pathway to induce apoptosis. Additionally, it reduces oxidative stress in hepatic tissue by markedly reducing MDA and NO contents, and significantly increasing the levels of CAT, SOD and reduced GSH, in addition to AST and ALT, against toxic chemicals like CC14, As2O3 and TTA. Due to its anti-oxidant, anti-inflammatory and anti-fibrotic properties, RES reduces liver injury markers. RES is safe natural antioxidant that provides pharmacological rectification of the hepatoxicity of toxic chemicals.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation
| | - Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,School of Nahavand Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
16
|
Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol 2021; 14:17562848211031394. [PMID: 34377148 PMCID: PMC8320552 DOI: 10.1177/17562848211031394] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are key organelles involved in energy production as well as numerous metabolic processes. There is a growing interest in the role of mitochondrial dysfunction in the pathogenesis of common chronic diseases as well as in cancer development. This review will examine the role mitochondria play in the pathophysiology of common liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, chronic hepatitis B and hepatocellular carcinoma. Mitochondrial dysfunction is described widely in the literature in studies examining patient tissue and in disease models. Despite significant differences in pathophysiology between chronic liver diseases, common mitochondrial defects are described, including increased mitochondrial reactive oxygen species production and impaired oxidative phosphorylation. We review the current literature on mitochondrial-targeted therapies, which have the potential to open new therapeutic avenues in the management of patients with chronic liver disease.
Collapse
Affiliation(s)
| | - Nikhil Vergis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
17
|
Jiang MJ, Huang WF, Huang S, Lu YX, Huang Y, Du PL, Li YH, Fan LL. Integrating Constituents Absorbed into Blood, Network Pharmacology, and Quantitative Analysis to Reveal the Active Components in Rubus chingii var. suavissimus that Regulate Lipid Metabolism Disorder. Front Pharmacol 2021; 12:630198. [PMID: 34276357 PMCID: PMC8282055 DOI: 10.3389/fphar.2021.630198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Rubus chingii var. suavissimus (S. K. Lee) L. T. Lu (RS)—a sweet plant also known as Tiancha distributed in the south of China where it is used as a beverage—recently gained extensive attention as adjuvant therapy of diabetes and hypertension. Although pharmacological studies indicate that RS has beneficial effects in regulating lipid metabolism disorder characteristics, the active chemicals responsible for this effect remains unclear. The present study aims to predict the effective substances of RS on regulating lipid metabolism disorder through the analysis of the chemical profile of RS, the absorbed prototype components in rat plasma, and network pharmacology. Also, a UPLC method able to quantify the screened potential effective chemicals of RS products was established. First, a total of 69 components—including diterpene, triterpenoids, flavonoids, polyphenols, and lignans—were systematically characterized in RS. Of those, 50 compounds were detected in the plasma of rats administered with RS extract. Through network pharmacology, 9 potential effective components, 71 target genes, and 20 pathways were predicted to be involved in RS-mediated regulation of lipid metabolism disorder. The quantitative analysis suggested that the contents of potential effective components varied among samples from different marketplaces. In conclusion, the presented results provide a chemical basis for further research of Rubus chingii var. suavissimus.
Collapse
Affiliation(s)
- Man-Jing Jiang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wan-Fang Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuai Huang
- Department of Pharmacy, Wuhan University of Bioengineering, Wuhan, China
| | - Yi-Xiang Lu
- Guangxi Institute for Food and Drug Control, Nanning, China
| | - Yong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Pei-Lin Du
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yao-Hua Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Lan-Lan Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
18
|
Xu L, Huang Q, Tan X, Zhao Q, Wu J, Liao H, Ai W, Liu Y, Lai Z, Fu L. Patchouli alcohol ameliorates acute liver injury via inhibiting oxidative stress and gut-origin LPS leakage in rats. Int Immunopharmacol 2021; 98:107897. [PMID: 34182243 DOI: 10.1016/j.intimp.2021.107897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Alcoholism represents a predisposing factor for liver-related morbidity and mortality worldwide. Pogostemon cablin has been widely used in China for the treatment of digestive system diseases. Patchouli oil, the major active fraction of Pogostemon cablin, can ameliorate alcohol-induced acute liver injury (ALI). However, patchouli alcohol (PA),a principal bioactive ingredient of PO, exerts a protection against ALI remains elusive. Thepresentwork focused on the hepatoprotection of PA against acute ethanol-induced hepatotoxicity in rats. In this study, male Wistar rats orally received PA (10, 20, or 40 mg/kg), PO (400 mg/kg) and silymarin (200 mg/kg) for ten days. On the 8th day, the rats orally received 65% ethanol (10 mL/kg, 6.5 g/kg) every 12 h for 3 days. Results showed that PA wasfound to reduce alcohol-induced ALI, as evidenced bysignificantly alleviated histopathologicalalterations, decreased the elevation ofALT and AST levels, and enhancedthe alcoholdehydrogenase(ADH) andaldehyde dehydrogenase (ALDH) activities. Additionally, PA markedly suppressed ROS levels and increased antioxidant enzyme activities via the CYP2E1/ROS/Nrf2/HO-1 pathway. PA regulated lipid accumulation by markedly inhibiting the expression of lipogenesis-related genes and stimulating that of lipolysis-relatedgenes, which were associated with the activation of theAMPKpathway. What's more, PA pretreatment also restored acute alcohol-inducedalterationsin gut barrier function, colonic histopathology, and gut microbiota richness and evenness. PA pretreatment alleviated gut-origin LPS-inducedinflammation by inhibiting the MyD88/TLR4/NF-κB signal pathway. In general, PA ameliorates ethanol-induced ALI via restoration of CYP2E1/ROS/Nrf2/HO-1-mediatedoxidativestressand AMPK-mediated fat accumulation, as well as alleviation of gut-LPS-leakage-induced inflammation regulated by the MyD88/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qionghui Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Xiaocui Tan
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Qian Zhao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jiazhen Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Huijun Liao
- Department of Clinical Pharmacy and Pharmaceutical services, Huazhong University of Science and Technology Union Shenzhen Hospital (the 6th affiliated hospital of Shenzhen University), Shenzhen 518052, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, PR China.
| | - Ludi Fu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Jiang ZB, Gao J, Chai YH, Li W, Luo YF, Chen YZ. Astragaloside alleviates alcoholic fatty liver disease by suppressing oxidative stress. Kaohsiung J Med Sci 2021; 37:718-729. [PMID: 33973356 DOI: 10.1002/kjm2.12390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/24/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alcoholic fatty liver disease (AFLD) is the most common liver disease and can progress to fatal liver cirrhosis and carcinoma, affecting millions of patients worldwide. The functions of astragaloside on the cardiovascular system have been elucidated. However, its role in AFLD is unclear. Ethanol-treated AML-12 cells were used as a cell model of alcoholic fatty liver. Real-time quantitative reverse transcription-PCR and Western blotting detected genes and proteins expressions. Reactive oxygen species (ROS), triglyceride, total cholesterol, low-density lipoprotein, albumin, ferritin, bilirubin, superoxide dismutase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were examined using commercial kits. Lipid accumulation was assessed by Oil red O staining. MTT and flow cytometry measured cell viability and apoptosis. JC-1 was used to analyze mitochondrial membrane potential. A rat model of AFLD was established by treating rats with ethanol. Astragaloside suppressed ethanol-induced lipid accumulation, oxidative stress, and the production of AST and ALT in AML-12 cells. Ethanol induced TNF-α and reduced IL-10 expression, which were reversed by astragaloside. Ethanol promoted Bax expression and cytochrome C release and inhibited Bcl-2 and ATP expression. Astragaloside hampered these apoptosis effects in AML-12 cells. Impaired mitochondrial membrane potential was recovered by astragaloside. However, all these astragaloside-mediated beneficial effects were abolished by the ROS inducer pyocyanin. Ethanol-induced activation of NF-κB signaling was suppressed by astragaloside in vitro and in vivo, suggesting that astragaloside inhibited oxidative stress by suppressing the activation of NF-κB signaling, thus improving liver function and alleviating AFLD in rats. Our study elucidates the pharmacological mechanism of astragaloside and provides potential therapeutic strategies for AFLD.
Collapse
Affiliation(s)
- Zhi-Bin Jiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Gao
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yi-Hui Chai
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yun-Feng Luo
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yun-Zhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
20
|
Hoang T. An approach of fatty acids and resveratrol in the prevention of COVID-19 severity. Phytother Res 2021; 35:2269-2273. [PMID: 33200839 PMCID: PMC7753401 DOI: 10.1002/ptr.6956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Tung Hoang
- Institute of Research and Development, Duy Tan UniversityDa NangVietnam
- Faculty of PharmacyDuy Tan UniversityDa NangVietnam
| |
Collapse
|
21
|
Zhang Y, Li Y, Mu T, Tong N, Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J Cell Mol Med 2021; 25:1299-1313. [PMID: 33336563 PMCID: PMC7812270 DOI: 10.1111/jcmm.16209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023] Open
Abstract
The hepatic stellate cells (HSCs) play a significant role in the onset of liver fibrosis, which can be treated by the inhibition and reversal of HSC activation. The RNA interference-mediated TLR4 gene silencing might be a potential therapeutic approach for liver fibrosis. The crucial challenge in this method is the absence of an efficient delivery system for the RNAi introduction in the target cells. HSCs have an enhanced capacity of vitamin A intake as they contain retinoic acid receptors (RARs). In the current study, we developed cationic liposomes modified with vitamin A to improve the specificity of delivery vehicles for HSCs. The outcome of this study revealed that the VitA-coupled cationic liposomes delivered the TLR4 shRNA to aHSCs more efficiently, as compared to the uncoupled cationic liposomes, both in the in vitro and in vivo conditions. Besides, as evident from the outcome of this study, the TLR4 gene silencing inhibited the HSCs activation and attenuated the liver fibrosis via the NF-κB transcriptional inactivation, pro-inflammatory cytokines secretion and reactive oxygen species (ROS) synthesis. Thus, the VitA-coupled liposomes encapsulated with the TLR4-shRNA might prove as an efficient therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Yuwei Zhang
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Li
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Tong Mu
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Nanwei Tong
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
22
|
An Overview of the Mechanism of Penthorum chinense Pursh on Alcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4875764. [PMID: 33014105 PMCID: PMC7519454 DOI: 10.1155/2020/4875764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Alcohol liver disease (ALD) caused by excessive alcohol consumption is a progressive disease, and alcohol fatty liver disease is the primary stage. Currently, there is no approved drug for its treatment. Abstinence is the best way to heal, but patients' compliance is poor. Unlike other chronic diseases, alcohol fatty liver disease is not caused by nutritional deficiencies; it is caused by the molecular action of ingested alcohol and its metabolites. More and more studies have shown the potential of Penthorum chinense Pursh (PCP) in the clinical use of alcohol fatty liver treatment. The purpose of this paper is to reveal from the essence of PCP treatment of alcohol liver mechanism mainly by the ethanol dehydrogenase (ADH) and microsomal ethanol oxidation system-dependent cytochrome P4502E1 (CYP2E1) to exert antilipogenesis, antioxidant, anti-inflammatory, antiapoptotic, and autophagy effects, with special emphasis on its mechanisms related to SIRT1/AMPK, KEAP-1/Nrf2, and TLR4/NF-κB. Overall, data from the literature shows that PCP appears to be a promising hepatoprotective traditional Chinese medicine (TCM).
Collapse
|
23
|
Pujara N, Wong KY, Qu Z, Wang R, Moniruzzaman M, Rewatkar P, Kumeria T, Ross BP, McGuckin M, Popat A. Oral Delivery of β-Lactoglobulin-Nanosphere-Encapsulated Resveratrol Alleviates Inflammation in Winnie Mice with Spontaneous Ulcerative Colitis. Mol Pharm 2020; 18:627-640. [PMID: 32437160 DOI: 10.1021/acs.molpharmaceut.0c00048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RES) is a nutraceutical with promising anti-inflammatory properties for the treatment of inflammatory bowel diseases (IBD). However, the clinical effectiveness of resveratrol as an oral anti-inflammatory agent is hindered by its extremely poor solubility and poor stability. In this study, we encapsulated resveratrol in β-lactoglobulin (BLG) nanospheres and systematically analyzed their formulation parameters in vitro followed by a thorough in vivo anti-inflammatory testing in a highly specialized spontaneous murine UC model (Winnie mice model). Complexation of resveratrol with BLG increased the aqueous solubility of resveratrol by ≈1.7 times with 10% w/w loading. Additionally, the in vitro dissolution of resveratrol from the particles was found to be higher compared to resveratrol alone, resulting in >90% resveratrol dissolution in ∼8 h. The anti-inflammatory activity of resveratrol was examined for the first time in Winnie mice, a mouse model that closely represents the clinical signs of IBD. At a 50 mg/kg oral dose for 2 weeks, BLG-RES significantly improved both % body weight and disease activity index (DAI), compared to free resveratrol in Winnie mice. Importantly, histological evaluations revealed a similar trend with striking improvement in the pathology of the colon via an increase in goblet cell numbers and recovery of colonic epithelium. BLG-RES significantly increased the expression level of cytokine interleukin-10 (Il10), which confirms the reduction in inflammation potentially because of the increased dissolution and stability of resveratrol by complexation with BLG. This comprehensive study demonstrates the effectiveness of biocompatible nanomaterials such as BLG in oral delivery of poorly soluble anti-inflammatory molecules such as resveratrol in the treatment of IBD.
Collapse
Affiliation(s)
- Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kuan Yau Wong
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Zhi Qu
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Ran Wang
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Md Moniruzzaman
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael McGuckin
- Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia.,Mucosal Diseases Group, Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
24
|
Monti E, Marras E, Prini P, Gariboldi MB. Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells. Eur J Pharmacol 2020; 881:173210. [PMID: 32526242 DOI: 10.1016/j.ejphar.2020.173210] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factors (HIFs) are the force which drives hypoxic cancer cells to a more aggressive and resistant phenotype in a number of solid tumors, including colorectal and breast cancer. Results from recent studies suggest a role for HIF-1 in immune evasion and cancer stem cell phenotype promotion, establishing HIF-1 as a potential therapeutic target. Thus, identifying new compounds that might inhibit HIF1 activity, or at least exert antiproliferative effects that are unaffected by HIF1-dependent adaptations, is an attractive goal for the management of hypoxic tumors. Here we show that the flavonoid luteolin exerts a significant cytotoxic effect on the colon cancer cell line HCT116 and the breast adenocarcinoma cell line MDA-MB231, by inducing both apoptotic and necrotic cell death, and that this effect is not impaired by HIF-1 activation. In these cells, luteolin also stimulates autophagy; however this seems to be part of a protective response, rather than contribute to the cytotoxic effect. Interestingly, luteolin induces a decrease in HIF-1 transcriptional activity. This is accompanied by a decrease in the levels of protein markers of stemness and invasion, and by a reduction of migratory capacity of the cells. Taken together, our results suggest that luteolin could be developed into a useful therapeutic agent aimed at hypoxic tumors.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100, Varese, VA, Italy.
| |
Collapse
|
25
|
Fu Y, Yan M, Xie C, Hu J, Zeng X, Hu Q. Polydatin relieves paraquat-induced human MRC-5 fibroblast injury through inhibiting the activation of the NLRP3 inflammasome. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:765. [PMID: 32647690 PMCID: PMC7333108 DOI: 10.21037/atm-20-4570] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Paraquat (PQ) is a herbicide that is highly toxic to the lungs and kidneys. When it enters the body, it will disrupt the balance of the microenvironment in the body, induce a large number of inflammatory factors and cause cell damage. Polydatin (PD), resveratrol glycoside, has multiple pharmacological effects. However, the protective effect of PD on human embryo lung fibroblast damage caused by PQ poisoning has not been reported. The purpose of this study was to investigate the regulatory effect of PD on human embryo lung fibroblast damage caused by PQ poisoning. Method The optimal experimental concentration of PQ for human embryonic lung fibroblast MRC-5 was 100 µmol/L, and then the cells of 100 µmol/L PQ group were treated with different concentrations of PD for 24 h. MTT assay to detect MRC-5 cell viability and flow cytometry to detect apoptosis. The corresponding kit was used to detect the contents of glutathione peroxidase (GSH-PX), malondialdehyde (MDA) and superoxide dismutase (SOD). Enzyme-linked immunosorbent assay (ELISA) to detect the levels of related inflammatory factors tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). Western blot detection of NLRP3 inflammatory body activation-related protein expression. Results Compared with the PQ group, cell activity, GSH-Px content, and SOD content in PD intervention group were significantly increased, while apoptosis, MDA content, inflammatory factor level, and activation-related proteins of the NLRP3 inflammasome were significantly reduced and were dose-dependent. Conclusions PD can relieve PQ-induced human MRC-5 fibroblasts injury by reducing the inflammatory response, improving the antioxidant stress capacity, and inhibiting the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yue Fu
- Department of General Medicine, Foshan First People's Hospital, Foshan, China.,Department of Emergency, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| | - Mei Yan
- Department of General Medicine, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| | - Chunming Xie
- Department of Emergency, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| | - Jinlun Hu
- Department of General Medicine, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| | - Xiangxia Zeng
- Department of General Medicine, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| | - Qiaohua Hu
- Department of Emergency, Foshan First People's Hospital, Foshan, China.,The Poison Treatment Centre of Foshan, Foshan, China
| |
Collapse
|
26
|
Choi RY, Ham JR, Ryu HS, Lee SS, Miguel MA, Paik MJ, Ji M, Park KW, Kang KY, Lee HI, Lee MK. Defatted Tenebrio molitor Larva Fermentation Extract Modifies Steatosis, Inflammation and Intestinal Microflora in Chronic Alcohol-Fed Rats. Nutrients 2020; 12:1426. [PMID: 32423176 PMCID: PMC7284378 DOI: 10.3390/nu12051426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
This study examined the effects of defatted mealworm fermentation extract (MWF) on alcoholic liver injury in rats. The rats were fed either a Lieber-DeCarli control (Con) or alcohol liquid diet (EtOH). The alcohol-fed rats were administered MWF (50, 100, or 200 mg/kg/day) and silymarin (200 mg/kg/day) orally for eight weeks. MWF prevented alcohol-induced hepatocellular damage by decreasing their serum aspartate transaminase, alanine transaminase, and gamma-glutamyl transpeptidase levels significantly compared to the EtOH group. MWF effectively reduced the relative hepatic weight, lipid contents, and fat deposition, along with the down-regulation of transcriptional factors and genes involved in lipogenesis compared to the EtOH group. It also enhanced the antioxidant defense system by elevating the glutathione level and glutathione reductase activity. MWF attenuated the alcohol-induced inflammatory response by down-regulating hepatic inflammation-associated proteins expression, such as phosphorylated-inhibitor of nuclear factor-kappa B-alpha and tumor necrosis factor-alpha, in chronic alcohol-fed rats. Furthermore, sequencing analysis in the colonic microbiota showed that MWF tended to increase Lactobacillus johnsonii reduced by chronic alcohol consumption. These findings suggest that MWF can attenuate alcoholic liver injury by regulating the lipogenic and inflammatory pathway and antioxidant defense system, as well as by partially altering the microbial composition.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea; (R.-Y.C.); (J.R.H.); (H.-S.R.)
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea; (R.-Y.C.); (J.R.H.); (H.-S.R.)
| | - Hyo-Seon Ryu
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea; (R.-Y.C.); (J.R.H.); (H.-S.R.)
| | - Sang Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.S.L.); (M.A.M.)
| | - Michelle A. Miguel
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.S.L.); (M.A.M.)
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (M.-J.P.); (M.J.)
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon 57922, Korea; (M.-J.P.); (M.J.)
| | - Kyung-Wuk Park
- Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea; (K.-W.P.); (K.-Y.K.)
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea; (K.-W.P.); (K.-Y.K.)
| | - Hae-In Lee
- Mokpo Marin Food-Industry Research Center, Mokpo 58621, Korea;
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea; (R.-Y.C.); (J.R.H.); (H.-S.R.)
| |
Collapse
|
27
|
Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y, Matsuda S. Diet induces hepatocyte protection in fatty liver disease via modulation of PTEN signaling. Biomed Rep 2020; 12:295-302. [PMID: 32382414 PMCID: PMC7201141 DOI: 10.3892/br.2020.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease (FLD) is characterized by accumulation of excess fat in the liver. The underlying molecular mechanism associated with the progression of the disease has been in elusive. Hepatocellular demise due to increased oxidative stress resulting in an inflammatory response may be a key feature in FLD. Recent advances in molecular biology have led to an improved understanding of the molecular pathogenesis, suggesting a critical association between the PI3K/AKT/PTEN signaling pathway and FLD. In particular, PTEN has been associated with regulating the pathogenesis of hepatocyte degeneration. Given the function of mitochondria in reactive oxygen species (ROS) generation and the initiation of oxidative stress, the mitochondrial antioxidant network is of interest. It is vital to balance the activity of intracellular key molecules to maintain a healthy liver. Consequently, onset of FLD may be delayed using dietary protective agents that alter PTEN signaling and reduce ROS levels. The advancement of research on dietary regulation with a focus on modulatory roles in ROS generation and PTEN associated signaling is summarized in the current study, supporting further preventive and therapeutic exploration.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
28
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
29
|
Meng X, Zhou J, Zhao CN, Gan RY, Li HB. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020; 9:340. [PMID: 32183376 PMCID: PMC7143620 DOI: 10.3390/foods9030340] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a bioactive compound in many foods. Since its anticancer activity was reported in 1997, its health benefits have been intensively investigated. Resveratrol has antioxidant, anti-inflammatory, immunomodulatory, glucose and lipid regulatory, neuroprotective, and cardiovascular protective effects, therefore, can protect against diverse chronic diseases, such as cardiovascular diseases (CVDs), cancer, liver diseases, obesity, diabetes, Alzheimer's disease, and Parkinson's disease. This review summarizes the main findings of resveratrol-related health benefits in recent epidemiological surveys, experimental studies, and clinical trials, highlighting its related molecular mechanisms. Resveratrol, therefore, has been regarded as a potent candidate for the development of nutraceuticals and pharmaceuticals to prevent and treat certain chronic diseases.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.M.); (H.-B.L.)
| | - Jing Zhou
- School of Public Health, Hainan Medical University, Haikou 571199, China;
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (X.M.); (H.-B.L.)
| |
Collapse
|
30
|
Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G, Cutillas P, Puntes V, Jiménez W. Cerium Oxide Nanoparticles Protect against Oxidant Injury and Interfere with Oxidative Mediated Kinase Signaling in Human-Derived Hepatocytes. Int J Mol Sci 2019; 20:ijms20235959. [PMID: 31783479 PMCID: PMC6928882 DOI: 10.3390/ijms20235959] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2NPs) possess powerful antioxidant properties, thus emerging as a potential therapeutic tool in non-alcoholic fatty liver disease (NAFLD) progression, which is characterized by a high presence of reactive oxygen species (ROS). The aim of this study was to elucidate whether CeO2NPs can prevent or attenuate oxidant injury in the hepatic human cell line HepG2 and to investigate the mechanisms involved in this phenomenon. The effect of CeO2NPs on cell viability and ROS scavenging was determined, the differential expression of pro-inflammatory and oxidative stress-related genes was analyzed, and a proteomic analysis was performed to assess the impact of CeO2NPs on cell phosphorylation in human hepatic cells under oxidative stress conditions. CeO2NPs did not modify HepG2 cell viability in basal conditions but reduced H2O2- and lipopolysaccharide (LPS)-induced cell death and prevented H2O2-induced overexpression of MPO, PTGS1 and iNOS. Phosphoproteomic analysis showed that CeO2NPs reverted the H2O2-mediated increase in the phosphorylation of peptides related to cellular proliferation, stress response, and gene transcription regulation, and interfered with H2O2 effects on mTOR, MAPK/ERK, CK2A1 and PKACA signaling pathways. In conclusion, CeO2NPs protect HepG2 cells from cell-induced oxidative damage, reducing ROS generation and inflammatory gene expression as well as regulation of kinase-driven cell survival pathways.
Collapse
Affiliation(s)
- Silvia Carvajal
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Correspondence: ; Tel.: +34-932275400-2667
| | - Denise Oró
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Victor Puntes
- Institut Català de Recerca i Estudis Avançats, (ICREA), 08010 Barcelona, Spain;
- Vall d’Hebron Insitute of Research (VHIR), 08035 Barcelona, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), 08193 Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
31
|
Ding L, Gong Y, Yang Z, Zou B, Liu X, Zhang B, Li J. Lactobacillus rhamnosus GG Ameliorates Liver Injury and Hypoxic Hepatitis in Rat Model of CLP-Induced Sepsis. Dig Dis Sci 2019; 64:2867-2877. [PMID: 31049763 DOI: 10.1007/s10620-019-05628-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Probiotic use to prevent gastrointestinal infections in critical care has shown great promise in recent clinical trials. Although well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to ameliorate liver injury and hypoxic hepatitis following sepsis has not been well explored. METHODS In order to evaluate, if Lactobacillus rhamnosus GG (LGG) treatment in septic rats will protect against liver injury, this study used 20-22-week-old Sprague-Dawley rats which were subjected to cecal ligation and puncture to establish sepsis model and examine mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α in the liver via real-time PCR, Elisa and Western blot. RESULTS This study showed that LGG treatment significantly ameliorated liver injury following experimental infection and sepsis. Liver mRNA and protein levels of IL-1β, NLRP3, IL-6, TNF-a, VEGF, MCP1, NF-kB and HIF-1α were significantly reduced in rats receiving LGG. CONCLUSIONS Thus, our study demonstrated that LGG treatment can reduce liver injury following experimental infection and sepsis and is associated with improved hypoxic hepatitis. Probiotic therapy may be a promising intervention to ameliorate clinical liver injury and hypoxic hepatitis following systemic infection and sepsis.
Collapse
Affiliation(s)
- Lei Ding
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Zhengfei Yang
- Emergency Department, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong Province, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
32
|
Tu Y, Zhu S, Wang J, Burstein E, Jia D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother Res 2019; 33:2192-2212. [PMID: 31264302 DOI: 10.1002/ptr.6410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Alcoholic liver disease (ALD), caused by excessive consumption of alcohol, is a major cause of chronic liver disease worldwide. Much effort has been expended to explore the pathogenesis of ALD. Hepatic cell injury, oxidative stress, inflammation, regeneration, and bacterial translocation are all involved in the pathogenesis of ALD. Immediate abstinence is the most important therapeutic treatment for affected individuals. However, the medical treatment for ALD had not advanced in a long period. Intriguingly, an increasing body of research indicates the potential of natural compounds in the targeted therapy of ALD. A plethora of dietary natural products such as flavonoids, resveratrol, saponins, and β-carotene are found to exert protective effects on ALD. This occurs through various mechanisms composed of antioxidative, anti-inflammatory, iron chelation, pro-apoptosis, and/or antiproliferation of hepatic stellate cells and hepatocellular carcinoma cells. In this review, we will summarize current knowledge about the pathogenesis and treatments of ALD and focus on the potential of natural compounds in ALD therapies and underlying mechanisms.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shu Zhu
- Chinese Academy of Science and Technology for Development, Ministry of Science and Technology, Institute of Foresight and Evaluation Research, Beijing, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
34
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
35
|
Park S, Kim DS, Wu X, J Yi Q. Mulberry and dandelion water extracts prevent alcohol-induced steatosis with alleviating gut microbiome dysbiosis. Exp Biol Med (Maywood) 2019; 243:882-894. [PMID: 30105955 DOI: 10.1177/1535370218789068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol intake causes hepatic steatosis and changes the body composition and glucose metabolism. We examined whether water extracts of mulberry (WMB) and white flower dandelion ( Taraxacum coreanum Nakai, WTC) can prevent and/or delay the symptoms of chronic ethanol-induced hepatic steatosis in male Sprague Dawley rats, and explored the mechanisms. Ethanol degradation was examined by orally administering 3 g ethanol/kg bw after giving them 0.3 g/kg bw WMB or WTC. All rats were continuously provided about 7 g ethanol/kg bw/day for four weeks and were given either of 0.1% dextrin (control), WMB, WTC, or water extracts of Hovenia dulcis Thunb fruit (positive-control) in high-fat diets. Area under the curve of serum ethanol levels was lowered in descending order of control, WTC and positive-control, and WMB in acute ethanol challenge. WMB and WTC prevented alcohol intake-related decrease in bone mineral density and lean body mass compared to the control. After glucose challenge, serum glucose levels increased more in the control group than other groups in the first part and the rate of decrease after 40 min was similar among all groups. These changes were associated with decreasing serum insulin levels. WMB had the greatest efficacy for decreasing triglyceride and increasing glycogen deposits. WMB and WTC prevented the disruption of the hepatic cells and nuclei while reducing malondialdehyde contents in rats fed alcohol, but the prevention was not as much as the normal-control. The ratio of Firmicutes to Bacteroidetes in the gut was much higher in the control than the normal-control, but WTC and WMB decreased the ratio compared to the control. WMB and WTC separated the gut microbiota community from the control. In conclusion, WMB and WTC protected against alcoholic liver steatosis by accelerating ethanol degradation and also improved body composition and glucose metabolism while alleviating the dysbiosis of gut microbiome by chronic alcohol intake. Impact statement Excessive alcohol consumption is associated with serious pathologies and is common in much of the world. Pathologies include liver damage, glucose intolerance, and loss of lean body mass and bone mass. These pathologies are mediated by changes in metabolism as well as toxic metabolic byproducts, and possibly by gut dysbiosis. In this study, we demonstrate that aqueous extracts of mulberry and dandelion protected rats against ethanol-induced losses in lean body and bone masses, improved glucose tolerance and partially normalized gut bacterial populations, with mulberry extract being generally more effective. This research suggests that mulberry and dandelion extracts may have the potential to improve some of the pathologies associated with excess alcohol consumption, and that further clinical research is warranted.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Da S Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Xuangao Wu
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| | - Qiu J Yi
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea
| |
Collapse
|
36
|
Osborne B, Brandon AE, Smith GC, Turner N. Impact of Lifestyle and Clinical Interventions on Mitochondrial Function in Obesity and Type 2 Diabetes. MITOCHONDRIA IN OBESITY AND TYPE 2 DIABETES 2019:367-397. [DOI: 10.1016/b978-0-12-811752-1.00016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
38
|
Su H, Li Y, Hu D, Xie L, Ke H, Zheng X, Chen W. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic Biol Med 2018; 126:269-286. [PMID: 30142454 DOI: 10.1016/j.freeradbiomed.2018.08.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Procyanidin B2, a naturally occurring phenolic compound, has been reported to exert multiple beneficial functions. However, the effect of procyanidin B2 on free fatty acids (FFAs)-induced hepatic steatosis remains obscure. The present study is therefore aimed to elucidate the protective effect of procyanidin B2 against hepatic steatosis and its underlying mechanism. Herein, we reported that procyanidin B2 attenuated FFAs-induced lipid accumulation and its associated oxidative stress by scavenging excessive ROS and superoxide anion radicals, blocking loss of mitochondrial membrane potential, restoring glutathione content, and increasing activity of antioxidant enzymes (GPx, SOD and CAT) in hepatocytes. Procyanidin B2 mechanistically promoted lipid degradation via modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathway. Molecular docking analysis indicated a possible ligand-binding position of procyanidin B2 with TFEB. In addition, administration of procyanidin B2 resulted in a significant reduction of hepatic fat accumulation in high-fat diet (HFD)-induced obese mice, and also ameliorated HFD-induced metabolic abnormalities, including hyperlipidemia and hyperglycemia. It was confirmed that procyanidin B2 prevented HFD-induced hepatic fat accumulation through down-regulating lipogenesis-related gene expressions (PPARγ, C/EBPα and SREBP-1c), inhibiting pro-inflammatory cytokines production (IL-6 and TNF-α) and increasing antioxidant enzymes activity (GPx, SOD and CAT). Moreover, hepatic fatty acids analysis indicated that procyanidin B2 caused a significant increase in the levels of palmitic acid, oleic acid and linoleic acid. Intriguingly, procyanidin B2 restored the decreased nuclear TFEB expression in HFD-induced liver steatosis and up-regulated its target genes involved in lysosomal pathway (Lamp1, Mcoln, Uvrag), which suggested a previously unrecognized mechanism of procyanidin B2 on ameliorating HFD-induced hepatic steatosis. Taken together, our results demonstrated that procyanidin B2 attenuated FFAs-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state, which had important implications that modulation of TFEB might be a potential therapeutic strategy for hepatic steatosis and procyanidin B2 could represent a promising novel agent in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Lemasters JJ, Zhong Z. Mitophagy in hepatocytes: Types, initiators and role in adaptive ethanol metabolism☆. LIVER RESEARCH 2018; 2:125-132. [PMID: 31157120 PMCID: PMC6541449 DOI: 10.1016/j.livres.2018.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitophagy (mitochondrial autophagy) in hepatocytes is an essential quality control mechanism that removes for lysosomal digestion damaged, effete and superfluous mitochondria. Mitophagy has distinct variants. In type 1 mitophagy, typical of nutrient deprivation, cup-shaped sequestration membranes (phagophores) grow, surround and sequester individual mitochondria into mitophagosomes, often in coordination with mitochondrial fission. After sequestration, the outer compartment of the mitophagosome acidifies and the entrapped mitochondrion depolarizes, followed by fusion with lysosomes. By contrast, mitochondrial depolarization stimulates type 2 mitophagy, which is characterized by coalescence of autophagic microtubule-associated protein 1A/1B-light chain 3 (LC3)-containing structures on mitochondrial surfaces without the formation of a phagophore or mitochondrial fission. Oppositely to type 1 mitophagy, the inhibition of phosphoinositide-3-kinase (PI3K) does not block type 2 mitophagy. In type 3 mitophagy, or micromitophagy, mitochondria-derived vesicles (MDVs) enriched in oxidized proteins bud off from mitochondrial inner and outer membranes and incorporate into multivesicular bodies by vesicle scission into the lumen. In response to ethanol feeding, widespread ethanol-induced hepatocellular mitochondrial depolarization occurs to facilitate hepatic ethanol metabolism. As a consequence, type 2 mitophagy develops in response to the mitochondrial depolarization. After chronic high ethanol feeding, processing of depolarized mitochondria by mitophagy becomes compromised, leading to release of mitochondrial damage-associated molecular patterns (mtDAMPs) that promote inflammatory and profibrogenic responses. We propose that the persistence of mitochondrial responses for acute ethanol metabolism links initial adaptive ethanol metabolism to mitophagy and then to chronic maladaptive changes initiating onset and the progression of alcoholic liver disease (ALD).
Collapse
Affiliation(s)
- John J. Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
Effect of Lycosome-Formulated Phosphatidylcholine on Parameters of Biological Oxidation after Single Intake of Moderate Amount of Alcohol. Adv Prev Med 2018; 2018:5840451. [PMID: 30155314 PMCID: PMC6091444 DOI: 10.1155/2018/5840451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/27/2018] [Indexed: 12/02/2022] Open
Abstract
Ingestion of a single dose of alcohol, ranging from the intake of a moderate amount alcohol to binge drinking, is the most frequent form of alcohol consumption with poorly understood medical consequences and obscure prophylactics. The study was aimed to determine whether lycosome formulated phosphatidylcholine (PC-Lyc) containing two highly bioavailable antioxidants (PC and lycopene) ingested shortly before the alcohol-containing beverage may alleviate the biochemical markers of liver damage and parameters of biological oxidation associated with the intake of a moderate amount of alcohol. Healthy middle-aged volunteers were requested to consume a moderate amount of alcohol – 0.5 ml/kg or 1.0 ml/kg shortly after ingestion of a capsule containing 450 mg of regular phosphatidylcholine (PC, n=10), PC-Lyc (n=10), or placebo pill (PP, n=10). Serum levels of ethanol (EtOH), acetaldehyde (AA), liver-specific enzymes, total antioxidant capacity of serum (TAC), oxidized LDL (LDL-Px), and malonic dialdehyde (MDA) were measured at 1, 2.5, and 5 hours after dosing with alcohol. Ingestion of PC regardless of the formulation used had no effect on serum EtOH concentration dynamics. However, volunteers supplemented with PC-Lyc showed a better clearance of AA in serum as compared to other groups. There was a reduction in serum TAC values by 18.5% and 16.1% in both placebo groups ingesting 0.5 and 1.0 ml/kg of alcohol, respectively, at the end of observational period. This decline was preventable by supplementation of volunteers with PC and especially with PC-Lyc. Moreover, PC-Lyc promoted a reduction of serum MDA and reversed an increase in serum LDL-Px. In addition, ingestion of alcohol at 1.0 ml/kg dose caused a transient increase in serum alanine-aminotransferase activity which was abolished by both formulations of PC. Therefore, combinatory lycosomal formulation of PC and lycopene may prevent some metabolic abnormalities associated with single intake of moderate amount of alcohol. This trial is registered with ACTRN12617001335381.
Collapse
|
41
|
Alshammari GM, Balakrishnan A, Chinnasamy T. Butein protects the nonalcoholic fatty liver through mitochondrial reactive oxygen species attenuation in rats. Biofactors 2018; 44:289-298. [PMID: 29672963 DOI: 10.1002/biof.1428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
One of the worldwide metabolic health dilemma is nonalcoholic fatty liver diseases (NAFLD). Researchers are searching effective drug to manage NAFLD patients. One of the best way to manage the metabolic imperfection is through natural principal isolated from different sources. Butein, a natural compound known to have numerous pharmacological application. In the current study we assessed the therapeutic effect of butein administration on liver function tests, oxidative stress, antioxidants, lipid abnormalities, serum inflammatory cytokines, and mitochondrial reactive oxygen species levels, in rats with methionine-choline deficient (MCD) diet induced NAFLD. Male Wistar rats were treated with MCD diet with/without butein (200 mg/kg body wt. orally) for 6 weeks. The protective effect of butein, were evident from decreased transaminase activities, restoration of albumin, globulin, albumin/globulin ratio, and oxidants in serum (P < 0.01), further it improved liver antioxidant status (P < 0.01). Butein significantly lowered lipid profile parameters (P < 0.01), suppressed inflammatory cytokines (P < 0.01), and improved liver histology. Further to understand the possible mechanism behind the hepatoprotective and lipid lowering effect of butein, the activities of heme oxygenase (HO1), myeloperoxidase (MPO), and mitochondrial reactive oxygen species (ROS) were measured. We found that butein supplementation significantly decreased the activity of HO1 (P < 0.001), and increased the activity of MPO (P < 0.001). Furthermore butein attenuated mitochondrial ROS produced in NAFLD condition. Present study shows that butein supplementation restore liver function by altering liver oxidative stress, inflammatory markers, vital defensive enzyme activities, and mitochondrial ROS. In summary, butein has remarkable potential to develop effective hepato-protective drug. © 2018 BioFactors, 44(3):289-298, 2018.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aristatile Balakrishnan
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Thirunavukkarasu Chinnasamy
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
42
|
Alshammari GM, Balakrishnan A, Chinnasamy T. Protective role of germinated mung bean against progression of non-alcoholic steatohepatitis in rats: A dietary therapy to improve fatty liver health. J Food Biochem 2018. [DOI: 10.1111/jfbc.12542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ghedeir M. Alshammari
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department; King Saud University, P.O. Box 2460; Riyadh Saudi Arabia
| | - Aristatile Balakrishnan
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department; King Saud University, P.O. Box 2460; Riyadh Saudi Arabia
| | - Thirunavukkarasu Chinnasamy
- Adipocytes and Metabolic Disorders Lab, Food Science and Nutrition Department; King Saud University, P.O. Box 2460; Riyadh Saudi Arabia
| |
Collapse
|
43
|
Szkudelski T, Szkudelska K. Potential of resveratrol in mitigating metabolic disturbances induced by ethanol. Biomed Pharmacother 2018. [PMID: 29514131 DOI: 10.1016/j.biopha.2018.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Alcohol abuse is associated with numerous health problems, including metabolic disturbances and liver damage. Therefore, different compounds are continuously being tested to evaluate their potential effectiveness in reducing these harmful changes. Animal studies clearly show that resveratrol is capable of ameliorating some consequences of ethanol ingestion. Resveratrol is a naturally occurring diphenolic compound having pleiotropic, health-promoting properties. Its beneficial action have been also demonstrated in animal models with ethanol-induced metabolic disturbances and liver injury. In ethanol treated animals, resveratrol effectively reduced liver lipid accumulation. Moreover, this compound diminished necrosis of hepatocytes, and also reduced liver fibrosis. The hepatoprotective action of resveratrol is largely associated with its ant-oxidant and anti-inflammatory properties, and also covers changes in activities of some enzymes. It is known that this compound upregulates the adiponectin-SIRT1-AMPK signaling pathway in the liver. Resveratrol was also found to positively affect blood lipids in animals exposed to ethanol. Moreover, administration of resveratrol to animals with ethanol-induced hypoinsulinemia and insulin resistance was shown to alleviate these disturbances. These outcomes clearly indicate that resveratrol holds great potential to reduce some consequences of ethanol ingestion. However, human studies are required to fully assess its therapeutic value.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Katarzyna Szkudelska
- Department of Animal Physiology and Biochemistry Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
44
|
Yuan R, Tao X, Liang S, Pan Y, He L, Sun J, Wenbo J, Li X, Chen J, Wang C. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol-induced liver injury through reducing CYP2E1-dependent oxidative stress. Biomed Pharmacother 2018; 99:537-542. [DOI: 10.1016/j.biopha.2018.01.079] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023] Open
|