1
|
McClure J, Powell J. Homogenization Reveals Large-Scale Dynamics in the Spread of Chronic Wasting Disease. Bull Math Biol 2025; 87:79. [PMID: 40392434 DOI: 10.1007/s11538-025-01456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Thresholds in environmental transmission can significantly alter the dynamics of disease spread in wildlife. However, the impact of thresholds in landscapes with high spatial variability is not well understood. We investigate this phenomenon in chronic wasting disease (CWD), a degenerative cervid illness exhibiting direct transmission between individuals and indirect transmission through environmental hazard. The indirect pathway exhibits threshold behavior analogous to a strong Allee effect. We derive a partial differential equation (PDE) model for CWD on the scale of hours and tens of meters. Leveraging highly variable landscape structure, we homogenize this model to yield an asymptotically accurate approximal model on the scale of years and kilometers. Our homogenized model describes the aggregate effect of thresholded transmission on large scales - to our knowledge, the first time such a description has been identified. The model predicts that direct transmission in CWD will lead to pulled fronts, whereas indirect transmission generates pushed fronts. Pushed fronts allow CWD to spread even when infectives infect less than one susceptible on average. We use a hypothetical binary distribution of habitat types to showcase the homogenized model's ability to predict how distribution of cover in a landscape can influence CWD spread and potential mitigation efforts.
Collapse
Affiliation(s)
- Jen McClure
- Department of Mathematics and Statistics, Utah State University, Logan, UT, 84341, USA.
| | - James Powell
- Department of Mathematics and Statistics, Utah State University, Logan, UT, 84341, USA
| |
Collapse
|
2
|
Park KJ, Park HC, Lee YR, Mitchell G, Choi YP, Sohn HJ. Detection of chronic wasting disease prions in the farm soil of the Republic of Korea. mSphere 2025; 10:e0086624. [PMID: 39882869 PMCID: PMC11852723 DOI: 10.1128/msphere.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease occurring in free-ranging and farmed cervids. CWD continues to spread uncontrolled across North America, and cases continue to be detected almost every year in the Republic of Korea. CWD-infected animals contaminate the soil by releasing infectious prions through their excreta, and shed prions accumulate and remain infectious in the soil for years. Given that the upper soil levels can become contaminated with prions and serve as infectivity reservoirs facilitating horizontal transmission of CWD, the ability to detect prions in the soil is needed for monitoring and managing CWD spread. Using the protein misfolding cyclic amplification (PMCA) technique, we investigated whether prions could be amplified and detected in farm soil experimentally exposed to CWD-infected brain homogenate as well as in the soil of CWD-affected farms. From each soil sample, we performed 10 serial extractions and used these 10 extracts as PMCA templates. Here, we show that prion seeding activity was detected in extracts from farm soil following 4 years of incubation with CWD-infected brain homogenate. More importantly, 13 of 38 soil samples collected from six CWD-affected farms displayed prion seeding activity, with at least one soil sample in each farm being PMCA positive. Mouse bioassays confirmed the presence of prion infectivity in the soil extracts in which PMCA seeding activity was detected. This is the first report describing the successful detection of prions in soil collected from CWD-affected farms, suggesting that PMCA conducted on serial soil extracts is a sensitive means for prion detection in CWD-contaminated soil.IMPORTANCEChronic wasting disease (CWD) is a highly contagious prion disease affecting free-ranging and farmed cervids. CWD continues to spread uncontrollably across North America, and multiple cases are detected annually in the Republic of Korea. Prions shed from CWD-infected animals remain infectious in the soil for years, serving as infectivity reservoirs that facilitate horizontal transmission of the disease. Therefore, the ability to detect CWD prions in soil is crucial for monitoring and managing the spread of the disease. In this study, we have demonstrated for the first time that prions in the soil of CWD-affected farms can be reliably detected using a combination of serial soil extraction and a prion amplification technique. Our data, in which at least one soil sample tested positive for CWD in each of the six CWD-affected farms analyzed, suggest that the approach employed in this study is a sensitive method for prion detection in CWD-contaminated soil.
Collapse
Affiliation(s)
- Kyung-Je Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hoo-Chang Park
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yu-Ran Lee
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Gordon Mitchell
- National and WOAH Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Young Pyo Choi
- Division of Research Strategy, Korea Brain Research Institute, Daegu, South Korea
| | - Hyun-Joo Sohn
- WOAH Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| |
Collapse
|
3
|
Sandoval AM, Nalls AV, McNulty EE, Denkers ND, Trujillo DJ, Olmstead Z, Barton E, Ballard JR, Grove DM, Dennison JS, Stilwell N, Cleveland CA, Crum JM, Ruder MG, Mathiason CK. Vertical transmission of chronic wasting disease in free-ranging white-tailed deer populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634834. [PMID: 39974995 PMCID: PMC11838184 DOI: 10.1101/2025.01.24.634834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease affecting cervids across North America, Northern Europe, and Asia. Disease transmission among cervids has historically been attributed to direct animal-to-animal contact with 'secreta' (saliva, blood, urine, and feces) containing the infectious agent, and indirect contact with the agent shed to the environment in these bodily components. Mounting evidence provides another mechanism of CWD transmission, that from mother-to-offspring, including during pregnancy (vertical transmission). Here we describe the detection of the infectious CWD agent and prion seeding in fetal and reproductive tissues collected from healthy-appearing free-ranging white-tailed deer (Odocoileus virginianus) from multiple U.S. states by mouse bioassay and in vitro prion amplification assays. This is the first report of the infectious agent in several in utero derived fetal and maternal-fetal reproductive tissues, providing evidence that CWD infections are propagated within gestational fetal tissues of white-tailed deer populations. This work confirms previous experimental and field findings in several cervid species supporting vertical transmission as a mechanism of CWD transmission and helps to further explain the facile dissemination of this disease among captive and free-ranging cervid populations.
Collapse
Affiliation(s)
- Audrey M Sandoval
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy V Nalls
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Devon J Trujillo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zoe Olmstead
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ethan Barton
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Wildlife Resources, West Virginia Division of Natural Resources, Romney, WV, USA
| | | | | | | | - Natalie Stilwell
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - James M Crum
- Wildlife Resources, West Virginia Division of Natural Resources, Elkins, WV, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Fameli A, Jennelle C, Edson J, Hildebrand E, Carstensen M, Walter WD. Relatedness of White-Tailed Deer from Culling Efforts Within Chronic Wasting Disease Management Zones in Minnesota. Pathogens 2025; 14:67. [PMID: 39861028 PMCID: PMC11768294 DOI: 10.3390/pathogens14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In white-tailed deer (Odocoileus virginianus), closely related females form social groups, avoiding other social groups. Consequently, females infected with chronic wasting disease (CWD) are more likely to infect social group members. Culling has been used to reduce CWD transmission in high-risk areas; however, its effectiveness in removing related individuals has not been assessed. We analyzed 11 microsatellites and a mitochondrial DNA fragment to assess: (1) the genetic structure in white-tailed deer in Minnesota, USA and (2) the effectiveness of localized culling to remove related deer. For (1), we genotyped deer culled in 2019 and 2021 in three CWD management zones, and deer collected in between zones. For (2), we only included culled deer, defining "culled groups" as deer obtained in the same township-range-section and year. We compared mean relatedness among deer from the same culled group (intra-group relatedness) and among deer from different culled groups (inter-group relatedness). We did not find evidence of genetic structure, suggesting that an outbreak in any of the management zones could naturally spread to the others. Culling removed deer that were on average more related than expected by chance (intra-group relatedness > inter-group relatedness), and most highly-related deer were culled in the same bait site.
Collapse
Affiliation(s)
- Alberto Fameli
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher Jennelle
- Nongame Wildlife Program, Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik Hildebrand
- Wildlife Health Program, Minnesota Department of Natural Resources, 5463 West Broadway Ave., Forest Lake, MN 55025, USA
| | - Michelle Carstensen
- Wildlife Health Program, Minnesota Department of Natural Resources, 5463 West Broadway Ave., Forest Lake, MN 55025, USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Dugovich BS, Barton EP, Crum JM, Keel MK, Stallknecht DE, Ruder MG. Demographic Risk Factors Vary in the Invasion Front of Chronic Wasting Disease in West Virginia, USA. J Wildl Dis 2024; 60:839-849. [PMID: 38871352 DOI: 10.7589/jwd-d-22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2024] [Indexed: 06/15/2024]
Abstract
After detecting chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) in Hampshire County, West Virginia, USA, in 2005, we investigated the change of CWD apparent prevalence and potential factors influencing infection risk during the invasion front. Over eight sampling years (2006-2012 and 2017) during a 12-yr period within a 101-km2-area monitoring zone, we sampled and tested a total of 853 deer for CWD by ELISA and immunohistochemistry. Bayesian logistic regression of risk factors included collection year, age class, sex, and adjusted body weight (weight after accounting for sex, age, kidney fat index, and number of fetuses). In the whole-herd model (n=634), collection year, age, and adjusted body weight were associated with increased odds of CWD, whereas an age-weight interaction had a negative relationship. We found that males drove the positive associations with age and adjusted body weight, whereas females were responsible for the negative interaction effect. These findings suggest potential behavioral and physiological mechanisms related to sex that may influence CWD exposure. Older males exhibited higher CWD prevalence, aligning with previous studies. Notably, the novel finding of adjusted body weight as a risk factor in males warrants further investigation, and this study highlights the need for future research on social behavior and its role in CWD transmission within white-tailed deer populations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
- Present address: U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way STE2, Bozeman, Montana 59715, USA
| | - Ethan P Barton
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
- West Virginia Division of Natural Resources, Wildlife Resources Section, PO Box 67, Elkins, West Virginia 26241, USA
| | - James M Crum
- West Virginia Division of Natural Resources, Wildlife Resources Section, PO Box 67, Elkins, West Virginia 26241, USA
| | - M Kevin Keel
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
- Present address: Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, 589 D. W. Brooks Dr., University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
6
|
Kuznetsova A, Ness A, Moffatt E, Bollinger T, McKenzie D, Stasiak I, Bahnson CS, Aiken JM. Detection of Chronic Wasting Disease Prions in Prairie Soils from Endemic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10932-10940. [PMID: 38865602 PMCID: PMC11210205 DOI: 10.1021/acs.est.4c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Chronic wasting disease (CWD) is a contagious prion disease that affects cervids in North America, Northern Europe, and South Korea. CWD is spread through direct and indirect horizontal transmission, with both clinical and preclinical animals shedding CWD prions in saliva, urine, and feces. CWD particles can persist in the environment for years, and soils may pose a risk for transmission to susceptible animals. Our study presents a sensitive method for detecting prions in the environmental samples of prairie soils. Soils were collected from CWD-endemic regions with high (Saskatchewan, Canada) and low (North Dakota, USA) CWD prevalence. Heat extraction with SDS-buffer, a serial protein misfolding cyclic amplification assay coupled with a real-time quaking-induced conversion assay was used to detect the presence of CWD prions in soils. In the prairie area of South Saskatchewan where the CWD prevalence rate in male mule deer is greater than 70%, 75% of the soil samples tested were positive, while in the low-prevalence prairie region of North Dakota (11% prevalence in male mule deer), none of the soils contained prion seeding activity. Soil-bound CWD prion detection has the potential to improve our understanding of the environmental spread of CWD, benefiting both surveillance and mitigation approaches.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Department
of Renewable Resources, University of Alberta, Edmonton T6G 2G7, Canada
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Anthony Ness
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Erin Moffatt
- Canadian
Wildlife Health Cooperative Western Northern, University of Saskatchewan, Saskatoon S7N 5B4, Canada
| | - Trent Bollinger
- Canadian
Wildlife Health Cooperative Western Northern, University of Saskatchewan, Saskatoon S7N 5B4, Canada
| | - Debbie McKenzie
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Iga Stasiak
- Ministry
of Environment, Government of Saskatchewan, Saskatoon S7N 3R3, Canada
| | - Charlie S. Bahnson
- North
Dakota Game and Fish Department, Bismarck, North Dakota 58501-5095, United States
| | - Judd M. Aiken
- Centre
for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| |
Collapse
|
7
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP, the NC1209: North American Interdisciplinary Chronic Wasting Disease Research Consortium Members. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
8
|
Soto P, Bravo-Risi F, Kramm C, Gamez N, Benavente R, Bonilla DL, Reed JH, Lockwood M, Spraker TR, Nichols T, Morales R. Nasal bots carry relevant titers of CWD prions in naturally infected white-tailed deer. EMBO Rep 2024; 25:334-350. [PMID: 38191872 PMCID: PMC10883265 DOI: 10.1038/s44319-023-00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.
Collapse
Affiliation(s)
- Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Denise L Bonilla
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Terry R Spraker
- Colorado State University Diagnostic Medical Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
9
|
Carlson CM, Thomas S, Keating MW, Soto P, Gibbs NM, Chang H, Wiepz JK, Austin AG, Schneider JR, Morales R, Johnson CJ, Pedersen JA. Plants as vectors for environmental prion transmission. iScience 2023; 26:108428. [PMID: 38077138 PMCID: PMC10700824 DOI: 10.1016/j.isci.2023.108428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024] Open
Abstract
Prions cause fatal neurodegenerative diseases and exhibit remarkable durability, which engenders a wide array of potential exposure scenarios. In chronic wasting disease of deer, elk, moose, and reindeer and in scrapie of sheep and goats, prions are transmitted via environmental routes and the ability of plants to accumulate and subsequently transmit prions has been hypothesized, but not previously demonstrated. Here, we establish the ability of several crop and other plant species to take up prions via their roots and translocate them to above-ground tissues from various growth media including soils. We demonstrate that plants can accumulate prions in above-ground tissues to levels sufficient to transmit disease after oral ingestion by mice. Our results suggest plants may serve as vectors for prion transmission in the environment-a finding with implications for wildlife conservation, agriculture, and public health.
Collapse
Affiliation(s)
- Christina M. Carlson
- Cellular and Molecular Biology Program, University of Wisconsin – Madison, Madison, WI 53706, USA
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Samuel Thomas
- Department of Soil Science, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Matthew W. Keating
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicole M. Gibbs
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Haeyoon Chang
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Jamie K. Wiepz
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Annabel G. Austin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay R. Schneider
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | | | - Joel A. Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Bravo-Risi F, Soto P, Benavente R, Nichols TA, Morales R. Dynamics of CWD prion detection in feces and blood from naturally infected white-tailed deer. Sci Rep 2023; 13:20170. [PMID: 37978207 PMCID: PMC10656452 DOI: 10.1038/s41598-023-46929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Tracy A Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
11
|
Laggan NA, Parise KL, White JP, Kaarakka HM, Redell JA, DePue JE, Scullon WH, Kath J, Foster JT, Kilpatrick AM, Langwig KE, Hoyt JR. Host infection and disease-induced mortality modify species contributions to the environmental reservoir. Ecology 2023; 104:e4147. [PMID: 37522873 DOI: 10.1002/ecy.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Environmental pathogen reservoirs exist for many globally important diseases and can fuel epidemics, influence pathogen evolution, and increase the threat of host extinction. Species composition can be an important factor that shapes reservoir dynamics and ultimately determines the outcome of a disease outbreak. However, disease-induced mortality can change species communities, indicating that species responsible for environmental reservoir maintenance may change over time. Here we examine the reservoir dynamics of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We quantified changes in pathogen shedding, infection prevalence and intensity, host abundance, and the subsequent propagule pressure imposed by each species over time. We find that highly shedding species are important during pathogen invasion, but contribute less over time to environmental contamination as they also suffer the greatest declines. Less infected species remain more abundant, resulting in equivalent or higher propagule pressure. More broadly, we demonstrate that high infection intensity and subsequent mortality during disease progression can reduce the contributions of high-shedding species to long-term pathogen maintenance.
Collapse
Affiliation(s)
- Nichole A Laggan
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - J Paul White
- Wisconsin Department of Natural Resources, Madison, Wisconsin, USA
| | | | | | - John E DePue
- Michigan Department of Natural Resources, Baraga, Michigan, USA
| | | | - Joseph Kath
- Illinois Department of Natural Resources, Springfield, Illinois, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| |
Collapse
|
12
|
Inzalaco HN, Bravo-Risi F, Morales R, Walsh DP, Storm DJ, Pedersen JA, Turner WC, Lichtenberg SS. Ticks harbor and excrete chronic wasting disease prions. Sci Rep 2023; 13:7838. [PMID: 37188858 DOI: 10.1038/s41598-023-34308-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting cervids. Circulating PrPCWD in blood may pose a risk for indirect transmission by way of hematophagous ectoparasites acting as mechanical vectors. Cervids can carry high tick infestations and exhibit allogrooming, a common tick defense strategy between conspecifics. Ingestion of ticks during allogrooming may expose naïve animals to CWD, if ticks harbor PrPCWD. This study investigates whether ticks can harbor transmission-relevant quantities of PrPCWD by combining experimental tick feeding trials and evaluation of ticks from free-ranging white-tailed deer (Odocoileus virginianus). Using the real-time quaking-induced conversion (RT-QuIC) assay, we show that black-legged ticks (Ixodes scapularis) fed PrPCWD-spiked blood using artificial membranes ingest and excrete PrPCWD. Combining results of RT-QuIC and protein misfolding cyclic amplification, we detected seeding activity from 6 of 15 (40%) pooled tick samples collected from wild CWD-infected white-tailed deer. Seeding activities in ticks were analogous to 10-1000 ng of CWD-positive retropharyngeal lymph node collected from deer upon which they were feeding. Estimates revealed a median infectious dose range of 0.3-42.4 per tick, suggesting that ticks can take up transmission-relevant amounts of PrPCWD and may pose a CWD risk to cervids.
Collapse
Affiliation(s)
- H N Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA.
| | - F Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - R Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - D P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - D J Storm
- Wisconsin Department of Natural Resources, Eau Claire, WI, USA
| | - J A Pedersen
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - W C Turner
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, U.S. Geological Survey, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - S S Lichtenberg
- Department of Soil Science, University of Wisconsin, Madison, Madison, WI, USA
| |
Collapse
|
13
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Effect of legal regulation of supplemental feeding on space use of red deer in an area with chronic wasting disease. EUR J WILDLIFE RES 2023. [DOI: 10.1007/s10344-022-01630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractSupplemental feeding of cervids during winter is a widespread management practice, but feeding may increase the risk of disease transmission. Therefore, legal regulations to limit supplemental feeding are often implemented when dealing with severe infectious diseases, such as chronic wasting disease (CWD) in cervids. However, it is currently unclear whether these regulations result in decreased spatial clustering and aggregation as intended. Supplemental feeding is expected to restrict the movement of cervids. Therefore, a ban on feeding may also result in wider space use and a risk of geographic spread of disease. The space use of 63 GPS-marked red deer (Cervus elaphus) was investigated before (n = 34) and after (n = 29) the implementation of a legal regulation aimed at limiting the supplemental feeding of cervids during winter in a CWD-affected region of Nordfjella, Norway. Snow depth was the main determinant of the space use for red deer. A moderate reduction in the number of GPS positions in spatial clusters was evident during periods of deep snow once the ban was in place. Sizes of core areas (Kernel 50%), home ranges (Kernel 95%), and dispersion (MCP 100%, number of 1 km2 pixels visited per deer) declined from January to March and with increasing snow depth. Dispersion (number of 1 km2 pixels visited per deer) did not depend on snow depth after the ban, and red deer used larger areas when snow depth was high after the ban compared to before. The ban on supplementary feeding had no effect on size of core areas or home ranges. Several potential factors can explain the overall weak effect of the ban on space use, including the use of agricultural fields by red deer, other anthropogenic feeding, and landscape topography. This study highlights that snow depth is the main factor determining space use during winter, and it remains to be determined whether the moderate reduction in spatial clustering during deep snow after the ban was sufficient to lower the risk of disease transmission.
Collapse
|
15
|
Egan ME, Pepin KM, Fischer JW, Hygnstrom SE, VerCauteren KC, Bastille‐Rousseau G. Social network analysis of white‐tailed deer scraping behavior: Implications for disease transmission. Ecosphere 2023. [DOI: 10.1002/ecs2.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Affiliation(s)
- Michael E. Egan
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| | - Kim M. Pepin
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Justin W. Fischer
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Scott E. Hygnstrom
- Wisconsin Center for Wildlife College of Natural Resources, University of Wisconsin‐Stevens Point Stevens Point Wisconsin USA
| | - Kurt C. VerCauteren
- National Wildlife Research Center United States Department of Agriculture, Animal and Plant Health Inspection Services, Wildlife Service Fort Collins Colorado USA
| | - Guillaume Bastille‐Rousseau
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale Illinois USA
- School of Biological Sciences Southern Illinois University Carbondale Illinois USA
| |
Collapse
|
16
|
Utaaker KS, Ytrehus B, Davey ML, Fossøy F, Davidson RK, Miller AL, Robertsen PA, Strand O, Rauset GR. Parasite Spillover from Domestic Sheep to Wild Reindeer-The Role of Salt Licks. Pathogens 2023; 12:pathogens12020186. [PMID: 36839459 PMCID: PMC9959430 DOI: 10.3390/pathogens12020186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Attraction sites are important for environmental pathogen transmission and spillover. Yet, their role in wildlife disease dynamics is often poorly substantiated. Herein, we study the role of salt licks as potential attraction sites for the spillover of gastrointestinal parasites from domestic sheep to wild reindeer. Eggs from the introduced sheep nematode Nematodirus battus were found in faecal samples of both species, suggestive of spillover. DNA metabarcoding of soil, collected at salt licks, revealed that N. battus, in addition to Teladorsagia circumcincta, were the most frequently occurring parasitic nematodes, with a significantly higher prevalence of nematodal DNA in salt lick soil compared to soil from control sites nearby. The finding of similar DNA haplotypes of N. battus in sheep, reindeer, and salt lick soil supports the hypothesis of spillover to reindeer via salt licks. More detailed investigation of the genetic diversity of N. battus across these hosts is needed to draw firm conclusions. Infection with these sheep nematodes could potentially explain a recently observed decline in the calf recruitment rate of the Knutshø reindeer herd. This study also supports the hypothesized role of artificial salt licks as hot spots for the transmission of environmentally persistent pathogens and illustrates the importance of knowledge about such attraction points in the study of disease in free-roaming animals.
Collapse
Affiliation(s)
- Kjersti Selstad Utaaker
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence:
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07 Uppsala, Sweden
| | - Marie L. Davey
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
| | - Frode Fossøy
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
| | | | - Andrea L. Miller
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Per-Anders Robertsen
- Department of Forestry and Wildlife Management, Faculty of Applied Ecology and Agricultural Sciences, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Olav Strand
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485 Trondheim, Norway
| |
Collapse
|
17
|
Salmanpour F, Shakoori Z, Kia M, Eshaghi R, Ghaderi M, Ghomi S, Kaveh R, Rabie K, Kiabi BH, Farhadinia MS. Mineral lick use by a community of large herbivores in northern Iran. Ecol Evol 2023; 13:e9731. [PMID: 36699572 PMCID: PMC9849147 DOI: 10.1002/ece3.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Natural mineral licks are ecologically valuable resources to meet the physiological needs of herbivores, particularly in temperate forests. Importantly, licking sites can harbor high anthropogenic risk for conservation-dependent herbivores through higher chance of pathogen spillover from livestock and increased levels of poaching risks. However, to the best of our knowledge, there is no information on the mineral lick use in temperate forests of west Asia and the Caucasus where a few threatened deer species exist. We monitored four naturally occurring mineral licks in Central Alborz Protected Area, northern Iran during May-July 2019 using camera traps and analyzed the mineral content of the licking sites. A total of 53 independent mineral lick visits were obtained from only three species of herbivores, i.e., Caspian red deer (Cervus elaphus maral; n = 21), roe deer (Capreolus capreolus; n = 26), and wild pig (Sus scrofa; n = 6). The sex ratio of visiting Caspian red deer was highly skewed toward females (3M:18F), whereas it was more balanced in visiting roe deer (11M:15F). The species-level distribution of visits corresponded to diurnal and cathemeral for Caspian red deer and for roe deer, respectively, without any evidence of different activity curves. There was a negative nonlinear relationship between the ambient temperature and the visitation rate. Our findings showed that mineral licks are important habitat features for these large herbivores and need to be included in spatial mapping and habitat protection measures.
Collapse
Affiliation(s)
- Farid Salmanpour
- Department of Biodiversity and Ecosystem Management, Research Institute of Environmental SciencesShahid Beheshti UniversityTehranIran
| | - Zahra Shakoori
- Department of Biodiversity and Ecosystem Management, Research Institute of Environmental SciencesShahid Beheshti UniversityTehranIran
- Department of Plant Science and Biotechnology, Faculty of Science and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Mehdi Kia
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Rahman Eshaghi
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Mehdi Ghaderi
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Saied Ghomi
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Reza Kaveh
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Kuros Rabie
- Department of EnvironmentMazandaran Provincial OfficeMazandaranIran
| | - Bahram H. Kiabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Mohammad S. Farhadinia
- Department of BiologyUniversity of OxfordOxfordUK
- Durrell Institute of Conservation and Ecology, School of Anthropology and ConservationUniversity of KentKentUK
| |
Collapse
|
18
|
Perrin-Stowe TI, Ishida Y, Reed DM, Terrill EE, Ryder OA, Novakofski JE, Mateus-Pinilla NE, Pukazhenthi BS, Roca AL. Extrapolating the susceptibility of Eld’s deer (Rucervus eldii thamin) to chronic wasting disease from prion protein gene (PRNP) polymorphisms. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1007100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of North American cervids. The transmission of CWD to endangered cervid species is of concern for captive breeding programs. Trans-species transmission could occur via direct contact with infected wild deer, or via prion contaminated fomites. Variation in the prion protein gene, PRNP, is associated with differences in CWD susceptibility among cervids. We therefore sequenced PRNP in 36 endangered Eld’s deer (Rucervus eldii thamin), detecting five synonymous and two non-synonymous SNPs. Three haplotypes were inferred, suggesting that genetic management in captive breeding programs has been effective at maintaining PRNP diversity. The haplotypes encoded two PrP protein variants. The more common Eld’s deer PrP variant encodes methionine at codon 208 and glutamine at codon 226. Because this protein variant is identical to a common PrP variant in white-tailed deer and mule deer and is especially common in white-tailed deer positive for CWD, we recommend reducing the frequency of this variant in the breeding stock, while implementing strict management practices to avoid exposure to wild North American cervids. The frequency of the other PrP variant, which differs from variants present in these North American cervids, was low. It has the potential to reduce susceptibility to CWD and thus could be increased in frequency. While PRNP haplotype frequencies should be shifted, genetic diversity should be maintained. Ultimately protein diversity may be protective should CWD infect the species, and trans-species polymorphisms are suggestive of past balancing selection and a potential fitness advantage for PRNP diversity.
Collapse
|
19
|
Chronic wasting disease prions in mule deer interdigital glands. PLoS One 2022; 17:e0275375. [PMID: 36190981 PMCID: PMC9529147 DOI: 10.1371/journal.pone.0275375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a geographically expanding, fatal neurodegenerative disease in cervids. The disease can be transmitted directly (animal-animal) or indirectly via infectious prions shed into the environment. The precise mechanisms of indirect CWD transmission are unclear but known sources of the infectious prions that contaminate the environment include saliva, urine and feces. We have previously identified PrPC expression in deer interdigital glands, sac-like exocrine structures located between the digits of the hooves. In this study, we assayed for CWD prions within the interdigital glands of CWD infected deer to determine if they could serve as a source of prion shedding and potentially contribute to CWD transmission. Immunohistochemical analysis of interdigital glands from a CWD-infected female mule deer identified disease-associated PrPCWD within clusters of infiltrating leukocytes adjacent to sudoriferous and sebaceous glands, and within the acrosyringeal epidermis of a sudoriferous gland tubule. Proteinase K-resistant PrPCWD material was amplified by serial protein misfolding cyclic amplification (sPMCA) from soil retrieved from between the hoof digits of a clinically affected mule deer. Blinded testing of interdigital glands from 11 mule deer by real-time quake-induced conversion (RT-QuIC) accurately identified CWD-infected animals. The data described suggests that interdigital glands may play a role in the dissemination of CWD prions into the environment, warranting future investigation.
Collapse
|
20
|
Varga C, McDonald P, Brown WM, Shelton P, Roca AL, Novakofski JE, Mateus‐Pinilla NE. Evaluating the ability of a locally focused culling program in removing chronic wasting disease infected free-ranging white-tailed deer in Illinois, USA, 2003-2020. Transbound Emerg Dis 2022; 69:2867-2878. [PMID: 34953169 PMCID: PMC9786818 DOI: 10.1111/tbed.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
In northern Illinois, chronic wasting disease (CWD) was first identified in free-ranging white-tailed deer (Odocoileus virginianus; hereafter referred to as "deer") in 2002. To reduce CWD transmission rates in Illinois, wildlife biologists have conducted locally focussed culling of deer since 2003 in areas where CWD has been detected. We used retrospective spatial, temporal and space-time scan statistical models to identify areas and periods where culling removed higher than expected numbers of CWD-positive deer. We included 490 Public Land Survey "sections" (∼2.59 km2 ) from 15 northern Illinois counties in which at least one deer tested positive for CWD between 2003 and 2020. A negative binomial regression model compared the proportion of CWD positive cases removed from sections with at least one CWD case detected in the previous years, "local area 1 (L1)," to the proportion of CWD cases in adjacent sections-L2, L3, and L4-designated by their increasing distance from L1. Of the 14,661 deer removed and tested via culling, 325 (2.22 %) were CWD-positive. A single temporal CWD cluster occurred in 2020. Three spatial clusters were identified, with a primary cluster located at the border of Boone and Winnebago counties. Four space-time clusters were identified with a primary cluster in the northern portion of the study area from 2003 to 2005 that overlapped with the spatial cluster. The proportion of CWD cases removed from L1 (3.92, 95% CI, 2.56-6.01) and L2 (2.32, 95% CI, 1.50-3.59) were significantly higher compared to L3. Focussing culling efforts on accessible properties closest to L1 areas results in more CWD-infected deer being removed, which highlights the value of collaborations among landowners, hunters, and wildlife management agencies to control CWD. Continuous evaluation and updating of the culling and surveillance programs are essential to mitigate the health burden of CWD on deer populations in Illinois.
Collapse
Affiliation(s)
- Csaba Varga
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA,Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Patrick McDonald
- Illinois Department of Natural ResourcesDivision of Wildlife ResourcesSpringfieldIllinoisUSA
| | - William M. Brown
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Paul Shelton
- Illinois Department of Natural ResourcesDivision of Wildlife ResourcesSpringfieldIllinoisUSA
| | - Alfred L. Roca
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA,Illinois Natural History Survey‐Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA,Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jan E. Novakofski
- Illinois Natural History Survey‐Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA,Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Nohra E. Mateus‐Pinilla
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA,Illinois Natural History Survey‐Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA,Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
21
|
Harpaz E, Salvesen Ø, Rauset GR, Mahmood A, Tran L, Ytrehus B, Benestad SL, Tranulis MA, Espenes A, Ersdal C. No evidence of uptake or propagation of reindeer CWD prions in environmentally exposed sheep. Acta Vet Scand 2022; 64:13. [PMID: 35668456 PMCID: PMC9169292 DOI: 10.1186/s13028-022-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of cervids first reported in North America in the 1960s. In Europe, CWD was first diagnosed in 2016 in a wild reindeer in Norway. Detection of two more cases in the same mountain area led to the complete culling of this partially confined reindeer population of about 2400 animals. A total of 19 CWD positive animals were identified. The affected area is extensively used for the grazing of sheep during summers. There are many mineral licks intended for sheep in the area, but these have also been used by reindeer. This overlap in area use raised concerns for cross-species prion transmission between reindeer and sheep. In this study, we have used global positioning system (GPS) data from sheep and reindeer, including tracking one of the CWD positive reindeer, to investigate spatial and time-relevant overlaps between these two species. Since prions can accumulate in lymphoid follicles following oral uptake, samples of gut-associated lymphoid tissue (GALT) from 425 lambs and 78 adult sheep, which had grazed in the region during the relevant timeframe, were analyzed for the presence of prions. The recto-anal mucosa associated lymphoid tissue (RAMALT) from all the animals were examined by histology, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA), and the ileal Peyer's patch (IPP) from a subsample of 37 lambs were examined by histology and IHC, for the detection of prions. RESULTS GPS data showed an overlap in area use between the infected reindeer herd and the sheep. In addition, the GPS positions of an infected reindeer and some of the sampled sheep showed temporospatial overlap. No prions were detected in the GALT of the investigated sheep even though the mean lymphoid follicle number in RAMALT and IPP samples were high. CONCLUSION The absence of prions in the GALT of sheep that have shared pasture with CWD-infected reindeer, may suggest that transmission of this novel CWD strain to sheep does not easily occur under the conditions found in these mountains. We document that the lymphoid follicle rich RAMALT could be a useful tool to screen for prions in sheep.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Geir Rune Rauset
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway
| | - Aqsa Mahmood
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway
| | - Linh Tran
- Norwegian Veterinary Institute, P.O. box 64, 1431, Ås, Norway
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), Torgarden, P.O. Box 5685, 7485, Trondheim, Norway.,Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | | | - Michael Andreas Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Svebastadveien, 112, 4325, Sandnes, Norway.
| |
Collapse
|
22
|
Ness A, Jacob A, Saboraki K, Otero A, Gushue D, Martinez Moreno D, de Peña M, Tang X, Aiken J, Lingle S, McKenzie D. Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer. Prion 2022; 16:40-57. [PMID: 35634740 PMCID: PMC9154781 DOI: 10.1080/19336896.2022.2079888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.
Collapse
Affiliation(s)
- Anthony Ness
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Aradhana Jacob
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Kelsey Saboraki
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Enfermedades Transmisibles Emergentes, Universidad de ZaragozaCentro de Encefalopatías y , Zaragoza, Spain
| | - Danielle Gushue
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Diana Martinez Moreno
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Melanie de Peña
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Xinli Tang
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Lingle
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Moore SJ, Carlson CM, Schneider JR, Johnson CJ, Greenlee JJ. Increased Attack Rates and Decreased Incubation Periods in Raccoons with Chronic Wasting Disease Passaged through Meadow Voles. Emerg Infect Dis 2022; 28:793-801. [PMID: 35318913 PMCID: PMC8962881 DOI: 10.3201/eid2804.210271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a naturally-occurring neurodegenerative disease of cervids. Raccoons (Procyon lotor) and meadow voles (Microtus pennsylvanicus) have previously been shown to be susceptible to the CWD agent. To investigate the potential for transmission of the agent of CWD from white-tailed deer to voles and subsequently to raccoons, we intracranially inoculated raccoons with brain homogenate from a CWD-affected white-tailed deer (CWDWtd) or derivatives of this isolate after it had been passaged through voles 1 or 5 times. We found that passage of the CWDWtd isolate through voles led to a change in the biologic behavior of the CWD agent, including increased attack rates and decreased incubation periods in raccoons. A better understanding of the dynamics of cross-species transmission of CWD prions can provide insights into how these infectious proteins evolve in new hosts.
Collapse
|
24
|
Kwait R, Kerwin K, Herzog C, Bennett J, Padhi S, Zoccolo I, Maslo B. Whole‐room ultraviolet sanitization as a method for the site‐level treatment of
Pseudogymnoascus destructans. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Carl Herzog
- New York State Department of Environmental Conservation Albany New York USA
| | - Joan Bennett
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Sally Padhi
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Isabelle Zoccolo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| |
Collapse
|
25
|
Pritzkow S, Gorski D, Ramirez F, Soto C. Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clin Microbiol Rev 2021; 34:e0005919. [PMID: 34319151 PMCID: PMC8404694 DOI: 10.1128/cmr.00059-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a group of fatal, infectious neurodegenerative disorders affecting various species of mammals, including humans. The infectious agent in these diseases, termed prion, is composed exclusively of a misfolded protein that can spread and multiply in the absence of genetic materials. In this article, we provide an overview of the mechanisms of prion replication, interindividual transmission, and dissemination in communities. In particular, we review the potential role of the natural environment in prion transmission, including the mechanisms and pathways for prion entry and accumulation in the environment as well as its roles in prion mutation, adaptation, evolution, and transmission. We also discuss the transmission of prion diseases through medical practices, scientific research, and use of biological products. Detailed knowledge of these aspects is crucial to limit the spreading of existing prion diseases as well as to prevent the emergence of new diseases with possible catastrophic consequences for public health.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Frank Ramirez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
26
|
Sargeant GA, Wild MA, Schroeder GM, Powers JG, Galloway NL. Spatial network clustering reveals elk population structure and local variation in prevalence of chronic wasting disease. Ecosphere 2021. [DOI: 10.1002/ecs2.3781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Glen A. Sargeant
- Northern Prairie Wildlife Research Center U.S. Geological Survey 8711 37th St. SE Jamestown North Dakota 58401 USA
| | - Margaret A. Wild
- College of Veterinary Medicine Washington State University P.O. Box 647040 Pullman Washington 99164 USA
| | - Gregory M. Schroeder
- Wind Cave National Park National Park Service 26611 U.S. Highway 385 Hot Springs South Dakota 57747 USA
| | - Jenny G. Powers
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| | - Nathan L. Galloway
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| |
Collapse
|
27
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
28
|
Ishida Y, Tian T, Brandt AL, Kelly AC, Shelton P, Roca AL, Novakofski J, Mateus-Pinilla NE. Association of chronic wasting disease susceptibility with prion protein variation in white-tailed deer ( Odocoileus virginianus). Prion 2021; 14:214-225. [PMID: 32835598 PMCID: PMC7518741 DOI: 10.1080/19336896.2020.1805288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 10 others encoded Q95G96S100N103A123Q226, designated ‘PrP variant A.’ Haplotype C and five other haplotypes encoded PrP ‘variant C’ (Q95S96S100N103A123Q226). Haplotype F and three other haplotypes encoded PrP ‘variant F’ (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Ting Tian
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,School of Mathematics, Sun Yat-sen University , Guangzhou, People's Republic of China
| | - Adam L Brandt
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Division of Natural Sciences, St. Norbert College , De Pere, WI, USA
| | - Amy C Kelly
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Bayer U.S. - Crop Sciences Biotechnology Genomics and Data Science, BB4929-A , Chesterfield, MO, USA
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources , Springfield, IL, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| |
Collapse
|
29
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Hamlin BC, Penfold L, Cusack LM, Novakofski J, Mateus-Pinilla NE, Roca AL. Prion Protein Gene (PRNP) Sequences Suggest Differing Vulnerability to Chronic Wasting Disease for Florida Key Deer (Odocoileus virginianus clavium) and Columbian White-Tailed Deer (O. v. leucurus). J Hered 2021; 111:564-572. [PMID: 32945850 DOI: 10.1093/jhered/esaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, highly transmissible spongiform encephalopathy caused by an infectious prion protein. CWD is spreading across North American cervids. Studies of the prion protein gene (PRNP) in white-tailed deer (WTD; Odocoileus virginianus) have identified non-synonymous substitutions associated with reduced CWD frequency. Because CWD is spreading rapidly geographically, it may impact cervids of conservation concern. Here, we examined the genetic vulnerability to CWD of 2 subspecies of WTD: the endangered Florida Key deer (O. v. clavium) and the threatened Columbian WTD (O. v. leucurus). In Key deer (n = 48), we identified 3 haplotypes formed by 5 polymorphisms, of which 2 were non-synonymous. The polymorphism c.574G>A, unique to Key deer (29 of 96 chromosomes), encodes a non-synonymous substitution from valine to isoleucine at codon 192. In 91 of 96 chromosomes, Key deer carried c.286G>A (G96S), previously associated with substantially reduced susceptibility to CWD. Key deer may be less genetically susceptible to CWD than many mainland WTD populations. In Columbian WTD (n = 13), 2 haplotypes separated by one synonymous substitution (c.438C>T) were identified. All of the Columbian WTD carried alleles that in other mainland populations are associated with relatively high susceptibility to CWD. While larger sampling is needed, future management plans should consider that Columbian WTD are likely to be genetically more vulnerable to CWD than many other WTD populations. Finally, we suggest that genetic vulnerability to CWD be assessed by sequencing PRNP across other endangered cervids, both wild and in captive breeding facilities.
Collapse
Affiliation(s)
- Tolulope I N Perrin-Stowe
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emily E Terrill
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brian C Hamlin
- United States Fish and Wildlife Service Office of Law Enforcement National Fish and Wildlife Forensic Laboratory, Ashland, OR
| | - Linda Penfold
- South-East Zoo Alliance for Reproduction and Conservation, Yulee, FL
| | - Lara M Cusack
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Alfred L Roca
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
30
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
31
|
Kincheloe JM, Horn-Delzer AR, Makau DN, Wells SJ. Chronic Wasting Disease Transmission Risk Assessment for Farmed Cervids in Minnesota and Wisconsin. Viruses 2021; 13:v13081586. [PMID: 34452450 PMCID: PMC8402894 DOI: 10.3390/v13081586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
CWD (chronic wasting disease) has emerged as one of the most important diseases of cervids and continues to adversely affect farmed and wild cervid populations, despite control and preventive measures. This study aims to use the current scientific understanding of CWD transmission and knowledge of farmed cervid operations to conduct a qualitative risk assessment for CWD transmission to cervid farms and, applying this risk assessment, systematically describe the CWD transmission risks experienced by CWD-positive farmed cervid operations in Minnesota and Wisconsin. A systematic review of literature related to CWD transmission informed our criteria to stratify CWD transmission risks to cervid operations into high-risk low uncertainty, moderate-risk high uncertainty, and negligible-risk low uncertainty categories. Case data from 34 CWD-positive farmed cervid operations in Minnesota and Wisconsin from 2002 to January 2019 were categorized by transmission risks exposure and evaluated for trends. The majority of case farms recorded high transmission risks (56%), which were likely sources of CWD, but many (44%) had only moderate or negligible transmission risks, including most of the herds (62%) detected since 2012. The presence of CWD-positive cervid farms with only moderate or low CWD transmission risks necessitates further investigation of these risks to inform effective control measures.
Collapse
Affiliation(s)
- James M. Kincheloe
- Center for Science in the Public Interest, 1220 L St. N.W., Suite 300, Washington, DC 20005, USA
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
- Correspondence:
| | - Amy R. Horn-Delzer
- Wisconsin Department of Agriculture, Trade, and Consumer Protection, 2811 Agriculture Drive, Madison, WI 53708, USA;
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| |
Collapse
|
32
|
Spatial Clustering by Red Deer and Its Relevance for Management of Chronic Wasting Disease. Animals (Basel) 2021; 11:ani11051272. [PMID: 33925184 PMCID: PMC8146590 DOI: 10.3390/ani11051272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Herbivores like cervids usually graze on widely scattered forage, but anthropogenic food sources may cause spatial revisitation and aggregation, posing a risk for transmission of infectious diseases. In 2016, chronic wasting disease (CWD) was first detected in Norway. A legal regulation to ban supplemental feeding of cervids and to fence stored hay bales was implemented to lower aggregation of cervids. Knowledge of further patterns and causes of spatial revisitation can inform disease management. We used a recently developed revisitation analysis on GPS-positions from 13 red deer (Cervus elaphus) to identify the pattern of spatial clustering, and we visited 185 spatial clusters during winter to identify the causes of clustering. Anthropogenic food sources were found in 11.9% of spatial clusters, which represented 31.0% of the clusters in agricultural fields. Dumping of silage and hay bales were the main anthropogenic food sources (apart from agricultural fields), and unfenced hay bales were available despite the regulation. The probability of the clusters being in agricultural fields was high during winter. It may be necessary to find other ways of disposing of silage and enforcing the requirement of fencing around hay bales to ensure compliance, in particular during winters with deep snow.
Collapse
|
33
|
Hedman HD, Varga C, Brown WM, Shelton P, Roca AL, Novakofski JE, Mateus-Pinilla NE. Spatial analysis of chronic wasting disease in free-ranging white-tailed deer (Odocoileus virginianus) in Illinois, 2008-2019. Transbound Emerg Dis 2020; 68:2376-2383. [PMID: 33112021 DOI: 10.1111/tbed.13901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Understanding the geographic distribution and clustering of chronic wasting disease (CWD) among free-ranging white-tailed deer (Odocoileus virginianus) populations can inform disease management practices. We used a retrospective analysis of surveillance data to evaluate CWD's spatial and temporal dynamics within 16 CWD-infected northern Illinois counties. Of 42,541 deer samples collected and tested for CWD from recreational hunter harvest between 2008 and 2019, we recorded 359 (0.84%) CWD-positive samples. We observed variability in CWD cases over time and space. By county, the median CWD-positive proportion was 0.84%, varying from a minimum of 0.14% in McHenry County to a maximum of 6.28% in Boone County. Across years, there were differences among CWD-positive proportions with a median of 0.90%, ranging from a minimum of 0.27% in 2012 to a maximum of 1.60% in 2019. We used a retrospective discrete Poisson scan statistic model to evaluate the space-time clustering of CWD-positive deer. We identified a statistically significant (p < .001) primary cluster C1 (area = 23.59 km2 ; RR = 10.48), occurring from 2010 to 2015 in the north-central part of the study area, and a secondary cluster C2, occurring from 2014 to 2019 (area = 9.27 km2 ; RR = 3.88) in the north-west of the study area. Detected CWD-positive space-time clusters suggest that the risk of CWD is not random. Space-time clusters of CWD can be used to evaluate the effectiveness of the Illinois CWD management programme. The area surrounding the older C1 cluster has undergone longer and more intense CWD management compared with C2. Currently, the older C1 cluster is no longer as high risk compared with the newer cluster C2, suggesting that management efforts in C2 should be increased. However, all CWD clusters should be targeted with surveillance, prevention and management programmes, including reducing deer densities to limit further spread of CWD.
Collapse
Affiliation(s)
- Hayden D Hedman
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - William M Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources, Springfield, IL, USA
| | - Alfred L Roca
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jan E Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
34
|
Kuznetsova A, McKenzie D, Cullingham C, Aiken JM. Long-Term Incubation PrP CWD with Soils Affects Prion Recovery but Not Infectivity. Pathogens 2020; 9:pathogens9040311. [PMID: 32340296 PMCID: PMC7238116 DOI: 10.3390/pathogens9040311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic wasting disease (CWD) is a contagious prion disease of cervids. The infectious agent is shed from animals at the preclinical and clinical stages of disease where it persists in the environment as a reservoir of CWD infectivity. In this study, we demonstrate that long-term incubation of CWD prions (generated from tg-mice infected with deer or elk prions) with illite, montmorillonite (Mte) and whole soils results in decreased recovery of PrPCWD, suggesting that binding becomes more avid and irreversible with time. This continual decline of immunoblot PrPCWD detection did not correlate with prion infectivity levels. Bioassay showed no significant differences in incubation periods between mice inoculated with 1% CWD brain homogenate (BH) and with the CWD-BH pre-incubated with quartz or Luvisolic Ae horizon for 1 or 30 weeks. After 55 weeks incubation with Chernozem and Luvisol, bound PrPCWD was not detectable by immunoblotting but remained infectious. This study shows that although recovery of PrPCWD bound to soil minerals and whole soils with time become more difficult, prion infectivity is not significantly altered. Detection of prions in soil is, therefore, not only affected by soil type but also by length of time of the prion–soil interaction.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB T6G 2G8, Canada;
| | - Debbie McKenzie
- Faculty of Science, University of Alberta, Edmonton, AB T6G 2M8, Canada;
| | | | - Judd M. Aiken
- Agricultural, Life and Environmental Sciences Faculty, University of Alberta, Edmonton, AB T6G 2G8, Canada;
- Correspondence:
| |
Collapse
|
35
|
Escobar LE, Pritzkow S, Winter SN, Grear DA, Kirchgessner MS, Dominguez-Villegas E, Machado G, Peterson AT, Soto C. The ecology of chronic wasting disease in wildlife. Biol Rev Camb Philos Soc 2020; 95:393-408. [PMID: 31750623 PMCID: PMC7085120 DOI: 10.1111/brv.12568] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Prions are misfolded infectious proteins responsible for a group of fatal neurodegenerative diseases termed transmissible spongiform encephalopathy or prion diseases. Chronic Wasting Disease (CWD) is the prion disease with the highest spillover potential, affecting at least seven Cervidae (deer) species. The zoonotic potential of CWD is inconclusive and cannot be ruled out. A risk of infection for other domestic and wildlife species is also plausible. Here, we review the current status of the knowledge with respect to CWD ecology in wildlife. Our current understanding of the geographic distribution of CWD lacks spatial and temporal detail, does not consider the biogeography of infectious diseases, and is largely biased by sampling based on hunters' cooperation and funding available for each region. Limitations of the methods used for data collection suggest that the extent and prevalence of CWD in wildlife is underestimated. If the zoonotic potential of CWD is confirmed in the short term, as suggested by recent results obtained in experimental animal models, there will be limited accurate epidemiological data to inform public health. Research gaps in CWD prion ecology include the need to identify specific biological characteristics of potential CWD reservoir species that better explain susceptibility to spillover, landscape and climate configurations that are suitable for CWD transmission, and the magnitude of sampling bias in our current understanding of CWD distribution and risk. Addressing these research gaps will help anticipate novel areas and species where CWD spillover is expected, which will inform control strategies. From an ecological perspective, control strategies could include assessing restoration of natural predators of CWD reservoirs, ultrasensitive CWD detection in biotic and abiotic reservoirs, and deer density and landscape modification to reduce CWD spread and prevalence.
Collapse
Affiliation(s)
- Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| | - Steven N. Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, 24061, U.S.A
| | - Daniel A. Grear
- US Geological Survey National Wildlife Health Center, Madison, WI, 59711, U.S.A
| | | | | | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, U.S.A
| | - A. Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, 66045, U.S.A
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, Houston, TX, 77030, U.S.A
| |
Collapse
|
36
|
Kholodova MV, Baranova AI, Mizin IA, Panchenko DV, Romanenko TM, Korolev AN. A Genetic Predisposition to Chronic Wasting Disease in the Reindeer Rangifer tarandus in the Northern European Part of Russia. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019060074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Hwang S, Dassanayake RP, Nicholson EM. PAD-Beads enrichment enhances detection of PrP Sc using real-time quaking-induced conversion. BMC Res Notes 2019; 12:806. [PMID: 31836019 PMCID: PMC6911270 DOI: 10.1186/s13104-019-4842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Scrapie is a transmissible spongiform encephalopathy (TSE) that naturally occurs in sheep and goats. This fatal neurodegenerative disease results from misfolding of the normal cellular prion protein (PrPC) to a pathogenic prion protein form (PrPSc). This pathogenic form, PrPSc, accumulates in the brain and lymphoid tissues. The presence of PrPSc can be detected by an in vitro conversion assay known as real-time quaking induced conversion (RT-QuIC). RT-QuIC has been used to detect PrPSc in a variety of biological tissues from brains to fluids. While this technique is both rapid and sensitive, enhancing the detection of prions would be valuable in the diagnostic laboratories. Results In this study, we assessed whether PrPSc detection sensitivity of RT-QuIC can be increased by enriching PrPSc in scrapie tissue homogenates using commercially available aggregated protein binding ligands coated magnetic beads (PAD-Beads). Coupling of RT-QuIC to PAD-Beads based cleanup allowed detection of PrPSc rapidly and without dilution of scrapie sheep brain homogenates prior to RT-QuIC. The PAD-Beads sample pretreatment step prior to RT-QuIC is a useful enhancement in the diagnosis of TSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Rohana P Dassanayake
- Ruminant Disease and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA.
| |
Collapse
|
38
|
Geographic Distribution of Chronic Wasting Disease Resistant Alleles in Nebraska, with Comments on the Evolution of Resistance. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/012019-jfwm-002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Infectious diseases create major challenges for wildlife management. In particular, prion diseases are fatal and incurable, leaving managers with limited options. In cervids, chronic wasting disease (CWD) can decimate captive and wild populations by affecting neural tissue leading to body control loss, decay, and ultimately death resulting in ecological and economic consequences. Partial protection against CWD results from some genotypes at the prion (PRNP) locus encoding PrP proteins that are less likely to misfold and build up to fatal levels in the central nervous system. Although multiple studies have documented the association between CWD susceptibility and genotypes, little is known about the distribution of resistant genotypes across the natural landscape, and whether population pockets of protection in exist in particular regions. We surveyed the genetic variability and distribution of resistant alleles and genotypes of the PRNP locus across Nebraska in deer collected in 2017, where mule deer (Odocoileus hemionus) and white-tailed (O. virginianus) deer ranges meet on the North American Great Plains. We found that CWD-resistant alleles occur throughout the state in low frequencies, and our data suggest little evidence of geographic structure for the PRNP locus. In Nebraska, there is a lower frequency of the most common resistance allele (S96) compared with white-tailed deer in other parts of the Midwest. The frequency of resistant alleles (F225) was lower in mule deer. The low but widespread frequency of resistance alleles suggests that each species could be susceptible to CWD spread. Continued monitoring would be useful to determine if the frequency of resistant alleles increases in areas with increasing CWD rates. Three synonymous fixed genotypes at the PRNP locus allowed detection of hybrids between mule deer and white-tailed deer, although we found none, suggesting that CWD is not spread between species via hybridization. We also compare the PRNP genotypes of scrapie-resistant sheep with those of deer, and suggest that a single base-pair mutation at the PRNP locus could provide resistance in deer.
Collapse
|
39
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
40
|
Rivera NA, Brandt AL, Novakofski JE, Mateus-Pinilla NE. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:123-139. [PMID: 31632898 PMCID: PMC6778748 DOI: 10.2147/vmrr.s197404] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.
Collapse
Affiliation(s)
- Nelda A Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Adam L Brandt
- Division of Natural Sciences, St. Norbert College, De Pere, WI, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
41
|
Mysterud A, Viljugrein H, Solberg EJ, Rolandsen CM. Legal regulation of supplementary cervid feeding facing chronic wasting disease. J Wildl Manage 2019. [DOI: 10.1002/jwmg.21746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of Oslo P.O. Box 1066 Blindern, NO‐0316 Oslo Norway
| | | | - Erling J. Solberg
- Norwegian Institute for Nature Research (NINA) P.O. Box 5685 Torgarden, NO‐7485 Trondheim Norway
| | - Christer M. Rolandsen
- Norwegian Institute for Nature Research (NINA) P.O. Box 5685 Torgarden, NO‐7485 Trondheim Norway
| |
Collapse
|
42
|
Croft S, Ward AI, Aegerter JN, Smith GC. Modeling current and potential distributions of mammal species using presence-only data: A case study on British deer. Ecol Evol 2019; 9:8724-8735. [PMID: 31410275 PMCID: PMC6686353 DOI: 10.1002/ece3.5424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 11/07/2022] Open
Abstract
AIM Decisions on wildlife conservation, management, and epidemiological risk are best based on robust evidence. The continual improvement of species distributions, such that they can be relied upon in decision-making, is important. Here we seek to refine aspects of a generic modelling approach and improve the utility of species distribution maps. LOCATION Great Britain (GB). METHODS We applied a modeling framework based on hierarchical Bayesian species distribution models exploiting opportunistic occurrence records from citizen science datasets to predict both current and potential distributions for each of the six deer species known to be present in GB. Using the resulting maps, we performed a simple analysis of the overlap between species to illustrate possible contact, which we interpret as the relative risk of potential disease spread given an introduction. RESULTS Predicted distribution maps showed good agreement with the broader scale occurrence reported by a recent national deer survey with an average True Skill Statistics and AUC of 0.69 and 0.89, respectively. Aggregation of the maps for all species highlighted regions of central and eastern England as well as parts of Scotland where extensive areas of range overlap could result in interspecific contact with consequences for risk assessments for diseases of deer. However, if populations are allowed to expand to their predicted potential, then areas of overlap, and therefore disease interspecific transmission risk, will become extensive and widespread across all of mainland Britain. MAIN CONCLUSIONS The generic modeling approach outlined performed well across all of the deer species tested, offering a robust and reliable tool through which current and potential animal distributions can be estimated and presented. Our application, intended to inform quantitative risk assessments, demonstrates the practical use of such outputs to generate the valuable evidence required to inform policy decisions on issues such as management strategy.
Collapse
Affiliation(s)
- Simon Croft
- National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
| | - Alastair I. Ward
- National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
- Department of Biological and Marine SciencesUniversity of HullHullUK
| | - James N. Aegerter
- National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
| | - Graham C. Smith
- National Wildlife Management CentreAnimal and Plant Health AgencyYorkUK
| |
Collapse
|
43
|
Mysterud A, Edmunds DR. A review of chronic wasting disease in North America with implications for Europe. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1260-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES)Department of BiosciencesUniversity of Oslo Oslo Norway
| | | |
Collapse
|