1
|
Brown K, Walsh A, Yennemadi A, O'Leary S, O'Sullivan M, Nadarajan P, Basdeo S, Leisching G, Keane J. Mycobacterium tuberculosis Induces Warburg Metabolism in Human Alveolar Macrophages: A Transcriptomic Analysis. Am J Respir Cell Mol Biol 2025; 72:597-602. [PMID: 40311077 DOI: 10.1165/rcmb.2024-0268le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Affiliation(s)
- Kevin Brown
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Aaron Walsh
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Anjali Yennemadi
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Seónadh O'Leary
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Mary O'Sullivan
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | | | - Sharee Basdeo
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Gina Leisching
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| | - Joseph Keane
- Trinity College Dublin, Ireland
- Saint James' Hospital Dublin, Ireland
| |
Collapse
|
2
|
Dill-McFarland KA, Peterson G, Lim PN, Skerrett S, Hawn TR, Rothchild AC, Campo M. Shared and distinct responses of human and murine alveolar macrophages and monocyte-derived macrophages to Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640814. [PMID: 40093075 PMCID: PMC11908159 DOI: 10.1101/2025.02.28.640814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Macrophages serve as important sites of bacterial replication and host immune response during Mycobacterium tuberculosis (Mtb) infection with distinct roles for alveolar macrophages (AMs) early in infection and monocyte-derived (MDMs) during later stages of disease. Here, we leverage data from human and mouse models to perform a cross-species analysis of macrophage responses to Mtb infection. Overall, we find that both subsets of human and murine macrophages mount a strong interferon response to Mtb infection. However, AM across both species do not generate as strong a pro-inflammatory response as human MDMs or murine bone marrow-derived macrophages (BMDMs), as characterized by TNFA signaling and inflammatory response pathways. Interestingly, AMs from mice that were previously vaccinated with BCG (scBCG) or from a model of contained TB (coMtb) had Mtb responses that were more similar to human AMs than control mice. We also identify species-specific pathways altered by infection differently in mouse and human macrophages, specifically in pathways related to cholesterol in AMs as well as MYC targets and Hedgehog signaling in MDMs/BMDMs. Lastly, to investigate downstream effects of the macrophage interferon responses, we examine macrophage expression of IL-10, an immunosuppressive cytokine induced by Type I Interferons, and c-Maf, a transcription factor required for IL-10 expression in myeloid cells. We find that c-Maf and IL-10 have significantly lower expression in AMs compared to MDMs in both humans and mice, suggesting one possible mechanism by which AMs mount a stronger interferon response following Mtb infection. Overall, these results highlight the dynamics of innate myeloid responses over the course of Mtb infection and the benefit of a combined analysis across species to reveal conserved and unique responses.
Collapse
|
3
|
Campo M, Dill-McFarland KA, Peterson GJ, Benson B, Skerrett SJ, Hawn TR. Human Alveolar and Monocyte-Derived Human Macrophage Responses to Mycobacterium tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:161-169. [PMID: 38836816 PMCID: PMC11610518 DOI: 10.4049/jimmunol.2300885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Alveolar macrophages (AMs) and recruited monocyte-derived macrophages (MDMs) mediate early lung immune responses to Mycobacterium tuberculosis. Differences in the response of these distinct cell types are poorly understood and may provide insight into mechanisms of tuberculosis pathogenesis. The objective of this study was to determine whether M. tuberculosis induces unique and essential antimicrobial pathways in human AMs compared with MDMs. Using paired human AMs and 5-d MCSF-derived MDMs from six healthy volunteers, we infected cells with M. tuberculosis H37Rv for 6 h, isolated RNA, and analyzed transcriptomic profiles with RNA sequencing. We found 681 genes that were M. tuberculosis dependent in AMs compared with MDMs and 4538 that were M. tuberculosis dependent in MDMs, but not AMs (false discovery rate [FDR] < 0.05). Using hypergeometric enrichment of DEGs in Broad Hallmark gene sets, we found that type I and II IFN Response were the only gene sets selectively induced in M. tuberculosis-infected AM (FDR < 0.05). In contrast, MYC targets, unfolded protein response and MTORC1 signaling, were selectively enriched in MDMs (FDR < 0.05). IFNA1, IFNA8, IFNE, and IFNL1 were specifically and highly upregulated in AMs compared with MDMs at baseline and/or after M. tuberculosis infection. IFNA8 modulated M. tuberculosis-induced proinflammatory cytokines and, compared with other IFNs, stimulated unique transcriptomes. Several DNA sensors and IFN regulatory factors had higher expression at baseline and/or after M. tuberculosis infection in AMs compared with MDMs. These findings demonstrate that M. tuberculosis infection induced unique transcriptional responses in human AMs compared with MDMs, including upregulation of the IFN response pathway and specific DNA sensors.
Collapse
Affiliation(s)
- Monica Campo
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | | | - Basilin Benson
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA
| | | | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Hall TJ, McHugo GP, Mullen MP, Ward JA, Killick KE, Browne JA, Gordon SV, MacHugh DE. Integrative and comparative genomic analyses of mammalian macrophage responses to intracellular mycobacterial pathogens. Tuberculosis (Edinb) 2024; 147:102453. [PMID: 38071177 DOI: 10.1016/j.tube.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 06/14/2024]
Abstract
Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority of which encode key components of the NF-κB signalling pathway and that also drive formation of the granuloma.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Technological University of the Shannon, Athlone, Westmeath, N37 HD68, Ireland
| | - James A Ward
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
5
|
Shantaram D, Hoyd R, Blaszczak AM, Antwi L, Jalilvand A, Wright VP, Liu J, Smith AJ, Bradley D, Lafuse W, Liu Y, Williams NF, Snyder O, Wheeler C, Needleman B, Brethauer S, Noria S, Renton D, Perry KA, Nagareddy P, Wozniak D, Mahajan S, Rana PSJB, Pietrzak M, Schlesinger LS, Spakowicz DJ, Hsueh WA. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat Commun 2024; 15:5434. [PMID: 38937454 PMCID: PMC11211470 DOI: 10.1038/s41467-024-48935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration. Only mice receiving high-fat diet and stool from subjects with obesity show enrichment of VAT neutrophils, suggesting donor microbiome and recipient diet determine VAT neutrophilia. A rise in pro-inflammatory CD4+ Th1 cells and a drop in immunoregulatory T cells in VAT only follows if there is a transient spike in neutrophils. Human VAT neutrophils exhibit a distinct gene expression pattern that is found in different human tissues, including tumors. VAT neutrophils and bacteria may be a novel therapeutic target for treating inflammatory-driven complications of obesity, including insulin resistance and colon cancer.
Collapse
Affiliation(s)
- Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Linda Antwi
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Alan J Smith
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - William Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - YunZhou Liu
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Nyelia F Williams
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Owen Snyder
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Caroline Wheeler
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Stacy Brethauer
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Kyle A Perry
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University, Columbus, OH, 43210, USA
| | - Prabha Nagareddy
- Department of Internal Medicine, Cardiovascular Section University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73117, USA
| | - Daniel Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Sahil Mahajan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Pranav S J B Rana
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Daniel J Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, 43210, USA.
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Pahari S, Neehus AL, Trapnell BC, Bustamante J, Casanova JL, Schlesinger LS. Protocol to develop human alveolar macrophage-like cells from mononuclear cells or purified monocytes for use in respiratory biology research. STAR Protoc 2024; 5:103061. [PMID: 38722740 PMCID: PMC11099312 DOI: 10.1016/j.xpro.2024.103061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Human alveolar macrophages are a unique myeloid subset critical for understanding pulmonary diseases and are difficult to access. Here, we present a protocol to generate human alveolar macrophage-like (AML) cells from fresh peripheral blood mononuclear cells or purified monocytes. We describe steps for cell isolation, incubation in a defined cocktail of pulmonary surfactant and lung-associated cytokines, phenotype analysis, and validation with human alveolar macrophages. We then detail procedures for quality control and technical readouts for monitoring microbial response. For complete details on the use and execution of this protocol, please refer to Pahari et al.1 and Neehus et al.2.
Collapse
Affiliation(s)
- Susanta Pahari
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Departments of Medicine and Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
7
|
Kim MW, Lee H, Lee S, Moon S, Kim Y, Kim JY, Kim SI, Kim JY. Drug-resistant profiles of extracellular vesicles predict therapeutic response in TNBC patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:185. [PMID: 38326737 PMCID: PMC10851537 DOI: 10.1186/s12885-024-11822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Suji Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Sol Moon
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Young Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Joon Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Maggisano V, Capriglione F, Mio C, Bulotta S, Damante G, Russo D, Celano M. RNA Profile of Cell Bodies and Exosomes Released by Tumorigenic and Non-Tumorigenic Thyroid Cells. Int J Mol Sci 2024; 25:1407. [PMID: 38338696 PMCID: PMC10855121 DOI: 10.3390/ijms25031407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor cells release exosomes, extracellular vesicle containing various bioactive molecules such as protein, DNA and RNA. The analysis of RNA molecules packaged in exosomes may provide new potential diagnostic or prognostic tumor biomarkers. The treatment of radioiodine-refractory aggressive thyroid cancer is still an unresolved clinical challenge, and the search for biomarkers that are detectable in early phase of the disease has become a fundamental goal for thyroid cancer research. By using transcriptome analysis, this study aimed to analyze the gene expression profiles of exosomes secreted by a non-tumorigenic thyroid cell line (Nthy-ori 3.1-exo) and a papillary thyroid cancer (TPC-1-exo) cell line, comparing them with those of cell bodies (Nthy-ori 3.1-cells and TPC-1-cells). A total of 9107 transcripts were identified as differentially expressed when comparing TPC-1-exo with TPC-1-cells and 5861 when comparing Nthy-ori 3.1-exo with Nthy-ori 3.1-cells. Among them, Sialic acid-binding immunoglobulin-like lectins 10 and 11 (SIGLEC10, SIGLEC11) and Keratin-associated protein 5 (KRTAP5-3) transcripts, genes known to be involved in cancer progression, turned out to be up-regulated only in TPC-1-exo. Gene ontology analysis revealed significantly enriched pathways, and only in TPC-1-exo were the differential expressed genes associated with an up-regulation in epigenetic processes. These findings provide a proof of concept that some mRNA species are specifically packaged in tumor-cell-derived exosomes and may constitute a starting point for the identification of new biomarkers for thyroid tumors.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Damante
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
10
|
Pahari S, Arnett E, Simper J, Azad A, Guerrero-Arguero I, Ye C, Zhang H, Cai H, Wang Y, Lai Z, Jarvis N, Lumbreras M, Maselli DJ, Peters J, Torrelles JB, Martinez-Sobrido L, Schlesinger LS. A new tractable method for generating human alveolar macrophage-like cells in vitro to study lung inflammatory processes and diseases. mBio 2023; 14:e0083423. [PMID: 37288969 PMCID: PMC10470505 DOI: 10.1128/mbio.00834-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 06/09/2023] Open
Abstract
Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-β, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines. IMPORTANCE Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.
Collapse
Affiliation(s)
- Susanta Pahari
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Eusondia Arnett
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jan Simper
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Molecular Immunology and Microbiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Abul Azad
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Israel Guerrero-Arguero
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Chengjin Ye
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Natalie Jarvis
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Molecular Immunology and Microbiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Miranda Lumbreras
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Diego Jose Maselli
- Division of Pulmonary and Critical Care Medicine, UT Health Science Center, San Antonio, Texas, USA
| | - Jay Peters
- Division of Pulmonary and Critical Care Medicine, UT Health Science Center, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Luis Martinez-Sobrido
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S. Schlesinger
- Host Pathogen Interactions and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
11
|
Whittington AM, Turner FS, Baark F, Templeman S, Kirwan DE, Roufosse C, Krishnan N, Robertson BD, Chong DLW, Porter JC, Gilman RH, Friedland JS. An acidic microenvironment in Tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog 2023; 19:e1011495. [PMID: 37418488 PMCID: PMC10355421 DOI: 10.1371/journal.ppat.1011495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/19/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection causes marked tissue inflammation leading to lung destruction and morbidity. The inflammatory extracellular microenvironment is acidic, however the effect of this acidosis on the immune response to M.tb is unknown. Using RNA-seq we show that acidosis produces system level transcriptional change in M.tb infected human macrophages regulating almost 4000 genes. Acidosis specifically upregulated extracellular matrix (ECM) degradation pathways with increased expression of Matrix metalloproteinases (MMPs) which mediate lung destruction in Tuberculosis. Macrophage MMP-1 and -3 secretion was increased by acidosis in a cellular model. Acidosis markedly suppresses several cytokines central to control of M.tb infection including TNF-α and IFN-γ. Murine studies demonstrated expression of known acidosis signaling G-protein coupled receptors OGR-1 and TDAG-8 in Tuberculosis which are shown to mediate the immune effects of decreased pH. Receptors were then demonstrated to be expressed in patients with TB lymphadenitis. Collectively, our findings show that an acidic microenvironment modulates immune function to reduce protective inflammatory responses and increase extracellular matrix degradation in Tuberculosis. Acidosis receptors are therefore potential targets for host directed therapy in patients.
Collapse
Affiliation(s)
| | - Frances S. Turner
- Edinburgh Genomics, University of Edinburgh, Edinburgh, United Kingdom
| | - Friedrich Baark
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sam Templeman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Daniela E. Kirwan
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Candice Roufosse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Deborah L. W. Chong
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation & Tissue Repair, Respiratory Medicine, University College London, London, United Kingdom
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jon S. Friedland
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| |
Collapse
|
12
|
Sadee W, Cheeseman IH, Papp A, Pietrzak M, Seweryn M, Zhou X, Lin S, Williams AM, Wewers MD, Curry HM, Zhang H, Cai H, Kunsevi-Kilola C, Tshivhula H, Walzl G, Restrepo BI, Kleynhans L, Ronacher K, Wang Y, Arnett E, Azad AK, Schlesinger LS. Human alveolar macrophage response to Mycobacterium tuberculosis: immune characteristics underlying large inter-individual variability. RESEARCH SQUARE 2023:rs.3.rs-2986649. [PMID: 37333188 PMCID: PMC10275041 DOI: 10.21203/rs.3.rs-2986649/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Mycobacterium tuberculosis (M.tb), the causative bacterium of tuberculosis (TB), establishes residence and grows in human alveolar macrophages (AMs). Inter-individual variation in M.tb-human AM interactions can indicate TB risk and the efficacy of therapies and vaccines; however, we currently lack an understanding of the gene and protein expression programs that dictate this variation in the lungs. Results Herein, we systematically analyze interactions of a virulent M.tb strain H37Rv with freshly isolated human AMs from 28 healthy adult donors, measuring host RNA expression and secreted candidate proteins associated with TB pathogenesis over 72h. A large set of genes possessing highly variable inter-individual expression levels are differentially expressed in response to M.tb infection. Eigengene modules link M.tb growth rate with host transcriptional and protein profiles at 24 and 72h. Systems analysis of differential RNA and protein expression identifies a robust network with IL1B, STAT1, and IDO1 as hub genes associated with M.tb growth. RNA time profiles document stimulation towards an M1-type macrophage gene expression followed by emergence of an M2-type profile. Finally, we replicate these results in a cohort from a TB-endemic region, finding a substantial portion of significant differentially expressed genes overlapping between studies. Conclusions We observe large inter-individual differences in bacterial uptake and growth, with tenfold variation in M.tb load by 72h.The fine-scale resolution of this work enables the identification of genes and gene networks associated with early M.tb growth dynamics in defined donor clusters, an important step in developing potential biological indicators of individual susceptibility to M.tb infection and response to therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hong Cai
- University of Texas at San Antonio
| | | | | | | | - Blanca I Restrepo
- University of Texas Rio Grande Valley, South Texas Diabetes and Obesity Institute
| | | | | | | | | | | | | |
Collapse
|
13
|
Pahari S, Arnett E, Simper J, Azad A, Guerrero-Arguero I, Ye C, Zhang H, Cai H, Wang Y, Lai Z, Jarvis N, Lumbreras M, Maselli-Caceres DJ, Peters J, Torrelles JB, Martinez-Sobrido L, Schlesinger LS. A new tractable method for generating Human Alveolar Macrophage Like cells in vitro to study lung inflammatory processes and diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535806. [PMID: 37066199 PMCID: PMC10104118 DOI: 10.1101/2023.04.05.535806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAM) to pulmonary diseases remains poorly understood due to difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, i.e. , Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (GM-CSF, TGF-β, and IL-10) that facilitate the conversion of blood-obtained monocytes to an AM-Like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function, and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines. IMPORTANCE Millions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.
Collapse
Affiliation(s)
- Susanta Pahari
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Eusondia Arnett
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jan Simper
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Molecular Immunology and Microbiology, UT Health San Antonio, San Antonio, TX, USA
| | - Abul Azad
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Israel Guerrero-Arguero
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chengjin Ye
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Natalie Jarvis
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Department of Molecular Immunology and Microbiology, UT Health San Antonio, San Antonio, TX, USA
| | - Miranda Lumbreras
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jay Peters
- Division of Pulmonary and Critical Care Medicine, UT Health Science Center, San Antonio, TX 78207
| | - Jordi B Torrelles
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Martinez-Sobrido
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions and Population Health programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
14
|
Leopold Wager CM, Bonifacio JR, Simper J, Naoun AA, Arnett E, Schlesinger LS. Activation of transcription factor CREB in human macrophages by Mycobacterium tuberculosis promotes bacterial survival, reduces NF-kB nuclear transit and limits phagolysosome fusion by reduced necroptotic signaling. PLoS Pathog 2023; 19:e1011297. [PMID: 37000865 PMCID: PMC10096260 DOI: 10.1371/journal.ppat.1011297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/12/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages are a first line of defense against pathogens. However, certain invading microbes modify macrophage responses to promote their own survival and growth. Mycobacterium tuberculosis (M.tb) is a human-adapted intracellular pathogen that exploits macrophages as an intracellular niche. It was previously reported that M.tb rapidly activates cAMP Response Element Binding Protein (CREB), a transcription factor that regulates diverse cellular responses in macrophages. However, the mechanism(s) underlying CREB activation and its downstream roles in human macrophage responses to M.tb are largely unknown. Herein we determined that M.tb-induced CREB activation is dependent on signaling through MAPK p38 in human monocyte-derived macrophages (MDMs). Using a CREB-specific inhibitor, we determined that M.tb-induced CREB activation leads to expression of immediate early genes including COX2, MCL-1, CCL8 and c-FOS, as well as inhibition of NF-kB p65 nuclear localization. These early CREB-mediated signaling events predicted that CREB inhibition would lead to enhanced macrophage control of M.tb growth, which we observed over days in culture. CREB inhibition also led to phosphorylation of RIPK3 and MLKL, hallmarks of necroptosis. However, this was unaccompanied by cell death at the time points tested. Instead, bacterial control corresponded with increased colocalization of M.tb with the late endosome/lysosome marker LAMP-1. Increased phagolysosomal fusion detected during CREB inhibition was dependent on RIPK3-induced pMLKL, indicating that M.tb-induced CREB signaling limits phagolysosomal fusion through inhibition of the necroptotic signaling pathway. Altogether, our data show that M.tb induces CREB activation in human macrophages early post-infection to create an environment conducive to bacterial growth. Targeting certain aspects of the CREB-induced signaling pathway may represent an innovative approach for development of host-directed therapeutics to combat TB.
Collapse
Affiliation(s)
- Chrissy M. Leopold Wager
- Host Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jordan R. Bonifacio
- Host Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jan Simper
- Host Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Medical Scientist Training Program, Department of Microbiology, Immunology and Molecular Genetics, UT Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Adrian A. Naoun
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Eusondia Arnett
- Host Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Host Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
15
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
16
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
17
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 278] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
18
|
Ribeiro R, Macedo JC, Costa M, Ustiyan V, Shindyapina AV, Tyshkovskiy A, Gomes RN, Castro JP, Kalin TV, Vasques-Nóvoa F, Nascimento DS, Dmitriev SE, Gladyshev VN, Kalinichenko VV, Logarinho E. In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. NATURE AGING 2022; 2:397-411. [PMID: 37118067 DOI: 10.1038/s43587-022-00209-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2022] [Indexed: 04/30/2023]
Abstract
The FOXM1 transcription factor exhibits pleiotropic C-terminal transcriptional and N-terminal non-transcriptional functions in various biological processes critical for cellular homeostasis. We previously found that FOXM1 repression during cellular aging underlies the senescence phenotypes, which were vastly restored by overexpressing transcriptionally active FOXM1. Yet, it remains unknown whether increased expression of FOXM1 can delay organismal aging. Here, we show that in vivo cyclic induction of an N-terminal truncated FOXM1 transgene on progeroid and naturally aged mice offsets aging-associated repression of full-length endogenous Foxm1, reinstating both transcriptional and non-transcriptional functions. This translated into mitigation of several cellular aging hallmarks, as well as molecular and histopathological progeroid features of the short-lived Hutchison-Gilford progeria mouse model, significantly extending its lifespan. FOXM1 transgene induction also reinstated endogenous Foxm1 levels in naturally aged mice, delaying aging phenotypes while extending their lifespan. Thus, we disclose that FOXM1 genetic rewiring can delay senescence-associated progeroid and natural aging pathologies.
Collapse
Affiliation(s)
- Rui Ribeiro
- Aging and Aneuploidy Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana C Macedo
- Aging and Aneuploidy Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Madalena Costa
- Anatomy Department, Unit for Multidisciplinary Biomedical Research, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rita N Gomes
- INEB - Instituto Nacional de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pedro Castro
- Aging and Aneuploidy Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francisco Vasques-Nóvoa
- INEB - Instituto Nacional de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Diana S Nascimento
- INEB - Instituto Nacional de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
19
|
Abstract
Tuberculosis (TB) remains the leading cause of bacterial disease-related death and is among the top 10 overall causes of death worldwide. The complex nature of this infectious lung disease has proven difficult to treat, and significant research efforts are now evaluating the feasibility of host-directed, adjunctive therapies. An attractive approach in host-directed therapy targets host epigenetics, or gene regulation, to redirect the immune response in a host-beneficial manner. Substantial evidence exists demonstrating that host epigenetics are dysregulated during TB and that epigenetic-based therapies may be highly effective to treat TB. However, the caveat is that much of the knowledge that exists on the modulation of the host epigenome during TB has been gained using in vitro, small-animal, or blood-derived cell models, which do not accurately reflect the pulmonary nature of the disease. In humans, the first and major target cells of Mycobacterium tuberculosis are alveolar macrophages (AM). As such, their response to infection and treatment is clinically relevant and ultimately drives the outcome of disease. In this review, we compare the fundamental differences between AM and circulating monocyte-derived macrophages in the context of TB and summarize the recent advances in elucidating the epigenomes of these cells, including changes to the transcriptome, DNA methylome, and chromatin architecture. We will also discuss trained immunity in AM as a new and emerging field in TB research and provide some perspectives for the translational potential of targeting host epigenetics as an alternative TB therapy.
Collapse
|
20
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
21
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
22
|
Torrelles JB, Restrepo BI, Bai Y, Ross C, Schlesinger LS, Turner J. The Impact of Aging on the Lung Alveolar Environment, Predetermining Susceptibility to Respiratory Infections. FRONTIERS IN AGING 2022; 3:818700. [PMID: 35821836 PMCID: PMC9261427 DOI: 10.3389/fragi.2022.818700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Respiratory infections are one of the top causes of death in the elderly population, displaying susceptibility factors with increasing age that are potentially amenable to interventions. We posit that with increasing age there are predictable tissue-specific changes that prevent the immune system from working effectively in the lung. This mini-review highlights recent evidence for altered local tissue environment factors as we age focusing on increased tissue oxidative stress with associated immune cell changes, likely driven by the byproducts of age-associated inflammatory disease. Potential intervention points are presented.
Collapse
Affiliation(s)
- Jordi B. Torrelles
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Blanca I. Restrepo
- School of Public Health in Brownsville, University of Texas Health Houston, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT-Health San Antonio, San Antonio, TX, United States
| | - Corinna Ross
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Soutwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Joanne Turner
- Population Health and Host-Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
23
|
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol 2021; 39:611-637. [PMID: 33637017 DOI: 10.1146/annurev-immunol-093019-010426] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; ,
| | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; , .,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
24
|
Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes Associated with Mycobacterial Infection of Human Macrophages. Antibiotics (Basel) 2021; 10:antibiotics10020097. [PMID: 33498280 PMCID: PMC7909288 DOI: 10.3390/antibiotics10020097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is still a leading cause of death worldwide. Treatments remain unsatisfactory due to an incomplete understanding of the underlying host–pathogen interactions during infection. In the present study, weighted gene co-expression network analysis (WGCNA) was conducted to identify key macrophage modules and hub genes associated with mycobacterial infection. WGCNA was performed combining our own transcriptomic results using Mycobacterium aurum-infected human monocytic macrophages (THP1) with publicly accessible datasets obtained from three types of macrophages infected with seven different mycobacterial strains in various one-to-one combinations. A hierarchical clustering tree of 11,533 genes was built from 198 samples, and 47 distinct modules were revealed. We identified a module, consisting of 226 genes, which represented the common response of host macrophages to different mycobacterial infections that showed significant enrichment in innate immune stimulation, bacterial pattern recognition, and leukocyte chemotaxis. Moreover, by network analysis applied to the 74 genes with the best correlation with mycobacteria infection, we identified the top 10 hub-connecting genes: NAMPT, IRAK2, SOCS3, PTGS2, CCL20, IL1B, ZC3H12A, ABTB2, GFPT2, and ELOVL7. Interestingly, apart from the well-known Toll-like receptor and inflammation-associated genes, other genes may serve as novel TB diagnosis markers and potential therapeutic targets.
Collapse
|
25
|
Madhvi A, Mishra H, Chegou NN, Tromp G, Van Heerden CJ, Pietersen RD, Leisching G, Baker B. Distinct host-immune response toward species related intracellular mycobacterial killing: A transcriptomic study. Virulence 2020; 11:170-182. [PMID: 32052695 PMCID: PMC7051142 DOI: 10.1080/21505594.2020.1726561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 01/10/2023] Open
Abstract
The comparison of the host immune response when challenged with pathogenic and nonpathogenic species of mycobacteria can provide answers to the unresolved question of how pathogens subvert or inhibit an effective response. We infected human monocyte derived macrophages (hMDMs) with different species of mycobacteria, in increasing order of pathogenicity, i.e. M. smegmatis, M. bovis BCG, and M. tuberculosis R179 that had been cultured in the absence of detergents. RNA was isolated post-infection and transcriptomic analysis using amplicons (Ampliseq) revealed 274 differentially expressed genes (DEGs) across three species, out of which we selected 19 DEGs for further validation. We used qRT-PCR to confirm the differential expression of 19 DEGs. We studied biological network through Ingenuity Pathway Analysis® (IPA) which revealed up-regulated pathways of the interferon and interleukin family related to the killing of M. smegmatis. Apart from interferon and interleukin family, we found one up-regulated (EIF2AK2) and two down-regulated (MT1A and TRIB3) genes as unique potential targets found by Ampliseq and qRT-PCR which may be involved in the intracellular mycobacterial killing. The roles of these genes have not previously been described in tuberculosis. Multiplex ELISA of culture supernatants showed increased host immune response toward M. smegmatis as compared to M. bovis BCG and M.tb R179. These results enhance our understanding of host immune response against M.tb infection.
Collapse
Affiliation(s)
- Abhilasha Madhvi
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Hridesh Mishra
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N. Chegou
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Carel J. Van Heerden
- DNA Sequencing Unit, Central Analytical Facility (CAF), Stellenbosch University, Stellenbosch, South Africa
| | - R. D. Pietersen
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gina Leisching
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bienyameen Baker
- NRF-DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
26
|
Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG. M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci 2020; 134:jcs252973. [PMID: 32938685 PMCID: PMC7710011 DOI: 10.1242/jcs.252973] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Xenophagy is an important cellular defence mechanism against cytosol-invading pathogens, such as Mycobacterium tuberculosis (Mtb). Activation of xenophagy in macrophages targets Mtb to autophagosomes; however, how Mtb is targeted to autophagosomes in human macrophages at a high spatial and temporal resolution is unknown. Here, we use human induced pluripotent stem cell-derived macrophages (iPSDMs) to study the human macrophage response to Mtb infection and the role of the ESX-1 type VII secretion system. Using RNA-seq, we identify ESX-1-dependent transcriptional responses in iPSDMs after infection with Mtb. This analysis revealed differential inflammatory responses and dysregulated pathways such as eukaryotic initiation factor 2 (eIF2) signalling and protein ubiquitylation. Moreover, live-cell imaging revealed that Mtb infection in human macrophages induces dynamic ESX-1-dependent, LC3B-positive tubulovesicular autophagosomes (LC3-TVS). Through a correlative live-cell and focused ion beam scanning electron microscopy (FIB SEM) approach, we show that upon phagosomal rupture, Mtb induces the formation of LC3-TVS, from which the bacterium is able to escape to reside in the cytosol. Thus, iPSDMs represent a valuable model for studying spatiotemporal dynamics of human macrophage-Mtb interactions, and Mtb is able to evade capture by autophagic compartments.
Collapse
Affiliation(s)
- Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudio Bussi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rachel J Lai
- Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
27
|
Kim SS, Lee SI, Jin HS, Park S. Tuberculosis risk is associated with genetic polymorphisms in the LRP2, CUBN, and VDR genes. Genes Genomics 2020; 42:1189-1196. [PMID: 32803705 DOI: 10.1007/s13258-020-00971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vitamin D (Vit. D) is used extensively during tuberculosis treatment. Low levels of serum Vit. D increase the risk of active tuberculosis development. Altered expression of the proteins involved in Vit. D metabolism impairs cathelicidin production, thereby increasing the host susceptibility to tuberculosis. OBJECTIVE We are trying to investigate whether single nucleotide polymorphisms (SNPs) in LRP2, CUBN, and VDR genes could affect tuberculosis development. METHODS We included participants of the Korean Association Resource (KARE), part of the Korean Genome and Epidemiology Study (KoGES), and used their recorded data. A total of 8840 people (4182 men and 4658 women) were eligible subjects. The 5-kb regions from the ends of transcripts of GC, LRP2, CUBN, and VDR genes were amplified to select 13, 47, 70, and 15 SNPs, respectively. For association analysis and statistical analysis, PLINK version 1.07 and PASW Statistics version 18.0 were used. RESULTS Significant correlation was observed in 11, 2, and 1 SNPs in LRP2, CUBN, and VDR genes. The effect of rs6747692 of LRP2 on transcription factor binding was confirmed using RegulomeDB. We confirmed that rs2239182 of VDR is located in the genomic eQTL region and can affect transcription factor binding and gene expression. CONCLUSIONS Genetic polymorphisms in genes encoding proteins involved in Vit. D metabolism influence immune system components. Therefore, such polymorphisms may influence the susceptibility to Mycobacterium tuberculosis invasion and alter the defense mechanisms against Mycobacterium tuberculosis infection. The correlation between genetic variation and tuberculosis development can provide new guidelines for the management of tuberculosis.
Collapse
Affiliation(s)
- Sung-Soo Kim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Sang In Lee
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea
| | - Sangjung Park
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, 31499, Chungnam, Korea.
| |
Collapse
|
28
|
Kim J, Park S, Chang Y, Park KH, Lee H. Synergetic Effects of Intronic Mature miR-944 and ΔNp63 Isoforms on Tumorigenesis in a Cervical Cancer Cell Line. Int J Mol Sci 2020; 21:ijms21165612. [PMID: 32764455 PMCID: PMC7460632 DOI: 10.3390/ijms21165612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
miR-944 is located in an intron of the tumor protein p63 gene (TP63). miR-944 expression levels in cervical cancer tissues are significantly higher than in normal tissues and are associated with tumor size, International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and survival. However, associations of miR-944 with its host gene, TP63, which encodes TAp63 and ΔNp63, in cervical cancer have not been fully investigated. A positive correlation between miR-944 and ΔNp63 mRNA expression was identified in cervical cancer tissues. Furthermore, when the expression of miR-944 and ΔNp63 was simultaneously inhibited, cell proliferation-, differentiation- epithelial-mesenchymal transition (EMT)-, transcription-, and virus-associated gene clusters were shown to be significantly more active according to functional annotation analysis. Cell viability and migration were more reduced upon simultaneous inhibition with anti-miR-944 or ΔNp63 siRNA than with inhibition with anti-miR-944 or ΔNp63 siRNA alone, or scramble. In addition, Western blot analysis showed that the simultaneous inhibition of miR-944 and ΔNp63 reduced EMT by increasing the expression of epithelial markers such as claudin and by decreasing mesenchymal markers such as N-cadherin and vimentin. Slug, an EMT transcription factor, was also decreased by the simultaneous inhibition of miR-944 and ΔNp63. Thus, associations between miR-944 and ΔNp63 in cervical cancer could help to elucidate the function of this intronic microRNA and its role in carcinogenesis.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea;
| | - Sunyoung Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- School of Mechanical Engineering, Yonsei University, Seoul 03772, Korea
| | - Yunhee Chang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
| | - Kwang Hwa Park
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju 26426, Korea;
| | - Hyeyoung Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (S.P.); (Y.C.)
- Correspondence: ; Tel.: +82-33-760-2740; Fax: +82-33-760-2561
| |
Collapse
|
29
|
Sousa J, Cá B, Maceiras AR, Simões-Costa L, Fonseca KL, Fernandes AI, Ramos A, Carvalho T, Barros L, Magalhães C, Chiner-Oms Á, Machado H, Veiga MI, Singh A, Pereira R, Amorim A, Vieira J, Vieira CP, Bhatt A, Rodrigues F, Rodrigues PNS, Gagneux S, Castro AG, Guimarães JT, Bastos HN, Osório NS, Comas I, Saraiva M. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun 2020; 11:1949. [PMID: 32327653 PMCID: PMC7181847 DOI: 10.1038/s41467-020-15832-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
Genetic diversity of Mycobacterium tuberculosis affects immune responses and clinical outcomes of tuberculosis (TB). However, how bacterial diversity orchestrates immune responses to direct distinct TB severities is unknown. Here we study 681 patients with pulmonary TB and show that M. tuberculosis isolates from cases with mild disease consistently induce robust cytokine responses in macrophages across multiple donors. By contrast, bacteria from patients with severe TB do not do so. Secretion of IL-1β is a good surrogate of the differences observed, and thus to classify strains as probable drivers of different TB severities. Furthermore, we demonstrate that M. tuberculosis isolates that induce low levels of IL-1β production can evade macrophage cytosolic surveillance systems, including cGAS and the inflammasome. Isolates exhibiting this evasion strategy carry candidate mutations, generating sigA recognition boxes or affecting components of the ESX-1 secretion system. Therefore, we provide evidence that M. tuberculosis strains manipulate host-pathogen interactions to drive variable TB severities.
Collapse
Grants
- The authors thank the excellent support from the i3S scientific platforms, namely Animal facility, Advanced Light Microscopy and BioSciences Screening, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122). This work was financed by FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação grant POCI-01-0145-FEDER-028955 (to MS) and by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013, to MIV, FR, AGC and NSO). IC acknowledges the support of Ministerio de Ciencia, Innovación y Universidades (SAF2016-77346-R) and the European Research Council (638553-TB-ACCELERATE). HNB acknowledges the support of Bolsa D. Manuel de Mello and of the Portuguese Society for Pneumology; AB and MS were also recipients of an International Exchanges Grant from the Royal Society. JS is funded by a research fellow NORTE-01-0145-FEDER-000012; BC and KLF are funded by FCT PhD scholarships SFRH/BD/114403/2016 and SFRH/BD/114405/2016, respectively; MIV is funded by FCT through DL 57/2016 (CRP) and MS through Estimulo Individual ao Emprego Científico.
Collapse
Affiliation(s)
- Jeremy Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Baltazar Cá
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Luisa Simões-Costa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Kaori L Fonseca
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Angélica Ramos
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Teresa Carvalho
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Leandro Barros
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Henrique Machado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rui Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - António Amorim
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Cristina P Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro N S Rodrigues
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - António Gil Castro
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Tiago Guimarães
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- São João Hospital Center, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| |
Collapse
|
30
|
Lavalett L, Ortega H, Barrera LF. Human Alveolar and Splenic Macrophage Populations Display a Distinct Transcriptomic Response to Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:630. [PMID: 32373118 PMCID: PMC7186480 DOI: 10.3389/fimmu.2020.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects alveolar macrophages (AMs), causing pulmonary tuberculosis (PTB), the most common form of the disease. Less frequently, Mtb is disseminated to many other organs and tissues, resulting in different extrapulmonary forms of TB. Nevertheless, very few studies have addressed the global mRNA response of human AMs, particularly from humans with the active form of the disease. Strikingly, almost no studies have addressed the response of human extrapulmonary macrophages to Mtb infection. In this pilot study, using microarray technology, we examined the transcriptomic ex vivo response of AMs from PTB patients (AMTBs) and AMs from control subjects (AMCTs) infected with two clinical isolates of Mtb. Furthermore, we also studied the infection response of human splenic macrophages (SMs) to Mtb isolates, as a model for extrapulmonary infection, and compared the transcriptomic response between AMs and SMs. Our results showed a striking difference in global mRNA profiles in response to infection between AMs and SMs, implicating a tissue-specific macrophage response to Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
31
|
Goenka A, Prise IE, Connolly E, Fernandez-Soto P, Morgan D, Cavet JS, Grainger JR, Nichani J, Arkwright PD, Hussell T. Infant Alveolar Macrophages Are Unable to Effectively Contain Mycobacterium tuberculosis. Front Immunol 2020; 11:486. [PMID: 32265931 PMCID: PMC7107672 DOI: 10.3389/fimmu.2020.00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Infants are more likely to develop lethal disseminated forms of tuberculosis compared with older children and adults. The reasons for this are currently unknown. In this study we test the hypothesis that antimycobacterial function is impaired in infant alveolar macrophages (AMϕs) compared with those of adults. We develop a method of obtaining AMϕs from healthy infants using rigid bronchoscopy and incubate the AMϕs with live virulent Mycobacterium tuberculosis (Mtb). Infant AMϕs are less able to restrict Mtb replication compared with adult AMϕs, despite having similar phagocytic capacity and immunophenotype. RNA-Seq showed that infant AMϕs exhibit lower expression of genes involved in mycobactericidal activity and IFNγ-induction pathways. Infant AMϕs also exhibit lower expression of genes encoding mononuclear cell chemokines such as CXCL9. Our data indicates that failure of AMϕs to contain Mtb and recruit additional mononuclear cells to the site of infection helps to explain the more fulminant course of tuberculosis in early life.
Collapse
Affiliation(s)
- Anu Goenka
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Paulina Fernandez-Soto
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - David Morgan
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Jennifer S. Cavet
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Jaya Nichani
- Department of Paediatric Otolaryngology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Hall TJ, Vernimmen D, Browne JA, Mullen MP, Gordon SV, MacHugh DE, O’Doherty AM. Alveolar Macrophage Chromatin Is Modified to Orchestrate Host Response to Mycobacterium bovis Infection. Front Genet 2020; 10:1386. [PMID: 32117424 PMCID: PMC7020904 DOI: 10.3389/fgene.2019.01386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.
Collapse
Affiliation(s)
- Thomas J. Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Michael P. Mullen
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alan M. O’Doherty
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Deng W, Xing C, David R, Mastroeni D, Ning M, Lo EH, Coleman PD. AmpliSeq Transcriptome of Laser Captured Neurons from Alzheimer Brain: Comparison of Single Cell Versus Neuron Pools. Aging Dis 2019; 10:1146-1158. [PMID: 31788328 PMCID: PMC6844587 DOI: 10.14336/ad.2019.0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in older adults. However, the pathogenesis of AD remains to be fully understood and clinically effective treatments are lacking. Recent advances in single cell RNA sequencing offers an opportunity to characterize the heterogeneity of cell response and explore the molecular mechanism of complex diseases at a single cell level. Here, we present the application of the Ion AmpliSeq transcriptome approach to profile gene expression in single laser captured neurons as well as pooled 10 and 100 neurons from hippocampal CA1 of AD brains versus matching normal aged brains. Our results demonstrated the high sensitivity and high genome coverage of the AmpliSeq transcriptome in single cell sequencing. In addition to capturing the known changes related to AD, our data confirmed the diversity of neuronal profiles in AD brain, which allow the potential identification of single cell response that might be hidden in population analyses. Notably, we also revealed the extensive inhibition of olfactory signaling and confirmed the reduction of neurotransmitter receptors in AD hippocampus. We conclude that although single neuron data show more variance than data from 10 or 100 pooled neurons, single neuron data can be informative. These findings support the utility of the Ion AmpliSeq method for obtaining and analyzing gene expression data from single defined laser captured neurons.
Collapse
Affiliation(s)
- Wenjun Deng
- 1Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02192, USA.,2Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Changhong Xing
- 1Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02192, USA.,3Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rob David
- 4Thermo-Fisher Scientific, Salem, MA 02114, USA
| | - Diego Mastroeni
- 5ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - MingMing Ning
- 1Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02192, USA.,2Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eng H Lo
- 1Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02192, USA
| | - Paul D Coleman
- 5ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
34
|
Lafuse WP, Rajaram MVS, Wu Q, Moliva JI, Torrelles JB, Turner J, Schlesinger LS. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2252-2264. [PMID: 31511357 DOI: 10.4049/jimmunol.1900495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| |
Collapse
|