1
|
Zhan Y, Ding X. Does depression drive technology overuse or vice-versa? a cross-lagged panel analysis of bidirectional relationships among Chinese university students. BMC Psychol 2025; 13:492. [PMID: 40346650 PMCID: PMC12065193 DOI: 10.1186/s40359-025-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The escalating prevalence of depression among university students coincides with unprecedented technology engagement, yet the directional relationship remains contested. While cross-sectional research suggests associations between technology use patterns and depressive symptoms, longitudinal evidence examining bidirectional influences remains scarce, particularly in non-Western populations. OBJECTIVE This study aimed to examine the bidirectional relationships between specific technology use patterns and depression severity among Chinese university students using a methodologically rigorous longitudinal design. METHODS This study conducted a four-wave longitudinal study with assessments at 3-month intervals among undergraduate students (N = 737) from three universities in eastern China. Participants completed validated measures of depression (Patient Health Questionnaire-9), anxiety (Generalized Anxiety Disorder-7), and technology use patterns (duration, timing, motivational contexts). Cross-lagged panel models with random intercepts were used to examine bidirectional relationships while controlling for between-person differences and covariates. RESULTS Total technology use exhibited significant bidirectional relationships with depression, but specific patterns showed distinct relationships. Night-time use (β = 0.16, 95% CI [0.08-0.24], p < 0.001) and social-comparison-motivated use (β = 0.19, 95% CI [0.11-0.27], p < 0.001) predicted subsequent increases in depression, with stronger effects than the reverse pathway (depression to increased technology use). Conversely, depression predicted increased escapism-motivated technology use (β = 0.23, 95% CI [0.14-0.32], p < 0.001) more strongly than the reverse pathway. Body mass index significantly moderated these relationships, with stronger technology-to-depression effects among participants with overweight/obesity (β = 0.27, 95% CI [0.16-0.38], p < 0.001) compared to normal-weight participants (β = 0.11, 95% CI [0.03-0.19], p = 0.009). The observed relationships remained significant after adjusting for anxiety, sleep quality, and socioeconomic factors. CONCLUSION These findings reveal complex, pattern-specific bidirectional relationships between technology use and depression, with important temporal precedence differences. The results suggest that certain technology use contexts may contribute more strongly to depression development, while depression may drive other specific usage patterns. These findings have implications for targeted intervention approaches addressing both depression and problematic technology use among university students.
Collapse
Affiliation(s)
- Yuting Zhan
- Department of Psychology, School of Education and Teach, Ningxia University, Yinchuan, Ningxia Province, 750021, China
| | - Xu Ding
- Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong Province, 271016, China.
| |
Collapse
|
2
|
Shamshirgaran MA, Golchin M. Necrotic enteritis in chickens: a comprehensive review of vaccine advancements over the last two decades. Avian Pathol 2025; 54:1-26. [PMID: 39190009 DOI: 10.1080/03079457.2024.2398028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
ABSTRACTNecrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to poultry, leading to progressive deterioration of the small intestine, reduced performance, and increased mortality rates, causing economic losses in the poultry industry. The elimination of antimicrobial agents from chicken feed has imposed a need to explore alternative approaches for NE control, with vaccination emerging as a promising strategy to counteract the detrimental consequences associated with NE. This comprehensive review presents an overview of the extensive efforts made in NE vaccination from 2004 to 2023. The review focuses on the development and evaluation of vaccine candidates designed to combat NE. Rigorous evaluations were conducted in both experimental chickens and broiler chickens, the target population, to assess the vaccines' capacity to elicit an immune response and provide substantial protection against toxin challenges and experimental NE infections. The review encompasses the design of vaccine candidates, the antigens employed, in vivo immune responses, and the efficacy of these vaccines in protecting birds from experimental NE infection. This review contributes to the existing knowledge of NE vaccination strategies, offering valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Pisuttinusart N, Shanmugaraj B, Srisaowakarn C, Ketloy C, Prompetchara E, Thitithanyanont A, Phoolcharoen W. Immunogenicity of a recombinant plant-produced respiratory syncytial virus F subunit vaccine in mice. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00826. [PMID: 38234330 PMCID: PMC10793081 DOI: 10.1016/j.btre.2023.e00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Respiratory syncytial virus (RSV) is a highly infectious respiratory virus that causes serious illness, particularly in young children, elderly people, and those with immunocompromised individuals. RSV infection is the leading cause of infant hospitalization and can lead to serious complications such as pneumonia and bronchiolitis. Currently, there is an RSV vaccine approved exclusively for the elderly population, but no approved vaccine specifically designed for infants or any other age groups. Therefore, it is crucial to continue the development of an RSV vaccine specifically tailored for these populations. In this study, the immunogenicity of the two plant-produced RSV-F Fc fusion proteins (Native construct and structural stabilized construct) were examined to assess them as potential vaccine candidates for RSV. The RSV-F Fc fusion proteins were transiently expressed in Nicotiana benthamiana and purified using protein A affinity column chromatography. The recombinant RSV-F Fc fusion protein was recognized by the monoclonal antibody Motavizumab specific against RSV-F protein. Moreover, the immunogenicity of the two purified RSV-F Fc proteins were evaluated in mice by formulating with different adjuvants. According to our results, the plant-produced RSV-F Fc fusion protein is immunogenic in mice. These preliminary findings, demonstrate the immunogenicity of plant-based RSV-F Fc fusion protein, however, further preclinical studies such as antigen dose and adjuvant optimization, safety, toxicity, and challenge studies in animal models are necessary in order to prove the vaccine efficacy.
Collapse
Affiliation(s)
- Nuttapat Pisuttinusart
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Balamurugan Shanmugaraj
- Department of Biotechnology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
- Baiya Phytopharm Co., Ltd, Bangkok 10330, Thailand
| | - Chanya Srisaowakarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula VRC), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula VRC), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Mamedov T, Yuksel D, Gurbuzaslan I, Gulec B, Mammadova G, Ozdarendeli A, Pavel STI, Yetiskin H, Kaplan B, Uygut MA, Hasanova G. SARS-CoV-2 spike protein S1 subunit induces potent neutralizing responses in mice and is effective against Delta and Omicron variants. FRONTIERS IN PLANT SCIENCE 2023; 14:1290042. [PMID: 38034565 PMCID: PMC10682712 DOI: 10.3389/fpls.2023.1290042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, belongs to the betacoronavirus genus. This virus has a high mutation rate, which rapidly evolves into new variants with different properties, such as increased transmissibility or immune evasion. Currently, the most prevalent global SARS-CoV-2 variant is Omicron, which is more transmissible than previous variants. Current available vaccines may be less effective against some currently existing SARS-CoV-2 variants, including the Omicron variant. The S1 subunit of the spike protein of SARS-CoV-2 has been a major target for COVID-19 vaccine development. It plays a crucial role in the virus's entry into host cells and is the primary target for neutralizing antibodies. In this study, the S1 subunit of the spike protein of SARS-CoV-2 was engineered and produced at a high level in Nicotiana benthamiana plant. The expression level of the recombinant S1 protein was greater than the 0.5-g/kg fresh weight, and the purification yield was at least ~0.3 g of pure protein/kg of plant biomass, which would make a plant-produced S1 antigen an ideal vaccine candidate for commercialization. Purified, the plant-produced SARS-CoV-2 S1 protein exhibited significantly higher binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2). Moreover, we also show that recombinant S1 protein/antigen-elicited antibodies can neutralize the Delta or Omicron variants. Collectively, our results demonstrate that a plant-produced S1 antigen could be a promising vaccine candidate against SARS-CoV-2 variants including Omicron.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of Azerbaijan, Baku, Azerbaijan
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Burcu Gulec
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Gulshan Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Busra Kaplan
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Muhammet Ali Uygut
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
5
|
Mamedov T, Yuksel D, Gurbuzaslan I, Ilgin M, Gulec B, Mammadova G, Ozdarendeli A, Pavel STI, Yetiskin H, Kaplan B, Uygut MA, Hasanova G. Plant-produced RBD and cocktail-based vaccine candidates are highly effective against SARS-CoV-2, independently of its emerging variants. FRONTIERS IN PLANT SCIENCE 2023; 14:1202570. [PMID: 37600182 PMCID: PMC10433747 DOI: 10.3389/fpls.2023.1202570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel and highly pathogenic coronavirus that caused an outbreak in Wuhan City, China, in 2019 and then spread rapidly throughout the world. Although several coronavirus disease 2019 (COVID-19) vaccines are currently available for mass immunization, they are less effective against emerging SARS-CoV-2 variants, especially the Omicron (B.1.1.529). Recently, we successfully produced receptor-binding domain (RBD) variants of the spike (S) protein of SARS-CoV-2 and an antigen cocktail in Nicotiana benthamiana, which are highly produced in plants and elicited high-titer antibodies with potent neutralizing activity against SARS-CoV-2. In this study, based on neutralization ability, we demonstrate that plant-produced RBD and cocktail-based vaccine candidates are highly effective against SARS-CoV-2, independently of its emerging variants. These data demonstrate that plant-produced RBD and cocktail-based proteins are the most promising vaccine candidates and may protect against Delta and Omicron-mediated COVID-19. This is the first report describing vaccines against SARS-CoV-2, which demonstrate significant activities against Delta and Omicron variants.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, Republic of Azerbaijan, Baku, Azerbaijan
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Merve Ilgin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Burcu Gulec
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Gulshan Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Busra Kaplan
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Türkiye
| | - Muhammet Ali Uygut
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Türkiye
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
6
|
Hare J, Riggall G, Bongers A, Ramesh K, Kokareva L, Chin B. Vaccine research and development capacity in Central and West Asia: A path toward sustainable vaccine R&D programs. Front Public Health 2023; 11:1143790. [PMID: 36935694 PMCID: PMC10017735 DOI: 10.3389/fpubh.2023.1143790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
The ability to support a comprehensive vaccine research and development (R&D) portfolio from a health security perspective has taken on enhanced significance over the past 3 years whereby countries that had existing vaccine R&D infrastructure (G7, Russia and China) have been at the forefront of global efforts to combat COVID-19. Few countries outside of these key players have the infrastructure necessary to develop national vaccine programs, though this is beginning to change with investment across many low- and middle-income countries. These same opportunities exist for countries in Central and West Asia, and in this perspective, we highlight the existing infrastructure and expertise across seven countries (Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan) and propose opportunities for enhanced collaboration along with a bold proposal for establishing a new-build, regional vaccine translational research institute to facilitate the development of a robust, regional vaccine R&D environment to combat existing and future health challenges.
Collapse
Affiliation(s)
| | - Giovanna Riggall
- Crown Agents, London, United Kingdom
- *Correspondence: Giovanna Riggall
| | | | | | | | - Brian Chin
- Asian Development Bank, Manila, Philippines
| |
Collapse
|
7
|
Song S, Kim H, Jang EY, Jeon H, Diao H, Khan MRI, Lee M, Lee YJ, Nam J, Kim S, Kim Y, Sohn E, Hwang I, Choi J. SARS-CoV-2 spike trimer vaccine expressed in Nicotiana benthamiana adjuvanted with Alum elicits protective immune responses in mice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2298-2312. [PMID: 36062974 PMCID: PMC9538723 DOI: 10.1111/pbi.13908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.
Collapse
Affiliation(s)
- Shi‐Jian Song
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Heeyeon Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Eun Young Jang
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Hyungmin Jeon
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Hai‐Ping Diao
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Md Rezaul Islam Khan
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Mi‐Seon Lee
- Division of Infectious Diseases InspectionJeju Special Self‐Governing Province Institute of Environment ResearchJejuKorea
| | - Young Jae Lee
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Jeong‐hyun Nam
- Division of Vaccine Research, Vaccine Research CenterNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Seong‐Ryeol Kim
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| | - Young‐Jin Kim
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Eun‐Ju Sohn
- BioApplications Inc.Pohang Technopark ComplexPohangSouth Korea
| | - Inhwan Hwang
- Department of Life SciencePohang University of Science and TechnologyPohangKorea
| | - Jang‐Hoon Choi
- Division of Acute Viral Disease, Center for Emerging Virus ResearchNational Institute of Infectious Diseases, Korea National Institute of HealthCheongjuKorea
| |
Collapse
|
8
|
Margolin E, Allen JD, Verbeek M, Chapman R, Meyers A, van Diepen M, Ximba P, Motlou T, Moore PL, Woodward J, Strasser R, Crispin M, Williamson AL, Rybicki EP. Augmenting glycosylation-directed folding pathways enhances the fidelity of HIV Env immunogen production in plants. Biotechnol Bioeng 2022; 119:2919-2937. [PMID: 35781691 PMCID: PMC9544252 DOI: 10.1002/bit.28169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Heterologous glycoprotein production relies on host glycosylation-dependent folding. When the biosynthetic machinery differs from the usual expression host, there is scope to remodel the assembly pathway to enhance glycoprotein production. Here we explore the integration of chaperone coexpression with glyco-engineering to improve the production of a model HIV-1 envelope antigen. Calreticulin was coexpressed to support protein folding together with Leishmania major STT3D oligosaccharyltransferase, to improve glycan occupancy, RNA interference to suppress the formation of truncated glycans, and Nicotiana benthamiana plants lacking α1,3-fucosyltransferase and β1,2-xylosyltransferase was used as an expression host to prevent plant-specific complex N-glycans forming. This approach reduced the formation of undesired aggregates, which predominated in the absence of glyco-engineering. The resulting antigen also exhibited increased glycan occupancy, albeit to a slightly lower level than the equivalent mammalian cell-produced protein. The antigen was decorated almost exclusively with oligomannose glycans, which were less processed compared with the mammalian protein. Immunized rabbits developed comparable immune responses to the plant-produced and mammalian cell-derived antigens, including the induction of autologous neutralizing antibodies when the proteins were used to boost DNA and modified vaccinia Ankara virus-vectored vaccines. This study demonstrates that engineering glycosylation-directed folding offers a promising route to enhance the production of complex viral glycoproteins in plants.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Service, Centre for HIV and STIs, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Jeremy Woodward
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Anna-Lise Williamson
- Department of Pathology, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
10
|
Rosenberg YJ, Jiang X, Lees JP, Urban LA, Mao L, Sack M. Enhanced HIV SOSIP Envelope yields in plants through transient co-expression of peptidyl-prolyl isomerase B and calreticulin chaperones and ER targeting. Sci Rep 2022; 12:10027. [PMID: 35705669 PMCID: PMC9200074 DOI: 10.1038/s41598-022-14075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.
Collapse
|
11
|
Mamedov T, Yuksel D, Ilgın M, Gürbüzaslan I, Gulec B, Mammadova G, Ozdarendeli A, Yetiskin H, Kaplan B, Islam Pavel ST, Uygut MA, Hasanova G. Production and Characterization of Nucleocapsid and RBD Cocktail Antigens of SARS-CoV-2 in Nicotiana benthamiana Plant as a Vaccine Candidate against COVID-19. Vaccines (Basel) 2021; 9:1337. [PMID: 34835268 PMCID: PMC8621474 DOI: 10.3390/vaccines9111337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 pandemic has put global public health at high risk, rapidly spreading around the world. Although several COVID-19 vaccines are available for mass immunization, the world still urgently needs highly effective, reliable, cost-effective, and safe SARS-CoV-2 coronavirus vaccines, as well as antiviral and therapeutic drugs, to control the COVID-19 pandemic given the emerging variant strains of the virus. Recently, we successfully produced receptor-binding domain (RBD) variants in the Nicotiana benthamiana plant as promising vaccine candidates against COVID-19 and demonstrated that mice immunized with these antigens elicited a high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2. In this study, we engineered the nucleocapsid (N) protein and co-expressed it with RBD of SARS-CoV-2 in Nicotiana benthamiana plant to produce an antigen cocktail. The purification yields were about 22 or 24 mg of pure protein/kg of plant biomass for N or N+RBD antigens, respectively. The purified plant produced N protein was recognized by N protein-specific monoclonal and polyclonal antibodies demonstrating specific reactivity of mAb to plant-produced N protein. In this study, for the first time, we report the co-expression of RBD with N protein to produce a cocktail antigen of SARS-CoV-2, which elicited high-titer antibodies with potent neutralizing activity against SARS-CoV-2. Thus, obtained data support that a plant-produced antigen cocktail, developed in this study, is a promising vaccine candidate against COVID-19.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Merve Ilgın
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Irem Gürbüzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Burcu Gulec
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Gulshan Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri 38280, Turkey; (A.O.); (H.Y.); (B.K.); (S.T.I.P.); (M.A.U.)
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri 38280, Turkey
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri 38280, Turkey; (A.O.); (H.Y.); (B.K.); (S.T.I.P.); (M.A.U.)
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri 38280, Turkey
| | - Busra Kaplan
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri 38280, Turkey; (A.O.); (H.Y.); (B.K.); (S.T.I.P.); (M.A.U.)
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri 38280, Turkey
| | - Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri 38280, Turkey; (A.O.); (H.Y.); (B.K.); (S.T.I.P.); (M.A.U.)
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri 38280, Turkey
| | - Muhammet Ali Uygut
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri 38280, Turkey; (A.O.); (H.Y.); (B.K.); (S.T.I.P.); (M.A.U.)
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya 07058, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (G.H.)
| |
Collapse
|
12
|
Mamedov T, Yuksel D, Ilgın M, Gurbuzaslan I, Gulec B, Yetiskin H, Uygut MA, Islam Pavel ST, Ozdarendeli A, Mammadova G, Say D, Hasanova G. Plant-Produced Glycosylated and In Vivo Deglycosylated Receptor Binding Domain Proteins of SARS-CoV-2 Induce Potent Neutralizing Responses in Mice. Viruses 2021; 13:1595. [PMID: 34452461 PMCID: PMC8402646 DOI: 10.3390/v13081595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs cost-effective and safe SARS-CoV-2 vaccines, antiviral, and therapeutic drugs to control it. In this study, we engineered the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and produced it in the plant Nicotiana benthamiana in a glycosylated and deglycosylated form. Expression levels of both glycosylated (gRBD) and deglycosylated (dRBD) RBD were greater than 45 mg/kg fresh weight. The purification yields were 22 mg of pure protein/kg of plant biomass for gRBD and 20 mg for dRBD, which would be sufficient for commercialization of these vaccine candidates. The purified plant-produced RBD protein was recognized by an S protein-specific monoclonal antibody, demonstrating specific reactivity of the antibody to the plant-produced RBD proteins. The SARS-CoV-2 RBD showed specific binding to angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. In mice, the plant-produced RBD antigens elicited high titers of antibodies with a potent virus-neutralizing activity. To our knowledge, this is the first report demonstrating that mice immunized with plant-produced deglycosylated RBD form elicited high titer of RBD-specific antibodies with potent neutralizing activity against SARS-CoV-2 infection. Thus, obtained data support that plant-produced glycosylated and in vivo deglycosylated RBD antigens, developed in this study, are promising vaccine candidates for the prevention of COVID-19.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Chlorocebus aethiops
- Glycosylation
- Male
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Plants, Genetically Modified
- Protein Binding
- Protein Domains
- Protein Engineering
- Protein Stability
- Receptors, Coronavirus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Merve Ilgın
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Burcu Gulec
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Muhammet Ali Uygut
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
| | - Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, 38280 Kayseri, Turkey; (H.Y.); (M.A.U.); (S.T.I.P.); (A.O.)
- Vaccine Research, Development and Application Center, Erciyes University, 38280 Kayseri, Turkey
| | - Gulshan Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Deniz Say
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey; (D.Y.); (M.I.); (I.G.); (B.G.); (G.M.); (D.S.); (G.H.)
| |
Collapse
|
13
|
Ponndorf D, Meshcheriakova Y, Thuenemann EC, Dobon Alonso A, Overman R, Holton N, Dowall S, Kennedy E, Stocks M, Lomonossoff GP, Peyret H. Plant-made dengue virus-like particles produced by co-expression of structural and non-structural proteins induce a humoral immune response in mice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:745-756. [PMID: 33099859 PMCID: PMC8051607 DOI: 10.1111/pbi.13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 05/20/2023]
Abstract
Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.
Collapse
Affiliation(s)
- Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | - Yulia Meshcheriakova
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | - Eva C. Thuenemann
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| | | | - Ross Overman
- Leaf Expression SystemsNorwich Research ParkNorwichUK
| | | | | | | | - Martin Stocks
- Plant Bioscience LimitedNorwich Research ParkNorwichUK
| | | | - Hadrien Peyret
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichUK
| |
Collapse
|
14
|
Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. FRONTIERS IN PLANT SCIENCE 2021; 12:742875. [PMID: 34938305 PMCID: PMC8685454 DOI: 10.3389/fpls.2021.742875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 μg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
- *Correspondence: Tarlan Mamedov,
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Merve Ilgin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Gunay Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
15
|
Wang CW, Lee OK, Fischer WB. Screening coronavirus and human proteins for sialic acid binding sites using a docking approach. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
<abstract>
<p>The initial step of interaction of some pathogens with the host is driven by the interaction of glycoproteins of either side <italic>via</italic> endcaps of their glycans. These end caps consist of sialic acids or sugar molecules. Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are found to use this route of interaction. The strength and spatial interactions on the single molecule level of sialic acids with either the spike (S) protein of SARS coronaviruses, or human angiotensin-converting enzyme 2 (ACE2) and furin are probed and compared to the binding modes of those sugar molecules which are present in glycans of glycoproteins. The protocol of using single molecules is seen as a simplified but effective mimic of the complex mode of interaction of the glycans. Averaged estimated binding energies from a docking approach result in preferential binding of the sialic acids to a specific binding site of the S protein of human coronavirus OC43 (HCoV-OC43). Furin is proposed to provide better binding sites for sialic acids than ACE2, albeit outweighed by sites for other sugar molecules. Absolute minimal estimated binding energies indicate weak binding affinities and are indifferent to the type of sugar molecules and the proteins. Neither the proposed best binding sites of the sialic acids nor those of the sugar molecules overlap with any of the cleavage sites at the S protein and the active sites of the human proteins.</p>
</abstract>
Collapse
|
16
|
Katalani C, Ahmadian G, Nematzadeh G, Amani J, Ehsani P, Razmyar J, Kiani G. Immunization with oral and parenteral subunit chimeric vaccine candidate confers protection against Necrotic Enteritis in chickens. Vaccine 2020; 38:7284-7291. [PMID: 33012608 DOI: 10.1016/j.vaccine.2020.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
Following the ban on the use of in-feed antimicrobials, necrotic enteritis (NE) NE is the most important clostridial disease. Vaccination has been considered as a possible approach to prevent NE. Our previous study showed that a chimeric protein product consisting of antigenic epitopes of NetB, Alpha-toxin and Zinc metallopeptidase (Zmp) triggered immune response against C. perfringens. In the current study we optimized the chimeric gene and constructed a fusion protein containing NetB, Alpha-toxin and Metallopeptidase (NAM) for expressing in tobacco plant to use as an edible vaccine for immunizing the chicken against NE. Simultaneously, we expressed and purified a His-tagged recombinant version of the NAM (rNAM) expressed in E. coli BL21 for subcutaneous immunization of chickens. Immunized birds produced strong humoral immune responses against both edible plant-based and parenteral purified rNAM. The responses were determined by the mean titer of antibody in blood samples to be around 9000 and 32,000, for edible and injected rNAM, respectively. Birds immunized subcutaneously showed the most striking responses. However the edible vaccine provided a more long lasting IgY response 14 days after the third vaccination compared to the injected birds. Chickens immunized with either lyophilized leaves expressing rNAM or purified rNAM, subsequently were subjected to the challenge with a virulent C. perfringens strain using an NE disease model. Our results showed that birds immunized both parenterally and orally with recombinant chimeric vaccine were significantly protected against the severity of lesion in the intestinal tract, but the protection provided with the injectable form of the antigen was greater than that of the oral form. Further analysis is needed to check whether these strategies can be used as the potential platform for developing an efficient vaccine against NE.
Collapse
Affiliation(s)
- Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh BLVD, Tehran-Karaj HWY, km 15, Tehran 1497716316, Iran.
| | - Ghorbanali Nematzadeh
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Iran
| | - Jamshid Razmyar
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghaffar Kiani
- Sari Agriculture Science and Natural Resource University (SANRU), Sari, Iran
| |
Collapse
|
17
|
Margolin E, Oh YJ, Verbeek M, Naude J, Ponndorf D, Meshcheriakova YA, Peyret H, van Diepen MT, Chapman R, Meyers AE, Lomonossoff GP, Matoba N, Williamson A, Rybicki EP. Co-expression of human calreticulin significantly improves the production of HIV gp140 and other viral glycoproteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2109-2117. [PMID: 32096288 PMCID: PMC7540014 DOI: 10.1111/pbi.13369] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 05/19/2023]
Abstract
Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Trust Centre for Infectious Disease Research in AfricaUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Youngjun J. Oh
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Matthew Verbeek
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Jason Naude
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | | | - Hadrien Peyret
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Michiel T. van Diepen
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ros Chapman
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ann E. Meyers
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | | | - Nobuyuki Matoba
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Anna‐Lise Williamson
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Trust Centre for Infectious Disease Research in AfricaUniversity of Cape TownCape TownSouth Africa
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Edward P. Rybicki
- Faculty of Health SciencesInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
18
|
Margolin EA, Strasser R, Chapman R, Williamson AL, Rybicki EP, Meyers AE. Engineering the Plant Secretory Pathway for the Production of Next-Generation Pharmaceuticals. Trends Biotechnol 2020; 38:1034-1044. [PMID: 32818443 DOI: 10.1016/j.tibtech.2020.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Production of biologics in plants, or plant molecular pharming, is a promising protein expression technology that is receiving increasing attention from the pharmaceutical industry. Previously, low expression yields of recombinant proteins and the realization that certain post-translational modifications (PTMs) may not occur optimally limited the widespread acceptance of the technology. However, molecular engineering of the plant secretory pathway is now enabling the production of increasingly complex biomolecules using tailored protein-specific approaches to ensure their maturation. These involve the elimination of undesired processing events, and the introduction of heterologous biosynthetic machinery to support the production of specific target proteins. Here, we discuss recent advances in the production of pharmaceutical proteins in plants, which leverage the unique advantages of the technology.
Collapse
Affiliation(s)
- Emmanuel A Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Mamedov T, Cicek K, Miura K, Gulec B, Akinci E, Mammadova G, Hasanova G. A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria. Sci Rep 2019; 9:9868. [PMID: 31285498 PMCID: PMC6614448 DOI: 10.1038/s41598-019-46375-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022] Open
Abstract
Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies. Moreover, Pfs48⁄45 is not a glycoprotein in the native hosts, but contains potential glycosylation sites, which are aberrantly glycosylated during expression in eukaryotic systems. Here, we demonstrate for the first time that full length, Endo H in vivo enzymatic deglycosylated Pfs48/45 antigen is produced at a high level in plants and is structurally stable at elevated temperatures. Sera from mice immunized with this antigen showed strong inhibition in SMFA. Thus, Endo H in vivo enzymatic deglycosylated Pfs48/45 is a promising candidate for the development of an affordable TB vaccine, which may have the potential to save millions.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey.
- Azerbaijan National Academy of Science, Department of Biology and Medical Science, 24 Istiglaliyyat Street, Baku, Azerbaijan.
| | - Kader Cicek
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, USA
| | - Burcu Gulec
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Ersin Akinci
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gunay Mammadova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| | - Gulnara Hasanova
- Akdeniz University, Department of Agricultural Biotechnology, Dumlupınar Boulevard 07058 Campus, Antalya, Turkey
| |
Collapse
|
20
|
Goulet MC, Gaudreau L, Gagné M, Maltais AM, Laliberté AC, Éthier G, Bechtold N, Martel M, D’Aoust MA, Gosselin A, Pepin S, Michaud D. Production of Biopharmaceuticals in Nicotiana benthamiana-Axillary Stem Growth as a Key Determinant of Total Protein Yield. FRONTIERS IN PLANT SCIENCE 2019; 10:735. [PMID: 31244869 PMCID: PMC6579815 DOI: 10.3389/fpls.2019.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/16/2019] [Indexed: 05/23/2023]
Abstract
Data are scarce about the influence of basic cultural conditions on growth patterns and overall performance of plants used as heterologous production hosts for protein pharmaceuticals. Higher plants are complex organisms with young, mature, and senescing organs that show distinct metabolic backgrounds and differ in their ability to sustain foreign protein expression and accumulation. Here, we used the transient protein expression host Nicotiana benthamiana as a model to map the accumulation profile of influenza virus hemagglutinin H1, a clinically promising vaccine antigen, at the whole plant scale. Greenhouse-grown plants submitted to different light regimes, submitted to apical bud pruning, or treated with the axillary growth-promoting cytokinin 6-benzylaminopurine were vacuum-infiltrated with agrobacteria harboring a DNA sequence for H1 and allowed to express the viral antigen for 7 days in growth chamber under similar environmental conditions. Our data highlight the importance of young leaves on H1 yield per plant, unlike older leaves which account for a significant part of the plant biomass but contribute little to total antigen titer. Our data also highlight the key contribution of axillary stem leaves, which contribute more than 50% of total yield under certain conditions despite representing only one-third of the total biomass. These findings underline the relevance of both considering main stem leaves and axillary stem leaves while modeling heterologous protein production in N. benthamiana. They also demonstrate the potential of exogenously applied growth-promoting hormones to modulate host plant architecture for improvement of protein yields.
Collapse
Affiliation(s)
- Marie-Claire Goulet
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Linda Gaudreau
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Marielle Gagné
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Anne-Marie Maltais
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Ann-Catherine Laliberté
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Gilbert Éthier
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | | | | | | | - André Gosselin
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Steeve Pepin
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| | - Dominique Michaud
- Centre de recherche et d’innovation sur les végétaux, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC, Canada
| |
Collapse
|