1
|
Peng Y, Gale BK, Sant HJ. Waterborne protozoan parasite detection using two-frequency impedance flow cytometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3590-3599. [PMID: 40259877 DOI: 10.1039/d5ay00184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Waterborne parasitic protozoa are common causes of gastrointestinal diseases in both humans and farm animals, even with standardized water treatment in place. This creates a need for continuous water monitoring to detect the presence of these micron-sized parasites in water sources to prevent potential outbreaks. This paper proposes a monitoring system consisting of a microfluidic channel embedded with micromachined microelectrodes to detect and evaluate protozoa at the individual (oo)cyst level in flowing water. To identify and discriminate between the (oo)cysts of Giardia and Cryptosporidium, two frequency-based impedance flow cytometry (IFC) is employed, where a high and a low frequency are applied to obtain the amplitude and phase variances of the samples. Using combination of amplitude and phase measurements at tested frequencies, the parasites and non-parasites (polystyrene) are identified, and a high degree of discrimination is also demonstrated for samples suspended in both DI water and filtered creek water. While impedance flow cytometry was utilized to detect waterborne protozoa, the system proposed in this paper is distinctive in the following ways. It employs differential coplanar electrodes instead of parallel electrodes to achieve a limit detection of <0.1% volume ratio between volume of a single (oo)cyst and the volume the electrodes occupy in the channel. It applies a low and high frequency simultaneously to obtain amplitude ratios to characterize sample populations instead of amplitude vs. phase at a single fixed frequency, potentially improving sample discrimination. This work also demonstrates detection and identification of protozoan (oo)cysts suspended in a natural water source, instead of in purified water, showing the proposed system's potential as a continuous waterborne parasitic protozoa monitoring system in a real environment.
Collapse
Affiliation(s)
- Yunhao Peng
- Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, USA
| | - Bruce K Gale
- Department of Mechanical Engineering, Electrical & Computer Engineering, Biomedical Engineering, Material Science & Engineering, University of Utah, Salt Lake City, USA
| | - Himanshu J Sant
- Department of Chemical Engineering, Mechanical Engineering, University of Utah, Salt Lake City, USA.
| |
Collapse
|
2
|
Baumann AA, Myers AK, Khajeh-Kazerooni N, Wise-Mitchell A, Rosenthal BM, Jenkins MC, O'Brien C, Fuller L, Tremaine S, Morgan M, Lenaghan SC. UV radiation at 222, 254, and 282 nm inhibits sporulation and suppresses infectivity of Eimeria acervulina oocysts. Microbiol Spectr 2025; 13:e0243924. [PMID: 39912693 PMCID: PMC11878026 DOI: 10.1128/spectrum.02439-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 02/07/2025] Open
Abstract
Eimeria acervulina is one of several apicomplexan parasites that can cause the economically important disease avian coccidiosis, which is transmitted via the fecal-oral route. It is also a valuable model for exploring interventions capable of reducing the public health risks posed by the related foodborne parasite Cyclospora cayetanensis. Unsporulated (noninfectious) oocysts are shed in the feces and sporulate in the environment to become infectious. In this study, the effect of UV radiation (UVR) on E. acervulina sporulation efficiency was evaluated. Nonstandard wavelengths including 222 and 282 nm have been established as alternatives to standard 254 nm UVR for sterilization. To address the disinfection capability of these nonstandard wavelengths, E. acervulina sporulation was scored following treatment under three wavelengths: 222, 254, or 282 nm. Each wavelength significantly (P < 0.05) reduced the sporulation rate relative to untreated controls, supporting the utility of nonstandard UVR treatments for coccidian inactivation. Furthermore, infectivity assays showed that chickens administered E. acervulina treated at each wavelength shed significantly fewer oocysts (P < 0.05) than those that received untreated oocysts, demonstrating a near 3-log reduction and verifying that these alternative wavelengths successfully break the transmission cycle. Owing to its biological similarity with the emerging enteric parasite Cyclospora cayetanensis, it is proposed that disinfection with 222 or 282 nm UVR will likewise be efficacious against Cyclospora.IMPORTANCECoccidian parasites cause enteric disease in animals and people. For example, Eimeria acervulina imposes major economic burdens on the poultry industry and provides a surrogate for investigating means to mitigate the foodborne risk that Cyclospora cayetanensis poses to human health. Previous work established that UV radiation at 254 nm can inactivate the oocysts of E. acervulina, but radiation at this wavelength harms human skin and eyes. Since nonstandard UVR at wavelengths of 222 and 282 nm shows promise against pathogens like Giardia and Cryptosporidium, the present work sought to determine whether such exposures could arrest E. acervulina development and reduce their infectivity. These nonstandard wavelengths proved capable of disrupting transmission. Epidemiological evidence suggests Cyclospora transmission through the food chain; the use of nonstandard UV wavelengths represents a promising method to inactivate coccidian oocysts, thereby protecting produce supply chains while, specifically in the case of 222 nm, incurring less risk to occupational health.
Collapse
Affiliation(s)
- Aaron A. Baumann
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, Tennessee, USA
| | - Addison K. Myers
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Niloofar Khajeh-Kazerooni
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, Tennessee, USA
| | - Ashley Wise-Mitchell
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, Tennessee, USA
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Mark C. Jenkins
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Celia O'Brien
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Lorraine Fuller
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Samuel Tremaine
- Herbert College of Agriculture, Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Mark Morgan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, Tennessee, USA
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Shapiro Ben David S, Snitser O, Parizade M, Orvieto N, Segal Y, Adler L. Cryptosporidium Infection During Pregnancy and Effects on Pregnancy Outcomes in Israel. Microorganisms 2024; 12:2572. [PMID: 39770775 PMCID: PMC11678744 DOI: 10.3390/microorganisms12122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Cryptosporidium is a parasite that typically causes self-limited gastroenteritis. Little is known about the course of infection and its impact during pregnancy. This retrospective cohort study conducted in Israel assessed the effects of Cryptosporidium infection on pregnancy and obstetrical outcomes. The study population included pregnant women with a positive PCR stool test for Cryptosporidium and a control group of pregnant women with negative tests, matched at a 3:1 ratio based on age, gestational week, and sector. Their medical records were retrieved for symptoms, treatments, pregnancy termination, gestational age, birth weight, Apgar score, and head circumference. Fisher's exact or chi-squared tests were used to determine significance. Between January 2020 and December 2023, 2512 pregnant women underwent PCR stool testing. Of these, 93 were positive for Cryptosporidium, mostly in 2022. Their median age was 31 (range: 23-42 years), and 77.4% were from medium-high socioeconomic status. The most common symptom was diarrhea (90/93, 96.7%). The infection was self-limiting in all cases, with none requiring specific treatment. No significant differences were found in miscarriage rate, delivery week, birth weight, Apgar score, or head circumference compared to the controls. This study illuminates the clinical course of Cryptosporidium infection in pregnant women, emphasizing a generally favorable outcome without the necessity for therapeutic intervention.
Collapse
Affiliation(s)
- Shirley Shapiro Ben David
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel
- Family Medicine Department, Faculty of Medical & Health Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Snitser
- National Mega Laboratories, Maccabi Healthcare Services, Mevo Carmel 2069236, Israel
| | - Miriam Parizade
- Maccabi National Laboratories, Mega Laboratory, Maccabi Healthcare Services, Rehovot 7670309, Israel
| | - Noam Orvieto
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel
- Family Medicine Department, Faculty of Medical & Health Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yaacov Segal
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel
| | - Limor Adler
- Health Division, Maccabi Healthcare Services, Tel Aviv 6812509, Israel
- Family Medicine Department, Faculty of Medical & Health Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Obong’o BO, Ogutu FO, Hurley SK, Okiko GM, Mahony J. Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety. Viruses 2024; 16:1897. [PMID: 39772204 PMCID: PMC11680409 DOI: 10.3390/v16121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all.
Collapse
Affiliation(s)
- Boniface Oure Obong’o
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Fredrick Onyango Ogutu
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Shauna Kathleen Hurley
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Gertrude Maisiba Okiko
- Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), Nairobi P.O. Box 30650-00100, Kenya; (B.O.O.); (G.M.O.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, College Road, T12 K8AF Cork, Ireland;
| |
Collapse
|
5
|
Gunasekera S, Thierry B, Cheah E, King B, Monis P, Carr JM, Chopra A, Watson M, O’Dea M, Ryan U. A Pumpless and Tubeless Microfluidic Device Enables Extended In Vitro Development of Cryptosporidium parvum. Open Forum Infect Dis 2024; 11:ofae625. [PMID: 39512424 PMCID: PMC11542632 DOI: 10.1093/ofid/ofae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Background The enteric parasite Cryptosporidium remains a treatment challenge for drinking water utilities globally due to its resistance to chlorine disinfection. However, the lack of an in vitro culture system for Cryptosporidium that is both cost-effective and reliable remains a key bottleneck in Cryptosporidium research. Methods Here we report that the microfluidic culture of human ileocecal colorectal adenocarcinoma (HCT-8) cells under fluid shear stress enables the extended development of Cryptosporidium parvum. Specifically, the growth of C. parvum in a user-friendly pumpless microfluidic device was assessed using immunofluorescence assays, scanning electron microscopy, and quantitative polymerase chain reaction, which revealed that development continued for 10 days in total. Results Oocysts produced within the microfluidic device were infective to fresh HCT-8 monolayers; however, these oocysts were only present at low levels. Conclusions We anticipate that such microfluidic approaches will facilitate a wide range of in vitro studies on Cryptosporidium and may have the potential to be further developed as a routine infectivity assessment tool for the water industry.
Collapse
Affiliation(s)
- Samantha Gunasekera
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Edward Cheah
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Brendon King
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Jillian M Carr
- College of Medicine and Public Health, Flinders University, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - Abha Chopra
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark Watson
- Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O’Dea
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Sousa R, Laizé V, Lourenço-Marques C, Barata M, Pousão-Ferreira P, Soares F. Inactivation in vitro of the marine parasite Amyloodinium ocellatum. DISEASES OF AQUATIC ORGANISMS 2024; 159:183-197. [PMID: 39324591 DOI: 10.3354/dao03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The ectoparasite Amyloodinium ocellatum is a dinoflagellate that causes severe morbidity and mortality in both brackish and marine warmwater aquaculture fishes worldwide. A. ocellatum has a triphasic life cycle based on a free-living flagellate (the dinospore), a parasitic stage (the trophont) and a resting and reproductive cyst (the tomont). Current chemical treatments have shown some efficacy in eliminating dinospores but fail to inactivate the tomonts. Here we evaluated the efficacy of alternative treatments in vitro through sporulation tests and the quantification of dinospore production and motility. Hydrogen peroxide and peracetic acid efficiently decreased dinospore production at low concentrations, but total inactivation of tomonts was only achieved with higher dosages. Tomont inactivation was also observed with disinfectants such as sodium hypochlorite and Virkon S. This work provides insights into effective and environmentally friendly alternatives for the elimination of resistant forms of the marine parasite A. ocellatum.
Collapse
Affiliation(s)
- Rui Sousa
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cátia Lourenço-Marques
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- IPMA-Portuguese Institute for the Ocean and Atmosphere, EPPO-Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Marisa Barata
- IPMA-Portuguese Institute for the Ocean and Atmosphere, EPPO-Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Pousão-Ferreira
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- IPMA-Portuguese Institute for the Ocean and Atmosphere, EPPO-Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- IPMA-Portuguese Institute for the Ocean and Atmosphere, EPPO-Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| |
Collapse
|
7
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Arussi D, Salant H, Rojas A, Dvir E. Prevalence and molecular characterization of Giardia duodenalis in companion dogs, domestic livestock and wildlife in the Jordan Basin, Israel. Vet Parasitol Reg Stud Reports 2024; 52:101042. [PMID: 38880565 DOI: 10.1016/j.vprsr.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Giardiasis is a small intestinal disease caused by the zoonotic parasite, Giardia duodenalis. This study presents the molecular findings of G. duodenalis infection in companion dogs, domestic livestock and wildlife in the Northern Jordan Basin, Israel. Identification of G. duodenalis was accomplished by nested PCR (nPCR) targeting the 18S rRNA gene. Samples were collected from water (five samples from four sources of which one was recycled water), as well as feces from wolves (Canis lupus) (n = 34), jackals (Canis aureus) (n = 24), wild boars (Sus scrofa) (n = 40), cattle (Bos taurus) (n = 40), dogs (Canis lupus familiaris) (n = 37) and nutria (Mayocastor coypus) (n = 100). All positive samples were sequenced and a phylogenetic tree was drawn using the Bayesian Inference (BI) algorithm. Differences in G. duodenalis prevalence between the different hosts were analyzed by Pearson's chi-square (p < 0.05). Of the total 275 fecal samples, 36 were positive for G. duodenalis (13%). Frequency rates among different animal species was highest in wolves (32.3%), whilst rates in wild boars (22.5%), dogs (16.2%), cattle (12.5%) and jackals (4.2%), were observed to be significantly lower (p < 0.001). Three out of 5 recycled water (RW) samples were G. duodenalis positive. Three clusters with high posterior probabilities (PP) were found in the BI: Cluster 1: samples from wolves, wild boars, water and cattle together with database sequences of assemblages A, B and F, Cluster 2: samples from dogs, nutria and a jackal with sequences from assemblage D and Cluster 3: samples from cattle, wild boars, wolves and dogs with sequences from assemblage C and D. We suggest that wolves serve as reservoirs of G. duodenalis in this region. The finding of Giardia in RW suggests that this vehicle may further contaminate crops intended for human consumption as this water source is used for agricultural irrigation.
Collapse
Affiliation(s)
- Dvir Arussi
- Department of Animal Sciences, Tel Hai College, Upper Galilee, Israel
| | - Harold Salant
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Israel
| | - Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San Jose, Costa Rica
| | - Eran Dvir
- Department of Animal Sciences, Tel Hai College, Upper Galilee, Israel.
| |
Collapse
|
9
|
Laauwen M, Nowicki S. Reinforcing Feedbacks for Sustainable Implementation of Rural Drinking-Water Treatment Technology. ACS ES&T WATER 2024; 4:1763-1774. [PMID: 38633363 PMCID: PMC11019543 DOI: 10.1021/acsestwater.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Progress toward universal access to safe drinking water depends on rural water service delivery models that incorporate water safety management. Water supplies of all types have high rates of fecal contamination unless water safety risks are actively managed through water source protection, treatment, distribution, and storage. Recognizing the role of treatment within this broader risk-based framework, this study focuses on the implementation of passive chlorination and ultraviolet (UV) disinfection technologies in rural settings. These technologies can reduce the health risk from microbiological contaminants in drinking water; however, technology-focused treatment interventions have had limited sustainability in rural settings. This study examines the requirements for sustainable implementation of rural water treatment through qualitative content analysis of 26 key informant interviews, representing passive chlorination and UV disinfection projects in rural areas in South America, Africa, and Asia. The analysis is aligned with the RE-AIM framework and delivers insight into 18 principal enablers and barriers to rural water treatment sustainability. Analysis of the interrelationships among these factors identifies leverage points and encourages fit-for-purpose intervention design reinforced by collaboration between facilitating actors through hybrid service delivery models. Further work should prioritize health impact evidence, water quality reporting guidance, and technological capabilities that optimize trade-offs in fit-for-purpose treatment design.
Collapse
Affiliation(s)
- Merel Laauwen
- School
of Geography and the Environment, University
of Oxford, South Parks Road, Oxford OX1 3QY, U.K.
| | - Saskia Nowicki
- School
of Geography and the Environment, University
of Oxford, South Parks Road, Oxford OX1 3QY, U.K.
| |
Collapse
|
10
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Rabbits as reservoirs: An updated perspective of the zoonotic risk from Cryptosporidium and Giardia. Vet Parasitol 2024; 327:110151. [PMID: 38422710 DOI: 10.1016/j.vetpar.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Rabbits are highly abundant in many countries and can serve as reservoirs of diseases for a diversity of pathogens including the enteric protozoan parasites, Cryptosporidium and Giardia. Both parasites shed environmentally robust environmental stages (oo/cysts) and have been responsible for numerous waterborne outbreaks of diseases. Cryptosporidium hominis and C. parvum are responsible for most infections in humans, while Giardia duodenalis assemblages A and B, cause most human cases of giardiasis. Cryptosporidium cuniculus, the dominant species infecting rabbits, is the only spceies other than C. hominis and C. parvum to have caused a waterborne outbreak of gastritis, which occurred in the United Kingdom in 2008. This review examines the prevalence of Cryptosporidium and Giardia species in rabbits to better understand the public health risks of contamination of water sources with Cryptosporidium and Giardia oo/cysts from rabbits. Despite the abundance of C. cuniculus in rabbits, reports in humans are relatively rare, with the exception of the United Kingdom and New Zealand, and reports of C. cuniculus in humans from the United Kingdom have declined substantially since the 2008 outbreak. Subtyping of C. cuniculus has supported the potential for zoonotic transmission. Relatively few studies have been conducted on Giardia, but assemblage B dominates. However, improved typing methods are required to better understand the transmission dynamics of Giardia assemblages in rabbits. Similarly, it is not well understood if pet rabbits or contaminated water are the main source of C. cuniculus infections in humans. Well-planned studies using high-resolution typing tools are required to understand the transmission dynamics better and quantify the public health risk of Cryptosporidium and Giardia from rabbits.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
11
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Critters and contamination: Zoonotic protozoans in urban rodents and water quality. WATER RESEARCH 2024; 251:121165. [PMID: 38290188 DOI: 10.1016/j.watres.2024.121165] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri‑urban areas.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
12
|
Ajiboye J, Uldry AC, Heller M, Naguleswaran A, Fan E, Van Voorhis WC, Hemphill A, Müller J. Molecular Targets of the 5-Amido-Carboxamide Bumped Kinase Inhibitor BKI-1748 in Cryptosporidium parvum and HCT-8 Host Cells. Int J Mol Sci 2024; 25:2707. [PMID: 38473953 PMCID: PMC10931551 DOI: 10.3390/ijms25052707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite causing persistent diarrhea in humans and animals. Issuing from target-based drug development, calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs), with excellent efficacies in vitro and in vivo have been generated. Some BKIs including BKI-1748 share a core structure with similarities to the first-generation antiprotozoal drug quinine, which is known to exert notorious side effects. Unlike quinine, BKI-1748 rapidly interfered with C. parvum proliferation in the human colon tumor (HCT) cell line HCT-8 cells and caused dramatic effects on the parasite ultrastructure. To identify putative BKI targets in C. parvum and in host cells, we performed differential affinity chromatography with cell-free extracts from non-infected and infected HCT-8 cells using BKI-1748 and quinine epoxy-activated sepharose columns followed by mass spectrometry. C. parvum proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from both BKI-1748 and quinine columns. However, no C. parvum proteins could be identified binding exclusively to BKI-1748. In contrast, 25 BKI-1748-specific binding proteins originating from HCT-8 cells were detected. Moreover, 29 C. parvum and 224 host cell proteins were identified in both BKI-1748 as well as in quinine eluates. In both C. parvum and host cells, the largest subset of binding proteins was involved in RNA binding and modification, with a focus on ribosomal proteins and proteins involved in RNA splicing. These findings extend previous results, showing that BKI-1748 interacts with putative targets involved in common, essential pathways such as translation and RNA processing.
Collapse
Affiliation(s)
- Jubilee Ajiboye
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland;
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, USA
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (A.-C.U.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (A.-C.U.); (M.H.)
| | - Arunasalam Naguleswaran
- Institute of Molecular Pathology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland;
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA;
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland;
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland;
| |
Collapse
|
13
|
Jingyi J, Ping Y, Jian X, Jia C, Xujian M, Qiong L, Bowen T, Fengming W. Efficacy of a membrane concentration method combined with real-time PCR for detection of Giardia and Cryptosporidium in drinking water. Lett Appl Microbiol 2023; 76:ovad121. [PMID: 37833237 DOI: 10.1093/lambio/ovad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The occurrence of Giardia and Cryptosporidium (oo)cysts in drinking source water poses a serious public health risk. Here, we established a method that combines membrane concentration and real-time polymerase chain reaction (PCR) to quantify Giardia and Cryptosporidium in drinking water. The water samples were filtered through a cellulose membrane to collect Giardia and Cryptosporidium, and then nucleic acids were extracted. Specific primers and probes were designed and synthesized according to the gph gene sequence of Giardia and 18S rRNA gene sequence of Cryptosporidium. The concentrations of the two targets were determined using real-time PCR technology. The sensitivity, specificity, and stability of the method were evaluated. Our findings revealed that the detection limits of real-time PCR method for detecting Giardia and Cryptosporidium were 0.926 and 0.65 copy/µL, respectively; the spiked recovery rates were above 60% and 38%, respectively, and relative standard deviations were under 0.95% and 2.26%, respectively. Therefore, this effective procedure based on the membrane concentration method and real-time PCR will be useful for detecting Giardia and Cryptosporidium in drinking water for purpose of continuous environmental monitoring.
Collapse
Affiliation(s)
- Jiang Jingyi
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Yao Ping
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Xu Jian
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Chen Jia
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Mao Xujian
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Li Qiong
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Tu Bowen
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Wang Fengming
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| |
Collapse
|
14
|
Beshay EVN, Nassef NE, El Shafei OK, Saleh MM, Kora MA, Shalaan FH. Therapeutic efficacy of proton pump inhibitor (omeprazole) on cryptosporidiosis parvum in immunosuppressed experimental mice. J Parasit Dis 2023; 47:535-549. [PMID: 37520212 PMCID: PMC10382457 DOI: 10.1007/s12639-023-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/04/2023] [Indexed: 08/01/2023] Open
Abstract
Cryptosporidiosis is one of the most frequent food and water-borne diseases. The disease might be life-threatening in immunosuppressed patients. Unfortunately, the only approved drug, nitazoxanide, is with variable efficacies, particularly in malnourished children and immunocompromised patients. Therefore, there is a need to discover an alternative treatment that could be achieved by targeting the metabolic pathways. One of the important enzymes in the glycolysis pathway of C. parvum is triosephosphate isomerase, which could be hindered by the proton pump inhibitor (PPI) omeprazole. In this study, omeprazole was repurposed against C. parvum infection in experimentally immunosuppressed mice. This study was conducted on five mice groups (n = 10). Group I (Normal Control), group II (Infected Control): Mice were infected orally with 1 × 105 C. parvum oocysts on the 15th day of DEX induced immunosuppression. Group III (NTZ-treated): infected and treated by NTZ. Group IV (Omeprazole-treated), and lastly, Group V (NTZ + Omeprazole-treated). The result obtained with omeprazole alone was better than nitazoxanide regarding oocyst shedding reduction percentages (84.9% & 56.1%, respectively). Also, it was better regarding restoration of histopathological and ultrastructural architectures, improvement of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and renal functions (urea and creatinine), and the reduction of C. parvum triosephosphate isomerase (TIM) gene expression by RT-PCR. However, the best results were obtained with the combined treatment. Hence, omeprazole could be considered a novel drug option to treat this life-threatening parasitic infection either alone or combined with NTZ, especially in immunosuppressed patients.
Collapse
Affiliation(s)
- Engy V N Beshay
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Nashaat E Nassef
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Omaima K El Shafei
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona M Saleh
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Mona A Kora
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia Egypt
| | - Fatma H Shalaan
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin Abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| |
Collapse
|
15
|
Haley OC, Zhao Y, Hefley T, Britton LL, Nwadike L, Rivard C, Bhullar M. Developing a Decision-making Tool for Agricultural Surface Water Decontamination Using Ultraviolet-C Light. J Food Prot 2023; 86:100129. [PMID: 37442228 DOI: 10.1016/j.jfp.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Ultraviolet-C (UV-C) light-assisted water treatment systems are an increasingly investigated alternative to chemical sanitizers for agricultural surface water decontamination. However, the relatively high concentration of particulate matter in surface water is a major challenge to expanding its application in the production of fresh produce. The objective of this project was to test the efficacy of two commercial UV-C devices to reduce the microbial risk of agricultural water in order to develop a web application to assist growers in decision-making related to the on-farm implementation of UV-C technologies for agricultural water treatment. An on-farm study using three agricultural water sources was performed to determine the microbial reduction efficacy of a low power, low flow (LP/LF; 1-9 gallons per minute (GPM), 1.34-gallon capacity) and a high powered, high flow (HP/HF; 1-110 GPM, 4.75-gallon capacity) device at flow rates of 6, 7, and 9 GPM. A threshold of 30% UVT for the HP/HF device was observed, wherein lower water transmissibility significantly impacted microbial inactivation. Although less effective at lower %UVT, the LP/LF device costs less to install, maintain, and operate. The observations were used to design an online tool for growers to calculate the predicted reduction of generic Escherichia coli using either device based on the %UVT of their water source. However, because this study utilized an exploratory and proof-of-concept approach, the experimental flow rates were limited to reflect the capacities of the smaller unit (9 GPM) for direct comparison to the larger unit. Thus, the preliminary model and tool are largely limited to the experimental conditions. Yet, these results of this study demonstrate the utility of UV-C light in reducing the microbial risk of agricultural water, and future studies using different UV-C devices and higher flow rates will expand the use of the decision-making tool.
Collapse
Affiliation(s)
- Olivia C Haley
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Yeqi Zhao
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA
| | - Trevor Hefley
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Logan L Britton
- Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506, USA
| | - Londa Nwadike
- Kansas State Research and Extension, Kansas State University, 22201 W. Innovation Dr., Olathe, KS 66061, USA; University of Missouri Extension, 22201 W. Innovation Dr., Olathe, KS 66061, USA
| | - Cary Rivard
- Eastern Kansas Research and Extension Centers, 35230 W. 135th St., Olathe, KS 66061, USA
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS 66061, USA; Food Science Institute, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
16
|
Mokhtar AB, Karanis P, Schou C, Ahmed SA. The impact of chlorine, ultraviolet-C, and microwave treatment on the survivability of Blastocystis sp. cysts. JOURNAL OF WATER AND HEALTH 2023; 21:1325-1341. [PMID: 37756199 PMCID: wh_2023_179 DOI: 10.2166/wh.2023.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Blastocystis sp. is a common widely distributed gut protozoan, with water transmission identified as one of its transmission routes. This study aimed to investigate the effect of chlorine, ultraviolet (UV)-C, and microwave (MW) treatments on the in vitro viability of cysts of Blastocystis sp. Purified Blastocystis sp. cysts were molecularly subtyped. Viable cysts were subjected to different free chlorine concentrations (1, 2, and 4 ppm), different doses of UV-C (5.13, 10.26, 20.52, and 40.47 mJ/cm2), and MW irradiation times (10, 15, 30, and 45 s). Viability reduction percentage, log10 inactivation, and micrometre-based optical microscopy examined cyst number and appearance after each disinfection trial. The three disinfectants' efficacy and application conditions were assessed. The analysed isolates of Blastocystis cysts were subtype 3, possessed varying sizes and shapes, but two identical genomes. The cysts of Blastocystis sp. were resistant to chlorine at all doses and exposure durations tested. UV-C at a dose of 40 mJ/cm2 and MW treatment for 15 s were able to completely disinfect the cysts. The MW was the most effective disinfectant against Blastocystis cysts based on all evaluated factors. MW irradiation is the most efficient water treatment method for eradicating Blastocystis cysts in an easy and safe manner.
Collapse
Affiliation(s)
- Amira B Mokhtar
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 415221, Egypt; These authors have contributed equally to this work. E-mail:
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Department of Basic and Clinical Sciences, University of Nicosia Medical School, 24005, CY-1700 Nicosia, Cyprus
| | - Chad Schou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 24005, CY-1700 Nicosia, Cyprus
| | - Shahira A Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 415221, Egypt; These authors have contributed equally to this work
| |
Collapse
|
17
|
Martí-Marco A, Moratal S, Torres-Blas I, Cardells J, Lizana V, Dea-Ayuela MA. Molecular Detection and Epidemiology of Potentially Zoonotic Cryptosporidium spp. and Giardia duodenalis in Wild Boar ( Sus scrofa) from Eastern Spain. Animals (Basel) 2023; 13:2501. [PMID: 37570308 PMCID: PMC10416950 DOI: 10.3390/ani13152501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The protozoans Giardia duodenalis and Cryptosporidium spp. are common causes of gastrointestinal disease in humans and animals. While both are commonly documented in domestic animals, few studies have analysed their presence in wildlife. To assess the prevalence of both parasites in wild boar (Sus scrofa) in the Valencian Community (eastern Spain), 498 wild boar faecal samples were collected from 2018 to 2022. Cryptosporidium spp. was detected by performing a nested PCR targeting a 578 bp sequence of the small subunit ribosomal RNA gene (SSU rRNA), followed by sequencing and phylogenetic analysis. For G. duodenalis, a qPCR amplifying a fragment of 62 bp from the SSU rRNA was employed. Positive samples were genotyped for glutamate dehydrogenase and β-giardin genes. Different epidemiological factors were considered potential modulating variables in the transmission of both parasites. G. duodenalis prevalence was 1.20%, while Cryptosporidium spp. prevalence reached 21.7%. Coinfection was observed in 0.2%. Genotyping of G. duodenalis isolates only detected genotype E. Two species of Cryptosporidium spp. were identified: Cryptosporidium scrofarum and Cryptosporidium suis. The results of this study demonstrate that the exposure to Cryptosporidium spp. in wild boars is high, particularly among young individuals belonging to the Typical Mediterranean climate. Moreover, the probability of infection is dependent on both the season and the density of wild boars. On the other side, exposure to G. duodenalis seems scarce and is influenced, in turn, by the climate. Both Cryptosporidium species detected in the present study have been reported in humans. Due to wild boar increasing in number and their colonisation of urban and peri-urban areas, this could represent an inherent health risk for the human population.
Collapse
Affiliation(s)
- Alba Martí-Marco
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
| | - Irene Torres-Blas
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - Victor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain; (A.M.-M.); (S.M.); (J.C.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain;
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, C/Ramón y Cajal, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
18
|
Bilal H, Li X, Iqbal MS, Mu Y, Tulcan RXS, Ghufran MA. Surface water quality, public health, and ecological risks in Bangladesh-a systematic review and meta-analysis over the last two decades. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91710-91728. [PMID: 37526829 DOI: 10.1007/s11356-023-28879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023]
Abstract
Water quality has recently emerged as one of the utmost severe ecological problems being faced by the developing countries all over the world, and Bangladesh is no exception. Both surface and groundwater sources contain different contaminants, which lead to numerous deaths due to water-borne diseases, particularly among children. This study presents one of the most comprehensive reviews on the current status of water quality in Bangladesh with a special emphasis on both conventional pollutants and emerging contaminants. Data show that urban rivers in Bangladesh are in a critical condition, especially Korotoa, Teesta, Rupsha, Pashur, and Padma. The Buriganga River and few locations in the Turag, Balu, Sitalakhya, and Karnaphuli rivers have dissolvable oxygen (DO) levels of almost zero. Many waterways contain traces of NO3, NO2, and PO4-3 pollutants. The majority of the rivers in Bangladesh also have Zn, Cu, Fe, Pb, Cd, Ni, Mn, As, and Cr concentrations that exceed the WHO permissible limits for safe drinking water, while their metal concentrations exceed the safety threshold for irrigation. Mercury poses the greatest hazard with 90.91% of the samples falling into the highest risk category. Mercury is followed by zinc 57.53% and copper 29.16% in terms of the dangers they pose to public health and the ecosystem. Results show that a considerable percentage of the population is at risk, being exposed to contaminated water. Despite hundreds of cryptosporidiosis cases reported, fecal contamination, i.e., Cryptosporidium, is totally ignored and need serious considerations to be regularly monitored in source water.
Collapse
Affiliation(s)
- Hazrat Bilal
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Xiaowen Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | | | - Yonglin Mu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Roberto Xavier Supe Tulcan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Muhammad Asad Ghufran
- Department of Environmental Science, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
19
|
Chaudhary A, Rana S, Singh R, Gurian PL, Betancourt W, Kumar A, Kumar A. Non-potable water reuse and the public health risks from protozoa and helminths: a case study from a city with a semi-arid climate. JOURNAL OF WATER AND HEALTH 2023; 21:981-994. [PMID: 37632375 PMCID: wh_2023_283 DOI: 10.2166/wh.2023.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The study estimated the risk due to Cryptosporidium, Giardia, and Ascaris, associated with non-potable water reuse in the city of Jaipur, India. The study first determined the exposure dose of Cryptosporidium, Giardia, and Ascaris based on various wastewater treatment technologies for various scenarios of reuse for six wastewater treatment plants (WWTPs) in the city. The exposure scenarios considered were (1) garden irrigation; (2) working and lounging in the garden; and (3) consumption of crops irrigated with recycled water. The estimated annual risk of infection varied between 8.57 × 10-7 and 1.0 for protozoa and helminths, respectively. The order of treatment processes, in decreasing order of annual risk of infection, was found to be: moving-bed bioreactor (MBBR) technology > activated sludge process (ASP) technology > sequencing batch reactor (SBR) technology. The estimated annual risk was found to be in this order: Ascaris > Giardia > Cryptosporidium. The study also estimated the maximum allowable concentration (Cmax) of pathogen in the effluent for a benchmark value of annual infection of risk equal to 1:10,000, the acceptable level of risk used for drinking water. The estimated Cmax values were found to be 6.54 × 10-5, 1.37 × 10-5, and 2.89 × 10-6 (oo) cysts/mL for Cryptosporidium, Giardia, and Ascaris, respectively.
Collapse
Affiliation(s)
- Ayushi Chaudhary
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India E-mail: ;
| | - Shubham Rana
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| | - Rajveer Singh
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Patrick L Gurian
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Walter Betancourt
- Water and Energy Sustainable Technology Centre, University of Arizona, Tucson, AZ, USA
| | - Arun Kumar
- Department of Civil Engineering, IIT Delhi, Delhi, India
| | - Amit Kumar
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| |
Collapse
|
20
|
Zhang YX, Xiang JL, Wang JJ, Du HS, Wang TT, Huo ZY, Wang WL, Liu M, Du Y. Ultraviolet-based synergistic processes for wastewater disinfection: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131393. [PMID: 37062094 DOI: 10.1016/j.jhazmat.2023.131393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Ultraviolet (UV) irradiation is widely used for wastewater disinfection but suffers from low inactivation rates and can cause photoreactivation of microorganisms. Synergistic disinfection with UV and oxidants is promising for enhancing the inactivation performance. This review summarizes the inactivation effects on representative microorganisms by UV/hydrogen peroxide (H2O2), UV/ozone (O3), UV/persulfate (PS), UV/chlorine, and UV/chlorine dioxide (ClO2). UV synergistic processes perform better than UV or an oxidant alone. UV mainly attacks the DNA or RNA in microorganisms; the oxidants H2O2 and O3 mainly attack the cell walls, cell membranes, and other external structures; and HOCl and ClO2 enter cells and oxidize proteins and enzymes. Free radicals can have strong oxidation effects on cell walls, cell membranes, proteins, enzymes, and even DNA. At similar UV doses, the inactivation rates of Escherichia coli with UV alone, UV/H2O2, UV/O3, UV/PS (peroxydisulfate or peroxymonosulfate), and UV/chlorinated oxidant (chlorine, ClO2, and NH2Cl) range from 2.03 to 3.84 log, 2.62-4.30 log, 4.02-6.08 log, 2.93-5.07 log, and 3.78-6.55 log, respectively. The E. coli inactivation rates are in the order of UV/O3 ≈ UV/Cl2 > UV/PS > UV/H2O2. This order is closely related to the redox potentials of the oxidants and quantum yields of the radicals. UV synergistic disinfection processes inhibit photoreactivation of E. coli in the order of UV/O3 > UV/PS > UV/H2O2. The activation mechanisms and formation pathways of free radicals with different UV-based synergistic processes are presented. In addition to generating HO·, O3 can reduce the turbidity and chroma of wastewater to increase UV penetration, which improves the disinfection performance of UV/O3. This knowledge will be useful for further development of the UV-based synergistic disinfection processes.
Collapse
Affiliation(s)
- Yi-Xuan Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
21
|
Ogbuigwe P, Roberts JM, Knox MA, Heiser A, Pita A, Haack NA, Garcia-Ramirez J, Velathanthiri N, Biggs P, French NP, Hayman DTS. A novel, stain-free, natural auto-fluorescent signal, Sig M, identified from cytometric and transcriptomic analysis of infectivity of Cryptosporidium hominis and Cryptosporidium parvum. Front Cell Infect Microbiol 2023; 13:1178576. [PMID: 37284498 PMCID: PMC10239843 DOI: 10.3389/fcimb.2023.1178576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Cryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M's impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein-isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.
Collapse
Affiliation(s)
- Paul Ogbuigwe
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | | | - Matthew A. Knox
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Axel Heiser
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
| | - Anthony Pita
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Neville A. Haack
- Animal Health Solutions, Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
| | - Juan Carlos Garcia-Ramirez
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Niluka Velathanthiri
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - David T. S. Hayman
- School of Veterinary Science, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Li H, Feng M, Yu X. Qualitative and quantitative analysis of the effects of drinking water disinfection processes on eukaryotic microorganisms: A meta-analysis. CHEMOSPHERE 2023; 332:138839. [PMID: 37142108 DOI: 10.1016/j.chemosphere.2023.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The risk of eukaryotic microorganisms in drinking water treatment has not received sufficient attention. As the final step in ensuring drinking water quality, the effectiveness of disinfection in inactivating eukaryotic microorganisms remains to be qualitatively and quantitatively demonstrated. In this study, we conducted a meta-analysis using a mixed effects model and bootstrapping analysis to assess the effects of the disinfection process on eukaryotic microorganisms. The results revealed significant reduction of eukaryotic microorganisms in drinking water associated with the disinfection process. The estimated logarithmic reduction rates for chlorination, ozone, and UV disinfection were 1.74, 1.82 and 2.15 log, respectively, for all eukaryotic microorganisms. Analysis of relative abundance variation of eukaryotic microorganisms also indicated certain phyla and classes exhibited tolerance and competitive advantage during disinfection. This study provides qualitatively and quantitatively analysis on the influence of drinking water disinfection processes on eukaryotic microorganisms, and highlights the persistent risk of eukaryotic microbial contamination in drinking water even after disinfection, calling for further optimization of current conventional disinfection methods.
Collapse
Affiliation(s)
- Haoran Li
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
23
|
Reid E, Igou T, Zhao Y, Crittenden J, Huang CH, Westerhoff P, Rittmann B, Drewes JE, Chen Y. The Minus Approach Can Redefine the Standard of Practice of Drinking Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7150-7161. [PMID: 37074125 PMCID: PMC10173460 DOI: 10.1021/acs.est.2c09389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.
Collapse
Affiliation(s)
- Elliot Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas Igou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Bruce Rittmann
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and The Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Influence of Selected Factors on the Survival Assessment and Detection of Giardia intestinalis DNA in Axenic Culture. Pathogens 2023; 12:pathogens12020316. [PMID: 36839588 PMCID: PMC9968169 DOI: 10.3390/pathogens12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Giardia intestinalis is one of the most common food-borne protozoa. The sensitivity of pathogens to physical and chemical factors is the basis for developing measures to reduce the incidence of the population. Several methods are available to detect the presence of G. intestinalis. The study determines the influence of 22 selected factors on the survival assessment and detection of G. intestinalis DNA in trophozoites axenically cultured. The influence of a given factor on the test result was observed in the case of 17 factors (77.3%) in the microscopic method, while only in the case of 3 (13.6%) substances in the real-time PCR method. Prevention of G. intestinalis infections, e.g., by ensuring food and water safety, is a crucial issue affecting public health. The experiment was conducted on trophozoites as the first approach. It is necessary to continue research and observe the epidemiological situation. In future studies, the impact of the studied factors on the survival assessment and detection of Giardia intestinalis DNA in axenically cultured cysts should be determined.
Collapse
|
25
|
Xiao D, Wang N, Chen S, Wang S, Yuan X, Fan W, Huo M. Synergism in sequential inactivation of Cryptosporidium parvum with trypsin and UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8354-8362. [PMID: 36445526 DOI: 10.1007/s11356-022-24408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium, a protozoan parasite, in wastewater presents a major public health concern for water safety. However, bactericidal efficiencies of conventional disinfection methods towards Cryptosporidium oocysts are still hampered owing to the presence of their thick outer wall. In this study, we present a novel UV inactivation process where the efficiency has been significantly enhanced by addition of a trypsin pretreatment stage. Notably, inactivation (log-reduction) of oocysts was noted to be 73.75-294.72% higher than that obtained by UV irradiation alone, under identical conditions. Experimental observations and supporting mechanistic analyses suggest that trypsin led to cleavage of the protein layers on the oocyst wall, facilitating penetration of UV radiation into the oocysts leading to degradation of their genomic DNA (gDNA). The dissociative effect of trypsin on the oocyst wall was indicated by the fact that 64.50% of oocysts displayed early apoptosis after trypsinization. Imaging by scanning electron microscopy indicated that this combined treatment led to substantial disruption of the oocyst coat, deforming their shape. This resulted in the release of cellular proteins and gDNA, their concentrations in bulk solution increasing by 1.22-8.60 times. As UV irradiation time was prolonged, gDNA was degraded into smaller fragments with lower molecular masses. Both laddering and diffuse smear patterns in gel analysis indicated significantly detrimental effects on gDNA and viability of oocysts. Overall, this study demonstrated enhancement of UV inactivation of Cryptosporidium oocysts by trypsin and explored the underlying mechanisms for the process.
Collapse
Affiliation(s)
- Dan Xiao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Nan Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, China
| | - Shiheng Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China
| | - Siyue Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangyi Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Wei Fan
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| |
Collapse
|
26
|
Meki CD, Ncube EJ, Voyi K. Frameworks for mitigating the risk of waterborne diarrheal diseases: A scoping review. PLoS One 2022; 17:e0278184. [PMID: 36490262 PMCID: PMC9733858 DOI: 10.1371/journal.pone.0278184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diarrhea is one of the major cause of death and morbidity around the world. OBJECTIVES This scoping review summarizes existing frameworks that aim to mitigate the risks of waterborne diarrheal diseases and describe the strengths and weaknesses of these frameworks. ELIGIBILITY CRITERIA Published frameworks designed to mitigate the risks of waterborne diarrheal diseases. Frameworks published in English, from around the world and published since inception to date. SOURCES OF EVIDENCE PubMed, Scopus, Web of Science, Google Scholar, Google Free Search, organization websites and reference lists of identified sources. CHARTING METHODS Data were charted using the Joanna Briggs Institute tool. Results were summarized and described narratively. A criterion to score the strengths and weaknesses of the included frameworks was also developed. RESULTS Five frameworks were identified including: the hygiene improvement framework, community led total sanitation, global action plan for pneumonia and diarrhea, participatory hygiene and sanitation transformation, and sanitation and family education. These frameworks shared several common components, including identification of problems and risk factors, identification and implementation of interventions, and evaluation and monitoring. The frameworks had several interventions including different infrastructure, health promotion and education, enabling environment and clinical treatments. Most of the frameworks included health promotion and education. All the frameworks were strengthened by including strategies for implementing and delivering intervention, human resource aspect, community involvement, monitoring, and evaluation. The main weakness included not having components for collecting, storing, and transferring electronic data and the frameworks not being specifically for mitigating waterborne diarrheal diseases. In addition, the identified frameworks were found to be effective in mitigating the risk of diarrhea diseases among other health effects. CONCLUSIONS Existing frameworks should be updated specifically for mitigating waterborne diarrheal diseases that includes the strengths and addresses weaknesses of reviewed frameworks.
Collapse
Affiliation(s)
- Chisala D. Meki
- School of Public Health, University of Zambia, Lusaka, Zambia
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Esper J. Ncube
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
- Rand Water, Johannesburg, South Africa
| | - Kuku Voyi
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
27
|
Fauziah N, Aviani JK, Agrianfanny YN, Fatimah SN. Intestinal Parasitic Infection and Nutritional Status in Children under Five Years Old: A Systematic Review. Trop Med Infect Dis 2022; 7:371. [PMID: 36422922 PMCID: PMC9697828 DOI: 10.3390/tropicalmed7110371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/01/2023] Open
Abstract
Intestinal parasitic infections are common infectious diseases causing many health problems and impaired growth and physical development.. Children under five years old are the most vulnerable to infections, due to their immature immunity and feeding and exploratory behaviours. This systematic review aimed to assess the relationship between intestinal parasitic infections and undernutrition among children under 5 years old. Fifteen studies met the inclusion and exclusion criteria and were classified as high-quality studies. Twelve parasites were reported, including Ascaris lumbricoides, Cryptosporodium spp., Entamoeba histolytica, Enterobius vermicularis, Giardia lamblia, hookworm, Hymenolepis nana, Strongyloides sterocalis, Taenia spp. and Trichuris trichuria. Ascariasis is the most reported infection, with a prevalence ranging from 10.77% in Ethiopia to 57.14% in Malaysia, and is correlated with stunting (OR 2.17 (95% CI 1.14, 4.13), p = 0.02). Giardiasis is the second most reported infection, with a prevalence ranging from 4.43% in Ethiopia to 66.33% in the Central African Republic, and is related to an increased risk of stunting (OR 2.34 (95% CI 1.07, 5.10), p = 0.03)), wasting (OR 2.90 (95% CI 1.12, 7.49, p = 0.03)), and being underweight (OR 1.53 (95% CI 1.02, 2.29, p = 0.04)). The third and fourth most prevalent infections are T. trichiura and hookworm infections. Intestinal parasitic infections can occur very early in life and cause significant growth retardation. It is important to understand the prevalence and effects of infection based on the parasite species in order to implement therapeutic interventions and prevention controls.
Collapse
Affiliation(s)
- Nisa Fauziah
- Division of Parasitology, Department of Basic Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Laboratory of Parasitology, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Jenifer Kiem Aviani
- Department of Biotechnology, School of Life Science and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Yukan Niko Agrianfanny
- Laboratory of Parasitology, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Siti Nur Fatimah
- Division of Clinical Nutrition, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
28
|
Franceschelli A, Bonadonna L, Cacciò SM, Sannella AR, Cintori C, Gargiulo R, Coccia AM, Paradiso R, Iaconelli M, Briancesco R, Tripodi A. An outbreak of cryptosporidiosis associated with drinking water in north-eastern Italy, August 2019: microbiological and environmental investigations. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 36052722 PMCID: PMC9438396 DOI: 10.2807/1560-7917.es.2022.27.35.2200038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptosporidium is a leading global cause of waterborne disease, with many reported outbreaks related to main water supplies. In August 2019, an outbreak of cryptosporidiosis involving 80 cases occurred among 114 vacationers in a small municipality located in the Tuscan-Emilian Apennines, north-eastern Italy. After excluding a potential food-borne outbreak, the epidemiological investigation focussed on the hypothesis of a waterborne outbreak. This was confirmed by the finding of Cryptosporidium oocysts in stools of the cases and in water samples from the municipal water network. Molecular characterisation revealed the zoonotic species Cryptosporidium parvum as the causative agent. A single subtype (IIdA25G1) was found among all cases, and in one of two positive water samples. The municipality's water supply used spring water that only received a disinfection treatment insufficient to inactivate the parasite. Possible entry means into the water mains were found through further environmental investigations. As these types of water supplies are particularly vulnerable to various environmental factors, a control system based on the risk assessment of each phase of the water supply chain is required to guarantee water safety. Effective methods for detection of protozoan pathogens, which are generally excluded from routine water supply analysis, should be applied.
Collapse
Affiliation(s)
- Armando Franceschelli
- Food Hygiene and Nutrition Service, Public Health Department, Local Health Unit of Modena, Modena, Italy
| | - Lucia Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rosa Sannella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Christian Cintori
- Prevention Service and Collective Public Health, General Directorate of Care to Person, Health and Welfare, Emilia-Romagna Region, Italy.,Public Hygiene Service, Public Health Department, Local Health Unit of Modena, Modena, Italy
| | - Raffaele Gargiulo
- Provincial Laboratory of Microbiology, Local Health Unit of Modena, Modena, Italy
| | - Anna Maria Coccia
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Paradiso
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Briancesco
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Tripodi
- Food Hygiene and Nutrition Service, Public Health Department, Local Health Unit of Modena, Modena, Italy
| |
Collapse
|
29
|
Terin UC, Freitas BLS, Nasser Fava NDM, Sabogal-Paz LP. Evaluation of a multi-barrier household system as an alternative to surface water treatment with microbiological risks. ENVIRONMENTAL TECHNOLOGY 2022; 43:3401-3413. [PMID: 33890830 DOI: 10.1080/09593330.2021.1921856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Household Water Treatment and Safe Storage (HWTS) are recommended to supply the demand for drinking water in communities without conventional water supply systems. However, there is a lack of long-term laboratory studies regarding such technologies. We evaluated the contributions of each step of a multi-barrier system with pretreatment (sedimentation and fabric filtration), filtration in Household Slow Sand Filters (HSSFs) and disinfection (sodium hypochlorite) treating surface water for more than 14 consecutive months. Removal of turbidity, colour, organic matter, coliform group bacteria and protozoa were evaluated. Two HSSF models were compared, one with a diffuser vessel (HSSF-d) and one with a gravity float equipped vessel (HSSF-f). Correlations between efficiency and operational parameters were assessed. Overall, the multi-barrier system removed more than 90% of turbidity and more than 3.5 log of Escherichia coli. HSSF removed up to 3.0 log of Giardia spp. and 2.4 log of Cryptosporidium spp. HSSF-f presented significantly higher removal rates for turbidity, apparent colour and E. coli. Disinfection resulted in water with E. coli concentration lower than 1 CFU 100mL-1, however it was not able to inactivate protozoa. The evaluated system was able to reduce microbiological risks from water and could indeed be an alternative to communities that depend on surface water as their main source of supply. Nevertheless, further studies are recommended to include a low-cost disinfectant for protozoa inactivation.
Collapse
Affiliation(s)
- Ulisses Costa Terin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Natalia de Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Rodrigues da Cunha MJ, Souza Freitas BL, Nasser Fava NDM, Sabogal-Paz LP. CFDA-AM staining to assess the metabolic activity of Giardia duodenalis cysts inactivated by chlorine, boiling and ultraviolet irradiation. JOURNAL OF WATER AND HEALTH 2022; 20:1188-1196. [PMID: 36044188 DOI: 10.2166/wh.2022.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Giardia duodenalis is responsible for several waterborne gastrointestinal outbreaks worldwide. In addition to limitations presented by the main disinfection methods, assessing the inactivation efficiency of cysts after the treatment also poses challenges. Thus, this study aimed to use the 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) staining protocol to evaluate the viability of G. duodenalis cysts inactivated by different UV and chlorination doses and boiling times. Under epifluorescent microscopy, metabolically active cysts that presented green fluorescence were considered viable. In contrast, when no green fluorescence could be observed, organisms were considered non-viable. Although statistical analysis revealed that increasing the UV dose did not significantly decrease the percentage of viable cysts, the fluorescence signal intensity decreased considerably when the cysts were irradiated with a dose equal to or greater than 80 mJ cm-2. Regarding chlorination and boiling treatments, this study demonstrated that no cyst showed fluorescence at the lowest NaClO concentration (0.5 mg/L) and in the shortest boiling time (2 min). Despite some limitations regarding the use of metabolic activity as a viability marker, this methodology is rapid, easy to run and cost-effective. Thus, we conclude that the CFDA-AM staining protocol has the potential to be used to assess Giardia cyst inactivation, although further research is required.
Collapse
Affiliation(s)
- Maria Júlia Rodrigues da Cunha
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400 São Carlos, São Paulo 13566-590, Brazil E-mail:
| | - Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400 São Carlos, São Paulo 13566-590, Brazil E-mail:
| | - Natália de Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400 São Carlos, São Paulo 13566-590, Brazil E-mail:
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400 São Carlos, São Paulo 13566-590, Brazil E-mail:
| |
Collapse
|
31
|
Protozoa as the “Underdogs” for Microbiological Quality Evaluation of Fresh Vegetables. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monitoring of the microbial quality of fresh products in the industrial environment has mainly focused on bacterial indicators. Protozoa, such as Giardia duodenalis, Cryptosporidium spp., Toxoplasma gondii, and Cyclospora cayetanensis, are routinely excluded from detection and surveillance systems, despite guidelines and regulations that support the need for tracking and monitoring these pathogens in fresh food products. Previous studies performed by our laboratory, within the scope of the SafeConsume project, clearly indicated that consumption of fresh produce may be a source of T. gondii, thus posing a risk for the contraction of toxoplasmosis for susceptible consumers. Therefore, preliminary work was performed in order to assess the microbiological quality of vegetables, highlighting not only bacteria (Escherichia. coli, Listeria monocytogenes, and Salmonella spp.), but also the zoonotic protozoa G. duodenalis and Cryptosporidium spp. Although all samples were found to be acceptable based on bacteriological parameters, cysts of G. duodenalis and oocysts of Cryptosporidium spp. were observed in vegetables. Moreover, it was possible to genetically characterize G. duodenalis positive samples as assemblage A, a genotype that poses risks to human health. Although these are preliminary results, they highlight the need to include protozoa in the microbiological criteria for foodstuffs, as required by EU Law No. 1441/2007, and to improve inactivation and removal procedures of (oo)cysts in fresh produce and water.
Collapse
|
32
|
Valdez FQ, Leite LDS, Zanetoni Filho JA, Tango MD, Daniel LA. Detection and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by anaerobic reactors in Brazil. ENVIRONMENTAL TECHNOLOGY 2022; 43:2059-2068. [PMID: 33334260 DOI: 10.1080/09593330.2020.1866083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The discharge of raw wastewater into the environment can be a contamination source of Giardia spp. cysts and Cryptosporidium spp. oocysts. The UASB (Upflow Anaerobic Sludge Blanket) reactor is the most popular technology applied for wastewater treatment in Brazil, nevertheless there is little information concerning its capacity for (oo)cyst removal. In this context, this study investigated the occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by three different UASB reactors (i.e. Reactor A, B, and C) treating different wastewater types. In the wastewater influent, the concentration varied from 493.3 to 14,000 cysts·L-1 for Giardia spp. and from 'not detected' to 53.3 oocysts·L-1 for Cryptosporidium spp.. The (oo)cyst concentration increased after the anaerobic treatment in Reactors A and B, while Giardia spp. log-removal of 0.5 ± 0.2 was found in Reactor C. The increment in (oo)cyst concentration may happened due to the inefficacy for (oo)cyst removal by the specific UASB reactor and/or due to the reduction of matrix interference for reactor effluent samples in the detection method. The results suggest that hydraulic retention time (HRT) may be the key parameter for Giardia spp. removal by the UASB reactor. Furthermore, no parameter analysed (physical-chemical and indicator microorganisms) showed a common correlation with the (oo)cyst concentration in the three UASB reactors. Considering that official data of cryptosporidiosis and giardiasis cases are rarely reported in Brazil, monitoring Giardia spp. cysts and Cryptosporidium spp. oocysts in wastewater could be an alternative to estimate the occurrence of diseases in the served population.
Collapse
Affiliation(s)
- Fernanda Queiroz Valdez
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - José Antônio Zanetoni Filho
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mariana Daniel Tango
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
33
|
Hagos B, Molestina RE. A Simple Alcohol-based Method of Oocyst Inactivation for Use in the Development of Detection Assays for Cryptosporidium. Food Waterborne Parasitol 2022; 27:e00163. [PMID: 35782020 PMCID: PMC9249555 DOI: 10.1016/j.fawpar.2022.e00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cryptosporidium spp. are obligate, intracellular parasites that cause life-threatening diarrhea among children and immunocompromised adults. Transmission occurs by the fecal-oral route following ingestion of thick-walled oocysts that can contaminate, persist, and resist disinfection in water and food. Sodium hypochlorite, peroxides, ozone, formaldehyde, and ammonia are suitable disinfectants against Cryptosporidium oocysts. Effective concentrations of these chemicals can be toxic and not practical for downstream research use of non-viable oocysts. Oocyst inactivation approaches such as UV light, heat, and treatments with ethanol or methanol are generally more accessible for routine lab use, yet their applicability in Cryptosporidium assay development is limited. The aims of this study were to evaluate methods of inactivation of Cryptosporidium oocysts that can be readily applied in the laboratory and test the utility of whole inactive oocysts in quantitative PCR (qPCR). Experiments were performed on C. parvum oocysts subjected to heat (75 °C/10 min) or treated with increasing concentrations of ethanol and methanol over time. Viability assays based on propidium iodide (PI) staining, in vitro excystation, and infection of the Hct-8 cell line were used to evaluate the efficacies of the treatments. Excystation of sporozoites was not impaired with 24 h exposures of oocysts to 50% ethanol or methanol, even though significant PI incorporation was observed. Concentrations of ≥70% of these chemicals were required to completely inhibit excystation and infection of Hct-8 cells in vitro. Inactivated oocysts stored for up to 30 days at 4 °C retained cyst wall integrity and antigenicity as observed by light microscopy and immunofluorescence. Moreover, non-viable oocysts applied directly in qPCR assays of the COWP gene were useful reference reagents for the identification and quantification of Cryptosporidium in spiked water samples. In summary, we have established a practical approach to inactivate C. parvum oocysts in the laboratory that is suitable for the development of detection or diagnostic assays targeting the parasite. Disinfectant-based inactivation of oocysts is not feasible for assay development. Inactivation methods that retain antigen and nucleic acid integrity are limited. Alcohol-inactivated oocysts are suitable as reference reagents in qPCR. We present a method to effectively inactivate oocysts and retain assayable properties.
Collapse
|
34
|
Wang J, Bu L, Wu Y, Sun J, Li G, Zhou S. Disinfection profiles and mechanisms of E. coli, S. aureus, and B. subtilis in UV365/chlorine process: Inactivation, reactivation, and DBP formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Ma JY, Li MY, Qi ZZ, Fu M, Sun TF, Elsheikha HM, Cong W. Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150562. [PMID: 34852432 DOI: 10.1016/j.scitotenv.2021.150562] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The aim of this review is to identify the worldwide trend of waterborne protozoan outbreaks and how it varies between geographic regions during the period from 2017 to 2020. Data about waterborne protozoan outbreaks were gathered and stratified by continent, country, water source, and protozoan species associated with the outbreak. The highest prevalence of waterborne protozoan outbreaks was reported in developed countries. Out of 251 outbreaks reported worldwide during the studied period, 141, 51 and 24 outbreaks were recorded in the USA, UK, and New Zealand, respectively. These outbreaks were mainly associated with Cryptosporidium (192 outbreaks) and Giardia (48 outbreaks). Cyclospora cayetanensis, Dientamoebafragilis and Toxoplasma gondii were associated with 7 outbreaks. One outbreak was associated with each of Blastocystis hominis, Entamoeba histolytica, Microsporidia or Naegleria fowleri. This data suggests large discrepancies in the number of outbreaks reported between geographic regions, with most outbreaks recorded in developed countries. Differences in the prevalence of outbreaks between countries are likely attributed to the availability of diagnostic capabilities and surveillance programs to monitor water contamination with pathogenic protozoa. More attention and concerted efforts are required to improve water safety and to alleviate the impact of waterborne protozoan infections. Appropriate surveillance of water contamination with protozoa can enable public health officials to identify source of contamination and implement the necessary measures to limit transmission and prevent outbreaks.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ze-Zheng Qi
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ming Fu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Tian-Feng Sun
- School of Translation Studies, Shandong University, Weihai, Shandong 264209, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| |
Collapse
|
37
|
Matsubayashi M, Teramoto I, Urakami I, Naohara J, Sasai K, Kido Y, Kaneko A. Evaluation of Cryptosporidium parvum oocyst inactivation following exposure to ultraviolet light-emitting diodes by in vitro excystation and dye staining assays. Parasitol Int 2022; 88:102557. [DOI: 10.1016/j.parint.2022.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
38
|
Tram NT, Phuc PD, Phi NH, Trang LT, Nga TT, Ha HTT, Cam PD, Canh TQ, Karanis P. Cryptosporidium and Giardia in Biogas Wastewater: Management of Manure Livestock and Hygiene Aspects Using Influent, Effluent, Sewage Canal Samples, Vegetable, and Soil Samples. Pathogens 2022; 11:174. [PMID: 35215118 PMCID: PMC8875155 DOI: 10.3390/pathogens11020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Cryptosporidium and Giardia are two water- and foodborne protozoan parasites that can cause diarrheal diseases. Poor microbial quality, sanitation conditions, and hygiene practices at exposure to biogas wastewater are important risk factors for human and animal infection. This study highlights the presence and level of both parasites in the environment in relation to biogas waste reuse in Vietnam. A total of 239 samples were collected from different types of samples in the studied districts in Bac Giang province in 2020 via direct immunofluorescent detection to study the occurrence of Cryptosporidium spp. and Giardia spp. (oo)cysts. Among the samples, Cryptosporidium was found in 19 (7.9%) with concentration from 1.104 to 3.105 oocysts/100 mL, while Giardia in 40 (16.7%) with concentration from 1.104 to 2.106 cysts/100 mL, respectively. In detail, the results show that the percentages of positive detection of Cryptosporidium spp. and Giardia spp. in influent, effluent, sewage canal, and vegetables were 13.1% (11/84), 6.0% (5/83), 15.4% (2/13) and 5.9% (1/17) and 26.2% (22/84), 7.2% (6/83), 7.7% (1/13) and 5.9% (1/17), respectively. The results show a trend of decreasing Cryptosporidium and Giardia densities, without statistical significance. Although these parasites decreased after biogas treatment, the remaining loads observed in biogas effluent can reach the watercourses and soil receiving it. Further investigations are needed to contribute to a general understanding of the risk of protozoan parasites, as well as strategies to control and reduce the contamination of environmental water sources and plants and reduce the burden of the pathogens in biogas wastewater in Vietnam.
Collapse
Affiliation(s)
- Nguyen Thuy Tram
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin, Hanoi 122000, Vietnam; (N.T.T.); (L.T.T.); (T.T.N.); (H.T.T.H.); (P.D.C.)
| | - Pham Duc Phuc
- Center for Public Health and Ecosystem Research (CENPHER), Hanoi University of Public Health, 1A Duc Thang, Hanoi 122000, Vietnam; (P.D.P.); (N.H.P.)
| | - Nguyen Hong Phi
- Center for Public Health and Ecosystem Research (CENPHER), Hanoi University of Public Health, 1A Duc Thang, Hanoi 122000, Vietnam; (P.D.P.); (N.H.P.)
| | - Le Thi Trang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin, Hanoi 122000, Vietnam; (N.T.T.); (L.T.T.); (T.T.N.); (H.T.T.H.); (P.D.C.)
| | - Tang Thi Nga
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin, Hanoi 122000, Vietnam; (N.T.T.); (L.T.T.); (T.T.N.); (H.T.T.H.); (P.D.C.)
| | - Hoang Thi Thu Ha
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin, Hanoi 122000, Vietnam; (N.T.T.); (L.T.T.); (T.T.N.); (H.T.T.H.); (P.D.C.)
| | - Phung Dac Cam
- Department of Bacteriology, National Institute of Hygiene and Epidemiology (NIHE), 1 Yersin, Hanoi 122000, Vietnam; (N.T.T.); (L.T.T.); (T.T.N.); (H.T.T.H.); (P.D.C.)
| | - Tran Quang Canh
- Department of Medical Laboratory Science, Hai Duong Medical Technical University, 1 Vu Huu, Thanh Binh, Hai Duong 17000, Vietnam;
| | - Panagiotis Karanis
- Medical Faculty, University of Cologne, University Hospital, 50931 Cologne, Germany
- Department of Basic and Clinical Sciences, Medical School, Anatomy Institute, University of Nicosia, Nicosia 2408, Cyprus
| |
Collapse
|
39
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
40
|
Pharmacokinetics and pharmacodynamics of clofazimine for treatment of cryptosporidiosis. Antimicrob Agents Chemother 2021; 66:e0156021. [PMID: 34748385 PMCID: PMC8765308 DOI: 10.1128/aac.01560-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Infection with Cryptosporidium spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a phase 2a clinical trial in HIV-infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine’s lack of efficacy in the phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using Emax and logistic models, which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the phase 2a study participants were well below concentrations associated with anti-Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed. (This study has been registered in ClinicalTrials.gov under identifier NCT03341767.)
Collapse
|
41
|
Treatment of human intestinal cryptosporidiosis: A review of published clinical trials. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:128-138. [PMID: 34562754 PMCID: PMC8473663 DOI: 10.1016/j.ijpddr.2021.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
The global burden of diarrhea caused by Cryptosporidium parasite is underestimated. In immunocompromised hosts, chronic and severe presentation of intestinal cryptosporidiosis can result in long-term morbidity and high illness costs. The evidence of effective treatments for cryptosporidiosis has been lacking. We reviewed the published clinical trials to bring forward the feasible therapeutic options of human cryptosporidiosis in various populations and settings according to clinical improvement and parasite clearance rates. A total of 42 studies consisting of the use of nitazoxanide, paromomycin, macrolides, somatostatin analogues, letrazuril, albendazole, rifaximin, miltefosine, clofazimine, and colostrum were included in the review. The trials were mostly conducted in small number of individuals infected with human immunodeficiency virus (HIV), and there is inadequate data of controlled trials to suggest the use of these treatment modalities. Nitazoxanide was reported to be highly efficacious only in immunocompetent hosts and was found to be superior to paromomycin in the same group of patients. Macrolides showed no effective results in both clinical and parasitological improvement. Human bovine colostrum should possibly be administered as one of complementary therapeutic modalities along with other antimicrobials to reach optimal parasite eradication. Other trials of therapeutic modalities were terminated due to futility. Currently, available data is intended to aid the development of strategies for improving access to treatments in different clinical settings, as well as to help guide further studies on treatments of human intestinal cryptosporidiosis.
Collapse
|
42
|
In Vitro Evaluation of Ozonated Water Treatment on the Viability of Eimeria Oocysts and Giardia Cysts from Water Buffaloes: A Proof-of-Concept Study. Vet Sci 2021; 8:vetsci8060115. [PMID: 34207325 PMCID: PMC8233707 DOI: 10.3390/vetsci8060115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of this proof-of-concept study was to evaluate the in vitro effects of ozonated water treatment on the viability of Eimeria oocysts and Giardia cysts isolated from naturally infected water buffaloes. Eimeria oocysts were divided into seven groups of six replicates that were treated with ozonated water at three ozone concentrations (0.5, 1, and 2 mg/L) and two contact times (five and ten minutes), and one group (negative control) that was exposed to non-treated water. Giardia cysts were divided into nine groups of six replicates and were treated with ozonated water at four ozone concentrations (0.1, 0.3, 0.5, and 1 mg/L) and two contact times (one and two minutes), while one group (negative control) was exposed to non-treated water. The results of the ozonated water treatment gave a 33% inhibition of the sporulation of Eimeria oocysts and rendered 96.3% of Giardia cysts non-viable, suggesting that ozonated water treatment could be a promising alternative sanitation technology to common conventional disinfectants for reducing intestinal protozoa infections in water buffaloes; though further in vitro and in vivo tests are needed.
Collapse
|
43
|
Freitas BLS, Terin UC, Fava NDMN, Sabogal-Paz LP. Filter media depth and its effect on the efficiency of Household Slow Sand Filter in continuous flow. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112412. [PMID: 33823447 DOI: 10.1016/j.jenvman.2021.112412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the impact of a 50% reduction of filter media depth in Household Slow Sand Filters (HSSFs) on continuous flow to remove physicochemical and microbiological parameters from river water. Furthermore, simple pre-treatment and disinfection processes were evaluated as additional treatments. Two filter models with different filtration layer depths were evaluated: a traditional one with 50 cm media depth (T-HSSF) and a compact one (C-HSSF) with 25 cm. HSSFs were fed with pre-treated river water (24-h water sedimentation followed by synthetic fabric filtration) for 436 days at a constant filtration rate of 0.90 m3 m-2 day-1 with a daily production of 48 L day-1. Sodium hypochlorite (2.0 mg L-1 of NaOCl 2.5% for 30 min) was used to disinfect the filtered water. Water samples were analysed weekly for parameters such as turbidity, organic matter, colour and E. coli, among others. Removal of protozoan cysts and oocysts by the HSSFs were also evaluated. After pretreatment, turbidity from the HSSF river water was reduced to 13.2 ± 14.6 NTU, allowing the filters to operate. Statistical analysis indicated no significant difference (p > 0.05) between T-HSSF and C-HSSF efficiencies in all evaluated parameters throughout operation time. Hence, media depth reduction did not hinder continuous HSSF performance for almost all the evaluated parameters. However, it may have affected Giardia cysts retaining, which passed through the thinner media on one evaluation day. Disinfection was effective in reducing remaining bacteria from filtered water; however, it was ineffective to inactivate protozoa. The reduction in the filtration layer did not affect the overall filtered water quality or quantity showing that a compact HSSF model may be a viable option for decentralized water treatment.
Collapse
Affiliation(s)
- Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Ulisses Costa Terin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Natália de Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
44
|
Kamrani F, Nouri Sepehr M, Heidari A, Dehghanifard E, Miahipour A, Sezavar M. The Occurrence of Cryptosporidium and Giardia Parasites in Drinking Water Resources of Alborz province , the Central Part of Iran in 2018. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2021. [DOI: 10.34172/ijep.2021.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Giardia and Cryptosporidium are common parasitic protozoa that cause acute intestinal infections in children. These two parasites are mostly found in aquatic environments, including raw water, wastewater, and even treated water. Objective: The present study aimed to examine parasitic contamination of drinking water resources by cysts and the oocyst of Giardia and Cryptosporidium in Alborz province, Iran. Materials and Methods: Water samples from three rivers and seven randomly-selected wells of Alborz province were examined using Sheather, formol-ether, and immuno-fluorescence assay (IFA) techniques. The prepared slides were examined with optical and fluorescence microscopes. Results: IFA technique revealed that 28% of the wells were contaminated with both parasites. It was also shown that all rivers’ drainage basins were contaminated with Cryptosporidium parasite, while 66% of rivers’ drainage basins were contaminated with Giardia parasite. Conclusion: The results showed that water resources of Alborz province contained Giardia cysts and Cryptosporidium oocysts, which required health care officials to pay serious attention to treating drinking water.
Collapse
Affiliation(s)
- Farzaneh Kamrani
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Nouri Sepehr
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliehsan Heidari
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Abolfazl Miahipour
- Department of Medical Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Moniereh Sezavar
- Department of Experimental Sciences, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
45
|
Sammarro Silva KJ, Sabogal-Paz LP. Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. WATER RESEARCH 2021; 189:116590. [PMID: 33166919 DOI: 10.1016/j.watres.2020.116590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Cysts and (oo)cysts are the infective forms of parasitic protozoa, as Giardia and Cryptosporidium, which are widespread and associated to worldwide waterborne diseases outbreaks. These microorganisms pose a challenge to public health, as they are resistant to conventional disinfection methods, which make them important parameters when evaluating inactivation efficiency. However, when (oo)cysts are targets, it is challenging to infer inactivation efficacy, as it may require infectivity tests that are not often an option for laboratory routine analysis. In this scene, (oo)cyst viability based on induced excystation, membrane integrity and enzyme activity evaluated by dye inclusion and/or exclusion, as well as fluorescence reduction consist on microscopy-based techniques that may be options to estimate inactivation in the environmental context. This scoping review presents applications, advantages and limitations of these methodologies for viability assessment, in order to shed light on the (oo)cyst viability topic and provide insight strategies for choosing protocols in the environmental and sanitation field, in laboratory applications and novel research.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
46
|
Polubotho P, Denvir L, Connelly L, Anderson E, Alexander CL. The first UK report of a rare Cryptosporidium hominis genetic variant isolated during a complex Scottish swimming pool outbreak. J Med Microbiol 2021; 70. [PMID: 33507141 DOI: 10.1099/jmm.0.001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptosporidium species are responsible for causing the majority of parasite-related gastrointestinal infections in the UK. This report describes an outbreak of 12 laboratory-confirmed cryptosporidiosis cases identified as part of a Scottish swimming pool investigation, with 9 primary and 3 secondary cases occurring over an 8-week period. Molecular speciation was successful for 11/12 cases, which revealed 10 Cryptosporidium hominis cases and 1 Cryptosporidium parvum case. Of the 10 C. hominis cases, further typing identified 7 as being an unusual sub-type, IbA6G3, which is the first description in the UK of this rare variant. The remaining three C. hominis cases were identified as the common IbA10G2 subtype. Following implementation of control measures on two occasions, no further cases were reported. This report highlights the importance of molecular typing to identify and characterize outbreaks, and emphasizes the need to adhere to swimming pool guidance. It also raises awareness of the potential for outbreaks to involve multiple species/sub-types, and emphasizes the importance of strong public health leadership to ensure effective multi-agency investigations and management of outbreaks.
Collapse
Affiliation(s)
| | | | - Lisa Connelly
- Scottish Microbiology Reference Laboratories, Glasgow, UK
| | | | | |
Collapse
|
47
|
Abstract
Biofilms are increasingly implicated as playing a major role in waterborne cryptosporidiosis. This review aims to synthesize all currently available data on interactions between Cryptosporidium oocysts and biofilms. Initially described following a waterborne outbreak, the integration of Cryptosporidium oocysts in biofilm has been well demonstrated. Biofilms appear important in the dissemination/protection of oocysts in the environment. Consequently, it has been suggested that substrate-associated biofilms should be systematically considered in oocyst water quality assessment. The influence of physicochemical parameters has been studied on oocyst biofilm retention. Biofilm surface roughness, ionic concentration (especially Ca2+), laminar/turbulent flow, shear stress, and electrostatic repulsion forces appear important to consider regarding oocyst release from biofilm. However, data analysis carried out during this review also revealed important gaps in biological interactions within biofilms, offering many perspectives for future work.
Collapse
|
48
|
Huang Q, Yang L, Li B, Du H, Zhao F, Han L, Wang Q, Deng Y, Xiao G, Wang D. Cryptosporidium spp. and Giardia duodenalis emissions from humans and animals in the Three Gorges Reservoir in Chongqing, China. PeerJ 2020; 8:e9985. [PMID: 33194374 PMCID: PMC7646300 DOI: 10.7717/peerj.9985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are two waterborne protozoan parasites that can cause diarrhea. Human and animal feces in surface water are a major source of these pathogens. This paper presents a GloWPa-TGR-Crypto model that estimates Cryptosporidium and G. duodenalis emissions from human and animal feces in the Three Gorges Reservoir (TGR), and uses scenario analysis to predict the effects of sanitation, urbanization, and population growth on oocyst and cyst emissions for 2050. Our model estimated annual emissions of 1.6 × 1015 oocysts and 2.1 × 1015 cysts from human and animal feces, respectively. Humans were the largest contributors of oocysts and cysts, followed by pigs and poultry. Cities were hot-spots for human emissions, while districts with high livestock populations accounted for the highest animal emissions. Our model was the most sensitive to oocyst excretion rates. The results indicated that 74% and 87% of total emissions came from urban areas and humans, respectively, and 86% of total human emissions were produced by the urban population. The scenario analysis showed a potential decrease in oocyst and cyst emissions with improvements in urbanization, sanitation, wastewater treatment, and manure management, regardless of population increase. Our model can further contribute to the understanding of environmental pathways, the risk assessment of Cryptosporidium and Giardia pollution, and effective prevention and control strategies that can reduce the outbreak of waterborne diseases in the TGR and other similar watersheds.
Collapse
Affiliation(s)
- Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Ling Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Bo Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Huihui Du
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Lin Han
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Yunjia Deng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.,Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Epidemiology of Cryptosporidiosis in France from 2017 to 2019. Microorganisms 2020; 8:microorganisms8091358. [PMID: 32899825 PMCID: PMC7563450 DOI: 10.3390/microorganisms8091358] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/28/2023] Open
Abstract
Cryptosporidiosis is currently recognized worldwide as a leading cause of moderate to severe diarrhea. In Europe, large water- and foodborne outbreaks have been reported, highlighting the widespread distribution of the parasite and its important health impact. Surveillance networks have been progressively set up and the aim of this study was to present recent epidemiological data obtained in France from 2017 to 2019 by the National Reference Center-Expert Laboratory of cryptosporidiosis (Centre National de Référence-Laboratoire Expert cryptosporidioses CNR-LE). Data were obtained from online reports of volunteer network participants and stools were sent to the CNR-LE for species identification and GP60 genotyping. During this period, data from 750 online reports were available. Cryptosporidiosis occurred predominantly in young children (<5 years old) and in young adults, especially during late summer. Most patients were immunocompetent (60%), and deaths were reported only in immunocompromised patients. Cryptosporidium parvum was largely predominant (72% of cases) over C. hominis (24%) and some other uncommon species. C. parvum GP60 subtypes IIa and IId were the most represented, which suggests frequent zoonotic transmission. For C. hominis, subtypes IbA10G2 and IaA22R2 were predominant.
Collapse
|
50
|
Ahmed Y, Lu J, Yuan Z, Bond PL, Guo J. Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. WATER RESEARCH 2020; 179:115878. [PMID: 32417561 DOI: 10.1016/j.watres.2020.115878] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance has been recognized as a major threat to public health worldwide. Inactivation of antibiotic resistant bacteria (ARB) and degradation of antibiotic resistance genes (ARGs) are critical to prevent the spread of antibiotic resistance in the environment. Conventional disinfection processes are effective to inactivate water-borne pathogens, yet they are unable to completely eliminate the antibiotic resistance risk. This study explored the potential of the photo-Fenton process to inactivate ARB, and to degrade both extracellular and intracellular ARGs (e-ARGs and i-ARGs, respectively). Using Escherichia coli DH5α with two plasmid-encoded ARGs (tetA and blaTEM-1) as a model ARB, a 6.17 log ARB removal was achieved within 30 min of applying photo-Fenton under visible LED and neutral pH conditions. In addition, no ARB regrowth occurred after 48-h, demonstrating that this process is very effective to induce permanent disinfection on ARB. The photo-Fenton process was validated under various water matrices, including ultrapure water (UPW), simulated wastewater (SWW) and phosphate buffer (PBS). The higher inactivation efficiency was observed in SWW as compared to other matrices. The photo-Fenton process also caused a 6.75 to 8.56-log reduction in eARGs based on quantitative real-time PCR of both short- and long amplicons. Atomic force microscopy (AFM) further confirmed that the extracellular DNA was sheared into short DNA fragments, thus eliminating the risk of the transmission of antibiotic resistance. As compared with e-ARGs, a higher dosage of Fenton reagent was required to damage i-ARGs. In addition, the tetA gene was more easily degraded than the blaTEM-1 gene. Collectively, our results demonstrate the photo-Fenton process is a promising technology for disinfecting water to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Yunus Ahmed
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|