1
|
Zarovni N, Mladenović D, Brambilla D, Panico F, Chiari M. Stoichiometric constraints for detection of EV-borne biomarkers in blood. J Extracell Vesicles 2025; 14:e70034. [PMID: 39901737 PMCID: PMC11791308 DOI: 10.1002/jev2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Stochiometric issues, encompassing both the quantity and heterogeneity of extracellular vesicles (EVs) derived from tumour or other tissues in blood, pose important challenges across various stages of biomarker discovery and detection, affecting the integrity of data, introducing losses and artifacts during blood processing, EV purification and analysis. These challenges shape the diagnostic utility of EVs especially within the framework of established and emerging methodologies. By addressing these challenges, we aim to delineate crucial parameters and requirements for tumour-specific EV detection, or more precisely, for tumour identification via EV based assays. Our endeavour involves a comprehensive examination of the layers that mask or confound the traceability of EV markers such as nucleic acids and proteins, and focus on 'low prevalence-low concentration' scenario. Finally, we evaluate the advantages versus limitations of single-particle analysers over more conventional bulk assays, suggesting that the combined use of both to capture and interpret the EV signals, in particular the EV surface displayed proteins, may ultimately provide quantitative information on their absolute abundance and distribution.
Collapse
Affiliation(s)
| | - Danilo Mladenović
- HansaBioMed Life Sciences OÜTallinnEstonia
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Dario Brambilla
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Federica Panico
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Marcella Chiari
- RoseBioMilanItaly
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| |
Collapse
|
2
|
de Voogt WS, Frunt R, Leandro RM, Triesscheijn CS, Monica B, Paspali I, Tielemans M, François JJJM, Seinen CW, de Jong OG, Kooijmans SAA. EV-Elute: A universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations. J Extracell Vesicles 2024; 13:e70017. [PMID: 39692115 DOI: 10.1002/jev2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions. However, it has been technically challenging to examine such functional heterogeneity due to a lack of non-destructive methods to separate EV subpopulations based on their surface markers. Here, we used the Design-of-Experiments (DoE) methodology to optimize a protocol, which we name 'EV-Elute', to elute intact EVs from commercially available Protein G-coated magnetic beads. We captured EVs from various cell types on these beads using antibodies against CD9, CD63, CD81 and a custom-made protein binding phosphatidylserine (PS). When applying EV-Elute, over 70% of bound EVs could be recovered from the beads in a pH- and incubation-time-dependent fashion. EV subpopulations showed intact integrity by electron microscopy and Proteinase K protection assays and showed uptake patterns similar to whole EV isolates in co-cultures of peripheral blood mononuclear cells (PBMCs) and endothelial cells. However, in Cas9/sgRNA delivery assays, CD63+ EVs showed a lower capacity to functionally deliver cargo as compared to CD9+, CD81+ and PS+ EVs. Taken together, we developed a novel, easy-to-use platform to isolate and functionally compare surface marker-defined EV subpopulations. This platform does not require specialized equipment or reagents and is universally applicable to any capturing antibody and EV source. Hence, EV-Elute can open new opportunities to study EV functionality at the subpopulation level.
Collapse
Affiliation(s)
| | - Rowan Frunt
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raul M Leandro
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bella Monica
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ioanna Paspali
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Tielemans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cor W Seinen
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Sander A A Kooijmans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
4
|
Liu C, Seneviratne CJ, Palma C, Rice G, Salomon C, Khanabdali R, Ivanovski S, Han P. Immunoaffinity-enriched salivary small extracellular vesicles in periodontitis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:698-712. [PMID: 39697803 PMCID: PMC11648426 DOI: 10.20517/evcna.2023.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/20/2024]
Abstract
Aim aliva extracellular vesicles (EVs) serve as a significant reservoir of biomarkers that may be of clinical use in disease diagnosis. Saliva, however, contains EVs of both host- and bacterial- origin. Identifying suitable EVs for disease diagnosis involves enriching host EVs and limiting non-host contamination with effective isolation methods. The objectives of this research were: (1) to evaluate the salivary EVs enrichment in 12 periodontally healthy patients by two different methods: size exclusion chromatography (SEC) and bead-based immunoaffinity capture (EXO-NET®); (2) to analyze the variance expression of inflammatory cytokines in EXO-NET-enriched EVs, comparing individuals with periodontitis (n = 20) to non-periodontitis (n = 12). Methods Whole unstimulated saliva samples were collected from 12 periodontally healthy and 20 periodontitis patients. EVs were isolated from the 12 non-periodontitis patients using SEC (referred to as SEC-EVs) and EXO-NET (referred to as EXO-NET EVs), after which their total protein content, 37 EV surface markers, and bacterial pathogens expression were compared. Subsequently, the inflammatory cytokines expression levels (interleukin-IL-6, IL-1β, IL-8, and IL-10) in EXO-NET EVs were measured for non-periodontitis and periodontitis. Results EXO-NET EVs contained more EV-specific protein and substantially higher expression of EV surface markers (CD9, CD81, CD63), but less pathogenic DNA was detected compared to that in SEC-EVs. Additionally, EXO-NET EVs from periodontitis patients contained higher amounts of IL-6 and IL-8, and decreased IL-10, compared to those from non-periodontitis patients. Conclusion The findings suggest that immunoaffinity capture (EXO-NET) is a dependable method for salivary EVs enrichment, resulting in a higher yield of host EVs with reduced bacterial DNA detection compared to SEC. Furthermore, the research proposes that immunoaffinity capture enriched EVs can function as biomarkers for periodontitis, demonstrated by an increased expression of proinflammatory cytokines from periodontitis patients.
Collapse
Affiliation(s)
- Chun Liu
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chaminda Jayampath Seneviratne
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Carlos Palma
- INOVIQ Limited, Notting Hill, VIC 3168, Australia
| | - Greg Rice
- INOVIQ Limited, Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Sašo Ivanovski
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Pingping Han
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
5
|
Ban E, Lim HJ, Kwon H, Song EJ. Practical magnetic bead-based capillary electrophoresis with laser-induced fluorescence for detecting endogenous miRNA in plasma. Heliyon 2023; 9:e22809. [PMID: 38125489 PMCID: PMC10730592 DOI: 10.1016/j.heliyon.2023.e22809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs crucial for gene regulation and implicated in various human diseases. Their potential as clinical prognostic and diagnostic biomarkers in biological fluids necessitates reliable detection methods. In this study, a combination of streptavidin-coupled magnetic beads and capillary electrophoresis with laser-induced fluorescence (CE-LIF) was used to extract and analyze plasma miRNAs. Specifically, miRNAs hybridized with a biotinylated fluorescent DNA probe were isolated from plasma using magnetic beads. These hybridized miRNAs were then directly injected into the CE-LIF system for analysis, eliminating the need for additional processing steps. Both the hybridization and bead-to-probe binding were executed concurrently, regulated by temperature and time. Through the optimization of magnetic bead extraction and CE-LIF conditions, we developed a highly sensitive assay for miR-21 quantification in plasma. The assay displayed remarkable linearity (R2 = 0.9975) within a 0.1-5 pM range and exhibited favorable precision (0.22-1.26 %) and accuracy (98.31-111.19 %). Importantly, we successfully detected endogenous miR-21 in plasma samples from both a lung cancer patient and healthy adults, revealing a 1.7-fold overexpression of miR-21 in lung cancer plasma relative to normal samples. Our findings suggest that this developed system offers a simple and sensitive approach for detecting endogenous miRNAs in plasma, showing its potential utility in disease diagnostics. To our knowledge, this is the first study to utilize CE-LIF for plasma miRNA detection.
Collapse
Affiliation(s)
| | | | - Haejin Kwon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
6
|
Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical Translation of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2301010. [PMID: 37421185 DOI: 10.1002/adhm.202301010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Indexed: 07/10/2023]
Abstract
Extracellular vesicles (EVs) occur in a variety of bodily fluids and have gained recent attraction as natural materials due to their bioactive surfaces, internal cargo, and role in intercellular communication. EVs contain various biomolecules, including surface and cytoplasmic proteins; and nucleic acids that are often representative of the originating cells. EVs can transfer content to other cells, a process that is thought to be important for several biological processes, including immune responses, oncogenesis, and angiogenesis. An increased understanding of the underlying mechanisms of EV biogenesis, composition, and function has led to an exponential increase in preclinical and clinical assessment of EVs for biomedical applications, such as diagnostics and drug delivery. Bacterium-derived EV vaccines have been in clinical use for decades and a few EV-based diagnostic assays regulated under Clinical Laboratory Improvement Amendments have been approved for use in single laboratories. Though, EV-based products are yet to receive widespread clinical approval from national regulatory agencies such as the United States Food and Drug Administration (USFDA) and European Medicine Agency (EMA), many are in late-stage clinical trials. This perspective sheds light on the unique characteristics of EVs, highlighting current clinical trends, emerging applications, challenges and future perspectives of EVs in clinical use.
Collapse
Affiliation(s)
- Aayushi Ghodasara
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- The School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Research, Postgraduate and Further Education (DIPEC), Falcuty of Health Sciences, University of Alba, Santiago, 8320000, Chile
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
7
|
Kozhevnikova D, Chernyshev V, Yashchenok A. Progress in Isolation and Molecular Profiling of Small Extracellular Vesicles via Bead-Assisted Platforms. BIOSENSORS 2023; 13:688. [PMID: 37504087 PMCID: PMC10377709 DOI: 10.3390/bios13070688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
Tremendous interest in research of small extracellular vesicles (sEVs) is driven by the participation of vesicles in a number of biological processes in the human body. Being released by almost all cells of the body, sEVs present in complex bodily fluids form the so-called intercellular communication network. The isolation and profiling of individual fractions of sEVs secreted by pathological cells are significant in revealing their physiological functions and clinical importance. Traditional methods for isolation and purification of sEVs from bodily fluids are facing a number of challenges, such as low yield, presence of contaminants, long-term operation and high costs, which restrict their routine practical applications. Methods providing a high yield of sEVs with a low content of impurities are actively developing. Bead-assisted platforms are very effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. Here, we review recent advances in the enrichment of sEVs via bead-assisted platforms emphasizing the type of binding sEVs to the bead surface, sort of capture and target ligands and isolation performance. Further, we discuss integration-based technologies for the capture and detection of sEVs as well as future research directions in this field.
Collapse
Affiliation(s)
- Daria Kozhevnikova
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia
| | - Vasiliy Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, 117997 Moscow, Russia
| | - Alexey Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia
| |
Collapse
|
8
|
Pham QN, Winter M, Milanova V, Young C, Condina MR, Hoffmann P, Pham NTH, Tung TT, Losic D, Thierry B. Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires. NANOSCALE 2023; 15:1236-1247. [PMID: 36541661 DOI: 10.1039/d2nr05619d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immuno-specific enrichment of extracellular vesicles (EVs) can provide important information into cellular pathways underpinning various pathologies and for non-invasive diagnostics, including mass spectrometry-based analyses. Herein, we report an optimised protocol for immuno-magnetic enrichment of specific EV subtypes and their subsequent processing with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, we conjugated placental alkaline phosphatase (PLAP) antibodies to magnetic iron oxide nanowires (NWs) derived from bacterial biofilms and demonstrated the utility of this approach by enriching placenta-specific EVs (containing PLAP) from cell culture media. We demonstrate efficient PLAP+ve EV enrichment for both NW-PLAP and Dynabeads™-PLAP, with high PLAP protein recovery (83.7 ± 8.9% and 83.2 ± 5.9%, respectively), high particle-to-protein ratio (7.5 ± 0.7 × 109 and 7.1 ± 1.2 × 109, respectively), and low non-specific binding of non-target EVs (7 ± 3.2% and 5.4 ± 2.2%, respectively). Furthermore, our optimized EV enrichment and processing approach identified 2518 and 2545 protein groups with LC-MS/MS for NW-PLAP and Dynabead™-PLAP, respectively, with excellent reproducibility (Pearson correlation 0.986 and 0.988). These findings demonstrate that naturally occurring iron oxide NWs have comparable performance to current gold standard immune-magnetic beads. The optimized immuno-specific EV enrichment for LC-MS/MS method provides a low-cost and highly-scalable yet efficient, high-throughput approach for quality EV proteomic studies.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Mark R Condina
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Nguyen T H Pham
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
9
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
10
|
Jiawei S, Zhi C, Kewei T, Xiaoping L. Magnetic bead-based adsorption strategy for exosome isolation. Front Bioeng Biotechnol 2022; 10:942077. [PMID: 36051582 PMCID: PMC9424818 DOI: 10.3389/fbioe.2022.942077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
Exosomes, one type of extracellular vesicle (EV) secreted by cells, participate in intercellular communication and other biological processes as carriers of lipids, functional proteins, mRNAs, miRNAs, lncRNAs, and DNA fragments. Their presence in biofluids makes them attractive candidates as innovative clinical diagnostic tools. However, the conventional isolation and analysis of high-purity exosomes in clinical application is challenging, with traditional methods facing a number of shortcomings, including low yield or purity, long periods of processing, high cost, and difficulties in standardization. In this study, we provide an overview of commonly used exosome isolation approaches with a focus on magnetic bead-based capture, an ideal methodology with high purity and integrality of exosomes. The current challenges on exosome isolation methods are also described to highlight areas for future research and development.
Collapse
Affiliation(s)
- Sun Jiawei
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China
| | - Chen Zhi
- Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Kewei
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China
| | - Li Xiaoping
- Shulan International Medical College, Zhejiang Shuren College, Hangzhou, China,*Correspondence: Li Xiaoping,
| |
Collapse
|
11
|
Fortunato D, Giannoukakos S, Giménez-Capitán A, Hackenberg M, Molina-Vila MA, Zarovni N. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational strategy for liquid biopsies. Biomark Res 2022; 10:57. [PMID: 35933395 PMCID: PMC9357340 DOI: 10.1186/s40364-022-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Intercellular communication is mediated by extracellular vesicles (EVs), as they enclose selectively packaged biomolecules that can be horizontally transferred from donor to recipient cells. Because all cells constantly generate and recycle EVs, they provide accurate timed snapshots of individual pathophysiological status. Since blood plasma circulates through the whole body, it is often the biofluid of choice for biomarker detection in EVs. Blood collection is easy and minimally invasive, yet reproducible procedures to obtain pure EV samples from circulating biofluids are still lacking. Here, we addressed central aspects of EV immunoaffinity isolation from simple and complex matrices, such as plasma. Methods Cell-generated EV spike-in models were isolated and purified by size-exclusion chromatography, stained with cellular dyes and characterized by nano flow cytometry. Fluorescently-labelled spike-in EVs emerged as reliable, high-throughput and easily measurable readouts, which were employed to optimize our EV immunoprecipitation strategy and evaluate its performance. Plasma-derived EVs were captured and detected using this straightforward protocol, sequentially combining isolation and staining of specific surface markers, such as CD9 or CD41. Multiplexed digital transcript detection data was generated using the Nanostring nCounter platform and evaluated through a dedicated bioinformatics pipeline. Results Beads with covalently-conjugated antibodies on their surface outperformed streptavidin-conjugated beads, coated with biotinylated antibodies, in EV immunoprecipitation. Fluorescent EV spike recovery evidenced that target EV subpopulations can be efficiently retrieved from plasma, and that their enrichment is dependent not only on complex matrix composition, but also on the EV surface phenotype. Finally, mRNA profiling experiments proved that distinct EV subpopulations can be captured by directly targeting different surface markers. Furthermore, EVs isolated with anti-CD61 beads enclosed mRNA expression patterns that might be associated to early-stage lung cancer, in contrast with EVs captured through CD9, CD63 or CD81. The differential clinical value carried within each distinct EV subset highlights the advantages of selective isolation. Conclusions This EV isolation protocol facilitated the extraction of clinically useful information from plasma. Compatible with common downstream analytics, it is a readily implementable research tool, tailored to provide a truly translational solution in routine clinical workflows, fostering the inclusion of EVs in novel liquid biopsy settings. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00404-1.
Collapse
|
12
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Allelein S, Aerchlimann K, Rösch G, Khajehamiri R, Kölsch A, Freese C, Kuhlmeier D. Prostate-Specific Membrane Antigen (PSMA)-Positive Extracellular Vesicles in Urine-A Potential Liquid Biopsy Strategy for Prostate Cancer Diagnosis? Cancers (Basel) 2022; 14:cancers14122987. [PMID: 35740652 PMCID: PMC9221222 DOI: 10.3390/cancers14122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
All cells release extracellular vesicles (EVs) to communicate with adjacent and distant cells. Consequently, circulating EVs are found in all bodily fluids, providing information applicable for liquid biopsy in early cancer diagnosis. Studies observed an overexpression of the membrane-bound prostate-specific membrane antigen (PSMA) on prostate cancer cells. To investigate whether EVs derived from communicating prostate cells allow for reliable conclusions on prostate cancer development, we isolated PSMA-positive, as well as CD9-positive, EVs from cell-free urine with the use of magnetic beads. These populations of EVs were subsequently compared to CD9-positive EVs isolated from female urine in Western blotting, indicating the successful isolation of prostate-derived and ubiquitous EVs, respectively. Furthermore, we developed a device with an adapted protocol that enables an automated immunomagnetic enrichment of EVs of large sample volumes (up to 10 mL), while simultaneously reducing the overall bead loss and hands-on time. With an in-house spotted antibody microarray, we characterized PSMA as well as other EV surface markers of a prostate cohort of 44 urine samples in a more simplified way. In conclusion, the automated and specific enrichment of EVs from urine has a high potential for future diagnostic applications.
Collapse
Affiliation(s)
- Susann Allelein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany; (K.A.); (A.K.); (D.K.)
- Correspondence:
| | - Keshia Aerchlimann
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany; (K.A.); (A.K.); (D.K.)
| | - Gundula Rösch
- Fraunhofer Institute for Microengineering and Microsystems (IMM), 55129 Mainz, Germany; (G.R.); (R.K.); (C.F.)
| | - Roxana Khajehamiri
- Fraunhofer Institute for Microengineering and Microsystems (IMM), 55129 Mainz, Germany; (G.R.); (R.K.); (C.F.)
| | - Andreas Kölsch
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany; (K.A.); (A.K.); (D.K.)
| | - Christian Freese
- Fraunhofer Institute for Microengineering and Microsystems (IMM), 55129 Mainz, Germany; (G.R.); (R.K.); (C.F.)
| | - Dirk Kuhlmeier
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany; (K.A.); (A.K.); (D.K.)
| |
Collapse
|
14
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
15
|
Considerations and Suggestions for the Reliable Analysis of miRNA in Plasma Using qRT-PCR. Genes (Basel) 2022; 13:genes13020328. [PMID: 35205372 PMCID: PMC8872398 DOI: 10.3390/genes13020328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are promising molecules that can regulate gene expression, and their expression level and type have been associated with early diagnosis, targeted therapy, and prognosis of various diseases. Therefore, analysis of miRNA in the plasma or serum is useful for the discovery of biomarkers and the diagnosis of implicated diseases to achieve potentially unprecedented progress in early treatment. Numerous methods to improve sensitivity have recently been proposed and confirmed to be valuable in miRNA detection. Specifically, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is an effective and common method for sensitive and specific analysis of miRNA from biological fluids, such as plasma or serum. Despite this, the application of qRT-PCR is limited, as it can be affected by various contaminants. Therefore, extraction studies have been frequently conducted to maximize the extracted miRNA amount while simultaneously minimizing contaminants. Moreover, studies have evaluated extraction efficiency and normalization of the extracted sample. However, variability in results among laboratories still exists. In this review, we aimed to summarize the factors influencing the qualification and quantification of miRNAs in the plasma using qRT-PCR. Factors influencing reliable analysis of miRNA using qRT-PCR are described in detail. Additionally, we aimed to describe the importance of evaluating extraction and normalization for reliable miRNA analysis and to explore how miRNA detection accuracy, especially from plasma, can be improved.
Collapse
|
16
|
Morasso C, Ricciardi A, Sproviero D, Truffi M, Albasini S, Piccotti F, Sottotetti F, Mollica L, Cereda C, Sorrentino L, Corsi F. Fast quantification of extracellular vesicles levels in early breast cancer patients by Single Molecule Detection Array (SiMoA). Breast Cancer Res Treat 2022; 192:65-74. [PMID: 34935096 PMCID: PMC8841315 DOI: 10.1007/s10549-021-06474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 10/25/2022]
Abstract
PURPOSE Preliminary reports suggest that extracellular vesicles (EVs) might be a promising biomarker for breast cancer (BC). However, the quantification of plasmatic levels of EVs is a complex task. To overcome these limitations, we developed a new, fast, and easy to use assay for the quantification of EVs directly in plasma based on the use of Single-Molecule Array (SiMoA). METHODS By using SiMoA to identify CD9+/CD63+ EVs, we analyzed plasma samples of 181 subjects (95 BC and 86 healthy controls, HC). A calibration curve, made of a serial dilution of lyophilized standards from human plasma, was used in each run to ensure the obtainment of quantitative results from the assay. In a subgroup of patients, EVs concentrations were estimated in plasma before and after 30 days from cancer surgery. Additional information on the size of EVs were also acquired using a Nanosight system to obtain a clearer understanding of the mechanism underlying the releases of EVs associated with the presence of cancer. RESULTS The measured levels of EVs resulted significantly higher in BC patients (median values 1179.1 ng/µl vs 613.0 ng/µl, p < 0.0001). ROC curve was used to define the optimal cut-off level of the test at 1034.5 ng/µl with an AUC of 0.75 [95% CI 0.68-0.82]. EVs plasmatic concentrations significantly decreased after cancer surgery compared to baseline values (p = 0.014). No correlation was found between EVs concentration and clinical features of BC. CONCLUSION SiMoA assay allows plasmatic EVs levels detection directly without any prior processing. EVs levels are significantly higher in BC patients and significantly decreases after cancer surgery.
Collapse
Affiliation(s)
- Carlo Morasso
- Laboratory of Nanomedicine, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Alessandra Ricciardi
- Laboratory of Nanomedicine, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Daisy Sproviero
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Truffi
- Laboratory of Nanomedicine, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Sara Albasini
- Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Piccotti
- Laboratory of Nanomedicine, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Federico Sottotetti
- Medical Oncology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Ludovica Mollica
- Medical Oncology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Sorrentino
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Fabio Corsi
- Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy.
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
17
|
Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. MEMBRANES 2021; 12:membranes12010055. [PMID: 35054584 PMCID: PMC8780510 DOI: 10.3390/membranes12010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) as the new form of cellular communication have been demonstrated their potential use for disease diagnosis, prognosis and treatment. EVs are vesicles with a lipid bilayer and are present in various biofluids, such as blood, saliva and urine. Therefore, EVs have emerged as one of the most appealing sources for the discovery of clinical biomarkers. However, isolation of the target EVs from different biofluids is required for the use of EVs as diagnostic and therapeutic entities in clinical settings. Owing to their unique properties and versatile functionalities, nanomaterials have been widely investigated for EV isolation with the aim to provide rapid, simple, and efficient EV enrichment. Herein, this review presents the progress of nanomaterial-based isolations for EVs over the past five years (from 2017 to 2021) and discusses the use of nanomaterials for EV isolations based on the underlying mechanism in order to offer insights into the design of nanomaterials for EV isolations.
Collapse
|
18
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
19
|
Martinez-Dominguez MV, Zottel A, Šamec N, Jovčevska I, Dincer C, Kahlert UD, Nickel AC. Current Technologies for RNA-Directed Liquid Diagnostics. Cancers (Basel) 2021; 13:5060. [PMID: 34680210 PMCID: PMC8534233 DOI: 10.3390/cancers13205060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
There is unequivocal acceptance of the variety of enormous potential liquid nucleic acid-based diagnostics seems to offer. However, the existing controversies and the increased awareness of RNA-based techniques in society during the current global COVID-19 pandemic have made the readiness of liquid nucleic acid-based diagnostics for routine use a matter of concern. In this regard-and in the context of oncology-our review presented and discussed the status quo of RNA-based liquid diagnostics. We summarized the technical background of the available assays and benchmarked their applicability against each other. Herein, we compared the technology readiness level in the clinical context, economic aspects, implementation as part of routine point-of-care testing as well as performance power. Since the preventive care market is the most promising application sector, we also investigated whether the developments predominantly occur in the context of early disease detection or surveillance of therapy success. In addition, we provided a careful view on the current biotechnology investment activities in this sector to indicate the most attractive strategies for future economic success. Taken together, our review shall serve as a current reference, at the interplay of technology, clinical use and economic potential, to guide the interested readers in this rapid developing sector of precision medicine.
Collapse
Affiliation(s)
| | - Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Neja Šamec
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.); (I.J.)
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany;
- Laboratory for Sensors, Department of Microsystems Engineering—IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
- Molecular and Experimental Surgery, Clinic of General-, Visceral-, Vascular-, and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.V.M.-D.); (U.D.K.)
| |
Collapse
|
20
|
Jordan NP, Tingle SJ, Shuttleworth VG, Cooke K, Redgrave RE, Singh E, Glover EK, Ahmad Tajuddin HB, Kirby JA, Arthur HM, Ward C, Sheerin NS, Ali S. MiR-126-3p Is Dynamically Regulated in Endothelial-to-Mesenchymal Transition during Fibrosis. Int J Mol Sci 2021; 22:ijms22168629. [PMID: 34445337 PMCID: PMC8395326 DOI: 10.3390/ijms22168629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
In fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFβ2 and IL1β. A significant decrease in endothelial markers such as VE-cadherin, CD31 and an increase in mesenchymal markers such as fibronectin were observed. In parallel, miRNA profiling showed that miR-126-3p was down-regulated in HUVECs undergoing EndMT and over-expression of miR-126-3p prevented EndMT, maintaining CD31 and repressing fibronectin expression. EndMT was investigated using lineage tracing with transgenic Cdh5-Cre-ERT2; Rosa26R-stop-YFP mice in two established models of fibrosis: cardiac ischaemic injury and kidney ureteric occlusion. In both cardiac and kidney fibrosis, lineage tracing showed a significant subpopulation of endothelial-derived cells expressed mesenchymal markers, indicating they had undergone EndMT. In addition, miR-126-3p was restricted to endothelial cells and down-regulated in murine fibrotic kidney and heart tissue. These findings were confirmed in patient kidney biopsies. MiR-126-3p expression is restricted to endothelial cells and is down-regulated during EndMT. Over-expression of miR-126-3p reduces EndMT, therefore, it could be considered for miRNA-based therapeutics in fibrotic organs.
Collapse
Affiliation(s)
- Nina P. Jordan
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
- Inserm U1082, F-86000 Poitiers, France
| | - Samuel J. Tingle
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Victoria G. Shuttleworth
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Katie Cooke
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Rachael E. Redgrave
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Esha Singh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Emily K. Glover
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Hafiza B. Ahmad Tajuddin
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - John A. Kirby
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Helen M. Arthur
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (E.S.); (H.M.A.)
| | - Chris Ward
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Neil S. Sheerin
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
| | - Simi Ali
- Theme-Immunity and Inflammation, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.J.); (S.J.T.); (V.G.S.); (K.C.); (E.K.G.); (H.B.A.T.); (J.A.K.); (C.W.); (N.S.S.)
- Correspondence: ; Tel.: +44-(0)191-208-7158
| |
Collapse
|
21
|
Mitchell MI, Ben‐Dov IZ, Liu C, Ye K, Chow K, Kramer Y, Gangadharan A, Park S, Fitzgerald S, Ramnauth A, Perlin DS, Donato M, Bhoy E, Manouchehri Doulabi E, Poulos M, Kamali‐Moghaddam M, Loudig O. Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV-CATCHER): A customizable purification assay designed for small-RNA biomarker identification and evaluation of circulating small-EVs. J Extracell Vesicles 2021; 10:e12110. [PMID: 34122779 PMCID: PMC8173589 DOI: 10.1002/jev2.12110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical TranscriptomicsHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Kenny Ye
- Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Kar Chow
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Yael Kramer
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Anju Gangadharan
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Steven Park
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Sean Fitzgerald
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Andrew Ramnauth
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkUSA
| | - David S. Perlin
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Michele Donato
- BiorepositoryHackensack University Medical CenterHackensackNew JerseyUSA
| | - Emily Bhoy
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Michael Poulos
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Masood Kamali‐Moghaddam
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
22
|
Chen YS, Lai CPK, Chen C, Lee GB. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:1475-1483. [PMID: 33730143 DOI: 10.1039/d1lc00093d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-released, membrane-encapsulated extracellular vesicles (EVs) serve as a means of intercellular communication by delivering bioactive cargos including proteins, nucleic acids and lipids. EVs have been widely used for a variety of biomedical applications such as biomarkers for disease diagnosis and drug delivery vehicles for therapy. Herein, this study reports a novel method for label-free, contact-free isolation and recovery of EVs via optically-induced dielectrophoresis (ODEP) on a pneumatically-driven microfluidic platform with minimal human intervention. At an optimal driving frequency of 20 kHz and a voltage of 20 Vpp, an ODEP force from a 75 μm moving light beam was characterized to be 23.5-97.7 fN in 0.2 M sucrose solution. Furthermore, rapid enrichment of EVs with a small volume of only 27 pL in 32 s achieved an increase of 272-fold by dynamically shrinking circular light patterns. Moreover, EVs could be automatically isolated and recovered within 25 min, while achieving a releasing efficiency of 99.8% and a recovery rate of 52.2% by using an integrated microfluidics-based optically-induced EV isolation (OIEV) platform. Given the capacity of label-free, contact-free EV isolation, and automatic, easy-releasing EV recovery, this integrated OIEV platform provides a unique approach for EV-based disease diagnosis and drug delivery applications.
Collapse
Affiliation(s)
- Yi-Sin Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan and Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan and Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chihchen Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan. and Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan. and Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Malhotra S, Amin ZM, Dobhal G, Cottam S, Nann T, Goreham RV. Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles. Mikrochim Acta 2021; 188:139. [PMID: 33772384 DOI: 10.1007/s00604-021-04790-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles are spherical nanoparticles inherently released by almost all cell types. They acquire the cell's membrane and cytoplasmic characteristics offering abundant identical units that can be captured to recognize the cell of origin. The abundance of vital cell information and multifunctional roles in cellular processes has rendered them attention, particularly as promising biomarkers for disease diagnosis and use in potential drug delivery systems. This review provides insights into standard approaches towards cultivation and isolation of mammalian and bacterial extracellular vesicles. We assess gaps in conventional separation and detection technologies while also tracking developments in ongoing research. The review focuses on highlighting alternative state-of-the-art microfluidic devices that offer avenues for fast, cost-effective, precision-oriented capture and sensing of extracellular vesicles. Combining different detection technologies on an integrated "lab-on-a-chip" system has the prospective to provide customizable opportunities for clinical use of extracellular vesicles in disease diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Shiana Malhotra
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Zarinah M Amin
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Garima Dobhal
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Sophie Cottam
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Thomas Nann
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Renee V Goreham
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, 2308, Australia.
| |
Collapse
|
24
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
25
|
Videira RF, da Costa Martins PA. Non-coding RNAs in Cardiac Intercellular Communication. Front Physiol 2020; 11:738. [PMID: 33013428 PMCID: PMC7509180 DOI: 10.3389/fphys.2020.00738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Intercellular communication allows for molecular information to be transferred from cell to cell, in order to maintain tissue or organ homeostasis. Alteration in the process due to changes, either on the vehicle or the cargo information, may contribute to pathological events, such as cardiac pathological remodeling. Extracellular vesicles (EVs), namely exosomes, are double-layer vesicles secreted by cells to mediate intercellular communication, both locally and systemically. EVs can carry different types of cargo, including non-coding RNAs (ncRNAs), which, are major regulators of physiological and pathological processes. ncRNAs transported in EVs are functionally active and trigger a cascade of processes in the recipient cells. Upon cardiac injury, exosomal ncRNAs can derive from and target different cardiac cell types to initiate cellular and molecular remodeling events such as hypertrophic growth, cardiac fibrosis, endothelial dysfunction, and inflammation, all contributing to cardiac dysfunction and, eventually, heart failure. Exosomal ncRNAs are currently accepted as crucial players in the process of cardiac pathological remodeling and alterations in their presence profile in EVs may attenuate cardiac dysfunction, suggesting that exosomal ncRNAs are potential new therapeutic targets. Here, we review the current research on the role of ncRNAs in intercellular communication, in the context of cardiac pathological remodeling.
Collapse
Affiliation(s)
- Raquel Figuinha Videira
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands.,Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|