1
|
Usserbayev B, Sultankulova KT, Burashev Y, Melisbek A, Shirinbekov M, Myrzakhmetova BS, Zhunushov A, Smekenov I, Kerimbaev A, Nurabaev S, Chervyakova O, Kozhabergenov N, Kutumbetov LB. Genetic Variations of Three Kazakhstan Strains of the SARS-CoV-2 Virus. Viruses 2025; 17:415. [PMID: 40143342 PMCID: PMC11945512 DOI: 10.3390/v17030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Prompt determination of the etiological agent is important in an outbreak of pathogens with pandemic potential, particularly for dangerous infectious diseases. Molecular genetic methods allow for arriving at an accurate diagnosis, employing timely preventive measures, and controlling the spread of the disease-causing agent. In this study, whole-genome sequencing of three SARS-CoV-2 strains was performed using the Sanger method, which provides high accuracy in determining nucleotide sequences and avoids errors associated with multiple DNA amplification. Complete nucleotide sequences of samples, KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021 were obtained, with sizes of 29.751 bp, 29.815 bp, and 29.840 bp, respectively. According to the COVID-19 Genome Annotator, 127 mutations were detected in the studied samples compared to the reference strain. The strain KAZ/Britain/2021 contained 3 deletions, 7 synonymous mutations, and 27 non-synonymous mutations, the second strain KAZ/B1.1/2021 contained 1 deletion, 5 synonymous mutations, and 31 non-synonymous mutations, and the third strain KAZ/Delta020/2021 contained 1 deletion, 5 synonymous mutations, and 37 non-synonymous mutations, respectively. The variations C241T, F106F, P314L, and D614G found in the 5' UTR, ORF1ab, and S regions were common to all three studied samples, respectively. According to PROVEAN data, the loss-of-function mutations identified in strains KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021 include 5 mutations (P218L, T716I, W149L, R52I, and Y73C), 2 mutations (S813I and Q992H), and 8 mutations (P77L, L452R, I82T, P45L, V82A, F120L, F120L, and R203M), respectively. Phylogenetic analysis showed that the strains studied (KAZ/Britain/2021, KAZ/B1.1/2021, and KAZ/Delta020/2021) belong to different SARS-CoV-2 lineages, which are closely related to samples from Germany (OU141323.1 and OU365922.1), Mexico (OK432605.1), and again Germany (OV375251.1 and OU375174.1), respectively. The nucleotide sequences of the studied SARS-CoV-2 virus strains were registered in the Genbank database with the accession numbers: ON692539.1, OP684305, and OQ561548.1.
Collapse
Affiliation(s)
- Bekbolat Usserbayev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek 720071, Kyrgyzstan
| | - Kulyaisan T. Sultankulova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Yerbol Burashev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Aibarys Melisbek
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Meirzhan Shirinbekov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Balzhan S. Myrzakhmetova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Asankadir Zhunushov
- Institute of Biotechnology, National Academy of Science of Kyrgyzstan, Bishkek 720071, Kyrgyzstan
| | - Izat Smekenov
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Aslan Kerimbaev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Sergazy Nurabaev
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Olga Chervyakova
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Nurlan Kozhabergenov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| | - Lesbek B. Kutumbetov
- Research Institute for Biological Safety Problems, National Holding QazBioPharm, LLP, Guardeyskiy uts 080409, Kazakhstan; (K.T.S.); (Y.B.); (A.M.); (M.S.); (B.S.M.); (A.K.); (S.N.); (O.C.); (L.B.K.)
| |
Collapse
|
2
|
Tramuto F, Marotta C, Stefanelli P, Cernigliaro A, Maida CM, Silenzi A, Angeloni U, Di Naro D, Randazzo G, Guzzetta V, Barone T, Brusaferro S, Severoni S, Rezza G, Vitale F, Mazzucco W, SAMI-Surv Collaboration AlbaDavideAmodioEmanueleCasuccioAlessandraCostantinoClaudioFruscioneSantoImmordinoPalmiraRestivoVincenzoSavatteriAlessandraD’AgostinoNadiaLa MiliaDanielePecoraroLauraPulvirentiClaudioStabileDomenicoCesariCarloZichichiSalvatoreLo PrestiAlessandraGrazianoGiorgioScondottoSalvatoreRealeStefanoScibettaSilviaVitaleFabrizioBarracoChiaraMistrettaGiuseppaPalmeriGiuliaRizzoAntonina PatriziaSparacoAntoninoAgnoneAnnalisaCascioFrancescoDi QuartoDaniela LauraMigliorisiCarmeloD’AmatoStefaniaCucchiaraValentinaGenoveseDarioFrisciaGiuseppeIacolinoGiorgiaSpotoVittorioZappiaMario. SARS-CoV-2 genomic surveillance of migrants arriving to Europe through the Mediterranean routes. J Glob Health 2024; 14:05017. [PMID: 38963881 PMCID: PMC11223754 DOI: 10.7189/jogh.14.05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Background The implementation genomic-based surveillance on emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in low-income countries, which have inadequate molecular and sequencing capabilities and limited vaccine storage, represents a challenge for public health. To date, there is little evidence on molecular investigations of SARS-CoV-2 variants in areas where they might emerge. We report the findings of an experimental SARS-CoV-2 molecular surveillance programme for migrants, refugees, and asylum seekers arriving to Europe via Italy through the Mediterranean Sea. Methods We descriptively analysed data on migrants collected at entry points in Sicily from February 2021 to May 2022. These entry points are integrated with a network of laboratories fully equipped for molecular analyses, which performed next-generation sequencing and used Nextclade and the Pangolin coronavirus disease 2019 (COVID-19) tools for clade/lineage assignment. Results We obtained 472 full-length SARS-CoV-2 sequences and identified 12 unique clades belonging to 31 different lineages. The delta variant accounted for 43.6% of all genomes, followed by clades 21D (Eta) and 20A (25.4% and 11.4%, respectively). Notably, some of the identified lineages (A.23.1, A.27, and A.29) predicted their introduction into the migration area. The mutation analysis allowed us to identify 617 different amino acid substitutions, 156 amino acid deletions, 7 stop codons, and 6 amino acid insertions. Lastly, we highlighted the geographical distribution patterns of some mutational profiles occurring in the migrants' countries of origin. Conclusions Genome-based molecular surveillance dedicated to migrant populations from low-resource areas may be useful for forecasting new epidemiological scenarios related to SARS-CoV-2 variants or other emerging pathogens, as well as for informing the updating of vaccination strategies.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Claudia Marotta
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Paola Stefanelli
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
| | | | - Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Andrea Silenzi
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Ulrico Angeloni
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
| | - Daniela Di Naro
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Giulia Randazzo
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Valeria Guzzetta
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Teresa Barone
- Department of Laboratory Diagnostics, Local Health Unit of Palermo, Palermo, Italy
| | - Silvio Brusaferro
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
- University of Udine, Udine, Italy
| | - Santino Severoni
- Health and Migration Programme (PHM), World Health Organization, Geneva, Switzerland
| | - Gianni Rezza
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
- Vita – Salute San Raffaele University, Milan, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
| | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
- Division of Biostatistics & Epidemiology Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - SAMI-Surv CollaborationAlbaDavideAmodioEmanueleCasuccioAlessandraCostantinoClaudioFruscioneSantoImmordinoPalmiraRestivoVincenzoSavatteriAlessandraD’AgostinoNadiaLa MiliaDanielePecoraroLauraPulvirentiClaudioStabileDomenicoCesariCarloZichichiSalvatoreLo PrestiAlessandraGrazianoGiorgioScondottoSalvatoreRealeStefanoScibettaSilviaVitaleFabrizioBarracoChiaraMistrettaGiuseppaPalmeriGiuliaRizzoAntonina PatriziaSparacoAntoninoAgnoneAnnalisaCascioFrancescoDi QuartoDaniela LauraMigliorisiCarmeloD’AmatoStefaniaCucchiaraValentinaGenoveseDarioFrisciaGiuseppeIacolinoGiorgiaSpotoVittorioZappiaMario
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties ‘G. D’Alessandro’, University of Palermo, Italy
- Clinical Epidemiology Unit and Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital ‘P. Giaccone’, Palermo, Italy
- General Directorate of Health Prevention, Ministry of Health, Rome, Italy
- National Institute of Health (Istituto Superiore di Sanità), Rome, Italy
- Regional Health Authority of Sicily, Palermo, Italy
- Department of Laboratory Diagnostics, Local Health Unit of Palermo, Palermo, Italy
- University of Udine, Udine, Italy
- Health and Migration Programme (PHM), World Health Organization, Geneva, Switzerland
- Vita – Salute San Raffaele University, Milan, Italy
- Division of Biostatistics & Epidemiology Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
3
|
Hussain B, Wu C. Evolutionary and Phylogenetic Dynamics of SARS-CoV-2 Variants: A Genetic Comparative Study of Taiyuan and Wuhan Cities of China. Viruses 2024; 16:907. [PMID: 38932199 PMCID: PMC11209594 DOI: 10.3390/v16060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA genome-containing virus which has infected millions of people all over the world. The virus has been mutating rapidly enough, resulting in the emergence of new variants and sub-variants which have reportedly been spread from Wuhan city in China, the epicenter of the virus, to the rest of China and all over the world. The occurrence of mutations in the viral genome, especially in the viral spike protein region, has resulted in the evolution of multiple variants and sub-variants which gives the virus the benefit of host immune evasion and thus renders modern-day vaccines and therapeutics ineffective. Therefore, there is a continuous need to study the genetic characteristics and evolutionary dynamics of the SARS-CoV-2 variants. Hence, in this study, a total of 832 complete genomes of SARS-CoV-2 variants from the cities of Taiyuan and Wuhan in China was genetically characterized and their phylogenetic and evolutionary dynamics studied using phylogenetics, genetic similarity, and phylogenetic network analyses. This study shows that the four most prevalent lineages in Taiyuan and Wuhan are as follows: the Omicron lineages EG.5.1.1, followed by HK.3, FY.3, and XBB.1.16 (Pangolin classification), and clades 23F (EG.5.1), followed by 23H (HK.3), 22F (XBB), and 23D (XBB.1.9) (Nextclade classification), and lineage B followed by the Omicron FY.3, lineage A, and Omicron FL.2.3 (Pangolin classification), and the clades 19A, followed by 22F (XBB), 23F (EG.5.1), and 23H (HK.3) (Nextclade classification), respectively. Furthermore, our genetic similarity analysis show that the SARS-CoV-2 clade 19A-B.4 from Wuhan (name starting with 412981) has the least genetic similarity of about 95.5% in the spike region of the genome as compared to the query sequence of Omicron XBB.2.3.2 from Taiyuan (name starting with 18495234), followed by the Omicron FR.1.4 from Taiyuan (name starting with 18495199) with ~97.2% similarity and Omicron DY.3 (name starting with 17485740) with ~97.9% similarity. The rest of the variants showed ≥98% similarity with the query sequence of Omicron XBB.2.3.2 from Taiyuan (name starting with 18495234). In addition, our recombination analysis results show that the SARS-CoV-2 variants have three statistically significant recombinant events which could have possibly resulted in the emergence of Omicron XBB.1.16 (recombination event 3), FY.3 (recombination event 5), and FL.2.4 (recombination event 7), suggesting some very important information regarding viral evolution. Also, our phylogenetic tree and network analyses show that there are a total of 14 clusters and more than 10,000 mutations which may have probably resulted in the emergence of cluster-I, followed by 47 mutations resulting in the emergence of cluster-II and so on. The clustering of the viral variants of both cities reveals significant information regarding the phylodynamics of the virus among them. The results of our temporal phylogenetic analysis suggest that the variants of Taiyuan have likely emerged as independent variants separate from the variants of Wuhan. This study, to the best of our knowledge, is the first ever genetic comparative study between Taiyuan and Wuhan cities in China. This study will help us better understand the virus and cope with the emergence and spread of new variants at a local as well as an international level, and keep the public health authorities informed for them to make better decisions in designing new viral vaccines and therapeutics. It will also help the outbreak investigators to better examine any future outbreak.
Collapse
Affiliation(s)
- Behzad Hussain
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China;
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China;
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Taiyuan 030006, China
- The Fourth People’s Hospital of Taiyuan, Taiyuan 030006, China
| |
Collapse
|
4
|
Acuña-Castillo C, Vidal M, Vallejos-Vidal E, Luraschi R, Barrera-Avalos C, Inostroza-Molina A, Molina-Cabrera S, Valdes D, Schafer C, Maisey K, Imarai M, Vera R, Vargas S, Rojo LE, Leiva-Salcedo E, Escobar A, Reyes-Cerpa S, Gaete A, Palma-Vejares R, Travisany D, Torres C, Reyes-López FE, Sandino AM. A retrospective study suggests 55 days of persistence of SARS-CoV-2 during the first wave of the pandemic in Santiago de Chile. Heliyon 2024; 10:e24419. [PMID: 38601544 PMCID: PMC11004068 DOI: 10.1016/j.heliyon.2024.e24419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 04/12/2024] Open
Abstract
Background As the COVID-19 pandemic persists, infections continue to surge globally. Presently, the most effective strategies to curb the disease and prevent outbreaks involve fostering immunity, promptly identifying positive cases, and ensuring their timely isolation. Notably, there are instances where the SARS-CoV-2 virus remains infectious even after patients have completed their quarantine. Objective Understanding viral persistence post-quarantine is crucial as it could account for localized infection outbreaks. Therefore, studying and documenting such instances is vital for shaping future public health policies. Design This study delves into a unique case of SARS-CoV-2 persistence in a 60-year-old female healthcare worker with a medical history of hypertension and hypothyroidism. The research spans 55 days, marking the duration between her initial and subsequent diagnosis during Chile's first COVID-19 wave, with the analysis conducted using RT-qPCR. Results Genomic sequencing-based phylogenetic analysis revealed that the SARS-CoV-2 detected in both Nasopharyngeal swab samples (NPSs) was consistent with the 20B clade of the Nextstrain classification, even after a 55-day interval. Conclusion This research underscores the need for heightened vigilance concerning cases of viral persistence. Such instances, albeit rare, might be pivotal in understanding sporadic infection outbreaks that occur post-quarantine.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mabel Vidal
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad De Las Américas, La Florida, Santiago, Chile
| | - Roberto Luraschi
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | | | - Daniel Valdes
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Schafer
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Kevin Maisey
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Vera
- Hospital de Urgencia Asistencia Pública (HUAP), Santiago, Chile
| | - Sergio Vargas
- Hospital de Urgencia Asistencia Pública (HUAP), Santiago, Chile
| | - Leonel E. Rojo
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Alejandro Escobar
- Laboratorio Biología Celular y Molecular, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de Los Alimentos, Universidad de Chile, Santiago, Chile
- Fondap Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Vejares
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Fondap Center for Genome Regulation, Universidad de Chile, Santiago, Chile
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
- Inria Chile Research Center, Santiago, Chile
| | - Claudio Torres
- Department of Neurobiology Drexel University, Philadelphia, United States
| | | | - Ana María Sandino
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Luong QXT, Hoang PT, Lee Y, Ayun RQ, Na K, Park S, Lin C, Ho PT, Lee TK, Lee S. An RNA-hydrolyzing recombinant minibody prevents both influenza A virus and coronavirus in co-infection models. Sci Rep 2024; 14:8472. [PMID: 38605110 PMCID: PMC11009316 DOI: 10.1038/s41598-024-52810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/23/2024] [Indexed: 04/13/2024] Open
Abstract
With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.
Collapse
Affiliation(s)
- Quynh Xuan Thi Luong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongjun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | | | - Kyungho Na
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seonhyeon Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chengmin Lin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea
| | - Taek-Kyun Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Korea.
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
6
|
Oktavianthi S, Lages AC, Kusuma R, Kurniasih TS, Trimarsanto H, Andriani F, Rustandi D, Meriyanti T, Yusuf I, Malik SG, Jo J, Suriapranata I. Whole-Genome Sequencing and Mutation Analyses of SARS-CoV-2 Isolates from Indonesia. Pathogens 2024; 13:279. [PMID: 38668234 PMCID: PMC11053823 DOI: 10.3390/pathogens13040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/29/2024] Open
Abstract
The SARS-CoV-2 infection that caused the COVID-19 pandemic has become a significant public health concern. New variants with distinct mutations have emerged, potentially impacting its infectivity, immune evasion capacity, and vaccine response. A whole-genome sequencing study of 292 SARS-CoV-2 isolates collected from selected regions of Indonesia between January and October 2021 was performed to identify the distribution of SARS-CoV-2 variants and common mutations in Indonesia. During January-April 2021, Indonesian lineages B.1.466.2 and B.1.470 dominated, but from May 2021, Delta's AY.23 lineage outcompeted them. An analysis of 7515 published sequences from January 2021 to June 2022 revealed a decline in Delta in November 2021, followed by the emergence of Omicron variants in December 2021. We identified C241T (5'UTR), P314L (NSP12b), F106F (NSP3), and D614G (Spike) mutations in all sequences. The other common substitutions included P681R (76.4%) and T478K (60%) in Spike, D377Y in Nucleocapsid (61%), and I82T in Membrane (60%) proteins. Breakthrough infection and prolonged viral shedding cases were associated with Delta variants carrying the Spike T19R, G142D, L452R, T478K, D614G, P681R, D950N, and V1264L mutations. The dynamic of SARS-CoV-2 variants in Indonesia highlights the importance of continuous genomic surveillance in monitoring and identifying potential strains leading to disease outbreaks.
Collapse
Affiliation(s)
- Sukma Oktavianthi
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Aksar Chair Lages
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Rinaldy Kusuma
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Tri Shinta Kurniasih
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
- Menzies School of Health Research, Charles Darwin University, Darwin 0811, Australia
| | - Febi Andriani
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - David Rustandi
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Tandry Meriyanti
- Siloam Hospital Lippo Village, Tangerang 15810, Indonesia; (D.R.); (T.M.)
| | - Irawan Yusuf
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| | - Safarina G. Malik
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Juandy Jo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Ivet Suriapranata
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia; (S.O.); (A.C.L.); (R.K.); (T.S.K.); (F.A.); (I.Y.); (S.G.M.); (J.J.)
| |
Collapse
|
7
|
Patiño LH, Ballesteros N, Muñoz M, Ramírez AL, Castañeda S, Galeano LA, Hidalgo A, Paniz-Mondolfi A, Ramírez JD. Global and genetic diversity of SARS-CoV-2 in wastewater. Heliyon 2024; 10:e27452. [PMID: 38463823 PMCID: PMC10923837 DOI: 10.1016/j.heliyon.2024.e27452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Angie Lorena Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Luis Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, Pasto, 52002, Colombia
| | - Arsenio Hidalgo
- Grupo de Investigación en Salud Pública, Departamento de Matemáticas, Universidad de Nariño, Pasto, 50002, Colombia
| | - Alberto Paniz-Mondolfi
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| |
Collapse
|
8
|
Ravi V, Shamim U, Khan MA, Swaminathan A, Mishra P, Singh R, Bharali P, Chauhan NS, Pandey R. Unraveling the genetic evolution of SARS-CoV-2 Recombinants using mutational dynamics across the different lineages. Front Med (Lausanne) 2024; 10:1294699. [PMID: 38288302 PMCID: PMC10823376 DOI: 10.3389/fmed.2023.1294699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Recombination serves as a common strategy employed by RNA viruses for their genetic evolution. Extensive genomic surveillance during the COVID-19 pandemic has reported SARS-CoV-2 Recombinant strains indicating recombination events during the viral evolution. This study introspects the phenomenon of genome recombination by tracing the footprint of prominent lineages of SARS-CoV-2 at different time points in the context of on-going evolution and emergence of Recombinants. Method Whole genome sequencing was carried out for 2,516 SARS-CoV-2 (discovery cohort) and 1,126 (validation cohort) using nasopharyngeal samples collected between the time period of March 2020 to August 2022, as part of the genomic surveillance program. The sequences were classified according to the different lineages of SARS-CoV-2 prevailing in India at respective time points. Results Mutational diversity and abundance evaluation across the 12 lineages identified 58 Recombinant sequences as harboring the least number of mutations (n = 111), with 14 low-frequency unique mutations with major chunk of mutations coming from the BA.2. The spontaneously/dynamically increasing and decreasing trends of mutations highlight the loss of mutations in the Recombinants that were associated with the SARS-CoV-2 replication efficiency, infectivity, and disease severity, rendering them functionally with low infectivity and pathogenicity. Linkage disequilibrium (LD) analysis revealed that mutations comprising the LD blocks of BA.1, BA.2, and Recombinants were found as minor alleles or as low-frequency alleles in the LD blocks from the previous SARS-CoV-2 variant samples, especially Pre-VOC. Moreover, a dissipation in the size of LD blocks as well as LD decay along with a high negative regression coefficient (R squared) value was demonstrated in the Omicron and BA.1 and BA.2 lineages, which corroborated with the breakpoint analysis. Conclusion Together, the findings help to understand the evolution and emergence of Recombinants after the Omicron lineages, for sustenance and adaptability, to maintain the epidemic spread of SARS-CoV-2 in the host population already high in immunity levels.
Collapse
Affiliation(s)
- Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Md Abuzar Khan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Rajender Singh
- CSIR-Central Drug Research Institute, (CSIR-CDRI), Lucknow, Lucknow, India
| | - Pankaj Bharali
- CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Anand A, Long C, Chandran K. NYC metropolitan wastewater reveals links between SARS-CoV-2 amino acid mutations and disease outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167971. [PMID: 37914132 DOI: 10.1016/j.scitotenv.2023.167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/01/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Since late 2020, diverse SARS-CoV-2 variants with enhanced infectivity and transmissibility have emerged. In contrast to the focus on amino acid mutations in the spike protein, mutations in non-spike proteins and their associated impacts remain relatively understudied. New York City metropolitan wastewater revealed over 60 % of the most frequently occurring amino acid mutations in regions outside the spike protein. Strikingly, ~50 % of the mutations detected herein remain uncharacterized for functional impacts. Our results suggest that there are several understudied mutations within non-spike proteins N, ORF1a, ORF1b, ORF9b, and ORF9c, that could increase transmissibility, and infectivity among human populations. We also demonstrate significant correlations of P314L, D614G, T95I, G50E, G50R, G204R, R203K, G662S, P10S, and P13L with documented mortality rates, hospitalization rates, and percent positivity suggesting that amino acid mutations are likely to be indicators of COVID-19 infection outcomes.
Collapse
Affiliation(s)
- Archana Anand
- Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Chenghua Long
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027, United States of America.
| |
Collapse
|
10
|
McGaughran A, Dhami MK, Parvizi E, Vaughan AL, Gleeson DM, Hodgins KA, Rollins LA, Tepolt CK, Turner KG, Atsawawaranunt K, Battlay P, Congrains C, Crottini A, Dennis TPW, Lange C, Liu XP, Matheson P, North HL, Popovic I, Rius M, Santure AW, Stuart KC, Tan HZ, Wang C, Wilson J. Genomic Tools in Biological Invasions: Current State and Future Frontiers. Genome Biol Evol 2024; 16:evad230. [PMID: 38109935 PMCID: PMC10776249 DOI: 10.1093/gbe/evad230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Manpreet K Dhami
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Elahe Parvizi
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Amy L Vaughan
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Dianne M Gleeson
- Centre for Conservation Ecology and Genomics, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Carolyn K Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kathryn G Turner
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Kamolphat Atsawawaranunt
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Carlos Congrains
- Entomology Section, Department of Plant and Environmental Protection Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- US Department of Agriculture-Agricultural Research Service, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4169–007, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claudia Lange
- Biocontrol and Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Xiaoyue P Liu
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Paige Matheson
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Iva Popovic
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc, Blanes, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg 2006, South Africa
| | - Anna W Santure
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Katarina C Stuart
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Hui Zhen Tan
- School of Biological Sciences, Waipapa Taumata Rau/University of Auckland, Auckland, New Zealand
| | - Cui Wang
- The Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Saksena NK, Reddy SB, Miranda-Saksena M, Cardoso THS, Silva EMA, Ferreira JC, Rabeh WM. SARS-CoV-2 variants, its recombinants and epigenomic exploitation of host defenses. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166836. [PMID: 37549720 DOI: 10.1016/j.bbadis.2023.166836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Since 2003, we have seen the emergence of novel viruses, such as SARS-CoV-1, MERS, ZIKA, swine flu virus H1N1, Marburg, Monkeypox, Ebola, and SARS-CoV-2, but none of them gained pandemic proportions similar to SARS-CoV-2. This could be attributed to unique viral traits, allowing its rapid global dissemination following its emergence in October 2019 in Wuhan, China, which appears to be primarily driven by the emergence of highly transmissible and virulent variants that also associate, in some cases, with severe disease and considerable mortality caused by fatal pneumonia, acute respiratory distress syndrome (ARDS) in infected individuals. Mechanistically, several factors are involved in viral pathogenesis, and epigenetic alterations take the front seat in host-virus interactions. The molecular basis of all viral infections, including SARS-CoV-2, tightly hinges on the transitory silencing of the host gene machinery via epigenetic modulation. SARS-CoV-2 also hijacks and subdues the host gene machinery, leading to epigenetic modulation of the critical host elements responsible for antiviral immunity. Epigenomics is a powerful, unexplored avenue that can provide a profound understanding of virus-host interactions and lead to the development of epigenome-based therapies and vaccines to counter viruses. This review discusses current developments in SARS-CoV-2 variation and its role in epigenetic modulation in infected hosts. This review provides an overview, especially in the context of emerging viral strains, their recombinants, and their possible roles in the epigenetic exploitation of host defense and viral pathogenesis. It provides insights into host-virus interactions at the molecular, genomic, and immunological levels and sheds light on the future of epigenomics-based therapies for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nitin K Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia.
| | - Srinivasa Bonam Reddy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Thyago H S Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi, United Arab Emirates.
| | - Edson M A Silva
- Science Division, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana C Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Skuza K, Rutyna P, Krzowski L, Rabalski L, Lepionka T. Surveillance of SARS-CoV-2 Genetic Variants in the Polish Armed Forces Using Whole Genome Sequencing Analysis. Int J Mol Sci 2023; 24:14851. [PMID: 37834302 PMCID: PMC10573488 DOI: 10.3390/ijms241914851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Military operations involve the global movement of personnel and equipment, increasing the risk of spreading infectious pathogens such as SARS-CoV-2. Given the continuous engagement of the Polish Armed Forces in overseas operations, an active surveillance program targeting Variants of Concern (VOC) of SARS-CoV-2 was implemented among military personnel. Screening using RT-qPCR tests was conducted on 1699 soldiers between November 2021 and May 2022. Of these, 84 SARS-CoV-2 positive samples met the criteria for whole genome sequencing analysis and variant identification. Whole genome sequencing was performed using two advanced next-generation sequencing (NGS) technologies: sequencing by synthesis and nanopore sequencing. Our analysis revealed eleven SARS-CoV-2 lineages belonging to 21K, 21L, and 21J. The predominant lineage was BA.1.1 (57% of the samples), followed by BA.1 (23%) and BA.2 (6%). Notably, all identified lineages detected in post-deployment screening tests were classified as VOC and were already present in Poland, showing the effectiveness of the Military Sanitary Inspection measures in mitigating the COVID-19 spread. Pre-departure and post-mission screening and isolation successfully prevented SARS-CoV-2 VOC exportation and importation. Proactive measures are vital in minimizing the impact of COVID-19 in military settings, emphasizing the need for continued vigilance and response strategies.
Collapse
Affiliation(s)
- Katarzyna Skuza
- Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100 Pulawy, Poland;
| | - Pawel Rutyna
- Chair and Department of Medical Microbiology, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland;
| | - Lukasz Krzowski
- Biomedical Engineering Centre, Institute of Optoeletronics. Military University of Technology, 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland;
| | - Lukasz Rabalski
- Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100 Pulawy, Poland;
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Tomasz Lepionka
- Biological Threats Identification and Countermeasure Center, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4, 24-100 Pulawy, Poland;
| |
Collapse
|
13
|
Mohammad A, Alshawaf E, Arefanian H, Marafie SK, Khan A, Wei DQ, Al-Mulla F, Abubaker J. Targeting SARS-CoV-2 Macrodomain-1 to Restore the Innate Immune Response Using In Silico Screening of Medicinal Compounds and Free Energy Calculation Approaches. Viruses 2023; 15:1907. [PMID: 37766313 PMCID: PMC10538035 DOI: 10.3390/v15091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| |
Collapse
|
14
|
Bhattacharjee MJ, Bhattacharya A, Kashyap B, Taw MJ, Li WH, Mukherjee AK, Khan MR. Genome analysis of SARS-CoV-2 isolates from a population reveals the rapid selective sweep of a haplotype carrying many pre-existing and new mutations. Virol J 2023; 20:201. [PMID: 37658381 PMCID: PMC10474745 DOI: 10.1186/s12985-023-02139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
To understand the mechanism underlying the evolution of SARS-CoV-2 in a population, we sequenced 92 viral genomes from Assam, India. Analysis of these and database sequences revealed a complete selective sweep of a haplotype in Assam carrying 13 pre-existing variants, including a high leap in frequency of a variant on ORF8, which is involved in immune evasion. A comparative study between sequences of same lineage and similar time frames in and outside Assam showed that 10 of the 13 pre-existing variants had a frequency ranging from 96 to 99%, and the remaining 3 had a low frequency outside Assam. Using a phylogenetic approach to infer sequential occurrences of variants we found that the variant Phe120del on ORF8, which had a low frequency (1.75%) outside Assam, is at the base of the phylogenetic tree of variants and became totally fixed (100%) in Assam population. Based on this observation, we inferred that the variant on ORF8 had a selective advantage, so it carried the haplotype to reach the100% frequency. The haplotype also carried 32 pre-existing variants at a frequency from 1.00 to 80.00% outside Assam. Those of these variants that are more closely linked to the S-protein locus, which often carries advantageous mutations and is tightly linked to the ORF8 locus, retained higher frequencies, while the less tightly linked variants showed lower frequencies, likely due to recombination among co- circulating variants in Assam. The ratios of non-synonymous substitutions to synonymous substitutions suggested that some genes such as those coding for the S-protein and non-structural proteins underwent positive selection while others were subject to purifying selection during their evolution in Assam. Furthermore, we observed negative correlation of the Ct value of qRT-PCR of the patients with abundant ORF6 transcripts, suggesting that ORF6 can be used as a marker for estimating viral titer. In conclusion, our in-depth analysis of SARS-CoV-2 genomes in a regional population reveals the mechanism and dynamics of viral evolution.
Collapse
Affiliation(s)
- Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Anupam Bhattacharya
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Bhaswati Kashyap
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Manash Jyoti Taw
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam, 781032, India
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
15
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
16
|
Wang R, Huang H, Yu C, Sun C, Ma J, Kong D, Lin Y, Zhao D, Zhou S, Lu J, Cao S, Zhang Y, Luo C, Li X, Wang Y, Xie L. A spike-trimer protein-based tetravalent COVID-19 vaccine elicits enhanced breadth of neutralization against SARS-CoV-2 Omicron subvariants and other variants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1818-1830. [PMID: 36598621 PMCID: PMC9811042 DOI: 10.1007/s11427-022-2207-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/17/2022] [Indexed: 01/05/2023]
Abstract
Multivalent vaccines combining crucial mutations from phylogenetically divergent variants could be an effective approach to defend against existing and future SARS-CoV-2 variants. In this study, we developed a tetravalent COVID-19 vaccine SCTV01E, based on the trimeric Spike protein of SARS-CoV-2 variants Alpha, Beta, Delta, and Omicron BA.1, with a squalene-based oil-in-water adjuvant SCT-VA02B. In the immunogenicity studies in naïve BALB/c and C57BL/6J mice, SCTV01E exhibited the most favorable immunogenic characteristics to induce balanced and broad-spectrum neutralizing potencies against pre-Omicron variants (D614G, Alpha, Beta, and Delta) and newly emerging Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5). Booster studies in C57BL/6J mice previously immunized with D614G monovalent vaccine demonstrated superior neutralizing capacities of SCTV01E against Omicron subvariants, compared with the D614G booster regimen. Furthermore, SCTV01E vaccination elicited naïve and central memory T cell responses to SARS-CoV-2 ancestral strain and Omicron spike peptides. Together, our comprehensive immunogenicity evaluation results indicate that SCTV01E could become an important COVID-19 vaccine platform to combat surging infections caused by the highly immune evasive BA.4/5 variants. SCTV01E is currently being studied in a head-to-head immunogenicity comparison phase 3 clinical study with inactivated and mRNA vaccines (NCT05323461).
Collapse
Affiliation(s)
- Rui Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Hongpeng Huang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chulin Yu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunyun Sun
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Juan Ma
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Desheng Kong
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yalong Lin
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Dandan Zhao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Shaozheng Zhou
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Jianbo Lu
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Sai Cao
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yanjing Zhang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunxia Luo
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Xuefeng Li
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Yang Wang
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China
| | - Liangzhi Xie
- Beijing Protein and Antibody R&D Engineering Center, Sinocelltech Ltd., Beijing, 100176, China.
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
17
|
Zhao LP, Cohen S, Zhao M, Madeleine M, Payne TH, Lybrand TP, Geraghty DE, Jerome KR, Corey L. Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations. JAMA Netw Open 2023; 6:e230191. [PMID: 36809468 PMCID: PMC9945077 DOI: 10.1001/jamanetworkopen.2023.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Importance Earlier detection of emerging novel SARS-COV-2 variants is important for public health surveillance of potential viral threats and for earlier prevention research. Artificial intelligence may facilitate early detection of SARS-CoV2 emerging novel variants based on variant-specific mutation haplotypes and, in turn, be associated with enhanced implementation of risk-stratified public health prevention strategies. Objective To develop a haplotype-based artificial intelligence (HAI) model for identifying novel variants, including mixture variants (MVs) of known variants and new variants with novel mutations. Design, Setting, and Participants This cross-sectional study used serially observed viral genomic sequences globally (prior to March 14, 2022) to train and validate the HAI model and used it to identify variants arising from a prospective set of viruses from March 15 to May 18, 2022. Main Outcomes and Measures Viral sequences, collection dates, and locations were subjected to statistical learning analysis to estimate variant-specific core mutations and haplotype frequencies, which were then used to construct an HAI model to identify novel variants. Results Through training on more than 5 million viral sequences, an HAI model was built, and its identification performance was validated on an independent validation set of more than 5 million viruses. Its identification performance was assessed on a prospective set of 344 901 viruses. In addition to achieving an accuracy of 92.8% (95% CI within 0.1%), the HAI model identified 4 Omicron MVs (Omicron-Alpha, Omicron-Delta, Omicron-Epsilon, and Omicron-Zeta), 2 Delta MVs (Delta-Kappa and Delta-Zeta), and 1 Alpha-Epsilon MV, among which Omicron-Epsilon MVs were most frequent (609/657 MVs [92.7%]). Furthermore, the HAI model found that 1699 Omicron viruses had unidentifiable variants given that these variants acquired novel mutations. Lastly, 524 variant-unassigned and variant-unidentifiable viruses carried 16 novel mutations, 8 of which were increasing in prevalence percentages as of May 2022. Conclusions and Relevance In this cross-sectional study, an HAI model found SARS-COV-2 viruses with MV or novel mutations in the global population, which may require closer examination and monitoring. These results suggest that HAI may complement phylogenic variant assignment, providing additional insights into emerging novel variants in the population.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Seth Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| | | | - Margaret Madeleine
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thomas H. Payne
- Department of Medicine, University of Washington School of Medicine, Seattle
| | - Terry P. Lybrand
- Quintepa Computing LLC, Nashville, Tennessee
- Department of Chemistry, Vanderbilt University; Nashville, Tennessee
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| |
Collapse
|
18
|
Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools. Proc Natl Acad Sci U S A 2023; 120:e2206945119. [PMID: 36693089 PMCID: PMC9945976 DOI: 10.1073/pnas.2206945119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.
Collapse
|
19
|
Wang Y, Long Y, Wang F, Li C, Liu W. Characterization of SARS-CoV-2 recombinants and emerging Omicron sublineages. Int J Med Sci 2023; 20:151-162. [PMID: 36619228 PMCID: PMC9812801 DOI: 10.7150/ijms.79116] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/10/2022] [Indexed: 01/06/2023] Open
Abstract
The SARS-CoV-2 Omicron is currently the predominant circulating variant in the COVID-19 pandemic. The dominating Omicron sublineages respond to host immune pressure and develop advantageous mutations or genetic recombination, which result in variants that are more contagious or better at escaping immune responses in response to previous infection or vaccination. Meanwhile, multiple genetic recombination events have been reported in coinfection cases, the majority of which have resulted from the recombination between co-circulating Omicron BA.1 (or BA.1.1) and Delta variant or BA.2. Here, we review the knowledge and characterization of recombination for SARS-CoV-2 at the population level, provide an update on the occurrence of newly circulating Omicron sublineages, and discuss the effectiveness of novel vaccines/therapeutic drugs against the Omicron variant.
Collapse
Affiliation(s)
- Yuliang Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yiyin Long
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Changlin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Tianjin Children's Hospital, Children's Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Salimović-Bešić I, Dedeić-Ljubović A, Zahirović E, Hasanović M, Šehić M, Vukovikj M, Boshevska G, Vegar-Zubović S, Mehmedika-Suljić E, Izetbegović S. The SARS-CoV-2 Delta (B.1.617.2) variant with spike N501Y mutation in the shadow of Omicron emergence. Heliyon 2022; 8:e12650. [PMID: 36590492 PMCID: PMC9789543 DOI: 10.1016/j.heliyon.2022.e12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Circulation of the Omicron variant with the reemergence of the N501Y mutation along with many others in the spike protein has once again stirred the academic community. Interestingly, tracing the genetic diversity of SARS-CoV-2 shed light on a less frequent N501Y + Delta variant which has been in the global circulation for some time before the Omicron appearance. This paper aims to present the molecular characteristics of the SARS-CoV-2 Spike_N501Y + Delta variant detected in Bosnia and Herzegovina. The study was conducted during November and December 2021. All patients were tested using real-time RT-PCR for detection of SARS-CoV-2. A representative number of SARS-CoV-2 positive samples was pre-screened using VirSNiP SARS-CoV-2 Spike N501Y kit. The characterization of the viruses was carried out with Illumina RNA Prep with enrichment and the Respiratory Virus Oligo Panel kit. Among the analyzed sequences, we found two isolates of the Delta variant that differ from their most related clade- GK AY.4.3 in additional mutations N501Y and L54F. In this study, we described the presence of a rare form of Delta variant with Spike_N501Y mutation in the shadow of the Omicron emergence. Despite the set of mutations in the Spike protein, this form of Delta variant does not indicate the large-scale consequences for the general population. Further functional studies of this form could provide more information about its antigenicity and infectivity.
Collapse
Affiliation(s)
- Irma Salimović-Bešić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Amela Dedeić-Ljubović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Edina Zahirović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Medina Hasanović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Merima Šehić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Maja Vukovikj
- Institute of Public Health of Republic of North Macedonia, 50-ta Divizija 6, 1000, Skopje, Macedonia
| | - Golubinka Boshevska
- Faculty for Medical Sciences, University Goce Delchev, Krste Misirkov No.10-A P.O. Box 201, 2000, Shtip, Macedonia
| | - Sandra Vegar-Zubović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Enra Mehmedika-Suljić
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| | - Sebija Izetbegović
- Clinical Center of the University of Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
21
|
Colson P, Delerce J, Marion-Paris E, Lagier JC, Levasseur A, Fournier PE, La Scola B, Raoult D. A 21L/BA.2-21K/BA.1 "MixOmicron" SARS-CoV-2 hybrid undetected by qPCR that screen for variant in routine diagnosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105360. [PMID: 36070806 PMCID: PMC9444252 DOI: 10.1016/j.meegid.2022.105360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023]
Abstract
Among the multiple SARS-CoV-2 variants identified since summer 2020, several have co-circulated, creating opportunities for coinfections and potentially genetic recombinations that are common in coronaviruses. Viral recombinants are indeed beginning to be reported more frequently. Here, we describe a new SARS-CoV-2 recombinant genome that is mostly that of a Omicron 21L/BA.2 variant but with a 3' tip originating from a Omicron 21K/BA.1 variant. Two such genomes were obtained in our institute from adults sampled in February 2022 in university hospitals of Marseille, southern France, by next-generation sequencing carried out with the Illumina or Nanopore technologies. The recombination site was located between nucleotides 26,858-27,382. In the two genomic assemblies, mean sequencing depth at mutation-harboring positions was 271 and 1362 reads and mean prevalence of the majoritary nucleotide was 99.3 ± 2.2% and 98.8 ± 1.6%, respectively. Phylogeny generated trees with slightly different topologies according to whether genomes analyzed were depleted or not of the 3' tip. This 3' terminal end brought in the Omicron 21L/BA.2 genome a short transposable element of 41 nucleotides named S2m that is present in most SARS-CoV-2 except a few variants among which the Omicron 21L/BA.2 variant and may be involved in virulence. Importantly, this recombinant is not detected by currently used qPCR that screen for variants in routine diagnosis. The present observation emphasizes the need to survey closely the genetic pathways of SARS-CoV-2 variability by whole genome sequencing, and it could contribute to gain a better understanding of factors that lead to observed differences between epidemic potentials of the different variants.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France.
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Elise Marion-Paris
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Hôpital Timone, Service de médecine du travail, 264 rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), 27 boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France; Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France; Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), 27 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
22
|
Rahmasari R, Raekiansyah M, Azallea SN, Nethania M, Bilqisthy N, Rozaliyani A, Bowolaksono A, Sauriasari R. Low-cost SYBR Green-based RT-qPCR assay for detecting SARS-CoV-2 in an Indonesian setting using WHO-recommended primers. Heliyon 2022; 8:e11130. [PMCID: PMC9617658 DOI: 10.1016/j.heliyon.2022.e11130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/22/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the ongoing coronavirus disease 2019 (COVID-19) pandemic. For laboratory diagnosis, low-cost detection of SARS-CoV-2 is urgently needed, particularly in developing countries with limited resources. Probe- or TaqMan-based real-time reverse transcription polymerase chain reaction (RT-qPCR) is currently the gold standard for diagnosing infected individuals, as recommended by the World Health Organization (WHO). However, this assay is expensive, making it difficult to use for diagnosis on a large scale. Therefore, in this study, we develop and validate an alternative approach for RT-qPCR diagnosis by employing the DNA intercalating dye SYBR Green. We evaluate and use two WHO-recommended primers, namely CCDC-N and HKU-ORF1b-nsp14. The compatibility of the two primers was tested in silico with Indonesian SARS-CoV-2 genome sequences retrieved from the GISAID database and using bioinformatic tools. Using in vitro-transcribed RNA, optimization, sensitivity, and linearity of the two assays targeting the N and Nsp-14 genes were carried out. For further evaluation, we used clinical samples from patients and performed the SYBR Green-based RT-qPCR assay protocol in parallel with TaqMan-based commercial assay. Our results show that our methodology performs similarly to the broadly used TaqMan-based detection method in terms of specificity and sensitivity and thus offers an alternative assay for the detection of SARS-CoV-2 RNA for diagnostic purposes.
Collapse
Affiliation(s)
- Ratika Rahmasari
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | | | - Syifa Naura Azallea
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Marvella Nethania
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Navany Bilqisthy
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Anna Rozaliyani
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, West Java, Indonesia
| | - Anom Bowolaksono
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia
| | - Rani Sauriasari
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West Java, Indonesia,Corresponding author
| |
Collapse
|
23
|
Mehta P, Ravi V, Devi P, Maurya R, Parveen S, Mishra P, Yadav A, Swaminathan A, Saifi S, Khare K, Chattopadhyay P, Yadav M, Chauhan NS, Tarai B, Budhiraja S, Shamim U, Pandey R. Mutational dynamics across VOCs in International travellers and Community transmission underscores importance of Spike-ACE2 interaction. Microbiol Res 2022; 262:127099. [PMID: 35779308 PMCID: PMC9232397 DOI: 10.1016/j.micres.2022.127099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022]
Abstract
Background Emergence of SARS-CoV-2 VOCs at different time points through COVID-19 pandemic raised concern for increased transmissibility, infectivity and vaccination breakthroughs. Methods 1567 international travellers plus community transmission COVID-19 cases were analysed for mutational profile of VOCS, that led to notable waves in India, namely Alpha, Delta, and Omicron. Spike mutations in Linkage Disequilibrium were investigated for potential impact on structural and functional changes of Spike-ACE2. Results ORF1ab and spike harboured diverse mutational signatures for each lineage. B.1.617.2 and AY. * demonstrated comparable profile, yet non-clade defining mutations were majorly unique between international vs community samples. Contrarily, Omicron lineages showed substantial overlap in non-clade defining mutations, signifying early phase of transmission and evolution within Indian community. Mutations in LD for Alpha [N501Y, A570D, D1118H, S982A], Delta [P681R, L452R, EFR:156–158 G, D950N, G142D] and Omicron [P681H, D796Y, N764K, N969K, N501Y, S375F] resulted in decreased binding affinity of Spike-ACE2 for Alpha and BA.1 whereas Delta, Omicron and BA.2 demonstrated strong binding. Conclusion Genomic surveillance tracked spread of VOCs in international travellers’ vs community transmission. Behavioural transmission patterns of variants, based on selective advantage incurred by spike mutations, led us to predict sudden takeover of Delta over Alpha and BA.2 over BA.1 in India. The mutational landscape of 1567 international travellers and community transmission were characterized across VOCs in India Mutations in LD for VOCs demonstrated differentially altered binding affinity and electrostatic interactions of Spike-ACE2. Altered Spike-ACE2 affinity among VOCs predicted sudden takeover of Delta over Alpha and BA.2 over BA.1 in India.
Collapse
|
24
|
Madi N, Safar HA, Mustafa AS, Chehadeh W, Asadzadeh M, Sadeq M, Alawadhi E, Al-Muhaini A, Benthani FA. Molecular epidemiology and genetic characterization of SARS-CoV-2 in Kuwait: A descriptive study. Front Microbiol 2022; 13:858770. [PMID: 36090111 PMCID: PMC9459148 DOI: 10.3389/fmicb.2022.858770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been fatal to human health, affecting almost the entire world. Here we reported, for the first time, characterization of the genetic variants of SARS-CoV-2 circulating in Kuwait to understand their genetic diversity and monitor the accumulation of mutations over time. This study randomly enrolled 209 COVID-19 patients whose nasopharyngeal swabs were positive for SARS-CoV-2 between February 2020 and June 2021 using RT-PCR. The whole genomes of SARS-CoV-2 from the nasopharyngeal swabs were sequenced using the Oxford Nanopore sequencing technology following the ARTIC network protocol. Whole-genome sequencing has identified different clades/sub-clades circulating in Kuwait, mimicking the virus’s global spread. Clade 20A was dominant from February 2020 until January 2021, and then clade 20I (Alpha, V1) emerged and dominated. In June 2021, the number of cases infected with clades 21I, 21A, and 21 J (Delta) increased and dominated. We detected several known clade-defining missense and synonymous mutations and other missense mutations in the genes encoding important viral proteins, including ORF1a, S, ORF3a, ORF8 regions and a novel mutation in the N region. ORF1ab region harbored more mutations and deletions (n = 62, 49.2%) compared to the other 12 gene regions, and the most prevalent missense mutations were P314L (97%) in ORF1b and D614G (97%) in the S glycoprotein regions. Detecting and analyzing mutations and monitoring the evolution of SARS-CoV-2 over time is essential to help better understand the spread of various clades/strains of SARS-CoV-2 and their implications for pathogenesis. In addition, knowledge of the circulating variants and genome sequence variability of SARS-CoV-2 may potentially influence the development of vaccines and antiviral drugs to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nada Madi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
- *Correspondence: Nada Madi,
| | - Hussain A. Safar
- OMICS Research Unit, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | | | - Ebaa Alawadhi
- Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait, Kuwait
| | - Ali Al-Muhaini
- Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait, Kuwait
| | - Fahad A. Benthani
- Research Institute for Developmental Medicine, Johannes Kepler University of Linz, Linz, Austria
| |
Collapse
|
25
|
Katowa B, Kalonda A, Mubemba B, Matoba J, Shempela DM, Sikalima J, Kabungo B, Changula K, Chitanga S, Kasonde M, Kapona O, Kapata N, Musonda K, Monze M, Tembo J, Bates M, Zumla A, Sutcliffe CG, Kajihara M, Yamagishi J, Takada A, Sawa H, Chilengi R, Mukonka V, Muleya W, Simulundu E. Genomic Surveillance of SARS-CoV-2 in the Southern Province of Zambia: Detection and Characterization of Alpha, Beta, Delta, and Omicron Variants of Concern. Viruses 2022; 14:1865. [PMID: 36146671 PMCID: PMC9504048 DOI: 10.3390/v14091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have significantly impacted the global epidemiology of the pandemic. From December 2020 to April 2022, we conducted genomic surveillance of SARS-CoV-2 in the Southern Province of Zambia, a region that shares international borders with Botswana, Namibia, and Zimbabwe and is a major tourist destination. Genetic analysis of 40 SARS-CoV-2 whole genomes revealed the circulation of Alpha (B.1.1.7), Beta (B.1.351), Delta (AY.116), and multiple Omicron subvariants with the BA.1 subvariant being predominant. Whereas Beta, Delta, and Omicron variants were associated with the second, third, and fourth pandemic waves, respectively, the Alpha variant was not associated with any wave in the country. Phylogenetic analysis showed evidence of local transmission and possible multiple introductions of SARS-CoV-2 VOCs in Zambia from different European and African countries. Across the 40 genomes analysed, a total of 292 mutations were observed, including 182 missense mutations, 66 synonymous mutations, 23 deletions, 9 insertions, 1 stop codon, and 11 mutations in the non-coding region. This study stresses the need for the continued monitoring of SARS-CoV-2 circulation in Zambia, particularly in strategically positioned regions such as the Southern Province which could be at increased risk of introduction of novel VOCs.
Collapse
Affiliation(s)
- Ben Katowa
- Macha Research Trust, Choma 20100, Zambia
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Annie Kalonda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe 50100, Zambia
- Department of Biomedical Sciences, School of Medicine, Copperbelt University, Ndola 50100, Zambia
| | | | | | - Jay Sikalima
- Churches Health Association of Zambia, Lusaka 10101, Zambia
| | - Boniface Kabungo
- Southern Provincial Health Office, Ministry of Health, Choma 20100, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Department of Preclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek Private Bag 13301, Namibia
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mpanga Kasonde
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Otridah Kapona
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Nathan Kapata
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Kunda Musonda
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Mwaka Monze
- Virology Laboratory, University Teaching Hospital, Lusaka 10101, Zambia
| | - John Tembo
- HerpeZ Infection Research and Training, University Teaching Hospital, Lusaka 10101, Zambia
| | - Matthew Bates
- HerpeZ Infection Research and Training, University Teaching Hospital, Lusaka 10101, Zambia
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, Lincolnshire LN6 7TS, UK
| | - Alimuddin Zumla
- Division of Infection and Immunity, Centre for Clinical Microbiology, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London NW3 2PF, UK
| | - Catherine G. Sutcliffe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Kita-ku, Sapporo 001-0020, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Division of International Research Promotion, Hokkaido University International Institute for Zoonosis Control, N20 W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, 725 W Lombard Street, Baltimore, MD 21201, USA
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
- Republic of Zambia State House, Lusaka 10101, Zambia
| | - Victor Mukonka
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Edgar Simulundu
- Macha Research Trust, Choma 20100, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
26
|
Colson P, Fournier P, Delerce J, Million M, Bedotto M, Houhamdi L, Yahi N, Bayette J, Levasseur A, Fantini J, Raoult D, La Scola B. Culture and identification of a "Deltamicron" SARS-CoV-2 in a three cases cluster in southern France. J Med Virol 2022; 94:3739-3749. [PMID: 35467028 PMCID: PMC9088576 DOI: 10.1002/jmv.27789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Multiple SARS-CoV-2 variants have successively, or concomitantly spread worldwide since the summer of 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J_AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1163-1421 reads and a mean nucleotide diversity of 0.1%-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening quantitative polymerase chain reaction (qPCR), we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | - Pierre‐Edouard Fournier
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Vecteurs—Infections Tropicales et Méditerranéennes (VITROME)MarseilleFrance
| | | | - Matthieu Million
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| | | | | | - Nouara Yahi
- Aix‐Marseille Université, INSERM UMR S 1072MarseilleFrance
| | | | - Anthony Levasseur
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | | | - Didier Raoult
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
| | - Bernard La Scola
- IHU Méditerranée InfectionMarseilleFrance
- Aix‐Marseille Univ., Institut de Recherche pour le Développement (IRD)Microbes Evolution Phylogeny and Infections (MEPHI)MarseilleFrance
- Assistance Publique‐Hôpitaux de Marseille (AP‐HM)MarseilleFrance
| |
Collapse
|
27
|
Zhao M, Li C, Dong Y, Wang X, Jiang W, Chen Y. Nothing in SARS-CoV-2 makes sense except in the light of RNA modification? Future Virol 2022; 0. [PMID: 35873408 PMCID: PMC9302237 DOI: 10.2217/fvl-2022-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023]
Abstract
The expression pattern of RNA deaminases determines the mutation and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Mingmei Zhao
- Department of Neurosurgery, Qingdao Center Hospital, Qingdao, Shandong, 266042, China
| | - Chunxiao Li
- Cardiovasology Department I, Qingdao Center Hospital, Qingdao, Shandong, 266042, China
| | - Yu Dong
- Interventional Catheterization Lab, Qingdao Center Hospital, Qingdao, Shandong, 266042, China
| | - Xuekun Wang
- Cardiovasology Department I, Qingdao Center Hospital, Qingdao, Shandong, 266042, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, 266033, China
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, Shandong, 266033, China
| | - Yaogang Chen
- Department of Neurosurgery, Qingdao Center Hospital, Qingdao, Shandong, 266042, China
| |
Collapse
|
28
|
Alhamar G, Maddaloni E, Al Shukry A, Al‐Sabah S, Al‐Haddad M, Al‐Youha S, Jamal M, Almazeedi S, Al‐Shammari AA, Abu‐Farha M, Abubaker J, Alattar AT, AlOzairi E, Alessandri F, D’Onofrio L, Leto G, Mastroianni CM, Mignogna C, Pascarella G, Pugliese F, Ali H, Al Mulla F, Buzzetti R, Pozzilli P. Development of a clinical risk score to predict death in patients with COVID-19. Diabetes Metab Res Rev 2022; 38:e3526. [PMID: 35262260 PMCID: PMC9087367 DOI: 10.1002/dmrr.3526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To build a clinical risk score to aid risk stratification among hospitalised COVID-19 patients. METHODS The score was built using data of 417 consecutive COVID-19 in patients from Kuwait. Risk factors for COVID-19 mortality were identified by multivariate logistic regressions and assigned weighted points proportional to their beta coefficient values. A final score was obtained for each patient and tested against death to calculate an Receiver-operating characteristic curve. Youden's index was used to determine the cut-off value for death prediction risk. The score was internally validated using another COVID-19 Kuwaiti-patient cohort of 923 patients. External validation was carried out using 178 patients from the Italian CoViDiab cohort. RESULTS Deceased COVID-19 patients more likely showed glucose levels of 7.0-11.1 mmol/L (34.4%, p < 0.0001) or >11.1 mmol/L (44.3%, p < 0.0001), and comorbidities such as diabetes and hypertension compared to those who survived (39.3% vs. 20.4% [p = 0.0027] and 45.9% vs. 26.6% [p = 0.0036], respectively). The risk factors for in-hospital mortality in the final model were gender, nationality, asthma, and glucose categories (<5.0, 5.5-6.9, 7.0-11.1, or 11.1 > mmol/L). A score of ≥5.5 points predicted death with 75% sensitivity and 86.3% specificity (area under the curve (AUC) 0.901). Internal validation resulted in an AUC of 0.826, and external validation showed an AUC of 0.687. CONCLUSION This clinical risk score was built with easy-to-collect data and had good probability of predicting in-hospital death among COVID-19 patients.
Collapse
Affiliation(s)
- Ghadeer Alhamar
- Endocrinology & Diabetes UnitCampus Biomedico University of RomeRomeItaly
- Dasman Diabetes InstituteKuwait CityKuwait
| | - Ernesto Maddaloni
- Department of Experimental MedicineSapienza University of RomeRomeItaly
| | - Abdullah Al Shukry
- Department of Otolaryngology & Head and Neck SurgeryJaber Al‐Ahmad HospitalMinistry of HealthSafatKuwait
| | - Salman Al‐Sabah
- COVID‐19 Research GroupJaber Al‐Ahmad Al‐Sabah HospitalKuwait CityKuwait
- College of MedicineKuwait UniversityKuwait CityKuwait
| | - Mohannad Al‐Haddad
- COVID‐19 Research GroupJaber Al‐Ahmad Al‐Sabah HospitalKuwait CityKuwait
| | - Sarah Al‐Youha
- COVID‐19 Research GroupJaber Al‐Ahmad Al‐Sabah HospitalKuwait CityKuwait
| | - Mohammed Jamal
- COVID‐19 Research GroupJaber Al‐Ahmad Al‐Sabah HospitalKuwait CityKuwait
- College of MedicineKuwait UniversityKuwait CityKuwait
| | - Sulaiman Almazeedi
- COVID‐19 Research GroupJaber Al‐Ahmad Al‐Sabah HospitalKuwait CityKuwait
| | - Abdullah A. Al‐Shammari
- Dasman Diabetes InstituteKuwait CityKuwait
- Department of MathematicsKuwait University College of ScienceSafatKuwait
| | | | | | - Abdulnabi T. Alattar
- Dasman Diabetes InstituteKuwait CityKuwait
- Diabetes UnitAl‐Amiri HospitalMinistry of HealthSafatKuwait
| | | | | | - Luca D’Onofrio
- Umberto I “Policlinico” General HospitalSapienza University of RomeRomeItaly
| | - Gaetano Leto
- Santa Maria Goretti HospitalPolo Pontino Sapienza UniversityLatinaItaly
| | | | - Carmen Mignogna
- Umberto I “Policlinico” General HospitalSapienza University of RomeRomeItaly
| | - Giuseppe Pascarella
- Department of Anesthesia, Intensive Care and Pain ManagementCampus Bio‐Medico University of RomeRomeItaly
| | - Francesco Pugliese
- Umberto I “Policlinico” General HospitalSapienza University of RomeRomeItaly
| | - Hamad Ali
- Dasman Diabetes InstituteKuwait CityKuwait
- Department of Medical Laboratory SciencesHealth Sciences CenterKuwait UniversityKuwait CityKuwait
| | | | | | - Paolo Pozzilli
- Endocrinology & Diabetes UnitCampus Biomedico University of RomeRomeItaly
| |
Collapse
|
29
|
Contrasting Epidemiology and Population Genetics of COVID-19 Infections Defined by Multilocus Genotypes in SARS-CoV-2 Genomes Sampled Globally. Viruses 2022; 14:v14071434. [PMID: 35891414 PMCID: PMC9316073 DOI: 10.3390/v14071434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022] Open
Abstract
Since its emergence in 2019, SARS-CoV-2 has spread and evolved globally, with newly emerged variants of concern (VOCs) accounting for more than 500 million COVID-19 cases and 6 million deaths. Continuous surveillance utilizing simple genetic tools is needed to measure the viral epidemiological diversity, risk of infection, and distribution among different demographics in different geographical regions. To help address this need, we developed a proof-of-concept multilocus genotyping tool and demonstrated its utility to monitor viral populations sampled in 2020 and 2021 across six continents. We sampled globally 22,164 SARS-CoV-2 genomes from GISAID (inclusion criteria: available clinical and demographic data). They comprised two study populations, “2020 genomes” (N = 5959) sampled from December 2019 to September 2020 and “2021 genomes” (N = 16,205) sampled from 15 January to 15 March 2021. All genomes were aligned to the SARS-CoV-2 reference genome and amino acid polymorphisms were called with quality filtering. Thereafter, 74 codons (loci) in 14 genes including orf1ab polygene (N = 9), orf3a, orf8, nucleocapsid (N), matrix (M), and spike (S) met the 0.01 minimum allele frequency criteria and were selected to construct multilocus genotypes (MLGs) for the genomes. At these loci, 137 mutant/variant amino acids (alleles) were detected with eight VOC-defining variant alleles, including N KR203&204, orf1ab (I265, F3606, and L4715), orf3a H57, orf8 S84, and S G614, being predominant globally with > 35% prevalence. Their persistence and selection were associated with peaks in the viral transmission and COVID-19 incidence between 2020 and 2021. Epidemiologically, older patients (≥20 years) compared to younger patients (<20 years) had a higher risk of being infected with these variants, but this association was dependent on the continent of origin. In the global population, the discriminant analysis of principal components (DAPC) showed contrasting patterns of genetic clustering with three (Africa, Asia, and North America) and two (North and South America) continental clusters being observed for the 2020 and 2021 global populations, respectively. Within each continent, the MLG repertoires (range 40−199) sampled in 2020 and 2021 were genetically differentiated, with ≤4 MLGs per repertoire accounting for the majority of genomes sampled. These data suggested that the majority of SARS-CoV-2 infections in 2020 and 2021 were caused by genetically distinct variants that likely adapted to local populations. Indeed, four GISAID clade-defined VOCs - GRY (Alpha), GH (Beta), GR (Gamma), and G/GK (Delta variant) were differentiated by their MLG signatures, demonstrating the versatility of the MLG tool for variant identification. Results from this proof-of-concept multilocus genotyping demonstrates its utility for SARS-CoV-2 genomic surveillance and for monitoring its spatiotemporal epidemiology and evolution, particularly in response to control interventions including COVID-19 vaccines and chemotherapies.
Collapse
|
30
|
Burel E, Colson P, Lagier JC, Levasseur A, Bedotto M, Lavrard-Meyer P, Fournier PE, La Scola B, Raoult D. Sequential Appearance and Isolation of a SARS-CoV-2 Recombinant between Two Major SARS-CoV-2 Variants in a Chronically Infected Immunocompromised Patient. Viruses 2022; 14:1266. [PMID: 35746737 PMCID: PMC9227898 DOI: 10.3390/v14061266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic recombination is a major evolutionary mechanism among RNA viruses, and it is common in coronaviruses, including those infecting humans. A few SARS-CoV-2 recombinants have been reported to date whose genome harbored combinations of mutations from different mutants or variants, but only a single patient's sample was analyzed, and the virus was not isolated. Here, we report the gradual emergence of a hybrid genome of B.1.160 and Alpha variants in a lymphoma patient chronically infected for 14 months, and we isolated the recombinant virus. The hybrid genome was obtained by next-generation sequencing, and the recombination sites were confirmed by PCR. This consisted of a parental B.1.160 backbone interspersed with two fragments, including the spike gene, from an Alpha variant. An analysis of seven sequential samples from the patient decoded the recombination steps, including the initial infection with a B.1.160 variant, then a concurrent infection with this variant and an Alpha variant, the generation of hybrid genomes, and eventually the emergence of a predominant recombinant virus isolated at the end of the patient's follow-up. This case exemplifies the recombination process of SARS-CoV-2 in real life, and it calls for intensifying the genomic surveillance in patients coinfected with different SARS-CoV-2 variants, and more generally with several RNA viruses, as this may lead to the appearance of new viruses.
Collapse
Affiliation(s)
- Emilie Burel
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Marielle Bedotto
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
| | - Philippe Lavrard-Meyer
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), 264 rue Saint-Pierre, 13005 Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (E.B.); (P.C.); (J.-C.L.); (A.L.); (M.B.); (P.L.-M.); (P.-E.F.)
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de Recherche Pour le Développement (IRD), Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
31
|
Focosi D, Maggi F. Recombination in Coronaviruses, with a Focus on SARS-CoV-2. Viruses 2022; 14:1239. [PMID: 35746710 PMCID: PMC9228924 DOI: 10.3390/v14061239] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Recombination is a common evolutionary tool for RNA viruses, and coronaviruses are no exception. We review here the evidence for recombination in SARS-CoV-2 and reconcile nomenclature for recombinants, discuss their origin and fitness, and speculate how recombinants could make a difference in the future of the COVID-19 pandemics.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
32
|
Nunes DR, Braconi CT, Ludwig-Begall LF, Arns CW, Durães-Carvalho R. Deep phylogenetic-based clustering analysis uncovers new and shared mutations in SARS-CoV-2 variants as a result of directional and convergent evolution. PLoS One 2022; 17:e0268389. [PMID: 35609034 PMCID: PMC9129020 DOI: 10.1371/journal.pone.0268389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades after the last epidemic caused by a severe acute respiratory syndrome coronavirus (SARS-CoV), newly emerged SARS-CoV-2 quickly spread in 2020 and precipitated an ongoing global public health crisis. Both the continuous accumulation of point mutations, owed to the naturally imposed genomic plasticity of SARS-CoV-2 evolutionary processes, as well as viral spread over time, allow this RNA virus to gain new genetic identities, spawn novel variants and enhance its potential for immune evasion. Here, through an in-depth phylogenetic clustering analysis of upwards of 200,000 whole-genome sequences, we reveal the presence of previously unreported and hitherto unidentified mutations and recombination breakpoints in Variants of Concern (VOC) and Variants of Interest (VOI) from Brazil, India (Beta, Eta and Kappa) and the USA (Beta, Eta and Lambda). Additionally, we identify sites with shared mutations under directional evolution in the SARS-CoV-2 Spike-encoding protein of VOC and VOI, tracing a heretofore-undescribed correlation with viral spread in South America, India and the USA. Our evidence-based analysis provides well-supported evidence of similar pathways of evolution for such mutations in all SARS-CoV-2 variants and sub-lineages. This raises two pivotal points: (i) the co-circulation of variants and sub-lineages in close evolutionary environments, which sheds light onto their trajectories into convergent and directional evolution, and (ii) a linear perspective into the prospective vaccine efficacy against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| | - Louisa F. Ludwig-Begall
- Department of Infectious and Parasitic Diseases, Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clarice Weis Arns
- Laboratory of Virology, University of Campinas, Campinas, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| |
Collapse
|
33
|
Gautam P, Paul D, Suroliya V, Garg R, Agarwal R, Das S, Kaur US, Pandey A, Bhugra A, Tarai B, Bihari C, Sarin SK, Gupta E. SARS-CoV-2 Lineage Tracking, and Evolving Trends Seen during Three Consecutive Peaks of Infection in Delhi, India: a Clinico-Genomic Study. Microbiol Spectr 2022; 10:e0272921. [PMID: 35311567 PMCID: PMC9045110 DOI: 10.1128/spectrum.02729-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Since its advent, the pandemic has caused havoc in multiple waves due partly to amplified transmissibility and immune escape to vaccines. Delhi, India also witnessed brutal multiple peaks causing exponential rise in cases. Here we had retrospectively investigated clade variation, emergence of new lineages and varied clinical characteristics during those three peaks in order to understand the trajectory of the ongoing pandemic. In this study, a total of 123,378 samples were collected for a time span of 14 months (1 June 2020 to 3 August 2021) encompassing three different peaks in Delhi. A subset of 747 samples was processed for sequencing. Complete clinical and demographic details of all the enrolled cases were also collected. We detected 26 lineages across three peaks nonuniformly from 612 quality passed samples. The first peak was driven by diverse early variants, while the second one by B.1.36 and B.1.617.2, unlike third peak caused entirely by B.1.617.2. A total of 18,316 mutations with median of 34 were reported. Majority of mutations were present in less than 1% of samples. Differences in clinical characteristics across three peaks was also reported. To be ahead of the frequently changing course of the ongoing pandemic, it is of utmost importance that novel lineages be tracked continuously. Prioritized sequencing of sudden local outburst and community hot spots must be done to swiftly detect a novel mutation/lineage of potential clinical importance. IMPORTANCE Genome surveillance of the Delhi data provides a more detailed picture of diverse circulating lineages. The added value that the current study provides by clinical details of the patients is of importance. We looked at the shifting patterns of lineages, clinical characteristics and mutation types and mutation load during each successive infection surge in Delhi. The importance of widespread genomic surveillance cannot be stressed enough to timely detect new variants so that appropriate policies can be immediately implemented upon to help control the infection spread. The entire idea of genomic surveillance is to arm us with the clues as to how the novel mutations and/or variants can prove to be more transmissible and/or fatal. In India, the densely populated cities have an added concern of the huge burden that even the milder variants of the virus combined with co-morbidity can have on the community/primary health care centers.
Collapse
Affiliation(s)
- Pramod Gautam
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Diptanu Paul
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Varun Suroliya
- Genome Sequencing Laboratory, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rahul Garg
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Reshu Agarwal
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Santanu Das
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Urvinder S. Kaur
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amit Pandey
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arjun Bhugra
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital, Max Healthcare, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - S. K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ekta Gupta
- Department of Clinical Virology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
34
|
De R, Dutta S. Role of the Microbiome in the Pathogenesis of COVID-19. Front Cell Infect Microbiol 2022; 12:736397. [PMID: 35433495 PMCID: PMC9009446 DOI: 10.3389/fcimb.2022.736397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease COVID-19 is caused by the highly contagious single-stranded RNA virus, SARS-coronavirus 2 (SARS-CoV-2), which has a high rate of evolution like other RNA viruses. The first genome sequences of SARS-CoV-2 were available in early 2020. Subsequent whole-genome sequencing revealed that the virus had accumulated several mutations in genes associated with viral replication and pathogenesis. These variants showed enhanced transmissibility and infectivity. Soon after the first outbreak due to the wild-type strain in December 2019, a genetic variant D614G emerged in late January to early February 2020 and became the dominant genotype worldwide. Thereafter, several variants emerged, which were found to harbor mutations in essential viral genes encoding proteins that could act as drug and vaccine targets. Numerous vaccines have been successfully developed to assuage the burden of COVID-19. These have different rates of efficacy, including, although rarely, a number of vaccinated individuals exhibiting side effects like thrombosis. However, the recent emergence of the Britain strain with 70% more transmissibility and South African variants with higher resistance to vaccines at a time when several countries have approved these for mass immunization has raised tremendous concern regarding the long-lasting impact of currently available prophylaxis. Apart from studies addressing the pathophysiology, pathogenesis, and therapeutic targets of SARS-CoV-2, analysis of the gut, oral, nasopharyngeal, and lung microbiome dysbiosis has also been undertaken to find a link between the microbiome and the pathogenesis of COVID-19. Therefore, in the current scenario of skepticism regarding vaccine efficacy and challenges over the direct effects of currently available drugs looming large, investigation of alternative therapeutic avenues based on the microbiome can be a rewarding finding. This review presents the currently available understanding of microbiome dysbiosis and its association with cause and consequence of COVID-19. Taking cues from other inflammatory diseases, we propose a hypothesis of how the microbiome may be influencing homeostasis, pro-inflammatory condition, and the onset of inflammation. This accentuates the importance of a healthy microbiome as a protective element to prevent the onset of COVID-19. Finally, the review attempts to identify areas where the application of microbiome research can help in reducing the burden of the disease.
Collapse
Affiliation(s)
- Rituparna De
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkota, India
| |
Collapse
|
35
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Makau DN, Rovira A, Corzo CA, VanderWaal K. Measuring How Recombination Re-shapes the Evolutionary History of PRRSV-2: A Genome-Based Phylodynamic Analysis of the Emergence of a Novel PRRSV-2 Variant. Front Vet Sci 2022; 9:846904. [PMID: 35400102 PMCID: PMC8990846 DOI: 10.3389/fvets.2022.846904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995–2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.
Collapse
|
36
|
Balagué-Dobón L, Cáceres A, González JR. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Brief Bioinform 2022; 23:bbac043. [PMID: 35211719 PMCID: PMC8921734 DOI: 10.1093/bib/bbac043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most abundant type of genomic variation and the most accessible to genotype in large cohorts. However, they individually explain a small proportion of phenotypic differences between individuals. Ancestry, collective SNP effects, structural variants, somatic mutations or even differences in historic recombination can potentially explain a high percentage of genomic divergence. These genetic differences can be infrequent or laborious to characterize; however, many of them leave distinctive marks on the SNPs across the genome allowing their study in large population samples. Consequently, several methods have been developed over the last decade to detect and analyze different genomic structures using SNP arrays, to complement genome-wide association studies and determine the contribution of these structures to explain the phenotypic differences between individuals. We present an up-to-date collection of available bioinformatics tools that can be used to extract relevant genomic information from SNP array data including population structure and ancestry; polygenic risk scores; identity-by-descent fragments; linkage disequilibrium; heritability and structural variants such as inversions, copy number variants, genetic mosaicisms and recombination histories. From a systematic review of recently published applications of the methods, we describe the main characteristics of R packages, command-line tools and desktop applications, both free and commercial, to help make the most of a large amount of publicly available SNP data.
Collapse
|
37
|
Dezordi FZ, Resende PC, Naveca FG, do Nascimento VA, de Souza VC, Dias Paixão AC, Appolinario L, Lopes RS, da Fonseca Mendonça AC, Barreto da Rocha AS, Martins Venas TM, Pereira EC, Paiva MHS, Docena C, Bezerra MF, Machado LC, Salvato RS, Gregianini TS, Martins LG, Pereira FM, Rovaris DB, Fernandes SB, Ribeiro-Rodrigues R, Costa TO, Sousa JC, Miyajima F, Delatorre E, Gräf T, Bello G, Siqueira MM, Wallau GL. Unusual SARS-CoV-2 intrahost diversity reveals lineage superinfection. Microb Genom 2022; 8:000751. [PMID: 35297757 PMCID: PMC9176291 DOI: 10.1099/mgen.0.000751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
| | - Victor Costa de Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
| | - Anna Carolina Dias Paixão
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Serrano Lopes
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alice Sampaio Barreto da Rocha
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taina Moreira Martins Venas
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisa Cavalcante Pereira
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste, Caruaru, Pernambuco, Brazil
| | - Cassia Docena
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Matheus Filgueira Bezerra
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Laís Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Richard Steiner Salvato
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Leticia Garay Martins
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Darcita Buerger Rovaris
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Florianópolis, Santa Catarina, Brazil
| | - Sandra Bianchini Fernandes
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Florianópolis, Santa Catarina, Brazil
| | - Rodrigo Ribeiro-Rodrigues
- Laboratório Central de Saúde Pública do Estado do Espírito Santo (LACEN-ES), Vitória, Espírito Santo, Brazil
| | - Thais Oliveira Costa
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
| | - Joaquim Cesar Sousa
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
| | - Fabio Miyajima
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
| | - Edson Delatorre
- Departamento de Biologia. Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, FIOCRUZ-Bahia, Salvador, Bahia, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- *Correspondence: Gabriel Luz Wallau,
| |
Collapse
|
38
|
Parra-Lucares A, Segura P, Rojas V, Pumarino C, Saint-Pierre G, Toro L. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen? Life (Basel) 2022; 12:194. [PMID: 35207482 PMCID: PMC8879166 DOI: 10.3390/life12020194] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a significant global impact, with more than 280,000,000 people infected and 5,400,000 deaths. The use of personal protective equipment and the anti-SARS-CoV-2 vaccination campaigns have reduced infection and death rates worldwide. However, a recent increase in infection rates has been observed associated with the appearance of SARS-CoV-2 variants, including the more recently described lineage B.1.617.2 (Delta variant) and lineage B.1.1.529/BA.1 (Omicron variant). These new variants put the effectiveness of international vaccination at risk, with the appearance of new outbreaks of COVID-19 throughout the world. This emergence of new variants has been due to multiple predisposing factors, including molecular characteristics of the virus, geographic and environmental conditions, and the impact of social determinants of health that favor the genetic diversification of SARS-CoV-2. We present a literature review on the most recent information available on the emergence of new variants of SARS-CoV-2 in the world. We analyzed the biological, geographical, and sociocultural factors that favor the development of these variants. Finally, we evaluate the surveillance strategies for the early detection of new variants and prevent their distribution outside these regions.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
| | - Paula Segura
- Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Verónica Rojas
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
| | - Catalina Pumarino
- School of Medicine, Faculty of Medicine, Universidad de Chile, 8380456 Santiago, Chile;
| | - Gustavo Saint-Pierre
- Microbiology Unit, Clinical Laboratory, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Luis Toro
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Critical Care Unit, Clínica Las Condes, 7591047 Santiago, Chile
| |
Collapse
|
39
|
He Y, Ma W, Dang S, Chen L, Zhang R, Mei S, Wei X, Lv Q, Peng B, Chen J, Kong D, Sun Y, Tang X, Wu W, Chen Z, Li S, Wan J, Zou X, Li M, Feng T, Ren L, Wang J. Possible recombination between two variants of concern in a COVID-19 patient. Emerg Microbes Infect 2022; 11:552-555. [PMID: 35081877 PMCID: PMC8843165 DOI: 10.1080/22221751.2022.2032375] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We identified an individual who was coinfected with two SARS-CoV-2 variants of concern, the Beta and Delta variants. The ratio of the relative abundance between the two variants was maintained at 1:9 (Beta:Delta) in 14 days. Furthermore, possible evidence of recombinations in the Orf1ab and Spike genes was found.
Collapse
Affiliation(s)
- Yaqing He
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Wentai Ma
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, China
| | - Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Long Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Renli Zhang
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Shujiang Mei
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xinyi Wei
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Qiuying Lv
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Bo Peng
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Jiancheng Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Dongfeng Kong
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Ying Sun
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xiujuan Tang
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Weihua Wu
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Zhigao Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Shimin Li
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Jia Wan
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xuan Zou
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Tiejian Feng
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
| |
Collapse
|
40
|
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12:809244. [PMID: 35046961 PMCID: PMC8761766 DOI: 10.3389/fimmu.2021.809244] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyal Mistry
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fatima Barmania
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kimberly Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adéle Strydom
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignatius M. Viljoen
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - William James
- James and Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Hassan SS, Lundstrom K, Serrano-Aroca Á, Adadi P, Aljabali AAA, Redwan EM, Lal A, Kandimalla R, El-Aziz TMA, Pal Choudhury P, Azad GK, Sherchan SP, Chauhan G, Tambuwala M, Takayama K, Barh D, Palu G, Basu P, Uversky VN. Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. Int J Biol Macromol 2022; 194:128-143. [PMID: 34863825 PMCID: PMC8635690 DOI: 10.1016/j.ijbiomac.2021.11.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
The devastating impact of the ongoing coronavirus disease 2019 (COVID-19) on public health, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has made targeting the COVID-19 pandemic a top priority in medical research and pharmaceutical development. Surveillance of SARS-CoV-2 mutations is essential for the comprehension of SARS-CoV-2 variant diversity and their impact on virulence and pathogenicity. The SARS-CoV-2 open reading frame 10 (ORF10) protein interacts with multiple human proteins CUL2, ELOB, ELOC, MAP7D1, PPT1, RBX1, THTPA, TIMM8B, and ZYG11B expressed in lung tissue. Mutations and co-occurring mutations in the emerging SARS-CoV-2 ORF10 variants are expected to impact the severity of the virus and its associated consequences. In this article, we highlight 128 single mutations and 35 co-occurring mutations in the unique SARS-CoV-2 ORF10 variants. The possible predicted effects of these mutations and co-occurring mutations on the secondary structure of ORF10 variants and host protein interactomes are presented. The findings highlight the possible effects of mutations and co-occurring mutations on the emerging 140 ORF10 unique variants from secondary structure and intrinsic protein disorder perspectives.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India.
| | | | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigacion Traslacional San Alberto Magno, Universidad Catolica de Valencia San Vicente Martir, c/Guillem de Castro, 94, 46001 Valencia, Valencia, Spain.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid 566, Jordan.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab 21934, Alexandria, Egypt.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biocemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229-3900, USA; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt.
| | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata 700108, India.
| | | | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849 Monterrey, Nuevo Leon, Mexico.
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Al-Beltagi S, Goulding LV, Chang DK, Mellits KH, Hayes CJ, Gershkovich P, Coleman CM, Chang KC. Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin. Virulence 2021; 12:2946-2956. [PMID: 34793280 PMCID: PMC8667886 DOI: 10.1080/21505594.2021.2006960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022] Open
Abstract
The struggle to control the COVID-19 pandemic is made challenging by the emergence of virulent SARS-CoV-2 variants. To gain insight into their replication dynamics, emergent Alpha (A), Beta (B) and Delta (D) SARS-CoV-2 variants were assessed for their infection performance in single variant- and co-infections. The effectiveness of thapsigargin (TG), a recently discovered broad-spectrum antiviral, against these variants was also examined. Of the 3 viruses, the D variant exhibited the highest replication rate and was most able to spread to in-contact cells; its replication rate at 24 h post-infection (hpi) based on progeny viral RNA production was over 4 times that of variant A and 9 times more than the B variant. In co-infections, the D variant boosted the replication of its co-infected partners at the expense of its own initial performance. Furthermore, co-infection with AD or AB combination conferred replication synergy where total progeny (RNA) output was greater than the sum of corresponding single-variant infections. All variants were highly sensitive to TG inhibition. A single pre-infection priming dose of TG effectively blocked all single-variant infections and every combination (AB, AD, BD variants) of co-infection at greater than 95% (relative to controls) at 72 hpi. Likewise, TG was effective in inhibiting each variant in active preexisting infection. In conclusion, against the current backdrop of the dominant D variant that could be further complicated by co-infection synergy with new variants, the growing list of viruses susceptible to TG, a promising host-centric antiviral, now includes a spectrum of contemporary SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Sarah Al-Beltagi
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | - Daniel K.E. Chang
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, University Park, Nottingham, UK
| | | | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Mohamad Noordin N, Tan JL, Chong CK, Chem YK, Tajudin N, Abu Bakar RS, Sengol S, Phoon HYP, Che Azid NAM, W Mohd Arifin WNA, Aziz ZA, Hussin H, Ibrahim NS, Omar A, Ravi U, Kamarul Zaman KH, Yamin MA, Ngeow YF. Genomic diversity of SARS-CoV-2 in Malaysia. PeerJ 2021; 9:e12449. [PMID: 34760404 PMCID: PMC8571957 DOI: 10.7717/peerj.12449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Background More than a year after its first appearance in December 2019, the COVID-19 pandemic is still on a rampage in many parts of the world. Although several vaccines have been approved for emergency use, the emergence and rapid spread of new SARS-CoV-2 variants have sparked fears of vaccine failure due to immune evasion. Massive viral genome sequencing has been recommended to track the genetic changes that could lead to adverse consequences. Methods We sequenced SARS-CoV-2 respiratory isolates from the National Public Health Laboratory, Malaysia and examined them together with viral genomes deposited in GISAID by other Malaysian researchers, to understand the evolutionary trend of the virus circulating in the country. We studied the distribution of virus lineages and site-wise mutations, analysed genetic clustering with the goeBURST full Minimum Spanning Tree algorithm, examined the trend of viral nucleotide diversity over time and performed nucleotide substitution association analyses. Results We identified 22 sub-lineages, 13 clonal complexes, 178 sequence types and seven sites of linkage disequilibrium in 277 SARS-CoV-2 genomes sequenced between January and December 2020. B.1.524 was the largest lineage group. The number of mutations per genome ranged from 0 to 19. The mean genomic diversity value over 12 months was 3.26 × 10-4. Of 359 mutations detected, 60.5% of which were non-synonymous, the most frequent were in the ORF1ab (P4715L), S (D614G and A701V) and N (S194L) genes. Conclusion The SARS-CoV-2 virus accumulated an abundance of mutations in the first year of the COVID-19 pandemic in Malaysia. Its overall genetic diversity, however, is relatively low compared to other Asian countries with larger populations. Continuous genomic and epidemiological surveillance will help to clarify the evolutionary processes determining viral diversity and impacting on human health.
Collapse
Affiliation(s)
- Noorliza Mohamad Noordin
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Joon Liang Tan
- Faculty of Information Science and Technology, Multimedia University, Melaka, Melaka, Malaysia
| | | | - Yu Kie Chem
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Norazimah Tajudin
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Rehan Shuhada Abu Bakar
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Selvanesan Sengol
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Hannah Yik Phing Phoon
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | | | | | - Zirwatul Adilah Aziz
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Hani Hussin
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Nurul Syahida Ibrahim
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Aziyati Omar
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Ushananthiny Ravi
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | | | - Mohd Asri Yamin
- National Public Health Laboratory, Ministry of Health Malaysia, Sungai Buloh, Selangor, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia.,Center for Research on Communincable Diseases, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia
| |
Collapse
|
44
|
Torbati E, Krause KL, Ussher JE. The Immune Response to SARS-CoV-2 and Variants of Concern. Viruses 2021; 13:1911. [PMID: 34696342 PMCID: PMC8537260 DOI: 10.3390/v13101911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023] Open
Abstract
At the end of 2019 a newly emerged betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of severe pneumonia, subsequently termed COVID-19, in a number of patients in Wuhan, China. Subsequently, SARS-CoV-2 rapidly spread globally, resulting in a pandemic that has to date infected over 200 million individuals and resulted in more than 4.3 million deaths. While SARS-CoV-2 results in severe disease in 13.8%, with increasing frequency of severe disease with age, over 80% of infections are asymptomatic or mild. The immune response is an important determinant of outcome following SARS-CoV-2 infection. While B cell and T cell responses are associated with control of infection and protection against subsequent challenge with SARS-CoV-2, failure to control viral replication and the resulting hyperinflammation are associated with severe COVID-19. Towards the end of 2020, several variants of concern emerged that demonstrate increased transmissibility and/or evasion of immune responses from prior SARS-CoV-2 infection. This article reviews what is known about the humoral and cellular immune responses to SARS-CoV-2 and how mutation and structural/functional changes in the emerging variants of concern impact upon the immune protection from prior infection or vaccination.
Collapse
Affiliation(s)
- Elham Torbati
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - James E. Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
- Vaccine Alliance Aotearoa New Zealand, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
45
|
Bonilla-Aldana DK, García-Barco A, Jimenez-Diaz SD, Bonilla-Aldana JL, Cardona-Trujillo MC, Muñoz-Lara F, Zambrano LI, Salas-Matta LA, Rodriguez-Morales AJ. SARS-CoV-2 natural infection in animals: a systematic review of studies and case reports and series. Vet Q 2021; 41:250-267. [PMID: 34406913 PMCID: PMC8428274 DOI: 10.1080/01652176.2021.1970280] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
COVID-19 pandemic is essentially a zoonotic disease. In this context, early in 2020, transmission from humans to certain animals began reporting; the number of studies has grown since. To estimate the pooled prevalence of SARS-CoV-2 natural infection in animals and to determine differences in prevalence between countries, years, animal types and diagnostic methods (RT-PCR or serological tests). A systematic literature review with meta-analysis using eight databases. Observational studies were included but analyzed separately. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95% CI) for prevalence studies and case series. After the screening, 65 reports were selected for full-text assessment and included for qualitative and quantitative analyses. A total of 24 reports assessed SARS-CoV-2 infection by RT-PCR, combining a total of 321,785 animals, yielding a pooled prevalence of 12.3% (95% CI 11.6%–13.0%). Also, a total of 17 studies additionally assessed serological response against SARS-CoV-2, including nine by ELISA, four by PRTN, one by MIA, one by immunochromatography (rest, two studies, the method was not specified), combining a total of 5319 animals, yielding a pooled prevalence of 29.4% (95% CI 22.9%–35.9%). A considerable proportion of animals resulted infected by SARS-CoV-2, ranking minks among the highest value, followed by dogs and cats. Further studies in other animals are required to define the extent and importance of natural infection due to SARS-CoV-2. These findings have multiple implications for public human and animal health. One Health approach in this context is critical for prevention and control.
Collapse
Affiliation(s)
- D Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Alejandra García-Barco
- Grupo Colaborativo de Investigación en Enfermedades Transmitidas por vectores, Zoonóticas y tropicales de Risaralda, Pereira, Risaralda, Colombia
| | - S Daniela Jimenez-Diaz
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Jorge Luis Bonilla-Aldana
- School of Veterinary Medicine and Zootechnics, Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Maria C Cardona-Trujillo
- Grupo Colaborativo de Investigación en Enfermedades Transmitidas por vectores, Zoonóticas y tropicales de Risaralda, Pereira, Risaralda, Colombia
| | - Fausto Muñoz-Lara
- Department of Internal Medicine, Faculty of Medical Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.,Department of Internal Medicine, Hospital Escuela, Tegucigalpa, Honduras
| | - Lysien I Zambrano
- Unit of Scientific Research, School of Medicine, Faculty of Medical Sciences, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras
| | | | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Perú.,Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
| |
Collapse
|
46
|
Mohammad A, Abubaker J, Al-Mulla F. Structural modelling of SARS-CoV-2 alpha variant (B.1.1.7) suggests enhanced furin binding and infectivity. Virus Res 2021; 303:198522. [PMID: 34314772 PMCID: PMC8310422 DOI: 10.1016/j.virusres.2021.198522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
The B.1.1.7 SARS-CoV-2 strain that has emerged in the UK in early December presents seven mutations and three deletions on S-protein structure that could lead to a more infective strain. The P681H mutation in the “PRRAR” furin cleavage site might affect the binding affinity to furin enzyme and hence its infectivity. Therefore, in this study, various structural bioinformatics approaches were used to model the S-protein structure with the B.1.1.7 variant amino acid substitutions and deletions. In addition to modelling the binding of furin to the cleavage site of the wild-type and the B.1.1.7 variant. Conclusively the B.1.1.7 variant resulted in dynamic stability, conformational changes and variations in binding energies in the S-protein structure, resulting in a more favourable binding of furin enzyme to the SARS-CoV-2 S-protein.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait
| |
Collapse
|