1
|
Khan H, Hakami MA, Alamri MA, Alotaibi BS, Ullah N, Khan R, Khalid A, Abdalla AN, Wadood A. Identification of Novel Antileishmanial Chemotypes By High-Throughput Virtual and In Vitro Screening. Acta Parasitol 2024; 69:1439-1457. [PMID: 39150581 DOI: 10.1007/s11686-024-00899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Leishmaniasis is a deadly protozoan parasitic disease and a significant health problem in underdeveloped and developing countries. The global spread of the parasite, coupled with the emergence of drug resistance and severe side effects associated with existing treatments, has necessitated the identification of new and potential drugs. OBJECTIVE This study aimed to identify promising compounds for the treatment of leishmaniasis by targeting two essential enzymes of Leishmania donovani: trypanothione reductase (Try-R) and trypanothione synthetase (Try-S). METHODS High-throughput virtual and in vitro screening of in-house and commercial databases was conducted. A pharmacophore model with seven features was developed and validated using the Guner-Henery method. The pharmacophore-based virtual screening yielded 690 hits, which were further filtered through Lipinski's rule, ADMET analysis, and molecular docking against Try-R and Try-S. Molecular dynamics studies were performed on selected compounds, and in vitro experiments were conducted to evaluate their activity against the promastigote and amastigote forms of L. donovani. RESULTS The virtual screening and subsequent analysis identified 33 promising compounds. Molecular dynamics studies of two compounds (comp-1 and comp-2) demonstrated stable binding interactions with the target enzymes and high affinity. In vitro experiments revealed that 13 compounds exhibited moderate activity against both the promastigote (IC50, 41 µM-76 µM) and the amastigote (IC50, 44 µM-72 µM) forms of L. donovani. Compounds 1 and 2 showed the highest percent inhibition and the lowest IC50 values. CONCLUSION The identified compounds demonstrated significant inhibitory activity against Leishmania donovani and stable interactions with target enzymes. These findings suggest that the compounds could serve as promising leads for developing new treatments for leishmaniasis.
Collapse
Affiliation(s)
- Huma Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al-Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra Univesity, Al-Quwayiyah-19257, Riyadh, Saudi Arabia
| | - Nazif Ullah
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
2
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Wang J, Dong D, Zhao W, Wang J. Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. Eur J Immunol 2024; 54:e2350458. [PMID: 37830252 DOI: 10.1002/eji.202350458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zayats R, Mou Z, Yazdanpanah A, Gupta G, Lopez P, Nayar D, Koh WH, Uzonna JE, Murooka TT. Antigen recognition reinforces regulatory T cell mediated Leishmania major persistence. Nat Commun 2023; 14:8449. [PMID: 38114497 PMCID: PMC10730873 DOI: 10.1038/s41467-023-44297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Cutaneous Leishmania major infection elicits a rapid T cell response that is insufficient to clear residually infected cells, possibly due to the accumulation of regulatory T cells in healed skin. Here, we used Leishmania-specific TCR transgenic mice as a sensitive tool to characterize parasite-specific effector and immunosuppressive responses in vivo using two-photon microscopy. We show that Leishmania-specific Tregs displayed higher suppressive activity compared to polyclonal Tregs, that was mediated through IL-10 and not through disrupting cell-cell contacts or antigen presentation. In vivo expansion of endogenous Leishmania-specific Tregs resulted in disease reactivation that was also IL-10 dependent. Interestingly, lack of Treg expansion that recognized the immunodominant Leishmania peptide PEPCK was sufficient to restore robust effector Th1 responses and resulted in parasite control exclusively in male hosts. Our data suggest a stochastic model of Leishmania major persistence in skin, where cellular factors that control parasite numbers are counterbalanced by Leishmania-specific Tregs that facilitate parasite persistence.
Collapse
Affiliation(s)
- Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Atta Yazdanpanah
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Gaurav Gupta
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Lopez
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Deesha Nayar
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Wan H Koh
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Thomas T Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Norman MU, Chow Z, Hall P, Le AC, O'Sullivan KM, Snelgrove SL, Deane JA, Hickey MJ. CD103 Regulates Dermal Regulatory T Cell Motility and Interactions with CD11c-Expressing Leukocytes to Control Skin Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:551-562. [PMID: 37341508 DOI: 10.4049/jimmunol.2200917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Dermal regulatory T cells (Tregs) are essential for maintenance of skin homeostasis and control of skin inflammatory responses. In mice, Tregs in the skin are characterized by high expression of CD103, the αE integrin. Evidence indicates that CD103 promotes Treg retention within the skin, although the mechanism underlying this effect is unknown. The main ligand of CD103, E-cadherin, is predominantly expressed by cells in the epidermis. However, because Tregs are predominantly located within the dermis, the nature of the interactions between E-cadherin and CD103-expressing Tregs is unclear. In this study, we used multiphoton intravital microscopy to examine the contribution of CD103 to Treg behavior in resting and inflamed skin of mice undergoing oxazolone-induced contact hypersensitivity. Inhibition of CD103 in uninflamed skin did not alter Treg behavior, whereas 48 h after inducing contact hypersensitivity by oxazolone challenge, CD103 inhibition increased Treg migration. This coincided with E-cadherin upregulation on infiltrating myeloid leukocytes in the dermis. Using CD11c-enhanced yellow fluorescent protein (EYFP) × Foxp3-GFP dual-reporter mice, inhibition of CD103 was found to reduce Treg interactions with dermal dendritic cells. CD103 inhibition also resulted in increased recruitment of effector CD4+ T cells and IFN-γ expression in challenged skin and resulted in reduced glucocorticoid-induced TNFR-related protein expression on Tregs. These results demonstrate that CD103 controls intradermal Treg migration, but only at later stages in the inflammatory response, when E-cadherin expression in the dermis is increased, and provide evidence that CD103-mediated interactions between Tregs and dermal dendritic cells support regulation of skin inflammation.
Collapse
Affiliation(s)
- M Ursula Norman
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Zachary Chow
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Anne Cao Le
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Kim M O'Sullivan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - James A Deane
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Luz Y, Rebouças A, Bernardes CPOS, Rossi EA, Machado TS, Souza BSF, Brodskyn CI, Veras PST, dos Santos WLC, de Menezes JPB. Leishmania infection alters macrophage and dendritic cell migration in a three-dimensional environment. Front Cell Dev Biol 2023; 11:1206049. [PMID: 37576604 PMCID: PMC10416637 DOI: 10.3389/fcell.2023.1206049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.
Collapse
Affiliation(s)
- Yasmin Luz
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Amanda Rebouças
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Erik A. Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Taíse S. Machado
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Bruno S. F. Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D’Or Institute for Research and Education, Salvador, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Claudia Ida Brodskyn
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Patricia S. T. Veras
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Juliana P. B. de Menezes
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
7
|
Cai CW, O’Shea A, Eickhoff CS, Guo H, Lewis WG, Beverley SM, Hoft DF. Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease. Front Microbiol 2022; 13:1059115. [PMID: 36523834 PMCID: PMC9745109 DOI: 10.3389/fmicb.2022.1059115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Trypanosoma cruzi is the protozoan parasite causing Chagas disease, a Neglected Tropical Disease that affects 8 million people and causes 12,000 deaths per year, primarily because of cardiac pathology. Effective vaccination for T. cruzi remains an elusive goal. The use of a live vaccine vector, especially one that mimics the pathogen target, may be superior to the use of recombinant protein or DNA vaccine formulations. Methods We generated recombinant Leishmania major, a related trypanosomatid parasite, as a vaccine vehicle to express the immunogenic T. cruzi trans-sialidase (TS) antigen. The induction of T cell and antibody responses, as well as T. cruzi protective immunity generated by these vaccines were assessed in vivo. Results We demonstrate that mice inoculated with these recombinant TS-expressing L. major parasites mount T cell and antibody responses directed against TS and are protected against future T. cruzi infection. We also show that the partially attenuated dhfr-ts- CC1 L. major strain, previously found to induce protective immunity to virulent L. major infection without causing pathology, can also be engineered to express the TS antigen. This latter recombinant may represent a safe and effective option to explore for ultimate use in humans. Discussion Altogether, these data indicate that L. major can stably express a T. cruzi antigen and induce T. cruzi-specific protective immunity, warranting further investigation of attenuated Leishmania parasites as vaccine.
Collapse
Affiliation(s)
- Catherine W. Cai
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Anne O’Shea
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Daniel F. Hoft
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
8
|
Shaebani MR, Stankevicins L, Vesperini D, Urbanska M, Flormann DAD, Terriac E, Gad AKB, Cheng F, Eriksson JE, Lautenschläger F. Effects of vimentin on the migration, search efficiency, and mechanical resilience of dendritic cells. Biophys J 2022; 121:3950-3961. [PMID: 36056556 PMCID: PMC9675030 DOI: 10.1016/j.bpj.2022.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells use amoeboid migration to pass through narrow passages in the extracellular matrix and confined tissue in search for pathogens and to reach the lymph nodes and alert the immune system. Amoeboid migration is a migration mode that, instead of relying on cell adhesion, is based on mechanical resilience and friction. To better understand the role of intermediate filaments in ameboid migration, we studied the effects of vimentin on the migration of dendritic cells. We show that the lymph node homing of vimentin-deficient cells is reduced in our in vivo experiments in mice. Lack of vimentin also reduces the cell stiffness, the number of migrating cells, and the migration speed in vitro in both 1D and 2D confined environments. Moreover, we find that lack of vimentin weakens the correlation between directional persistence and migration speed. Thus, vimentin-expressing dendritic cells move faster in straighter lines. Our numerical simulations of persistent random search in confined geometries verify that the reduced migration speed and the weaker correlation between the speed and direction of motion result in longer search times to find regularly located targets. Together, these observations show that vimentin enhances the ameboid migration of dendritic cells, which is relevant for the efficiency of their random search for pathogens.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany
| | - Luiza Stankevicins
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Doriane Vesperini
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marta Urbanska
- Biotechnology Centre, Centre for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Daniel A D Flormann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Emmanuel Terriac
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Annica K B Gad
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Franziska Lautenschläger
- Centre for Biophysics, Saarland University, Saarbrücken, Germany; Department of Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Chao C, Tajbakhsh Z, Stapleton F, Mobeen R, Madigan MC, Jalbert I, Briggs N, Golebiowski B. Corneal epithelial dendritic cells, tear neuropeptides and corneal nerves continue to be affected more than 12 months after LASIK. Acta Ophthalmol 2022; 101:e302-e314. [PMID: 36250753 DOI: 10.1111/aos.15270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE LASIK causes corneal nerve damage and may affect the neuro-immune crosstalk. This study examined the effects of LASIK on corneal epithelial dendritic cells (CEDC) density and morphology and explored their relationships with corneal nerves and tear neuropeptides. A grading system was developed to assess CEDC morphology. METHODS Intra- and inter-observer repeatability of the CEDC morphology grading system was established using kappa (κ). In vivo confocal microscope images of the central cornea were captured from 20 participants who had undergone LASIK 12-16 months earlier and 20 controls (age 18-32 years, 55%F). CEDC density was counted manually, and CEDC morphology was assessed using a new grading system. CEDC sub-types (contacting nerves [CEDCc] and not contacting nerves [CEDCnc]) were also assessed. Differences in CEDC density and morphology were examined using mixed models and chi-squared test. Relationships between CEDC and corneal nerve parameters and tear substance P were explored using Spearman's correlation. RESULTS Excellent intra- and inter-observer repeatability was demonstrated for the grading system (κ = 0.82-0.97). In post-LASIK participants, CEDC density was lower compared with controls (5 [0-34] vs. 21 [7-77] cells/mm2 ; p = 0.01), and the proportion of CEDC with thick dendrites was higher (55%-73% vs. 11%-21%, p < 0.003). Higher tear substance P levels were associated with higher CEDC density (rho = 0.48, p = 0.003). Fewer nerve interconnections were observed in participants in whom CEDC had dendrites (p = 0.03). CEDC sub-types followed a similar pattern to CEDC. CONCLUSIONS The findings suggest that CEDC may remain altered more than 12 months post-LASIK. The association with substance P suggests a role for CEDC in corneal neurogenic inflammation.
Collapse
Affiliation(s)
- Cecilia Chao
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Zahra Tajbakhsh
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Rabia Mobeen
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Michele C Madigan
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia.,Save Sight Institute, University of Sydney, Sydney, Australia
| | - Isabelle Jalbert
- School of Optometry and Vision Science, UNSW Sydney, Sydney, Australia
| | - Nancy Briggs
- Stats Central, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
10
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
11
|
Mandell MA, Beatty WL, Beverley SM. Quantitative single-cell analysis of Leishmania major amastigote differentiation demonstrates variably extended expression of the lipophosphoglycan (LPG) virulence factor in different host cell types. PLoS Negl Trop Dis 2022; 16:e0010893. [PMID: 36302046 PMCID: PMC9642900 DOI: 10.1371/journal.pntd.0010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Immediately following their deposition into the mammalian host by an infected sand fly vector, Leishmania parasites encounter and are engulfed by a variety of cell types. From there, parasites may transit to other cell types, primarily macrophages or dendritic cells, where they replicate and induce pathology. During this time, Leishmania cells undergo a dramatic transformation from the motile non-replicating metacyclic stage to the non-motile replicative amastigote stage, a differentiative process that can be termed amastigogenesis. To follow this at the single cell level, we identified a suite of experimental 'landmarks' delineating different stages of amastigogenesis qualitatively or quantitatively, including new uses of amastigote-specific markers that showed interesting cellular localizations at the anterior or posterior ends. We compared amastigogenesis in synchronous infections of peritoneal and bone-marrow derived macrophages (PEM, BMM) or dendritic cells (BMDC). Overall, the marker suite expression showed an orderly transition post-infection with similar kinetics between host cell types, with the emergence of several amastigote traits within 12 hours, followed by parasite replication after 24 hours, with parasites in BMM or BMDC initiating DNA replication more slowly. Lipophosphoglycan (LPG) is a Leishmania virulence factor that facilitates metacyclic establishment in host cells but declines in amastigotes. Whereas LPG expression was lost by parasites within PEM by 48 hours, >40% of the parasites infecting BMM or BMDC retained metacyclic-level LPG expression at 72 hr. Thus L. major may prolong LPG expression in different intracellular environments, thereby extending its efficacy in promoting infectivity in situ and during cell-to-cell transfer of parasites expressing this key virulence factor.
Collapse
Affiliation(s)
- Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Current address: Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
12
|
Boy RL, Hong A, Aoki JI, Floeter-Winter LM, Laranjeira-Silva MF. Reporter gene systems: a powerful tool for Leishmania studies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100165. [DOI: 10.1016/j.crmicr.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
13
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
14
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
15
|
Tan Y, Tey HL, Chong SZ, Ng LG. Skin-ny deeping: Uncovering immune cell behavior and function through imaging techniques. Immunol Rev 2021; 306:271-292. [PMID: 34859448 DOI: 10.1111/imr.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bioflavonoid-Induced Apoptosis and DNA Damage in Amastigotes and Promastigotes of Leishmania donovani: Deciphering the Mode of Action. Molecules 2021; 26:molecules26195843. [PMID: 34641387 PMCID: PMC8512304 DOI: 10.3390/molecules26195843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells’ ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.
Collapse
|
18
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Jain R, Tikoo S, On K, Martinez B, Dervish S, Cavanagh LL, Weninger W. Visualizing murine breast and melanoma tumor microenvironment using intravital multiphoton microscopy. STAR Protoc 2021; 2:100722. [PMID: 34458865 PMCID: PMC8379651 DOI: 10.1016/j.xpro.2021.100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intravital multiphoton imaging of the tumor milieu allows for the dissection of intricate and dynamic biological processes in situ. Herein, we present a step-by-step protocol for setting up an experimental cancer imaging model that has been optimized for solid tumors such as breast cancer and melanoma implanted in the flanks of mice. This protocol can be utilized for dissecting tumor-immune cell dynamics in vivo or other tumor-specific biological questions. For complete details on the use of this protocol for intravital imaging of breast cancer, please refer to Tikoo et al. (2021a), and for intravital imaging of melanoma, please refer to Tikoo et al. (2021b). Detailed protocol for setting up high-resolution intravital imaging of murine tumors 3D printing of custom stage inserts for tumor stabilization Procedures for cannulation of blood vessels Surgical preparation and tissue stabilization for imaging tumor milieu in vivo
Collapse
Affiliation(s)
- Rohit Jain
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Shweta Tikoo
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kathy On
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Brendon Martinez
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Suat Dervish
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Lois L Cavanagh
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Wolfgang Weninger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia.,Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
20
|
Ly6G deficiency alters the dynamics of neutrophil recruitment and pathogen capture during Leishmania major skin infection. Sci Rep 2021; 11:15071. [PMID: 34302006 PMCID: PMC8302578 DOI: 10.1038/s41598-021-94425-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils represent one of the first immune cell types recruited to sites of infection, where they can control pathogens by phagocytosis and cytotoxic mechanisms. Intracellular pathogens such as Leishmania major can hijack neutrophils to establish an efficient infection. However the dynamic interactions of neutrophils with the pathogen and other cells at the site of the infection are incompletely understood. Here, we have investigated the role of Ly6G, a homolog of the human CD177 protein, which has been shown to interact with cell adhesion molecules, and serves as a bona fide marker for neutrophils in mice. We show that Ly6G deficiency decreases the initial infection rate of neutrophils recruited to the site of infection. Although the uptake of L. major by subsequently recruited monocytes was tightly linked with the concomitant uptake of neutrophil material, this process was not altered by Ly6G deficiency of the neutrophils. Instead, we observed by intravital 2-photon microscopy that Ly6G-deficient neutrophils entered the site of infection with delayed initial recruitment kinetics. Thus, we conclude that by promoting neutrophils’ ability to efficiently enter the site of infection, Ly6G contributes to the early engagement of intracellular pathogens by the immune system.
Collapse
|
21
|
Rebouças A, Silva TS, Medina LS, Paredes BD, Aragão LS, Souza BSF, Borges VM, Schriefer A, Veras PST, Brodskyn CI, de Menezes JPB. Leishmania-Induced Dendritic Cell Migration and Its Potential Contribution to Parasite Dissemination. Microorganisms 2021; 9:1268. [PMID: 34207943 PMCID: PMC8230586 DOI: 10.3390/microorganisms9061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
Leishmania, an intracellular parasite species, causes lesions on the skin and in the mucosa and internal organs. The dissemination of infected host cells containing Leishmania is crucial to parasite survival and the establishment of infection. Migratory phenomena and the mechanisms underlying the dissemination of Leishmania-infected human dendritic cells (hDCs) remain poorly understood. The present study aimed to investigate differences among factors involved in hDC migration by comparing infection with visceral leishmaniasis (VL) induced by Leishmaniainfantum with diverse clinical forms of tegumentary leishmaniasis (TL) induced by Leishmaniabraziliensis or Leishmania amazonensis. Following the infection of hDCs by isolates obtained from patients with different clinical forms of Leishmania, the formation of adhesion complexes, actin polymerization, and CCR7 expression were evaluated. We observed increased hDC migration following infection with isolates of L. infantum (VL), as well as disseminated (DL) and diffuse (DCL) forms of cutaneous leishmaniasis (CL) caused by L. braziliensis and L. amazonensis, respectively. Increased expression of proteins involved in adhesion complex formation and actin polymerization, as well as higher CCR7 expression, were seen in hDCs infected with L. infantum, DL and DCL isolates. Together, our results suggest that hDCs play an important role in the dissemination of Leishmania parasites in the vertebrate host.
Collapse
Affiliation(s)
- Amanda Rebouças
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Thaílla S. Silva
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Lilian S. Medina
- Immunology Service, Professor Edgard Santos Hospital, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.S.M.); (A.S.)
| | - Bruno D. Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
| | - Luciana S. Aragão
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
| | - Bruno S. F. Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil
| | - Valéria M. Borges
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil;
| | - Albert Schriefer
- Immunology Service, Professor Edgard Santos Hospital, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.S.M.); (A.S.)
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Patricia S. T. Veras
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Claudia I. Brodskyn
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Juliana P. B. de Menezes
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| |
Collapse
|
22
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
23
|
Zayats R, Uzonna JE, Murooka TT. Visualizing the In Vivo Dynamics of Anti- Leishmania Immunity: Discoveries and Challenges. Front Immunol 2021; 12:671582. [PMID: 34093571 PMCID: PMC8172142 DOI: 10.3389/fimmu.2021.671582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Collapse
Affiliation(s)
- Romaniya Zayats
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E. Uzonna
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Sheng J, Chen Q, Wu X, Dong YW, Mayer J, Zhang J, Wang L, Bai X, Liang T, Sung YH, Goh WWB, Ronchese F, Ruedl C. Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population. eLife 2021; 10:65412. [PMID: 33769279 PMCID: PMC8110305 DOI: 10.7554/elife.65412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells residing in the skin represent a large family of antigen-presenting cells, ranging from long-lived Langerhans cells (LC) in the epidermis to various distinct classical dendritic cell subsets in the dermis. Through genetic fate mapping analysis and single-cell RNA-sequencing, we have identified a novel separate population of LC-independent CD207+CD326+ LClike cells in the dermis that homed at a slow rate to the lymph nodes (LNs). These LClike cells are long-lived and radio-resistant but, unlike LCs, they are gradually replenished by bone marrow-derived precursors under steady state. LClike cells together with cDC1s are the main migratory CD207+CD326+ cell fractions present in the LN and not, as currently assumed, LCs, which are barely detectable, if at all. Cutaneous tolerance to haptens depends on LClike cells, whereas LCs suppress effector CD8+ T-cell functions and inflammation locally in the skin during contact hypersensitivity. These findings bring new insights into the dynamism of cutaneous dendritic cells and their function opening novel avenues in the development of treatments to cure inflammatory skin disorders. Our immune cells are constantly on guard to defend and protect us against invading pathogens, such as bacteria and viruses. Specialized immune cells, known as antigen-presenting cells, or APCs, have a key role in this process. They engulf invaders, chew them up, and travel to the closest local lymph node to stimulate other immune cells with small fragments of these pathogens. This ramps up the immune response to control infection and disease. APCs are a large and diverse family of immune cells, which includes dendritic cells and macrophages. Some APCs work as mobile surveillance units, travelling around the body to find new threats. Others embed themselves in particular organs and tissues, such as the skin, to provide local, on-the-spot surveillance. Langerhans cells are one of the main types of APC in the skin and are found in the thin outer layer of the epidermis. While it is commonly believed that Langerhans cells can move from the epidermis to the skin-draining lymph nodes, some seemingly contradictory evidence exists to suggest that this may not be the case. Now, Sheng et al. have investigated this issue by tracking APCs, including Langerhans cells, in the skin of mice. A powerful genetic cell labelling technique allowed them to track the movement of immune cells inside a living mouse. Sheng et al. found that majority of 'real' Langerhans cells did not leave the skin. Yet, a second lookalike cell that shared many of the same features of a Langerhans cell was found in the dermal layer of skin, and this cell could travel to local lymph nodes. Both the original and lookalike cells had distinct and separate roles in the skin. This research, which has uncovered a new type of Langerhans-like immune cell in the skin, may be extremely useful for developing new targeted therapies to boost immune responses during infection; or to suppress inappropriate immune activation that can lead to autoimmune diseases, such as psoriasis.
Collapse
Affiliation(s)
- Jianpeng Sheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Qi Chen
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Xiaoting Wu
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Yu Wen Dong
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Johannes Mayer
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Junlei Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Ho Sung
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Wilson Wen Bin Goh
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Christiane Ruedl
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| |
Collapse
|
25
|
Shaebani MR, Jose R, Santen L, Stankevicins L, Lautenschläger F. Persistence-Speed Coupling Enhances the Search Efficiency of Migrating Immune Cells. PHYSICAL REVIEW LETTERS 2020; 125:268102. [PMID: 33449749 DOI: 10.1103/physrevlett.125.268102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Migration of immune cells within the human body allows them to fulfill their main function of detecting pathogens. We present experimental evidence showing the optimality of the search strategy of these cells, which is of crucial importance to achieve an efficient immune response. We find that the speed and directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which enables them to reduce their search time. We introduce theoretically a new class of random search optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an efficient searching recipe and predictive power in a broad range of correlated stochastic processes.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Robin Jose
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Ludger Santen
- Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
26
|
Chaves MM, Lee SH, Kamenyeva O, Ghosh K, Peters NC, Sacks D. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathog 2020; 16:e1008674. [PMID: 33137149 PMCID: PMC7660907 DOI: 10.1371/journal.ppat.1008674] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/12/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
There is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from those initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the "Trojan Horse" model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.
Collapse
Affiliation(s)
- Mariana M. Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Nathan C. Peters
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| |
Collapse
|
27
|
Abstract
Bibliometric methods were used to analyse the major research trends, themes and topics over the last 30 years in the parasitology discipline. The tools used were SciMAT, VOSviewer and SWIFT-Review in conjunction with the parasitology literature contained in the MEDLINE, Web of Science, Scopus and Dimensions databases. The analyses show that the major research themes are dynamic and continually changing with time, although some themes identified based on keywords such as malaria, nematode, epidemiology and phylogeny are consistently referenced over time. We note the major impact of countries like Brazil has had on the literature of parasitology research. The increase in recent times of research productivity on 'antiparasitics' is discussed, as well as the change in emphasis on different antiparasitic drugs and insecticides over time. In summary, innovation in parasitology is global, extensive, multidisciplinary, constantly evolving and closely aligned with the availability of technology.
Collapse
|
28
|
Ortiz G, Chao C, Jamali A, Seyed-Razavi Y, Kenyon B, Harris DL, Zoukhri D, Hamrah P. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy. Front Immunol 2020; 11:1713. [PMID: 32903439 PMCID: PMC7434984 DOI: 10.3389/fimmu.2020.01713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The lacrimal gland (LG) is the main source of the tear film aqueous layer and its dysfunction results in dry eye disease (DED), a chronic immune-mediated disorder of the ocular surface. The desiccating stress (DS) murine model that mimics human DED, results in LG dysfunction, immune cell infiltration, and consequently insufficient tear production. To date, the immune cell kinetics in DED are poorly understood. The purpose of this study was to develop a murine model of intravital multi-photon microscopy (IV-MPM) for the LG, and to investigate the migratory kinetics and 3D morphological properties of conventional dendritic cells (cDCs), the professional antigen presenting cells of the ocular surface, in DED. Mice were placed in a controlled environmental chamber with low humidity and increased airflow rate for 2 and 4 weeks to induce DED, while control naïve transgenic mice were housed under standard conditions. DED mice had significantly decreased tear secretion and increased fluorescein staining (p < 0.01) compared to naïve controls. Histological analysis of the LG exhibited infiltrating mononuclear and polymorphonuclear cells (p < 0.05), as well as increased LG swelling (p < 0.001) in DED mice compared to controls. Immunofluorescence staining revealed increased density of cDCs in DED mice (p < 0.001). IV-MPM of the LG demonstrated increased density of cDCs in the LGs of DED mice, compared with controls (p < 0.001). cDCs were more spherical in DED at both time points compared to controls (p < 0.001); however, differences in surface area were found at 2 weeks in DED compared with naïve controls (p < 0.001). Similarly, 3D cell volume was significantly lower at 2 weeks in DED vs. the naïve controls (p < 0.001). 3D instantaneous velocity and mean track speed were significantly higher in DED compared to naïve mice (p < 0.001). Finally, the meandering index, an index for directionality, was significant increased at 4 weeks after DED compared with controls and 2 weeks of DED (p < 0.001). Our IV-MPM study sheds light into the 3D morphological alterations and cDC kinetics in the LG during DED. While in naïve LGs, cDCs exhibit a more dendritic morphology and are less motile, they became more spherical with enhanced motility during DED. This study shows that IV-MPM represents a robust tool to study immune cell trafficking and kinetics in the LG, which might elucidate cellular alterations in immunological diseases, such as DED.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Cecilia Chao
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States.,Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| |
Collapse
|
29
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Handschuh J, Amore J, Müller AJ. From the Cradle to the Grave of an Infection: Host-Pathogen Interaction Visualized by Intravital Microscopy. Cytometry A 2019; 97:458-470. [PMID: 31777152 DOI: 10.1002/cyto.a.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Jonas Amore
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
31
|
Snelgrove SL, Abeynaike LD, Thevalingam S, Deane JA, Hickey MJ. Regulatory T Cell Transmigration and Intravascular Migration Undergo Mechanistically Distinct Regulation at Different Phases of the Inflammatory Response. THE JOURNAL OF IMMUNOLOGY 2019; 203:2850-2861. [PMID: 31653684 DOI: 10.4049/jimmunol.1900447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Regulatory T cells (Tregs) play important roles in limiting inflammatory responses in the periphery. During these responses, Treg abundance in affected organs increases and interfering with their recruitment results in exacerbation of inflammation. However, the mechanisms whereby Tregs enter the skin remain poorly understood. The aim of this study was to use intravital microscopy to investigate adhesion and transmigration of Tregs in the dermal microvasculature in a two-challenge model of contact sensitivity. Using intravital confocal microscopy of Foxp3-GFP mice, we visualized endogenous Tregs and assessed their interactions in the dermal microvasculature. Four hours after hapten challenge, Tregs underwent adhesion with ∼25% of these cells proceeding to transmigration, a process dependent on CCR4. At 24 h, Tregs adhered but no longer underwent transmigration, instead remaining in prolonged contact with the endothelium, migrating over the endothelial surface. Four hours after a second challenge, Treg transmigration was restored, although in this case transmigration was CCR4 independent, instead involving the CCR6/CCL20 pathway. Notably, at 24 h but not 4 h after challenge, endothelial cells expressed MHC class II (MHC II). Moreover, at this time of peak MHC II expression, inhibition of MHC II reduced Treg adhesion, demonstrating an unexpected role for MHC II in Treg attachment to the endothelium. Together these data show that Treg adhesion and transmigration can be driven by different molecular mechanisms at different stages of an Ag-driven inflammatory response. In addition, Tregs can undergo prolonged migration on the inflamed endothelium.
Collapse
Affiliation(s)
- Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Latasha D Abeynaike
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Sukarnan Thevalingam
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - James A Deane
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; and.,Monash University Department of Obstetrics and Gynecology, Monash Medical Centre, Melbourne, Victoria 3168, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia;
| |
Collapse
|
32
|
De Niz M, Meehan GR, Brancucci NM, Marti M, Rotureau B, Figueiredo LM, Frischknecht F. Intravital imaging of host-parasite interactions in skin and adipose tissues. Cell Microbiol 2019; 21:e13023. [PMID: 30825872 PMCID: PMC6590052 DOI: 10.1111/cmi.13023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Intravital microscopy allows the visualisation of how pathogens interact with host cells and tissues in living animals in real time. This method has enabled key advances in our understanding of host-parasite interactions under physiological conditions. A combination of genetics, microscopy techniques, and image analysis have recently facilitated the understanding of biological phenomena in living animals at cellular and subcellular resolution. In this review, we summarise findings achieved by intravital microscopy of the skin and adipose tissues upon infection with various parasites, and we present a view into possible future applications of this method.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler GroupUniversity of BernBernSwitzerland
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Gavin R. Meehan
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Nicolas M.B. Brancucci
- Malaria Gene Regulation Unit, Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201Institut PasteurParisFrance
| | - Luisa M. Figueiredo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisbonPortugal
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious DiseasesUniversity of Heidelberg Medical SchoolHeidelbergGermany
| |
Collapse
|
33
|
Intravital imaging of skin infections. Cell Immunol 2019; 350:103913. [PMID: 30992120 DOI: 10.1016/j.cellimm.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/11/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022]
Abstract
Intravital imaging of cutaneous immune responses has revealed intricate links between the skin's structural properties, the immune cells that reside therein, and the carefully orchestrated migratory dynamics that enable rapid sensing and subsequent elimination of skin pathogens. In particular, the development of 2-photon intravital microscopy (2P-IVM), which enables the excitation of fluorescent molecules within deep tissue with minimal light scattering and tissue damage, has proven an invaluable tool in the characterization of different cell subset's roles in skin infection. The ability to visualize cells, tissue structures, pathogens and track migratory dynamics at designated times following infection, or during inflammatory responses has been crucial in defining how immune responses in the skin are coordinated, either locally or in concert with circulating immune cells. Skin pathogens affect millions of people worldwide, and skin infections leading to cutaneous pathology have a considerable impact on the quality of life and longevity of people affected. In contrast, pathogens that infect the skin to later cause systemic illness, such as malaria parasites and a variety of arthropod-borne viruses, or infection in distant anatomical sites are a significant cause of morbidity and mortality worldwide. Here, we review recent advances and seminal studies that employed intravital imaging to characterize key immune response mechanisms in the context of viral, bacterial and parasitic skin infections, and provide insights on skin pathogens of global significance that would benefit from such investigative approaches.
Collapse
|
34
|
Seyed-Razavi Y, Lopez MJ, Mantopoulos D, Zheng L, Massberg S, Sendra VG, Harris DL, Hamrah P. Kinetics of corneal leukocytes by intravital multiphoton microscopy. FASEB J 2019; 33:2199-2211. [PMID: 30226811 PMCID: PMC6338630 DOI: 10.1096/fj.201800684rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Corneal immune privilege is integral in maintaining the clear avascular window to the foreign world. The presence of distinct populations of corneal leukocytes (CLs) in the normal cornea has been firmly established. However, their precise function and kinetics remain, as of yet, unclear. Through intravital multiphoton microscopy (IV-MPM), allowing the means to accumulate critical spatial and temporal cellular information, we provide details for long-term investigation of CL morphology and kinetics under steady state and following inflammation. Significant alterations in size and morphology of corneal CD11c+ dendritic cells (DCs) were noted following acute sterile inflammation, including cell volume (4364.4 ± 489.6 vs. 1787.6 ± 111.0 μm3, P < 0.001) and sphericity (0.82 ± 0.01 vs. 0.42 ± 0.02, P < 0.001) compared with steady state. Furthermore, IV-MPM analyses revealed alterations in both the CD11c+ DC and major histocompatibility complex class II (MHC)-II+ mature antigen-presenting cell population kinetics during inflammation, including track displacement length (CD11c: 16.57 ± 1.41 vs. 4.64 ± 0.56 μm, P < 0.001; MHC-II: 9.03 ± 0.37 vs. 4.09 ± 0.39, P < 0.001) and velocity (CD11c: 1.91 ± 0.07 μm/min vs. 1.73 ± 0.1302 μm/min; MHC-II: 2.97 ± 0.07 vs. 1.62 ± 0.08, P < 0.001) compared with steady state. Our results reveal in vivo evidence of sessile CL populations exhibiting dendritic morphology under steady state and increased velocity of spherical leukocytes following inflammation. IV-MPM represents a powerful tool to study leukocytes in corneal diseases in context.-Seyed-Razavi, Y., Lopez, M. J., Mantopoulos, D., Zheng, L., Massberg, S., Sendra, V. G., Harris, D. L., Hamrah, P. Kinetics of corneal leukocytes by intravital multiphoton microscopy.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria J. Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Dimosthenis Mantopoulos
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lixin Zheng
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steffen Massberg
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Ludwig Maximilians Universität, Munich, Germany
| | - Victor G. Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Cornea Service, Tufts New England Eye Center, Boston, Massachusetts, USA
- Cornea Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Afzal I, Sarwar HS, Sohail MF, Varikuti S, Jahan S, Akhtar S, Yasinzai M, Satoskar AR, Shahnaz G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine (Lond) 2019; 14:387-406. [PMID: 30688557 DOI: 10.2217/nnm-2018-0038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM The present study evaluates the efficacy of paromomycin (PM)-loaded mannosylated thiomeric nanoparticles for the targeted delivery to pathological organs for the oral therapy of visceral leishmaniasis. MATERIALS & METHODS Mannosylated thiolated chitosan (MTC)-coated PM-loaded PLGA nanoparticles (MTC-PLGA-PM) were synthesized and evaluated for morphology, drug release, permeation enhancing and antileishmanial potential. RESULTS MTC-PLGA-PM were spherical in shape with a size of 391.24 ± 6.91 nm and an encapsulation efficiency of 67.16 ± 14%. Ex vivo permeation indicated 12.73-fold higher permeation of PM with MTC-PLGA-PM against the free PM. Flow cytometry indicated enhanced macrophage uptake and parasite killing in Leishmania donovani infected macrophage model. In vitro antileishmanial activity indicated 36-fold lower IC50 for MTC-PLGA-PM as compared with PM. The in vivo studies indicated 3.6-fold reduced parasitic burden in the L. donovani infected BALB/c mice model. CONCLUSION The results encouraged the concept of MTC-PLGA-PM nanoparticles as promising strategy for visceral leishmaniasis.
Collapse
Affiliation(s)
- Iqra Afzal
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Hafiz Shoaib Sarwar
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 44000, Pakistan.,Riphah Institute of Pharmaceutical Science, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 44000, Pakistan.,Riphah Institute of Pharmaceutical Science, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Sarwat Jahan
- Department of Animal Sciences, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Sohail Akhtar
- Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University, Bahawalpur, Pakistan
| | - Masoom Yasinzai
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 44000, Pakistan.,Department of Pathology, Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
36
|
Lopes DM, Oliveira SC, Page B, Carvalho LP, Carvalho EM, Cardoso LS. Schistosoma mansoni rSm29 Antigen Induces a Regulatory Phenotype on Dendritic Cells and Lymphocytes From Patients With Cutaneous Leishmaniasis. Front Immunol 2019; 9:3122. [PMID: 30687325 PMCID: PMC6333737 DOI: 10.3389/fimmu.2018.03122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The immune response induced by Schistosma mansoni antigens is able to prevent immune-mediated diseases. Conversely, the inflammatory response in cutaneous leishmaniasis (CL), although responsible for controlling the infection, is also associated with the pathogenesis of disease. The aim of this study was to evaluate the potential of the S. mansoni Sm29 antigen to change certain aspects of the profiles of monocyte derived dendritic cells (MoDCs) and lymphocytes from subjects with CL in vitro. Expression of surface molecules and intracellular cytokines in the MoDCs and lymphocytes as well as the proliferation of Leishmania braziliensis were evaluated by flow cytometry. Levels of cytokines were evaluated in culture supernatants by ELISA. It was observed that stimulation by rSm29 increased the frequency of expression of CD83, CD80, CD86, and IL-10R in MoDCs compared to non-stimulated cultures. Additionally rSm29 decreased the frequency CD4+ and CD8+ T cells expressing CD28 and increased the frequency of CD4+CD25hi and CD4+CTLA-4+ T lymphocytes. Addition of rSm29 to cultures increased IL-10 levels and decreased levels of IL-12p40 and IFN-γ, while not altering TNF levels compared to non-stimulated cultures. This study showed that rSm29 induced a regulatory profile in MoDCs and lymphocytes and thereby regulated the exaggerated inflammation observed in CL. Considering that there are few therapeutic options for leishmaniasis, the use of rSm29 may be an alternative to current treatment and may be an important strategy to reduce the healing time of lesions in patients with CL.
Collapse
Affiliation(s)
- Diego Mota Lopes
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil
| | - Sérgio Costa Oliveira
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Brady Page
- Massachusetts General Hospital, Boston, MA, United States
| | - Lucas P Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luciana Santos Cardoso
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFBA, Salvador, Brazil
| |
Collapse
|
37
|
Chattopadhyay PK, Roederer M, Bolton DL. A deadly dance: the choreography of host-pathogen interactions, as revealed by single-cell technologies. Nat Commun 2018; 9:4638. [PMID: 30401874 PMCID: PMC6219517 DOI: 10.1038/s41467-018-06214-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023] Open
Abstract
Pathogens have numerous mechanisms by which they replicate within a host, who in turn responds by developing innate and adaptive immune countermeasures to limit disease. The advent of high-content single-cell technologies has facilitated a greater understanding of the properties of host cells harboring infection, the host's pathogen-specific immune responses, and the mechanisms pathogens have evolved to escape host control. Here we review these advances and argue for greater inclusion of higher resolution single-cell technologies into approaches for defining immune evasion mechanisms by pathogens.
Collapse
Affiliation(s)
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, 20892, MD, USA
| | - Diane L Bolton
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Silver Spring, 20910, MD, USA.
| |
Collapse
|
38
|
Zehrer A, Pick R, Salvermoser M, Boda A, Miller M, Stark K, Weckbach LT, Walzog B, Begandt D. A Fundamental Role of Myh9 for Neutrophil Migration in Innate Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1748-1764. [PMID: 30068598 DOI: 10.4049/jimmunol.1701400] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/11/2018] [Indexed: 01/13/2023]
Abstract
Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in Vav-iCre+/Myh9wt/fl mice because the complete knockout of Myh9 in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of Vav-iCre+/Myh9wt/fl neutrophils compared with Vav-iCre-/Myh9wt/fl control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.
Collapse
Affiliation(s)
- Annette Zehrer
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Robert Pick
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Meike Miller
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Ludwig T Weckbach
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and.,Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, University Hospital and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; and
| |
Collapse
|
39
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
40
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R, Maridonneau-Parini I. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Front Immunol 2018; 9:846. [PMID: 29760696 PMCID: PMC5936769 DOI: 10.3389/fimmu.2018.00846] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo, or in collagen matrices in vitro. However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam3CSK4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE2, known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Lastrucci
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Guiet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Goh CC, Evrard M, Chong SZ, Tan Y, Tan LDL, Teng KWW, Weninger W, Becker DL, Tey HL, Newell EW, Liu B, Ng LG. The impact of ischemia-reperfusion injuries on skin resident murine dendritic cells. Eur J Immunol 2018; 48:1014-1019. [PMID: 29510451 DOI: 10.1002/eji.201747347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/18/2018] [Accepted: 02/23/2018] [Indexed: 11/11/2022]
Abstract
Pressure ulcers are a chronic problem for patients or the elderly who require extended periods of bed rest. The formation of ulcers is due to repeated cycles of ischemia-reperfusion (IR), which initiates an inflammatory response. Advanced ulcers disrupt the skin barrier, resulting in further complications. To date, the immunological aspect of skin IR has been understudied, partly due to the complexity of the skin immune cells. Through a combination of mass cytometry, confocal imaging and intravital multiphoton imaging, this study establishes a workflow for multidimensionality single cell analysis of skin myeloid cell responses in the context of IR injury with high spatiotemporal resolution. The data generated has provided us with previously uncharacterized insights into the distinct cellular behavior of resident dendritic cells (DCs) and recruited neutrophils post IR. Of interest, we observed a drop in DDC numbers in the IR region, which was subsequently replenished 48h post IR. More importantly, in these cells, we observe an attenuated response to repeated injuries, which may have implications in the subsequent wound healing process.
Collapse
Affiliation(s)
- Chi Ching Goh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Chemical and Biomolecular Engineering (ChBE), National University of Singapore (NUS), Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Dermatology, National Skin Centre, Singapore
| | - Leonard De Li Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore
| | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
| | | | - Hong Liang Tey
- Department of Dermatology, National Skin Centre, Singapore
| | - Evan William Newell
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering (ChBE), National University of Singapore (NUS), Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research, Biopolis, Singapore.,Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Schain AJ, Melo-Carrillo A, Borsook D, Grutzendler J, Strassman. PhD AM, Burstein R. Activation of pial and dural macrophages and dendritic cells by cortical spreading depression. Ann Neurol 2018; 83:508-521. [PMID: 29394508 PMCID: PMC5965700 DOI: 10.1002/ana.25169] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Cortical spreading depression (CSD) has long been implicated in migraine attacks with aura. The process by which CSD, a cortical event that occurs within the blood-brain barrier (BBB), results in nociceptor activation outside the BBB is likely mediated by multiple molecules and cells. The objective of this study was to determine whether CSD activates immune cells inside the BBB (pia), outside the BBB (dura), or in both, and if so, when. METHODS Investigating cellular events in the meninges shortly after CSD, we used in vivo two-photon imaging to identify changes in macrophages and dendritic cells (DCs) that reside in the pia, arachnoid, and dura and their anatomical relationship to TRPV1 axons. RESULTS We found that activated meningeal macrophages retract their processes and become circular, and that activated meningeal DCs stop migrating. We found that CSD activates pial macrophages instantaneously, pial, subarachnoid, and dural DCs 6-12 minutes later, and dural macrophages 20 minutes later. Dural macrophages and DCs can appear in close proximity to TRPV1-positive axons. INTERPRETATION The findings suggest that activation of pial macrophages may be more relevant to cases where aura and migraine begin simultaneously, that activation of dural macrophages may be more relevant to cases where headache begins 20 to 30 minutes after aura, and that activation of dural macrophages may be mediated by activation of migratory DCs in the subarachnoid space and dura. The anatomical relationship between TRPV1-positive meningeal nociceptors, and dural macrophages and DCs supports a role for these immune cells in the modulation of head pain. Ann Neurol 2018;83:508-521.
Collapse
Affiliation(s)
- Aaron J. Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - David Borsook
- Harvard Medical School, Boston, MA 02215, USA
- Center for Pain and the Brain; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jaime Grutzendler
- Department of Neurology, Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut 06511, USA
| | - Andrew M. Strassman. PhD
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
43
|
Sarwar HS, Sohail MF, Saljoughian N, Rehman AU, Akhtar S, Nadhman A, Yasinzai M, Gendelman HE, Satoskar AR, Shahnaz G. Design of mannosylated oral amphotericin B nanoformulation: efficacy and safety in visceral leishmaniasis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2018; 46:521-531. [PMID: 29385910 DOI: 10.1080/21691401.2018.1430699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate mannose-anchored thiolated chitosan (MTC) based nanocarriers (NCs) for enhanced permeability, improved oral bioavailability and anti-parasitic potential of amphotericin B (AmB). Transgenic Leishmania donovani parasites expressing red fluorescent protein DsRed2 and imaging-flow cytometry was used to investigate parasitic burdens inside bone marrow-derived macrophages ex vivo. Cytokine estimation revealed that MTC nanocarriers activated the macrophages to impart an explicit immune response by higher production of TNF-α and IL-12 as compared to control. Cells treated with MTC NCs showed a significantly higher magnitude of nitrite and propidium iodide (PI) fluorescence intensity in contrast to cells treated with AmB. Concerning to apparent permeability coefficient (Papp) results, the MTC NCs formulation displayed more specific permeation across the Caco-2 cell monolayer as compared to AmB. The half-life of MTC NCs was about 3.3-fold persistent than oral AmB used as positive control. Also, t oral bioavailability of AmB was increased to 6.4-fold for MTC NCs compared to AmB for positive control. Acute oral evaluation indicated that MTC NCs were significantly less toxic compared to the AmB. Based on these findings, MTC NCs seems to be promising for significant oral absorption and improved oral bioavailability of AmB in leishmaniasis chemotherapy.
Collapse
Affiliation(s)
- Hafiz Shoaib Sarwar
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Farhan Sohail
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
- b Riphah Institute of Pharmaceutical Science , Riphah International University , Lahore , Pakistan
- c Department of Chemistry, SBA School of Science and Engineering (SBASSE) , Lahore University of Management Sciences (LUMS) , Lahore , Pakistan
| | - Noushin Saljoughian
- d Department of Pathology , Ohio State University Medical Center , Columbus , OH , USA
| | - Anees Ur Rehman
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Sohail Akhtar
- e Department of Entomology , University College of Agriculture & Environmental Sciences, The Islamia University , Bahawalpur , Pakistan
| | - Akhtar Nadhman
- f Institute of Integrative Biosciences , CECOS University , Hayatabad , Peshawar , Pakistan
| | - Masoom Yasinzai
- g Centre for Interdisciplinary Research in Basic Sciences , International Islamic University , Islamabad , Pakistan
| | - Howard E Gendelman
- h Department of Pharmacology & Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Abhay R Satoskar
- d Department of Pathology , Ohio State University Medical Center , Columbus , OH , USA
| | - Gul Shahnaz
- a Department of Pharmacy, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
- d Department of Pathology , Ohio State University Medical Center , Columbus , OH , USA
| |
Collapse
|
44
|
Loh JT, Su IH. Post-translational modification-regulated leukocyte adhesion and migration. Oncotarget 2018; 7:37347-37360. [PMID: 26993608 PMCID: PMC5095081 DOI: 10.18632/oncotarget.8135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/28/2016] [Indexed: 12/30/2022] Open
Abstract
Leukocytes undergo frequent phenotypic changes and rapidly infiltrate peripheral and lymphoid tissues in order to carry out immune responses. The recruitment of circulating leukocytes into inflamed tissues depends on integrin-mediated tethering and rolling of these cells on the vascular endothelium, followed by transmigration into the tissues. This dynamic process of migration requires the coordination of large numbers of cytosolic and transmembrane proteins whose functional activities are typically regulated by post-translational modifications (PTMs). Our recent studies have shown that the lysine methyltransferase, Ezh2, critically regulates integrin signalling and governs the adhesion dynamics of leukocytes via direct methylation of talin, a key molecule that controls these processes by linking integrins to the actin cytoskeleton. In this review, we will discuss the various modes of leukocyte migration and examine how PTMs of cytoskeletal/adhesion associated proteins play fundamental roles in the dynamic regulation of leukocyte migration. Furthermore, we will discuss molecular details of the adhesion dynamics controlled by Ezh2-mediated talin methylation and the potential implications of this novel regulatory mechanism for leukocyte migration, immune responses, and pathogenic processes, such as allergic contact dermatitis and tumorigenesis.
Collapse
Affiliation(s)
- Jia Tong Loh
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| |
Collapse
|
45
|
Chong SZ, Evrard M, Goh CC, Ng LG. Illuminating the covert mission of mononuclear phagocytes in their regional niches. Curr Opin Immunol 2017; 50:94-101. [PMID: 29275187 DOI: 10.1016/j.coi.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Monocytes, dendritic cells (DCs) and macrophages have been classically categorized into the mononuclear phagocyte system (MPS) based on their similar functional and phenotypic characteristics. While an increasing amount of research has revealed substantial ontogenic and functional differences among these cells, the reasons behind their heterogeneity and strategic positioning in specific niches throughout the body are yet to be fully elucidated. In this review, we outline how recent advances in intravital imaging studies have dissected this phenomenon and have allowed us to appreciate how MPS cells exploit their regional niches to specialize and maximize their functional properties. Understanding their cellular behavior in each of their specialized microenvironment will eventually allow us to target specific cells and their behavioral patterns for improved vaccine and therapeutic purposes.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore, Singapore.
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore, Singapore.
| |
Collapse
|
46
|
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; and .,Departments of Nephrology and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; and
| |
Collapse
|
47
|
Caffeic acid combined with autoclaved Leishmania major boosted the protection of infected BALB/c mice by enhancing IgG2 production, IFN-γ/TGF-β and iNO synthase/arginase1 ratios, and the death of infected phagocytes. Inflammopharmacology 2017; 26:621-634. [DOI: 10.1007/s10787-017-0399-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
|
48
|
Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M, Beattie L, Walters SB, Tay SS, Lu B, Holz LE, Roediger B, Wong YC, Warren A, Ritchie W, McGuffog C, Weninger W, Le Couteur DG, Ginhoux F, Britton WJ, Heath WR, Saunders BM, McCaughan GW, Luciani F, MacDonald KPA, Ng LG, Bowen DG, Bertolino P. A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity 2017; 47:374-388.e6. [PMID: 28813662 DOI: 10.1016/j.immuni.2017.07.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 03/03/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.
Collapse
Affiliation(s)
- Frederic Sierro
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Simone Rizzetto
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Michelle Melino
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew J Mitchell
- Department of Chemical & Biomolecular Engineering, Materials Characterization and Fabrication Platform, University of Melbourne, Melbourne, VIC, Australia
| | - Manuela Florido
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Shaun B Walters
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Szun Szun Tay
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bo Lu
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia; Immunology Research Centre, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Ben Roediger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Yik Chun Wong
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Alessandra Warren
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - William Ritchie
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Claire McGuffog
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - David G Le Couteur
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Warwick J Britton
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - William R Heath
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Bernadette M Saunders
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Fabio Luciani
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Kelli P A MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - David G Bowen
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Patrick Bertolino
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Vargas P, Barbier L, Sáez PJ, Piel M. Mechanisms for fast cell migration in complex environments. Curr Opin Cell Biol 2017. [PMID: 28641118 DOI: 10.1016/j.ceb.2017.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell migration depends on a combination of the cell's intrinsic capacity to move and the proper interpretation of external cues. This multistep process enables leukocytes to travel long distances in organs in just a few hours. This fast migration is partly due to the leukocytes' high level of plasticity, which helps them to adapt to a changing environment. Here, we review recent progress in understanding the mechanisms used by leukocytes to move rapidly and efficiently in intricate anatomical landscapes. We shall focus on specific cytoskeletal rearrangements used by neutrophils and dendritic cells to migrate within confined environments. Lastly, we will describe the properties that facilitate the rapid migration of leukocyte in complex tissue geometries.
Collapse
Affiliation(s)
- Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| | - Lucie Barbier
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France; Université Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Pablo José Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| |
Collapse
|
50
|
Abstract
The leishmaniases are diseases caused by pathogenic protozoan parasites of the genus Leishmania. Infections are initiated when a sand fly vector inoculates Leishmania parasites into the skin of a mammalian host. Leishmania causes a spectrum of inflammatory cutaneous disease manifestations. The type of cutaneous pathology is determined in part by the infecting Leishmania species, but also by a combination of inflammatory and anti-inflammatory host immune response factors resulting in different clinical outcomes. This review discusses the distinct cutaneous syndromes described in humans, and current knowledge of the inflammatory responses associated with divergent cutaneous pathologic responses to different Leishmania species. The contribution of key hematopoietic cells in experimental cutaneous leishmaniasis in mouse models are also reviewed and compared with those observed during human infection. We hypothesize that local skin events influence the ensuing adaptive immune response to Leishmania spp. infections, and that the balance between inflammatory and regulatory factors induced by infection are critical for determining cutaneous pathology and outcome of infection.
Collapse
|