1
|
Sanchez SG, Pouzet E, Guimbaud L, Graindorge A, Berry L, Besteiro S. TgGloL is an atypical glyoxalase/VOC domain-containing apicoplast protein that is important for the growth of Toxoplasma. Mol Biol Cell 2025; 36:ar32. [PMID: 39878652 PMCID: PMC11974962 DOI: 10.1091/mbc.e24-09-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/26/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Glycolysis is a conserved metabolic pathway that converts glucose into pyruvate in the cytosol, producing ATP and NADH. In Toxoplasma gondii and several other apicomplexan parasites, some glycolytic enzymes have isoforms located in their plastid (called the apicoplast). In this organelle, glycolytic intermediates like glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) are imported from the cytosol and further metabolized, providing ATP, reducing power, and precursors for anabolic pathways such as isoprenoid synthesis. However, GAP and DHAP can spontaneously convert into methylglyoxal, a toxic by-product detoxified by the glyoxalase system, typically involving Glyoxalase-1 (Glo-1) and Glyoxalase-2 (Glo-2). In T. gondii, we identified an atypical protein, TgGloL, containing a Glo-1-like motif but with limited homology to typical Glo enzymes. TgGloL localizes to the apicoplast, and its conditional knockdown impairs parasite growth, indicating its importance. While a specific and direct role for TgGloL in methylglyoxal detoxification within the apicoplast remains unclear, it is crucial for maintaining organelle homeostasis and for overall parasite fitness.
Collapse
Affiliation(s)
| | - Esther Pouzet
- LPHI, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Loïc Guimbaud
- LPHI, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | | | - Laurence Berry
- LPHI, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | | |
Collapse
|
2
|
Sreenivasamurthy SK, Baptista CG, West CM, Blader IJ, Dvorin JD. PfFBXO1 is essential for inner membrane complex formation in Plasmodium falciparum during both asexual and transmission stages. Commun Biol 2025; 8:190. [PMID: 39915671 PMCID: PMC11802861 DOI: 10.1038/s42003-025-07619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Plasmodium species replicate via schizogony, which involves asynchronous nuclear divisions followed by semi-synchronous segmentation and cytokinesis. Successful segmentation requires a double-membranous structure known as the inner membrane complex (IMC). Here we demonstrate that PfFBXO1 (PF3D7_0619700) is critical for both asexual segmentation and gametocyte maturation. In Toxoplasma gondii, the FBXO1 homolog, TgFBXO1, is essential for the development of the daughter cell scaffold and a component of the daughter cell IMC. We demonstrate PfFBXO1 forming a similar IMC initiation scaffold near the apical region of developing merozoites and unilaterally positioned in gametocytes of P. falciparum. While PfFBXO1 initially localizes to the apical region of dividing parasites, it displays an IMC-like localization as segmentation progresses. Similarly, PfFBXO1 localizes to the IMC region in gametocytes. Following inducible knockout of PfFBXO1, parasites undergo abnormal segmentation and karyokinesis, generating inviable daughters. PfFBXO1-deficient gametocytes are abnormally shaped and fail to fully mature. Proteomic analysis identified PfSKP1 as one of PfBXO1's stable interacting partners, while other major proteins included multiple IMC pellicle and membrane proteins. We hypothesize that PfFBXO1 is necessary for IMC biogenesis, chromosomal maintenance, vesicular transport, and ubiquitin-mediated translational regulation of proteins in both sexual and asexual stages of P. falciparum.
Collapse
Affiliation(s)
- Sreelakshmi K Sreenivasamurthy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wang Q, Wang Y, Wang J, Tian W, Zhang N, Long S, Wang S. Functional dissection of prenyltransferases reveals roles in endocytosis and secretory vacuolar sorting in type 2-ME49 strain of Toxoplasma gondii. Virulence 2024; 15:2432681. [PMID: 39569525 PMCID: PMC11601059 DOI: 10.1080/21505594.2024.2432681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024] Open
Abstract
Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in Toxoplasma gondii (T.gondii). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in T. gondii. However, the cellular effects of prenyltransferases on type 2-ME49 strain of Toxoplasma are largely unknown. To address this gap, CRISPR/Cas9-based gene-editing technology was employed to construct conditional knockdown strains of prenyltransferases in ME49 strain. Subsequent observation of ingestion ability of host cytosolic molecules (e.g, green fluorescent protein [GFP]) and status of secretory vacuolar sorting post-knockdown of prenyltransferases revealed significant findings. Our study demonstrated that degradation of FTase and GGTase-II notably affected the trafficking of endocytic GFP and vacuolar secretory trafficking to rhoptry bulb. Additionally, depletion of GGTase-II led to disordered endoplasmic reticulum and microtubules, as well as impaired gliding motility. The integrity of mitochondrion was damaged after degradation of GGTase-I. These findings underscore the critical functions of prenyltransferases in endocytosis and secretory vacuolar sorting in ME49 strain of T. gondii, thereby enhancing our understanding of prenyltransferases as potential drug targets.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanfeng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jinghui Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Wenjie Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Naiwen Zhang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
| | - Shaojun Long
- School of public health, Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
4
|
Liu B, Liu C, Li Z, Liu W, Cui H, Yuan J. A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii. Nat Commun 2024; 15:8590. [PMID: 39366980 PMCID: PMC11452633 DOI: 10.1038/s41467-024-52970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium. The cytoplasmic dynein is the motor moving towards the minus end of microtubules (MTs) and likely be responsible for cargo transport to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain (DHC) proteins in the P. yoelii and identify DHC3 showing peripheral localization in ookinetes. DHC3 is localized at SPMTs throughout ookinete morphogenesis. We also identify five other dynein subunits localizing at SPMTs. DHC3 disruption impairs ookinete development, shape, and gliding, leading to failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes display defective formation or localization of apical organelles and structures. Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent manner, likely functioning as the receptors for the cargoes driven by SPMT-dynein. Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete morphogenesis. Our study reveals an SPMT-based dynein motor driving the transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morphogenesis of Plasmodium.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjia Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Marq JB, Gosetto M, Altenried A, Vadas O, Maco B, Dos Santos Pacheco N, Tosetti N, Soldati-Favre D, Lentini G. Cytokinetic abscission in Toxoplasma gondii is governed by protein phosphatase 2A and the daughter cell scaffold complex. EMBO J 2024; 43:3752-3786. [PMID: 39009675 PMCID: PMC11377541 DOI: 10.1038/s44318-024-00171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Margaux Gosetto
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Aline Altenried
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-derived isoprenoids are essential for biosynthesis of GPI protein anchors, and consequently for egress and invasion in Plasmodium falciparum. PLoS Pathog 2024; 20:e1012484. [PMID: 39241090 PMCID: PMC11414934 DOI: 10.1371/journal.ppat.1012484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/20/2024] [Accepted: 08/06/2024] [Indexed: 09/08/2024] Open
Abstract
Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.
Collapse
Affiliation(s)
- Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Long K. Huynh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
de Sousa MCF, Imhof D, Hänggeli KPA, Choi R, Hulverson MA, Arnold SLM, Van Voorhis WC, Fan E, Roberto SS, Ortega-Mora LM, Hemphill A. Efficacy of the bumped kinase inhibitor BKI-1708 against the cyst-forming apicomplexan parasites Toxoplasma gondii and Neospora caninum in vitro and in experimentally infected mice. Int J Parasitol Drugs Drug Resist 2024; 25:100553. [PMID: 38917582 PMCID: PMC11254172 DOI: 10.1016/j.ijpddr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toxoplasma gondii and Neospora caninum are major worldwide morbidity-causing pathogens. Bumped kinase inhibitors (BKIs) are a compound class that has been optimized to target the apicomplexan calcium-dependent protein kinase 1 (CDPK1) - and several members of this class have proven to be safe and highly active in vitro and in vivo. BKI-1708 is based on a 5-aminopyrazole-4-carboxamide scaffold, and exhibited in vitro IC50 values of 120 nM for T. gondii and 480 nM for N. caninum β-galactosidase expressing strains, and did not affect human foreskin fibroblast (HFF) viability at concentrations up to 25 μM. Electron microscopy established that exposure of tachyzoite-infected fibroblasts to 2.5 μM BKI-1708 in vitro induced the formation of multinucleated schizont-like complexes (MNCs), characterized by continued nuclear division and harboring newly formed intracellular zoites that lack the outer plasma membrane. These zoites were unable to finalize cytokinesis to form infective tachyzoites. BKI-1708 did not affect zebrafish (Danio rerio) embryo development during the first 96 h following egg hatching at concentrations up to 2 μM. Treatments of mice with BKI-1708 at 20 mg/kg/day during five consecutive days resulted in drug plasma levels ranging from 0.14 to 4.95 μM. In vivo efficacy of BKI-1708 was evaluated by oral application of 20 mg/kg/day from day 9-13 of pregnancy in mice experimentally infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. This resulted in significantly decreased cerebral parasite loads and reduced vertical transmission in both models without drug-induced pregnancy interference.
Collapse
Affiliation(s)
- Maria Cristina Ferreira de Sousa
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Samuel L M Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sánchez-Sánchez Roberto
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland.
| |
Collapse
|
9
|
Pasquarelli RR, Sha J, Wohlschlegel JA, Bradley PJ. BCC0 collaborates with IMC32 and IMC43 to form the Toxoplasma gondii essential daughter bud assembly complex. PLoS Pathog 2024; 20:e1012411. [PMID: 39024411 PMCID: PMC11288415 DOI: 10.1371/journal.ppat.1012411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Toxoplasma gondii divides by endodyogeny, in which two daughter buds are formed within the cytoplasm of the maternal cell using the inner membrane complex (IMC) as a scaffold. During endodyogeny, components of the IMC are synthesized and added sequentially to the nascent daughter buds in a tightly regulated manner. We previously showed that the early recruiting proteins IMC32 and IMC43 form an essential daughter bud assembly complex which lays the foundation of the daughter cell scaffold in T. gondii. In this study, we identify the essential, early recruiting IMC protein BCC0 as a third member of this complex by using IMC32 as bait in both proximity labeling and yeast two-hybrid screens. We demonstrate that BCC0's localization to daughter buds depends on the presence of both IMC32 and IMC43. Deletion analyses and functional complementation studies reveal that residues 701-877 of BCC0 are essential for both its localization and function and that residues 1-899 are sufficient for function despite minor mislocalization. Pairwise yeast two-hybrid assays additionally demonstrate that BCC0's essential domain binds to the coiled-coil region of IMC32 and that BCC0 and IMC43 do not directly interact. This data supports a model for complex assembly in which an IMC32-BCC0 subcomplex initially recruits to nascent buds via palmitoylation of IMC32 and is locked into the scaffold once bud elongation begins by IMC32 binding to IMC43. Together, this study dissects the organization and function of a complex of three early recruiting daughter proteins which are essential for the proper assembly of the IMC during endodyogeny.
Collapse
Affiliation(s)
- Rebecca R. Pasquarelli
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Sun M, Tang T, He K, Long S. TBC9, an essential TBC-domain protein, regulates early vesicular transport and IMC formation in Toxoplasma gondii. Commun Biol 2024; 7:596. [PMID: 38762629 PMCID: PMC11102469 DOI: 10.1038/s42003-024-06310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.
Collapse
Affiliation(s)
- Ming Sun
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tao Tang
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Safety and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Wang QQ, Sun M, Tang T, Lai DH, Liu J, Maity S, He K, Wu XT, Yang J, Li YB, Tang XY, Ding HY, Hide G, Distefano M, Lun ZR, Zhu XQ, Long S. Functional screening reveals Toxoplasma prenylated proteins required for endocytic trafficking and rhoptry protein sorting. mBio 2023; 14:e0130923. [PMID: 37548452 PMCID: PMC10470541 DOI: 10.1128/mbio.01309-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites. IMPORTANCE The protozoan Toxoplasma gondii establishes a permissive niche, in host cells, that allows parasites to acquire large molecules such as proteins. Numerous studies have demonstrated that the parasite repurposes the classical endocytic components for secretory sorting to the apical organelles, leaving the question of endocytic transport to the lysosome-like compartment unclear. Recent studies indicated that endocytic trafficking is likely to associate with protein prenylation in malarial parasites. This information promoted us to examine this association in the model apicomplexan T. gondii and to identify the key components of the prenylated proteome that are involved. By exploiting the genetic tractability of T. gondii and a host GFP acquisition assay, we reveal four non-classical endocytic proteins that regulate the transport of endocytosed cargos (e.g., GFP) in T. gondii. Thus, we extend the principle that protein prenylation regulates endocytic trafficking and elucidate the process of non-classical endocytosis in T. gondii and potentially in other related protists.
Collapse
Affiliation(s)
- Qiang-Qiang Wang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ming Sun
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tao Tang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Liu
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi-Ting Wu
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiong Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue-Bao Li
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Yan Tang
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui-Yong Ding
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre and Environmental Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Mark Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Dubois DJ, Chehade S, Marq JB, Venugopal K, Maco B, Puig ATI, Soldati-Favre D, Marion S. Toxoplasma gondii HOOK-FTS-HIP Complex is Critical for Secretory Organelle Discharge during Motility, Invasion, and Egress. mBio 2023; 14:e0045823. [PMID: 37093045 PMCID: PMC10294612 DOI: 10.1128/mbio.00458-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Members of the Apicomplexa phylum possess specialized secretory organelles that discharge, apically and in a timely regulated manner, key factors implicated in parasite motility, host cell invasion, egress and subversion of host cellular functions. The mechanisms regulating trafficking and apical docking of these secretory organelles are only partially elucidated. Here, we characterized two conserved endosomal trafficking regulators known to promote vesicle transport and/or fusion, HOOK and Fused Toes (FTS), in the context of organelle discharge in Toxoplasma gondii. TgHOOK and TgFTS form a complex with a coccidian-specific partner, named HOOK interacting partner (HIP). TgHOOK displays an apically enriched vesicular pattern and concentrates at the parasite apical tip where it colocalizes with TgFTS and TgHIP. Functional investigations revealed that TgHOOK is dispensable but fitness conferring. The protein regulates the apical positioning and secretion of micronemes and contributes to egress, motility, host cell attachment, and invasion. Conditional depletion of TgFTS or TgHIP impacted on the same processes but led to more severe phenotypes. This study provides evidence of endosomal trafficking regulators involved in the apical exocytosis of micronemes and possibly as a consequence or directly on the discharge of the rhoptries. IMPORTANCE Toxoplasma gondii affects between 30 and 80% of the human population, poses a life-threatening risk to immunocompromised individuals, and is a cause of abortion and birth defects following congenital transmission. T. gondii belongs to the phylum of Apicomplexa characterized by a set of unique apical secretory organelles called the micronemes and rhoptries. Upon host cell recognition, this obligatory intracellular parasite secretes specific effectors contained in micronemes and rhoptries to promote parasite invasion of host cells and subsequent persistence. Here, we identified novel T. gondii endosomal trafficking regulators and demonstrated that they regulate microneme organelle apical positioning and exocytosis, thereby strongly contributing to host cell invasion and parasite virulence.
Collapse
Affiliation(s)
- David J. Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sylia Chehade
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kannan Venugopal
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Albert Tell I. Puig
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Marion
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
13
|
Li J, Xiao Q, Tan Q, Chen J, Sun L, Chen X, Chu Z, Wu H, Zhang Z, Li H, Zhao X, Zhang X. TgMORN2, a MORN Family Protein Involved in the Regulation of Endoplasmic Reticulum Stress in Toxoplasma gondii. Int J Mol Sci 2023; 24:10228. [PMID: 37373373 DOI: 10.3390/ijms241210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
MORN proteins play a key role in the cytoskeletal structure of eukaryotes and are essential for the close arrangement of the endoplasmic reticulum and plasma membrane. A gene with nine MORN motifs (TGGT1_292120, named TgMORN2) was identified in the Toxoplasma gondii genome; it was presumed to belong to the MORN protein family and to have the function of forming the cytoskeleton, which affects the survival of T. gondii. However, the genetic deletion of MORN2 did not noticeably affect parasite growth and virulence. Using adjacent protein labeling techniques, we identified a network of TgMORN2 interactions, which mainly included endoplasmic reticulum stress (ER stress)-related proteins. In exploring these data, we found that the pathogenicity of the KO-TgMORN2 strain was significantly reduced in the case of tunicamycin-induced ER stress. Reticulon TgRTN (TGGT1_226430) and tubulin β-Tubulin were identified as interaction proteins of TgMORN2. Collectively, TgMORN2 plays a role in ER stress, which lays a foundation for further research on the function of the MORN protein in T. gondii.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
14
|
He L, Qiu Y, Pang G, Li S, Wang J, Feng Y, Chen L, Zhu L, Liu Y, Cui L, Cao Y, Zhu X. Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis. Microbiol Spectr 2023; 11:e0143423. [PMID: 37249423 PMCID: PMC10269477 DOI: 10.1128/spectrum.01434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.
Collapse
Affiliation(s)
- Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Qiu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Geping Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Siqi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jingjing Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
- National Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Disrupting the plastidic iron-sulfur cluster biogenesis pathway in Toxoplasma gondii has pleiotropic effects irreversibly impacting parasite viability. J Biol Chem 2022; 298:102243. [PMID: 35810787 PMCID: PMC9386495 DOI: 10.1016/j.jbc.2022.102243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/27/2022] Open
Abstract
Like many other apicomplexan parasites, Toxoplasma gondii contains a plastid harboring key metabolic pathways, including the sulfur utilization factor (SUF) pathway that is involved in the biosynthesis of iron-sulfur clusters. These cofactors are crucial for a variety of proteins involved in important metabolic reactions, potentially including plastidic pathways for the synthesis of isoprenoid and fatty acids. It was shown previously that impairing the NFS2 cysteine desulfurase, involved in the first step of the SUF pathway, leads to an irreversible killing of intracellular parasites. However, the metabolic impact of disrupting the pathway remained unexplored. Here, we generated another mutant of this pathway, deficient in the SUFC ATPase, and investigated in details the phenotypic consequences of TgNFS2 and TgSUFC depletion on the parasites. Our analysis confirms that Toxoplasma SUF mutants are severely and irreversibly impacted in division and membrane homeostasis, and suggests a defect in apicoplast-generated fatty acids. However, we show that increased scavenging from the host or supplementation with exogenous fatty acids do not fully restore parasite growth, suggesting that this is not the primary cause for the demise of the parasites and that other important cellular functions were affected. For instance, we also show that the SUF pathway is key for generating the isoprenoid-derived precursors necessary for the proper targeting of GPI-anchored proteins and for parasite motility. Thus, we conclude plastid-generated iron-sulfur clusters support the functions of proteins involved in several vital downstream cellular pathways, which implies the SUF machinery may be explored for new potential anti-Toxoplasma targets.
Collapse
|
16
|
Stalke A, Sgodda M, Cantz T, Skawran B, Lainka E, Hartleben B, Baumann U, Pfister ED. KIF12 Variants and Disturbed Hepatocyte Polarity in Children with a Phenotypic Spectrum of Cholestatic Liver Disease. J Pediatr 2022; 240:284-291.e9. [PMID: 34555379 DOI: 10.1016/j.jpeds.2021.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023]
Abstract
KIF12 has been identified as a cholestasis-associated candidate gene. We describe 6 cases from 4 unrelated families with diverse cholestatic phenotypes carrying 2 different homozygous KIF12 truncating variants. Immunofluorescence investigations of paraffin-embedded liver sections suggest that KIF12-associated impaired functional cell polarity may be the underlying cause.
Collapse
Affiliation(s)
- Amelie Stalke
- Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany; Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| | - Malte Sgodda
- Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Elke Lainka
- Department for Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, University Children's Hospital Essen, Essen, Germany
| | - Björn Hartleben
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Eva-Doreen Pfister
- Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539544. [PMID: 34497848 PMCID: PMC8421183 DOI: 10.1155/2021/5539544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
Since 2000, a good deal of progress has been made in malaria control. However, there is still an unacceptably high burden of the disease and numerous challenges limiting advancement towards its elimination and ultimate eradication. Among the challenges is the antimalarial drug resistance, which has been documented for almost all antimalarial drugs in current use. As a result, the malaria research community is working on the modification of existing treatments as well as the discovery and development of new drugs to counter the resistance challenges. To this effect, many products are in the pipeline and expected to be marketed soon. In addition to drug and vaccine development, mass drug administration (MDA) is under scientific scrutiny as an important strategy for effective utilization of the developed products. This review discusses the challenges related to malaria elimination, ongoing approaches to tackle the impact of drug-resistant malaria, and upcoming antimalarial drugs.
Collapse
|
18
|
Cao S, Yang J, Fu J, Chen H, Jia H. The Dissection of SNAREs Reveals Key Factors for Vesicular Trafficking to the Endosome-like Compartment and Apicoplast via the Secretory System in Toxoplasma gondii. mBio 2021; 12:e0138021. [PMID: 34340555 PMCID: PMC8406237 DOI: 10.1128/mbio.01380-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Vesicular trafficking is a fundamental cellular process involved in material transport in eukaryotes, but the diversity of the intracellular compartments has prevented researchers from obtaining a clear understanding of the specific functions of vesicular trafficking factors, including SNAREs, tethers, and Rab GTPases, in Apicomplexa. In this study, we analyzed the localization of SNAREs and investigated their roles in vesicular trafficking in Toxoplasma gondii. Our results revealed the specific localizations of SNAREs in the endoplasmic reticulum (ER) (T. gondii Stx18 [TgStx18] and TgStx19), Golgi stacks (TgGS27), and endosome-like compartment (TgStx10 and TgStx12). The conditional ablation of ER- and Golgi-residing SNAREs caused severe defects in the secretory system. Most importantly, we found an R-SNARE (TgVAMP4-2) that is targeted to the apicoplast; to our knowledge, this work provides the first information showing a SNARE protein on endosymbiotic organelles and functioning in vesicular trafficking in eukaryotes. Conditional knockout of TgVAMP4-2 blocked the entrance of TgCPN60, TgACP, TgATrx2, and TgATrx1 into the apicoplast and interfered with the targeting of TgAPT1 and TgFtsH1 to the outermost membrane of the apicoplast. Together, our findings revealed the functions of SNAREs in the secretory system and the transport of nucleus-encoded proteins to an endosymbiotic organelle in a model organism of Apicomplexa. IMPORTANCE SNAREs are essential for the fusion of the transport vesicles and target membranes and, thus, provide perfect targets for obtaining a global view of the vesicle transport system. In this study, we report that a novel Qc-SNARE (TgStx19) instead of Use1 is located at the ER and acts as a partner of TgStx18 in T. gondii. TgGS27 and the tethering complex TRAPP III are conserved and critical for the biogenesis of the Golgi complex in T. gondii. A novel R-SNARE, TgVAMP4-2, is found on the outermost membrane of the apicoplast. The transport of NEAT proteins into the secondary endosymbiotic organelle depends on its function. To our knowledge, this work provides the first mention of a SNARE located on endosymbiotic organelles that functions in vesicular trafficking in eukaryotes.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Juan Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
19
|
More K, Klinger CM, Barlow LD, Dacks JB. Evolution and Natural History of Membrane Trafficking in Eukaryotes. Curr Biol 2021; 30:R553-R564. [PMID: 32428497 DOI: 10.1016/j.cub.2020.03.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The membrane-trafficking system is a defining facet of eukaryotic cells. The best-known organelles and major protein families of this system are largely conserved across the vast diversity of eukaryotes, implying both ancient organization and functional unity. Nonetheless, intriguing variation exists that speaks to the evolutionary forces that have shaped the endomembrane system in eukaryotes and highlights ways in which membrane trafficking in protists differs from that in our well-understood models of mammalian and yeast cells. Both parasites and free-living protists possess specialized trafficking organelles, some lineage specific, others more widely distributed - the evolution and function of these organelles begs exploration. Novel members of protein families are present across eukaryotes but have been lost in humans. These proteins may well hold clues to understanding differences in cellular function in organisms that are of pressing importance for planetary health.
Collapse
Affiliation(s)
- Kira More
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Christen M Klinger
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada
| | - Lael D Barlow
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Biological Sciences, University of Alberta, P217 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, 1-124 Clinical Sciences Building, 11350-83 Avenue, Edmonton, Alberta T6G 2G3, Canada; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
20
|
Li M, Liu J, Wu Y, Wu Y, Sun X, Fu Y, Zhang X, Liu Q. Requirement of Toxoplasma gondii metacaspases for IMC1 maturation, endodyogeny and virulence in mice. Parasit Vectors 2021; 14:400. [PMID: 34384491 PMCID: PMC8359067 DOI: 10.1186/s13071-021-04878-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Metacaspases are multifunctional proteins found in plants, fungi and protozoa, and are involved in processes such as insoluble protein aggregate clearance and cell proliferation. Our previous study demonstrated that metacaspase-1 (MCA1) contributes to parasite apoptosis in Toxoplasma gondii. Deletion of MCA1 from T. gondii has no effect on the growth and virulence of the parasites. Three metacaspases were identified in the ToxoDB Toxoplasma Informatics Resource, and the function of metacaspase-2 (MCA2) and metacaspase-3 (MCA3) has not been demonstrated. Methods In this study, we constructed MCA1, MCA2 and MCA1/MCA2 transgenic strains from RHΔku80 (Δku80), including overexpressing strains and knockout strains, to clarify the function of MCA1 and MCA2 of T. gondii. Results MCA1 and MCA2 were distributed in the cytoplasm with punctuated aggregation, and part of the punctuated aggregation of MCA1 and MCA2 was localized on the inner membrane complex of T. gondii. The proliferation of the MCA1/MCA2 double-knockout strain was significantly reduced; however, the two single knockout strains (MCA1 knockout strain and MCA2 knockout strain) exhibited normal growth rates as compared to the parental strain, Δku80. In addition, endodyogeny was impaired in the tachyzoites whose MCA1 and MCA2 were both deleted due to multiple nuclei and abnormal expression of IMC1. We further found that IMC1 of the double-knockout strain was detergent-soluble, indicating that MCA1 and MCA2 are associated with IMC1 maturation. Compared to the parental Δku80 strain, the double-knockout strain was more readily induced from tachyzoites to bradyzoites in vitro. Furthermore, the double-knockout strain was less pathogenic in mice and was able to develop bradyzoites in the brain, which formed cysts and established chronic infection. Conclusion MCA1 and MCA2 are important factors which participate in IMC1 maturation and endodyogeny of T. gondii. The double-knockout strain has slower proliferation and was able to develop bradyzoites both in vitro and in vivo. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04878-0.
Collapse
Affiliation(s)
- Muzi Li
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yayun Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yihan Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaodong Sun
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China. .,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
21
|
Asad M, Yamaryo-Botté Y, Hossain ME, Thakur V, Jain S, Datta G, Botté CY, Mohmmed A. An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum. BMC Biol 2021; 19:159. [PMID: 34380472 PMCID: PMC8359613 DOI: 10.1186/s12915-021-01042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the pathogen responsible for the most devastating form of human malaria. As it replicates asexually in the erythrocytes of its human host, the parasite feeds on haemoglobin uptaken from these cells. Heme, a toxic by-product of haemoglobin utilization by the parasite, is neutralized into inert hemozoin in the food vacuole of the parasite. Lipid homeostasis and phospholipid metabolism are crucial for this process, as well as for the parasite’s survival and propagation within the host. P. falciparum harbours a uniquely large family of phospholipases, which are suggested to play key roles in lipid metabolism and utilization. Results Here, we show that one of the parasite phospholipase (P. falciparum lysophospholipase, PfLPL1) plays an essential role in lipid homeostasis linked with the haemoglobin degradation and heme conversion pathway. Fluorescence tagging showed that the PfLPL1 in infected blood cells localizes to dynamic vesicular structures that traffic from the host-parasite interface at the parasite periphery, through the cytosol, to get incorporated into a large vesicular lipid rich body next to the food-vacuole. PfLPL1 is shown to harbour enzymatic activity to catabolize phospholipids, and its transient downregulation in the parasite caused a significant reduction of neutral lipids in the food vacuole-associated lipid bodies. This hindered the conversion of heme, originating from host haemoglobin, into the hemozoin, and disrupted the parasite development cycle and parasite growth. Detailed lipidomic analyses of inducible knock-down parasites deciphered the functional role of PfLPL1 in generation of neutral lipid through recycling of phospholipids. Further, exogenous fatty-acids were able to complement downregulation of PfLPL1 to rescue the parasite growth as well as restore hemozoin levels. Conclusions We found that the transient downregulation of PfLPL1 in the parasite disrupted lipid homeostasis and caused a reduction in neutral lipids essentially required for heme to hemozoin conversion. Our study suggests a crucial link between phospholipid catabolism and generation of neutral lipids (TAGs) with the host haemoglobin degradation pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01042-z.
Collapse
Affiliation(s)
- Mohd Asad
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Mohammad E Hossain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Gaurav Datta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | - Cyrille Y Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India.
| |
Collapse
|
22
|
Bennink S, Pradel G. Vesicle dynamics during the egress of malaria gametocytes from the red blood cell. Mol Biochem Parasitol 2021; 243:111372. [PMID: 33961918 DOI: 10.1016/j.molbiopara.2021.111372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Malaria parasites are obligate intracellular pathogens that live in human red blood cells harbored by a parasitophorous vacuole. The parasites need to exit from the red blood cell to continue life-cycle progression and ensure human-to-mosquito transmission. Two types of blood stages are able to lyse the enveloping red blood cell to mediate egress, the merozoites and the gametocytes. The intraerythrocytic parasites exit the red blood cell via an inside-out mode during which the membrane of the parasitophorous vacuole ruptures prior to the red blood cell membrane. Membrane rupture is initiated by the exocytosis of specialized secretory vesicles following the perception of egress triggers. The molecular mechanisms of red blood cell egress have particularly been studied in malaria gametocytes. Upon activation by external factors, gametocytes successively discharge at least two types of vesicles, the osmiophilic bodies needed to rupture the parasitophorous vacuole membrane and recently identified egress vesicles that are important for the perforation of the erythrocyte membrane. In recent years, important components of the signaling cascades leading to red blood cell egress have been investigated and several proteins of the osmiophilic bodies have been identified. We here report on the newest findings on the egress of gametocytes from the red blood cell. We further focus on the content and function of the egress-related vesicles and discuss the molecular machinery that might drive vesicle discharge.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
23
|
Bansal P, Antil N, Kumar M, Yamaryo-Botté Y, Rawat RS, Pinto S, Datta KK, Katris NJ, Botté CY, Prasad TSK, Sharma P. Protein kinase TgCDPK7 regulates vesicular trafficking and phospholipid synthesis in Toxoplasma gondii. PLoS Pathog 2021; 17:e1009325. [PMID: 33635921 PMCID: PMC7909640 DOI: 10.1371/journal.ppat.1009325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7. In this study, we demonstrate that protein kinase TgCDPK7 regulates cellular processes like vesicular trafficking and the synthesis of phospholipids, which are critical for the development of the parasite Toxoplasma gondii. It regulates the localization of a small GTPase TgRab11a by phosphorylating it at a specific site, which is critical for trafficking of important parasite proteins and is important for parasite division. TgCDPK7 may regulate key enzymes involved biogenesis of phosphatidylethanolamine, which may contribute to the synthesis of this important phospholipid. These and other studies shed light on a novel signaling pathway in apicomplexan parasite Toxoplasma gondii.
Collapse
Affiliation(s)
- Priyanka Bansal
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Sneha Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Keshava K. Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Nicholas J. Katris
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- NIMHANS IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
24
|
Taku I, Hirai T, Makiuchi T, Shinzawa N, Iwanaga S, Annoura T, Nagamune K, Nozaki T, Saito-Nakano Y. Rab5b-Associated Arf1 GTPase Regulates Export of N-Myristoylated Adenylate Kinase 2 From the Endoplasmic Reticulum in Plasmodium falciparum. Front Cell Infect Microbiol 2021; 10:610200. [PMID: 33604307 PMCID: PMC7884776 DOI: 10.3389/fcimb.2020.610200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Plasmodium falciparum extensively remodels human erythrocytes by exporting hundreds of parasite proteins. This remodeling is closely linked to the Plasmodium virulence-related functions and immune evasion. The N-terminal export signal named PEXEL (Plasmodium export element) was identified to be important for the export of proteins beyond the PVM, however, the issue of how these PEXEL-positive proteins are transported and regulated by Rab GTPases from the endoplasmic reticulum (ER) to the cell surface has remained poorly understood. Previously, we identified new aspects of the trafficking of N-myristoylated adenylate kinase 2 (PfAK2), which lacks the PEXEL motif and is regulated by the PfRab5b GTPase. Overexpression of PfRab5b suppressed the transport of PfAK2 to the parasitophorous vacuole membrane and PfAK2 was accumulated in the punctate compartment within the parasite. Here, we report the identification of PfRab5b associated proteins and dissect the pathway regulated by PfRab5b. We isolated two membrane trafficking GTPases PfArf1 and PfRab1b by coimmunoprecipitation with PfRab5b and via mass analysis. PfArf1 and PfRab1b are both colocalized with PfRab5b adjacent to the ER in the early erythrocytic stage. A super-resolution microgram of the indirect immunofluorescence assay using PfArf1 or PfRab1b- expressing parasites revealed that PfArf1 and PfRab1b are localized to different ER subdomains. We used a genetic approach to expresses an active or inactive mutant of PfArf1 that specifically inhibited the trafficking of PfAK2 to the parasitophorous vacuole membrane. While expression of PfRab1b mutants did not affect in the PfAK2 transport. In contrast, the export of the PEXEL-positive protein Rifin was decreased by the expression of the inactive mutant of PfRab1b or PfArf1. These data indicate that the transport of PfAK2 and Rifin were recognized at the different ER subdomain by the two independent GTPases: PfAK2 is sorted by PfArf1 into the pathway for the PV, and the export of Rifin might be sequentially regulated by PfArf1 and PfRab1b.
Collapse
Affiliation(s)
- Izumi Taku
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomohiro Hirai
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takashi Makiuchi
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Naoaki Shinzawa
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
Saunders CN, Cota E, Baum J, Tate EW. Peptide Probes for Plasmodium falciparum MyoA Tail Interacting Protein (MTIP): Exploring the Druggability of the Malaria Parasite Motor Complex. ACS Chem Biol 2020; 15:1313-1320. [PMID: 32383851 PMCID: PMC7309260 DOI: 10.1021/acschembio.0c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Malaria
remains an endemic tropical disease, and the emergence
of Plasmodium falciparum parasites resistant to current
front-line medicines means that new therapeutic targets are required.
The Plasmodium glideosome is a multiprotein complex
thought to be essential for efficient host red blood cell invasion.
At its core is a myosin motor, Myosin A (MyoA), which provides most
of the force required for parasite invasion. Here, we report the design
and development of improved peptide-based probes for the anchor point
of MyoA, the P. falciparum MyoA tail interacting
protein (PfMTIP). These probes combine low nanomolar
binding affinity with significantly enhanced cell penetration and
demonstrable competitive target engagement with native PfMTIP through a combination of Western blot and chemical proteomics.
These results provide new insights into the potential druggability
of the MTIP/MyoA interaction and a basis for the future design of
inhibitors.
Collapse
Affiliation(s)
| | - Ernesto Cota
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
26
|
Spielmann T, Gras S, Sabitzki R, Meissner M. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol 2020; 36:520-532. [DOI: 10.1016/j.pt.2020.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
|
27
|
Patil H, Hughes KR, Lemgruber L, Philip N, Dickens N, Starnes GL, Waters AP. Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathog 2020; 16:e1008091. [PMID: 32463831 PMCID: PMC7255598 DOI: 10.1371/journal.ppat.1008091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/29/2020] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species are apicomplexan parasites whose zoites are polarized cells with a marked apical organisation where the organelles associated with host cell invasion and colonization reside. Plasmodium gametes mate in the mosquito midgut to form the spherical and presumed apolar zygote that morphs during the following 24 hours into a polarized, elongated and motile zoite form, the ookinete. Endocytosis-mediated protein transport is generally necessary for the establishment and maintenance of polarity in epithelial cells and neurons, and the small GTPase RAB11A is an important regulator of protein transport via recycling endosomes. PbRAB11A is essential in blood stage asexual of Plasmodium. Therefore, a promoter swap strategy was employed to down-regulate PbRAB11A expression in gametocytes and zygotes of the rodent malaria parasite, Plasmodium berghei which demonstrated the essential role of RAB11A in ookinete development. The approach revealed that lack of PbRAB11A had no effect on gamete production and fertility rates however, the zygote to ookinete transition was almost totally inhibited and transmission through the mosquito was prevented. Lack of PbRAB11A did not prevent meiosis and mitosis, nor the establishment of polarity as indicated by the correct formation and positioning of the Inner Membrane Complex (IMC) and apical complex. However, morphological maturation was prevented and parasites remained spherical and immotile and furthermore, they were impaired in the secretion and distribution of microneme cargo. The data are consistent with the previously proposed model of RAB11A endosome mediated delivery of plasma membrane in Toxoplasma gondii if not its role in IMC formation and implicate it in microneme function.
Collapse
Affiliation(s)
- Harshal Patil
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Katie R. Hughes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nisha Philip
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nicholas Dickens
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - G. Lucas Starnes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andrew. P. Waters
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M, Marion S. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 2020; 16:e1008106. [PMID: 32463830 PMCID: PMC7255593 DOI: 10.1371/journal.ppat.1008106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells. Toxoplasma gondii (T. gondii) is a highly prevalent parasite infecting a wide range of animals as well as humans. T. gondii secretes numerous virulent factors contained in specific organelles, termed the rhoptries, micronemes and dense granules. These factors are released upon host cell recognition and enable parasite invasion and subsequent development into an intracellular vacuole. In particular, dense granules contain critical effectors that modulate intrinsic defenses of infected host cells ensuring parasite survival and dissemination. The mechanisms regulating dense granule secretion have not been elucidated. In this study, we unraveled a novel role for the T. gondii GTPase Rab11A in promoting dense granule transport along the parasite cytoskeleton and their content release into the vacuolar space during parasite replication. We also found that T. gondii Rab11A regulates extracellular parasite motility and adhesion to host cells suggesting a broader role in distinct secretory pathways essential for parasite virulence.
Collapse
Affiliation(s)
- Kannan Venugopal
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Javier Periz
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes—Sorbonne Paris Cité, France, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Markus Meissner
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
29
|
Winzer P, Müller J, Imhof D, Ritler D, Uldry AC, Braga-Lagache S, Heller M, Ojo KK, Van Voorhis WC, Ortega-Mora LM, Hemphill A. Neospora caninum: Differential Proteome of Multinucleated Complexes Induced by the Bumped Kinase Inhibitor BKI-1294. Microorganisms 2020; 8:microorganisms8060801. [PMID: 32466554 PMCID: PMC7355844 DOI: 10.3390/microorganisms8060801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background: the apicomplexan parasite Neospora caninum causes important reproductive problems in farm animals, most notably in cattle. After infection via oocysts or tissue cysts, rapidly dividing tachyzoites infect various tissues and organs, and in immunocompetent hosts, they differentiate into slowly dividing bradyzoites, which form tissue cysts and constitute a resting stage persisting within infected tissues. Bumped kinase inhibitors (BKIs) of calcium dependent protein kinase 1 are promising drug candidates for the treatment of Neospora infections. BKI-1294 exposure of cell cultures infected with N. caninum tachyzoites results in the formation of massive multinucleated complexes (MNCs) containing numerous newly formed zoites, which remain viable for extended periods of time under drug pressure in vitro. MNC and tachyzoites exhibit considerable antigenic and structural differences. Methods: Using shotgun mass spectrometry, we compared the proteomes of tachyzoites to BKI-1294 induced MNCs, and analyzed the mRNA expression levels of selected genes in both stages. Results: More than half of the identified proteins are downregulated in MNCs as compared to tachyzoites. Only 12 proteins are upregulated, the majority of them containing SAG1 related sequence (SRS) domains, and some also known to be expressed in bradyzoites Conclusions: MNCs exhibit a proteome different from tachyzoites, share some bradyzoite-like features, but may constitute a third stage, which remains viable and ensures survival under adverse conditions such as drug pressure. We propose the term “baryzoites” for this stage (from Greek βαρυσ = massive, bulky, heavy, inert).
Collapse
Affiliation(s)
- Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010 Berne, Switzerland; (A.-C.U.); (S.B.-L.); (M.H.)
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (K.K.O.); (W.C.V.V.)
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (P.W.); (D.I.); (D.R.)
- Correspondence: (J.M.); (A.H.); Tel.: +41-31-631-23-84 (A.H.); Fax: +41-31-631-24-76 (A.H.)
| |
Collapse
|
30
|
Geiger M, Brown C, Wichers JS, Strauss J, Lill A, Thuenauer R, Liffner B, Wilcke L, Lemcke S, Heincke D, Pazicky S, Bachmann A, Löw C, Wilson DW, Filarsky M, Burda PC, Zhang K, Junop M, Gilberger TW. Structural Insights Into PfARO and Characterization of its Interaction With PfAIP. J Mol Biol 2019; 432:878-896. [PMID: 31877322 DOI: 10.1016/j.jmb.2019.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Apicomplexan parasites contain rhoptries, which are specialized secretory organelles that coordinate host cell invasion. During the process of invasion, rhoptries secrete their contents to facilitate interaction with, and entry into, the host cell. Here, we report the crystal structure of the rhoptry protein Armadillo Repeats-Only (ARO) from the human malaria parasite, Plasmodium falciparum (PfARO). The structure of PfARO comprises five tandem Armadillo-like (ARM) repeats, with adjacent ARM repeats stacked in a head-to-tail orientation resulting in PfARO adopting an elongated curved shape. Interestingly, the concave face of PfARO contains two distinct patches of highly conserved residues that appear to play an important role in protein-protein interaction. We functionally characterized the P. falciparum homolog of ARO interacting protein (PfAIP) and demonstrate that it localizes to the rhoptries. We show that conditional mislocalization of PfAIP leads to deficient red blood cell invasion. Guided by the structure, we identified mutations of PfARO that lead to mislocalization of PfAIP. Using proximity-based biotinylation we probe into PfAIP interacting proteins.
Collapse
Affiliation(s)
- Michael Geiger
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Chris Brown
- Western University, Department of Biochemistry, London, ON, Canada
| | - Jan Stephan Wichers
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Andrés Lill
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany
| | - Sarah Lemcke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Danny William Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia; Burnet Institute, 85 Commercial Road, Melbourne, 3004, Victoria, Australia
| | - Michael Filarsky
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Kun Zhang
- Western University, Department of Biochemistry, London, ON, Canada
| | - Murray Junop
- Western University, Department of Biochemistry, London, ON, Canada.
| | - Tim Wolf Gilberger
- Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany; Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359, Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
31
|
Cao S, Chen H, Liang X, Fu J, Wang S, Zheng J, Zhang Z, Pang Y, Wang J, Shen B, Jia H. The Sec1/Munc18-like proteins TgSec1 and TgVps45 play pivotal roles in assembly of the pellicle and sub-pellicle network in Toxoplasma gondii. Mol Microbiol 2019; 113:208-221. [PMID: 31670849 DOI: 10.1111/mmi.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Post-Golgi vesicle trafficking is indispensable for precise movement of proteins to the pellicle, the sub-pellicle network and apical secretory organelles in Apicomplexa. However, only a small number of molecular complexes involved in trafficking, tethering and fusion of vesicles have been identified in Toxoplasma gondii. Consequently, it is unclear how complicated vesicle trafficking is accomplished in this parasite. Sec1/Munc18-like (SM) proteins are essential components of protein complexes involved in vesicle fusion. Here, we found that depletion of the SM protein TgSec1 using an auxin-inducible degron-based conditional knockout strategy led to mislocalization of plasma membrane proteins. By contrast, conditional depletion of the SM protein TgVps45 led to morphological changes, asymmetrical loss of the inner membrane complex and defects in nucleation of sub-pellicular microtubules, polarization and symmetrical assembly of daughter parasites during repeated endodyogeny. TgVps45 interacts with the SNARE protein TgStx16 and TgVAMP4-1. Conditional ablation of TgStx16 causes the similar growth defect like TgVps45 deficiency suggested they work together for the vesicle fusion at TGN. These findings indicate that these two SM proteins are crucial for assembly of pellicle and sub-pellicle network in T. gondii respectively.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Shida Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jun Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yu Pang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
32
|
Kennedy K, Crisafulli EM, Ralph SA. Delayed Death by Plastid Inhibition in Apicomplexan Parasites. Trends Parasitol 2019; 35:747-759. [PMID: 31427248 DOI: 10.1016/j.pt.2019.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023]
Abstract
The discovery of a plastid in apicomplexan parasites was hoped to be a watershed moment in the treatment of parasitic diseases as it revealed drug targets that are implicitly divergent from host molecular processes. Indeed, this organelle, known as the apicoplast, has since been a productive therapeutic target for pharmaceutical interventions against infections by Plasmodium, Toxoplasma, Babesia, and Theileria. However, some inhibitors of the apicoplast are restricted in their treatment utility because of their slow-kill kinetics, and this characteristic is called the delayed death effect. Here we review the recent genetic and pharmacological experiments that interrogate the causes of delayed death and explore the foundation of this phenomenon in Plasmodium and Toxoplasma parasites.
Collapse
Affiliation(s)
- Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Emily M Crisafulli
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
33
|
Kennedy K, Cobbold SA, Hanssen E, Birnbaum J, Spillman NJ, McHugh E, Brown H, Tilley L, Spielmann T, McConville MJ, Ralph SA. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol 2019; 17:e3000376. [PMID: 31318858 PMCID: PMC6667170 DOI: 10.1371/journal.pbio.3000376] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/30/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Apicomplexan parasites possess a plastid organelle called the apicoplast. Inhibitors that selectively target apicoplast housekeeping functions, including DNA replication and protein translation, are lethal for the parasite, and several (doxycycline, clindamycin, and azithromycin) are in clinical use as antimalarials. A major limitation of such drugs is that treated parasites only arrest one intraerythrocytic development cycle (approximately 48 hours) after treatment commences, a phenotype known as the ‘delayed death’ effect. The molecular basis of delayed death is a long-standing mystery in parasitology, and establishing the mechanism would aid rational clinical implementation of apicoplast-targeted drugs. Parasites undergoing delayed death transmit defective apicoplasts to their daughter cells and cannot produce the sole, blood-stage essential metabolic product of the apicoplast: the isoprenoid precursor isopentenyl-pyrophosphate. How the isoprenoid precursor depletion kills the parasite remains unknown. We investigated the requirements for the range of isoprenoids in the human malaria parasite Plasmodium falciparum and characterised the molecular and morphological phenotype of parasites experiencing delayed death. Metabolomic profiling reveals disruption of digestive vacuole function in the absence of apicoplast derived isoprenoids. Three-dimensional electron microscopy reveals digestive vacuole fragmentation and the accumulation of cytostomal invaginations, characteristics common in digestive vacuole disruption. We show that digestive vacuole disruption results from a defect in the trafficking of vesicles to the digestive vacuole. The loss of prenylation of vesicular trafficking proteins abrogates their membrane attachment and function and prevents the parasite from feeding. Our data show that the proximate cause of delayed death is an interruption of protein prenylation and consequent cellular trafficking defects. After treatment with drugs that target apicoplast functions, malaria parasites are initially superficially healthy and go on to infect new erythrocytes. This cell biology study shows that the parasites subsequently die in their second cycle due to trafficking defects caused by depletion of prenyl groups.
Collapse
Affiliation(s)
- Kit Kennedy
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Simon A. Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, Victoria, Australia
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Natalie J. Spillman
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Hannah Brown
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
34
|
Gras S, Jimenez-Ruiz E, Klinger CM, Schneider K, Klingl A, Lemgruber L, Meissner M. An endocytic-secretory cycle participates in Toxoplasma gondii in motility. PLoS Biol 2019; 17:e3000060. [PMID: 31233488 PMCID: PMC6611640 DOI: 10.1371/journal.pbio.3000060] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/05/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Apicomplexan parasites invade host cells in an active process involving their ability to move by gliding motility. While the acto-myosin system of the parasite plays a crucial role in the formation and release of attachment sites during this process, there are still open questions regarding the involvement of other mechanisms in parasite motility. In many eukaryotes, a secretory-endocytic cycle leads to the recycling of receptors (integrins), necessary to form attachment sites, regulation of surface area during motility, and generation of retrograde membrane flow. Here, we demonstrate that endocytosis operates during gliding motility in Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane flow, because inhibition of endocytosis blocks retrograde flow and motility. We demonstrate that extracellular parasites can efficiently incorporate exogenous material, such as labelled phospholipids, nanogold particles (NGPs), antibodies, and Concanavalin A (ConA). Using labelled phospholipids, we observed that the endocytic and secretory pathways of the parasite converge, and endocytosed lipids are subsequently secreted, demonstrating the operation of an endocytic-secretory cycle. Together our data consolidate previous findings, and we propose an additional model, working in parallel to the acto-myosin motor, that reconciles parasite motility with observations in other eukaryotes: an apicomplexan fountain-flow-model for parasite motility.
Collapse
Affiliation(s)
- Simon Gras
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Elena Jimenez-Ruiz
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Christen M. Klinger
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Katja Schneider
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Lehrstuhl für experimentelle Parasitologie, Ludwig-Maximilians-Universität, LMU, Tierärztliche Fakultät, München, Germany
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Heredero-Bermejo I, Varberg JM, Charvat R, Jacobs K, Garbuz T, Sullivan WJ, Arrizabalaga G. TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Mol Microbiol 2018; 111:46-64. [PMID: 30362624 DOI: 10.1111/mmi.14138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 01/01/2023]
Abstract
Dynamin-related proteins (Drps) are involved in diverse processes such as organelle division and vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins that exhibit homology to those involved in vesicle transport, including members of the adaptor complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP-2) complex subunit alpha-1 and a homolog of the ezrin-radixin-moesin (ERM) family proteins, localize to puncta and associate with the daughter cells. Consistent with the association with vesicle transport proteins, re-distribution of TgDrpC to the IMC during division is dependent on post-Golgi trafficking. Together, these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of parasite organelles and division.
Collapse
Affiliation(s)
- Irene Heredero-Bermejo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph M Varberg
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert Charvat
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kylie Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tamila Garbuz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
36
|
Venugopal K, Marion S. Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel. Int J Med Microbiol 2018; 308:751-760. [DOI: 10.1016/j.ijmm.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
|
37
|
Gao H, Yang Z, Wang X, Qian P, Hong R, Chen X, Su XZ, Cui H, Yuan J. ISP1-Anchored Polarization of GCβ/CDC50A Complex Initiates Malaria Ookinete Gliding Motility. Curr Biol 2018; 28:2763-2776.e6. [PMID: 30146157 DOI: 10.1016/j.cub.2018.06.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Ookinete gliding motility is essential for penetration of the mosquito midgut wall and transmission of malaria parasites. Cyclic guanosine monophosphate (cGMP) signaling has been implicated in ookinete gliding. However, the upstream mechanism of how the parasites activate cGMP signaling and thus initiate ookinete gliding remains unknown. Using real-time imaging to visualize Plasmodium yoelii guanylate cyclase β (GCβ), we show that cytoplasmic GCβ translocates and polarizes to the parasite plasma membrane at "ookinete extrados site" (OES) during zygote-to-ookinete differentiation. The polarization of enzymatic active GCβ at OES initiates gliding of matured ookinete. Both the P4-ATPase-like domain and guanylate cyclase domain are required for GCβ polarization and ookinete gliding. CDC50A, a co-factor of P4-ATPase, binds to and stabilizes GCβ during ookinete development. Screening of inner membrane complex proteins identifies ISP1 as a key molecule that anchors GCβ/CDC50A complex at the OES of mature ookinetes. This study defines a spatial-temporal mechanism for the initiation of ookinete gliding, where GCβ polarization likely elevates local cGMP levels and activates cGMP-dependent protein kinase signaling.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pengge Qian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Renjie Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
38
|
Mathews ES, Odom John AR. Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res 2018; 7. [PMID: 30135714 PMCID: PMC6073090 DOI: 10.12688/f1000research.14874.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria remains a significant contributor to global human mortality, and roughly half the world’s population is at risk for infection with
Plasmodium spp. parasites. Aggressive control measures have reduced the global prevalence of malaria significantly over the past decade. However, resistance to available antimalarials continues to spread, including resistance to the widely used artemisinin-based combination therapies. Novel antimalarial compounds and therapeutic targets are greatly needed. This review will briefly discuss several promising current antimalarial development projects, including artefenomel, ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In addition, we describe recent large-scale genetic and resistance screens that have been instrumental in target discovery. Finally, we highlight new antimalarial targets, which include essential transporters and proteases. These emerging antimalarial compounds and therapeutic targets have the potential to overcome multi-drug resistance in ongoing efforts toward malaria elimination.
Collapse
Affiliation(s)
- Emily S Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
40
|
Buskes MJ, Harvey KL, Richards BJ, Kalhor R, Christoff RM, Gardhi CK, Littler DR, Cope ED, Prinz B, Weiss GE, O'Brien NJ, Crabb BS, Deady LW, Gilson PR, Abbott BM. Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation. Org Biomol Chem 2018; 14:4617-39. [PMID: 27105169 DOI: 10.1039/c5ob02517f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central to malaria pathogenesis is the invasion of human red blood cells by Plasmodium falciparum parasites. Following each cycle of intracellular development and replication, parasites activate a cellular program to egress from their current host cell and invade a new one. The orchestration of this process critically relies upon numerous organised phospho-signaling cascades, which are mediated by a number of central kinases. Parasite kinases are emerging as novel antimalarial targets as they have diverged sufficiently from their mammalian counterparts to allow selectable therapeutic action. Parasite protein kinase A (PfPKA) is highly expressed late in the cell cycle of the parasite blood stage and has been shown to phosphorylate a critical invasion protein, Apical Membrane Antigen 1. This enzyme could therefore be a valuable drug target so we have repurposed a substituted 4-cyano-3-methylisoquinoline that has been shown to inhibit rat PKA with the goal of targeting PfPKA. We synthesised a novel series of compounds and, although many potently inhibit the growth of chloroquine sensitive and resistant strains of P. falciparum, they were found to have minimal activity against PfPKA, indicating that they likely have another target important to parasite cytokinesis and invasion.
Collapse
Affiliation(s)
- Melissa J Buskes
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin J Richards
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Robabeh Kalhor
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Chamodi K Gardhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | - Elliott D Cope
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Boris Prinz
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Greta E Weiss
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Nathan J O'Brien
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Leslie W Deady
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
41
|
Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. mSphere 2018; 3:mSphere00551-17. [PMID: 29299530 PMCID: PMC5750388 DOI: 10.1128/msphere.00551-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
The rhoptry organelle is critical for the invasion of an erythrocyte by the malaria parasite Plasmodium falciparum. Despite their critical roles, the mechanisms behind their biogenesis are still poorly defined. Our earlier work had suggested that the interaction between the glycosylphosphatidylinositol (GPI)-anchored rhoptry-associated membrane antigen (RAMA) and the soluble rhoptry-associated protein 1 was involved in the transport of the latter from the Golgi apparatus to the rhoptry. However, how this protein complex could interact with the intracellular trafficking machinery was unknown at this stage. Here we show that the P. falciparum homologue of the transmembrane protein sortilin-VPS10 interacts with regions of RAMA that are sufficient to target a fluorescent reporter to the rhoptries. These results suggest that P. falciparum sortilin (PfSortilin) could potentially act as the escorter for the transport of rhoptry-destined cargo. IMPORTANCE The malaria parasite is a massive burden in several parts of the world. Worryingly, the parasite has become resistant to several of the drugs commonly used to treat the disease, and at this time, there is no commercial vaccine. It is therefore critical to identify new targets for the development of antimalarials. To survive in the human body, the malaria parasite needs to invade red blood cells. For this, it uses a variety of effectors stored in organelles forming a structure called the apical complex. The mechanisms behind how the parasite generates the apical complex are poorly understood. In this study, we present evidence that a transmembrane protein called sortilin potentially acts as an escorter to transport proteins from the Golgi apparatus to the rhoptries, a component of the apical complex. Our study provides new insight into the biogenesis of a critical structure of the malaria parasite.
Collapse
|
42
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017; 2:50. [PMID: 28944300 PMCID: PMC5583745 DOI: 10.12688/wellcomeopenres.11910.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
43
|
Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res 2017. [PMID: 28944300 DOI: 10.12688/wellcomeopenres.11910.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many pathogens secrete effector molecules to subvert host immune responses, to acquire nutrients, and/or to prepare host cells for invasion. One of the ways that effector molecules are secreted is through extracellular vesicles (EVs) such as exosomes. Recently, the malaria parasite P. falciparum has been shown to produce EVs that can mediate transfer of genetic material between parasites and induce sexual commitment. Characterizing the content of these vesicles may improve our understanding of P. falciparum pathogenesis and virulence. METHODS Previous studies of P. falciparum EVs have been limited to long-term adapted laboratory isolates. In this study, we isolated EVs from a Kenyan P. falciparum clinical isolate adapted to in vitro culture for a short period and characterized their protein content by mass spectrometry (data are available via ProteomeXchange, with identifier PXD006925). RESULTS We show that P. falciparum extracellular vesicles ( PfEVs) are enriched in proteins found within the exomembrane compartments of infected erythrocytes such as Maurer's clefts (MCs), as well as the secretory endomembrane compartments in the apical end of the merozoites, suggesting that these proteins play a role in parasite-host interactions. Comparison of this novel clinically relevant dataset with previously published datasets helps to define a core secretome present in Plasmodium EVs. CONCLUSIONS P. falciparum extracellular vesicles contain virulence-associated parasite proteins. Therefore, analysis of PfEVs contents from a range of clinical isolates, and their functional validation may improve our understanding of the virulence mechanisms of the parasite, and potentially identify targets for interventions or diagnostics.
Collapse
Affiliation(s)
- Abdirahman Abdi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Lu Yu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin K Rono
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jyoti Choudhary
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julian Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
44
|
Mass spectrometry for fragment screening. Essays Biochem 2017; 61:465-473. [PMID: 28986384 DOI: 10.1042/ebc20170071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening.
Collapse
|
45
|
Venugopal K, Werkmeister E, Barois N, Saliou JM, Poncet A, Huot L, Sindikubwabo F, Hakimi MA, Langsley G, Lafont F, Marion S. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog 2017; 13:e1006331. [PMID: 28430827 PMCID: PMC5415223 DOI: 10.1371/journal.ppat.1006331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/03/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex composed of the four subunits γ, β, μ1, σ1 and interacts with known regulators of clathrin-mediated vesicular budding such as the unique ENTH-domain containing protein, which we named Epsin-like protein (TgEpsL). Disruption of the μ1 subunit resulted in the mis-sorting of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit from the TGN, but also participates in the post-Golgi maturation process of preROP compartments into apically anchored club-shaped mature organelles. For this latter activity, our data indicate a specific functional relationship between TgAP1 and the Rab5A-positive endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the regulation of parasite division. APμ1-depleted parasites undergo normal daughter cell budding and basal complex assembly but fail to segregate at the end of cytokinesis. The phylum Apicomplexa comprises a large group of obligate intracellular parasites of wide human and agricultural significance. Most notable are Plasmodium, the causative agent of malaria, and Toxoplasma gondii, one of the most common human parasites, responsible for disease of the developing fetus and immune-compromised individuals. Apicomplexa are characterized by the presence of an apical complex consisting of secretory organelles named micronemes (MIC) and rhoptries (ROP). MIC and ROP proteins, released upon host cell recognition, are essential for host cell invasion and parasite survival. After invasion, these organelles are neo-synthesized at each parasite replication cycle. In our study, we demonstrate a crucial role for the T. gondii clathrin adaptor complex AP1 in the vesicular transport of neo-synthesized MIC and ROP proteins, thereby regulating mature apical organelle formation. In addition, we unravel an original role for TgAP1 in the late stages of the parasite division process during daughter cell segregation. Therefore, our study provides new insights into key regulatory mechanisms of the vesicular trafficking system essential for host invasion and intracellular survival of Toxoplasma gondii.
Collapse
Affiliation(s)
- Kannan Venugopal
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Elisabeth Werkmeister
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Barois
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Anais Poncet
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Ludovic Huot
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Fabien Sindikubwabo
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Mohamed Ali Hakimi
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes-Sorbonne Paris Cité, France. Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Frank Lafont
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Sabrina Marion
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
46
|
Suazo KF, Schaber C, Palsuledesai CC, Odom John AR, Distefano MD. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 2016; 6:38615. [PMID: 27924931 PMCID: PMC5141570 DOI: 10.1038/srep38615] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Severe malaria due to Plasmodium falciparum infection remains a serious threat to health worldwide and new therapeutic targets are highly desirable. Small molecule inhibitors of prenyl transferases, enzymes that catalyze the post-translational isoprenyl modifications of proteins, exhibit potent antimalarial activity. The antimalarial actions of prenyltransferase inhibitors indicate that protein prenylation is required for malaria parasite development. In this study, we used a chemical biology strategy to experimentally characterize the entire complement of prenylated proteins in the human malaria parasite. In contrast to the expansive mammalian and fungal prenylomes, we find that P. falciparum possesses a restricted set of prenylated proteins. The prenylome of P. falciparum is dominated by Rab GTPases, in addition to a small number of prenylated proteins that also appear to function primarily in membrane trafficking. Overall, we found robust experimental evidence for a total of only thirteen prenylated proteins in P. falciparum, with suggestive evidence for an additional two probable prenyltransferase substrates. Our work contributes to an increasingly complete picture of essential, post-translational hydrophobic modifications in blood-stage P. falciparum.
Collapse
Affiliation(s)
- Kiall F Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Chad Schaber
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Audrey R Odom John
- Departments of Pediatrics and of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
47
|
Yang B, Feng YJ, Vu H, McCormick B, Rowley J, Pedro L, Crowther GJ, Van Voorhis WC, Forster PI, Quinn RJ. Bioaffinity Mass Spectrometry Screening. ACTA ACUST UNITED AC 2016; 21:194-200. [PMID: 26773071 DOI: 10.1177/1087057115622605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS or ESI-FTMS) was used to screen 192 natural product extracts and a 659-member natural product-based fragment library for bindings to a potential malaria drug target, Plasmodium falciparum Rab11a (PfRab11a, PF13_0119). One natural product extract and 11 fragments showed binding activity. A new natural product, arborside E, was identified from the active extract of Psydrax montigena as a weak binder. Its binding activity and inhibitory activity against PfRab11a were confirmed by ESI-FTMS titration experiments and an orthogonal enzyme assay.
Collapse
Affiliation(s)
- Ben Yang
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Yun Jiang Feng
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Hoan Vu
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brendan McCormick
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Jessica Rowley
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Liliana Pedro
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | | | | | - Paul I Forster
- Queensland Herbarium, DSITI, Brisbane Botanic Gardens, Queensland, Australia
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Australia
| |
Collapse
|
48
|
Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol Biochem Parasitol 2016; 209:18-25. [PMID: 26844642 PMCID: PMC5154328 DOI: 10.1016/j.molbiopara.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
The phylum Apicomplexa comprises more than 5000 species including pathogens of clinical and economical importance. These obligate intracellular parasites possess a highly complex endomembrane system to build amongst others three morphologically distinct secretory organelles: rhoptries, micronemes and dense granules. Proteins released by these organelles are essential for invasion and hijacking of the host cell. Due to the complexity of the internal organization of these parasites, a wide panoply of trafficking factors was expected to be required for the correct sorting of proteins towards the various organelles. However, Toxoplasma gondii and other apicomplexan parasites contain only a core set of these factors and several of the vacuolar protein sorting (VPS) homologues found in most eukaryotes have been lost in this phylum. In this review, we will summarise our current knowledge about the role of trafficking complexes in T. gondii, highlighting recent studies focused on complexes formed by VPS proteins. We also present a novel, hypothetical model, suggesting the recycling of parasite membrane and micronemal proteins.
Collapse
|
49
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
50
|
Martins-Duarte ÉS, Carias M, Vommaro R, Surolia N, de Souza W. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii. J Cell Sci 2016; 129:3320-31. [PMID: 27457282 DOI: 10.1242/jcs.185223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/19/2016] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division.
Collapse
Affiliation(s)
- Érica S Martins-Duarte
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Maira Carias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Rossiane Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India, 560064
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 21.941-902 Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil, 21.941-902
| |
Collapse
|