1
|
Grewe I, Friedrich M, Dieck ML, Spohn M, Ly ML, Krähling V, Mayer L, Mellinghoff SC, Rottstegge M, Kraemer R, Volz A, Becker S, Fathi A, Dahlke C, Weskamm LM, Addo MM. MVA-based SARS-CoV-2 vaccine candidates encoding different spike protein conformations induce distinct early transcriptional responses which may impact subsequent adaptive immunity. Front Immunol 2024; 15:1500615. [PMID: 39749328 PMCID: PMC11693667 DOI: 10.3389/fimmu.2024.1500615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity. Integrating data on both innate and adaptive immunity, systems vaccinology approaches can improve the understanding of vaccine-induced immune mechanisms. Methods Two vaccine candidates against SARS-CoV-2, both based on the viral vector Modified Vaccinia virus Ankara (MVA) and encoding the native (MVA-SARS-2-S) or prefusion-stabilized spike protein (MVA-SARS-2-ST), were evaluated in phase 1 clinical trials (ClinicalTrials.gov: NCT04569383, NCT04895449). Longitudinal dynamics of innate and early adaptive immune responses induced by vaccination in SARS-CoV-2-naïve individuals were analyzed based on transcriptome and flow cytometry data, in comparison to the licensed ChAd and mRNA vaccines. Results Compared to MVA-SARS-2-S, MVA-SARS-2-ST (encoding the prefusion-stabilized spike protein) induced a stronger transcriptional activation early after vaccination, as well as higher virus neutralizing antibodies. Positive correlations were observed between innate and adaptive immune responses induced by a second MVA-SARS-2-ST vaccination. MVA-, ChAd- and mRNA-based vaccines induced distinct immune signatures, with the overall strongest transcriptional activation as well as monocyte and circulating T follicular helper (cTFH) cell responses induced by ChAd. Discussion Our findings suggest a potential impact of the spike protein conformation not only on adaptive but also on innate immune responses. As indicated by positive correlations between several immune parameters induced by MVA-SARS-2-ST, the distinct transcriptional activation early after vaccination may be linked to the induction of classical monocytes and activation of cTFH1 cells, which may in turn result in the superior adaptive immunogenicity of MVA-SARS-2-ST, compared to MVA-SARS-2-S. Overall, our data demonstrate that both the vaccine platform and antigen insert can affect innate immune responses and subsequent vaccine immunogenicity in humans.
Collapse
Affiliation(s)
- Ilka Grewe
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marie-Louise Dieck
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - My Linh Ly
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sibylle C. Mellinghoff
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Translational Research, Cluster of Excellence for Aging Research (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Monika Rottstegge
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Rebekka Kraemer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Leonie M. Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
2
|
Campbell C, Mayatra JM, Neve AJ, Fletcher JM, Johnston DGW. Inflammasomes: emerging therapeutic targets in hidradenitis suppurativa? Br J Dermatol 2024; 191:670-679. [PMID: 38913409 DOI: 10.1093/bjd/ljae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent inflammatory lesions, which affect skin and hair follicles in intertriginous areas. HS has a multifactorial aetiology resulting in barrier dysfunction associated with aberrant immune activation. There is increased evidence for the role of inflammasomes in the pathophysiology of inflammatory skin diseases, including HS. Inflammasomes are multiprotein complexes activated following exposure to danger signals, including microbial ligands and components of damaged host cells. Inflammasome activation induces many signalling cascades and subsequent cleavage of proinflammatory cytokines - most notably interleukin (IL)-1β - which have a role in HS pathogenesis. Limited immunotherapies are approved for treating moderate-to-severe HS, with variable response rates influenced by disease heterogeneity. Inflammasomes represent attractive targets to suppress multiple inflammatory pathways in HS, including IL-1β and IL-17. This review aims to summarize the role of inflammasomes in HS and to evaluate evidence for inflammasomes as therapeutic targets for HS treatment.
Collapse
Affiliation(s)
- Ciara Campbell
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Jay M Mayatra
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Ashish J Neve
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Daniel G W Johnston
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Arvia R, Stincarelli MA, Manaresi E, Gallinella G, Zakrzewska K. Parvovirus B19 in Rheumatic Diseases. Microorganisms 2024; 12:1708. [PMID: 39203550 PMCID: PMC11357344 DOI: 10.3390/microorganisms12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen belonging to the Parvoviridae family. It is widely diffused in the population and responsible for a wide range of diseases, diverse in pathogenetic mechanisms, clinical course, and severity. B19V infects and replicates in erythroid progenitor cells (EPCs) in the bone marrow leading to their apoptosis. Moreover, it can also infect, in an abortive manner, a wide set of different cell types, normally non-permissive, and modify their normal physiology. Differences in the characteristics of virus-cell interaction may translate into different pathogenetic mechanisms and clinical outcomes. Joint involvement is a typical manifestation of B19V infection in adults. Moreover, several reports suggest, that B19V could be involved in the pathogenesis of some autoimmune rheumatologic diseases such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), systemic sclerosis (SSc), systemic lupus erythematosus (SLE), or vasculitis. This review provides basic information on the B19 virus, highlights characteristics of viral infection in permissive and non-permissive systems, and focuses on recent findings concerning the pathogenic role of B19V in rheumatologic diseases.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
- S. Orsola-Malpighi Hospital—Microbiology, 40138 Bologna, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| |
Collapse
|
4
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus inhibits dsDNA-mediated type I IFN expression via STING-dependent and STING-independent signalling pathways. J Gen Virol 2023; 104. [PMID: 37882657 DOI: 10.1099/jgv.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Type I interferons (IFNs) are critical in the host defence against viruses. They induce hundreds of interferon-stimulated genes (ISGs) many of which have an antiviral role. Poxviruses induce IFNs via their pathogen-associated molecular patterns, in particular, their genomic DNA. In a majority of cell types, dsDNA is detected by a range of cytoplasmic DNA sensors that mediate type I IFN expression via stimulator of interferon genes (STING). Orf virus (ORFV) induces cutaneous pustular skin lesions and is the type species of the Parapoxvirus genus within the Poxviridae family. The aim of this study was to investigate whether ORFV modulates dsDNA-induced type I IFN expression via STING-dependent signalling pathways in human dermal fibroblasts (hNDF) and THP-1 cells. We showed that ORFV infection of these cell types treated with poly(dA:dT) resulted in strong inhibition of expression of IFN-β. In hNDFs, we showed using siRNA knock-down that STING was essential for type I IFN induction. IFN-β expression was further reduced when both STING and RIG-I were knocked down. In addition, HEK293 cells that do not express STING or Toll-like receptors also produce IFN-β following stimulation with poly(dA:dT). The 5' triphosphate dsRNA produced by RNA polymerase III specifically results in the induction of type I IFNs through the RIG-I receptor. We showed that ORFV infection resulted in strong inhibition of IFN-β expression in HEK293 cells stimulated with poly(dA:dT). Overall, this study shows that ORFV potently counteracts the STING-dependent and STING-independent IFN response by antagonizing dsDNA-activated IFN signalling pathways.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
LGP2 Promotes Type I Interferon Production To Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. J Virol 2023; 97:e0184322. [PMID: 36622220 PMCID: PMC9888222 DOI: 10.1128/jvi.01843-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the global pig industry, which modulates the host's innate antiviral immunity to achieve immune evasion. RIG-I-like receptors (RLRs) sense viral RNA and activate the interferon signaling pathway. LGP2, a member of the RLR family, plays an important role in regulating innate immunity. However, the role of LGP2 in virus infection is controversial. Whether LGP2 has a role during infection with PRRSV remains unclear. Here, we found that LGP2 overexpression restrained the replication of PRRSV, while LGP2 silencing facilitated PRRSV replication. LGP2 was prone to interact with MDA5 and enhanced viral RNA enrichment and recognition by MDA5, thus promoting the activation of RIG-I/IRF3 and NF-κB signaling pathways and reinforcing the expression of proinflammatory cytokines and type I interferon during PRRSV infection. Meanwhile, there was a decreased protein expression of LGP2 upon PRRSV infection in vitro. PRRSV Nsp1 and Nsp2 interacted with LGP2 and promoted K63-linked ubiquitination of LGP2, ultimately leading to the degradation of LGP2. These novel findings indicate that LGP2 plays a role in regulating PRRSV replication through synergistic interaction with MDA5. Moreover, targeting LGP2 is responsible for PRRSV immune evasion. Our work describes a novel mechanism of virus-host interaction and provides the basis for preventing and controlling PRRSV. IMPORTANCE LGP2, a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), shows higher-affinity binding to RNA and work synergism with RIG-I or MDA5. However, LGP2 has divergent responses to different viruses, which remains controversial in antiviral immune responses. Here, we present the detailed process of LGP2 in positively regulating the anti-PRRSV response. Upon PRRSV infection, LGP2 was prone to bind to MDA5 and enhanced MDA5 signaling, manifesting the enrichment of viral RNA on MDA5 and the activation of downstream IRF3 and NF-κB, which results in increased proinflammatory cytokines and type I interferon expression, ultimately inhibiting PRRSV at the early stage of infection. Moreover, PRRSV Nsp1 and Nsp2 interacted with LGP2 via ubiquitin-proteasome pathways, thus blocking LGP2-mediated immune response. This research helps us understand the host recognition and innate antiviral response to PRRSV infection by neglected pattern recognition receptors, which sheds light on the detailed mechanism of virus-host interaction.
Collapse
|
6
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Coupet CA, Dubois C, Evlachev A, Kehrer N, Baldazza M, Hofman S, Vierboom M, Martin P, Inchauspe G. Intravenous injection of a novel viral immunotherapy encoding human interleukin-7 in nonhuman primates is safe and increases absolute lymphocyte count. Hum Vaccin Immunother 2022; 18:2133914. [PMID: 36315906 PMCID: PMC9746448 DOI: 10.1080/21645515.2022.2133914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Persistence of an immunosuppression, affecting both the innate and adaptive arms of the immune system, plays a role in sepsis patients' morbidity and late mortality pointing to the need for broad and effective immune interventions. MVA-hIL-7-Fc is a non-replicative recombinant Modified Vaccinia virus Ankara encoding the human interleukin-7 fused to human IgG2 Fc fragment. We have shown in murine sepsis models the capacity of this new virotherapy to stimulate both arms of the immune system and increase survival. Herein, an exploratory study in nonhuman primates was performed following a single intravenous injection of the MVA-hIL-7-Fc used at the clinical dose to assess its safety and biological activities. Four cynomolgus macaques were followed for 3 weeks post-injection (p.i), without observed acute adverse reactions. Circulating hIL-7-Fc was detected during the first 3-5 days p.i with a detection peaking at 12 h p.i. IL-7 receptor engagement and downstream signal transduction were detected in T cells demonstrating functionality of the expressed IL-7. Expansion of blood lymphocytes, mainly CD4 and CD8 naïve and central memory T cells, was observed on day 7 p.i. together with a transient increase of Ki67 expression on T lymphocytes. In addition, we observed an increase in circulating B and NK cells as well as monocytes were albeit with different kinetics and levels. This study indicates that a vectorized IL-7-Fc, injected by intravenous route at a relevant clinical dose in a large animal model, is active without adverse reactions supporting the clinical development of this novel virotherapy for treatment of sepsis patients.
Collapse
Affiliation(s)
| | | | | | - Nadine Kehrer
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Marie Baldazza
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Sam Hofman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Michel Vierboom
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Perrine Martin
- Infectious Diseases Department, Transgene SA, Lyon, France
| | - Geneviève Inchauspe
- Infectious Diseases Department, Transgene SA, Lyon, France,CONTACT Geneviève Inchauspe Infectious Diseases department, Transgene SA, 317 Avenue Jean Jaures, Lyon69007, France
| |
Collapse
|
8
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
9
|
Alharbi NK, Aljamaan F, Aljami HA, Alenazi MW, Albalawi H, Almasoud A, Alharthi FJ, Azhar EI, Barhoumi T, Bosaeed M, Gilbert SC, Hashem AM. Immunogenicity of High-Dose MVA-Based MERS Vaccine Candidate in Mice and Camels. Vaccines (Basel) 2022; 10:vaccines10081330. [PMID: 36016218 PMCID: PMC9413082 DOI: 10.3390/vaccines10081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime–boost vaccinations in mice and camels. Methods: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. Results: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). Conclusions: MVA-MERS vaccine, administered in a homologous prime–boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Correspondence:
| | - Fahad Aljamaan
- Animal Facilities, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Haya A. Aljami
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Mohammed W. Alenazi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Hind Albalawi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Fatima J. Alharthi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Esam I. Azhar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Tlili Barhoumi
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Mohammad Bosaeed
- Vaccine Development Unit, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh 12746, Saudi Arabia
| | | | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| |
Collapse
|
10
|
Ramos RN, Tosch C, Kotsias F, Claudepierre MC, Schmitt D, Remy-Ziller C, Hoffmann C, Ricordel M, Nourtier V, Farine I, Laruelle L, Hortelano J, Spring-Giusti C, Sedlik C, Le Tourneau C, Hoffmann C, Silvestre N, Erbs P, Bendjama K, Thioudellet C, Quemeneur E, Piaggio E, Rittner K. Pseudocowpox virus, a novel vector to enhance the therapeutic efficacy of antitumor vaccination. Clin Transl Immunology 2022; 11:e1392. [PMID: 35573979 PMCID: PMC9081486 DOI: 10.1002/cti2.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/11/2022] Open
Abstract
Objective Antitumor viral vaccines, and more particularly poxviral vaccines, represent an active field for clinical development and translational research. To improve the efficacy and treatment outcome, new viral vectors are sought, with emphasis on their abilities to stimulate innate immunity, to display tumor antigens and to induce a specific T‐cell response. Methods We screened for a new poxviral backbone with improved innate and adaptive immune stimulation using IFN‐α secretion levels in infected PBMC cultures as selection criteria. Assessment of virus effectiveness was made in vitro and in vivo. Results The bovine pseudocowpox virus (PCPV) stood out among several poxviruses for its ability to induce significant secretion of IFN‐α. PCPV produced efficient activation of human monocytes and dendritic cells, degranulation of NK cells and reversed MDSC‐induced T‐cell suppression, without being offensive to activated T cells. A PCPV‐based vaccine, encoding the HPV16 E7 protein (PCPV‐E7), stimulated strong antigen‐specific T‐cell responses in TC1 tumor‐bearing mice. Complete regression of tumors was obtained in a CD8+ T‐cell‐dependent manner after intratumoral injection of PCPV‐E7, followed by intravenous injection of the cancer vaccine MVA‐E7. PCPV also proved active when injected repeatedly intratumorally in MC38 tumor‐bearing mice, generating tumor‐specific T‐cell responses without encoding a specific MC38 antigen. From a translational perspective, we demonstrated that PCPV‐E7 effectively stimulated IFN‐γ production by T cells from tumor‐draining lymph nodes of HPV+‐infected cancer patients. Conclusion We propose PCPV as a viral vector suitable for vaccination in the field of personalised cancer vaccines, in particular for heterologous prime‐boost regimens.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Present address: Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) São Paulo Brazil.,Present address: Instituto D'Or de Ensino e Pesquisa São Paulo Brazil
| | | | - Fiorella Kotsias
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | | | | | | | | | | | | | | | | | | | | - Christine Sedlik
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i) Institut Curie Paris and Saint-Cloud France
| | - Caroline Hoffmann
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France.,Department of Surgical Oncology Institut Curie PSL Research University Paris France
| | | | | | | | | | | | - Eliane Piaggio
- Institut Curie INSERM U932, and Centre d'Investigation Clinique Biotherapie CICBT 1428 PSL Research University Paris France
| | | |
Collapse
|
11
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Lung type II alveolar epithelial cells collaborate with CCR2+ inflammatory monocytes in host defense against poxvirus infection. Nat Commun 2022; 13:1671. [PMID: 35351885 PMCID: PMC8964745 DOI: 10.1038/s41467-022-29308-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The pulmonary immune system consists of a network of tissue-resident cells as well as immune cells that are recruited to the lungs during infection and/or inflammation. How these immune components function during an acute poxvirus infection is not well understood. Intranasal infection of mice with vaccinia virus causes lethal pneumonia and systemic dissemination. Here we report that vaccinia C7 is a crucial virulence factor that blocks activation of the transcription factor IRF3. We provide evidence that type II alveolar epithelial cells (AECIIs) respond to pulmonary infection of vaccinia virus by inducing IFN-β and IFN-stimulated genes via the activation of the MDA5 and STING-mediated nucleic acid-sensing pathways and the type I IFN positive feedback loop. This leads to the recruitment and activation of CCR2+ inflammatory monocytes in the infected lungs and subsequent differentiation into Lyve1− interstitial macrophages (Lyve1− IMs), which efficiently engulf viral particles and block viral replication. Our results provide insights into how innate immune sensing of viral infection by lung AECIIs influences the activation and differentiation of CCR2+ inflammatory monocytes to defend against pulmonary poxvirus infection. Smallpox is a highly contagious respiratory pathogen associated with a high mortality rate. Here the authors utilize a mouse model of intranasal vaccinia virus infection and show a C7 gene encoded virulence factor attenuates type I IFN release by lung type II alveolar epithelial cells and reduces lung inflammatory monocyte responses.
Collapse
|
13
|
Retraction: Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome. PLoS Pathog 2022; 18:e1010263. [PMID: 35077525 PMCID: PMC8789094 DOI: 10.1371/journal.ppat.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Szczerba M, Subramanian S, Trainor K, McCaughan M, Kibler KV, Jacobs BL. Small Hero with Great Powers: Vaccinia Virus E3 Protein and Evasion of the Type I IFN Response. Biomedicines 2022; 10:biomedicines10020235. [PMID: 35203445 PMCID: PMC8869630 DOI: 10.3390/biomedicines10020235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/14/2022] Open
Abstract
Poxviridae have developed a plethora of strategies to evade innate and adaptive immunity. In this review, we focused on the vaccinia virus E3 protein, encoded by the E3L gene. E3 is present within the Chordopoxvirinae subfamily (with the exception of the avipoxviruses and molluscum contagiosum virus) and displays pleiotropic effects on the innate immune system. Initial studies identified E3 as a double-stranded RNA (dsRNA)-binding protein (through its C terminus), able to inhibit the activation of protein kinase dependent on RNA (PKR) and the 2′5′-oligoadenylate synthetase (OAS)/RNase L pathway, rendering E3 a protein counteracting the type I interferon (IFN) system. In recent years, N-terminal mutants of E3 unable to bind to Z-form nucleic acids have been shown to induce the cellular death pathway necroptosis. This pathway was dependent on host IFN-inducible Z-DNA-binding protein 1 (ZBP1); full-length E3 is able to inhibit ZBP1-mediated necroptosis. Binding to what was identified as Z-RNA has emerged as a novel mechanism of counteracting the type I IFN system and has broadened our understanding of innate immunity against viral infections. This article gives an overview of the studies leading to our understanding of the vaccinia virus E3 protein function and its involvement in viral pathogenesis. Furthermore, a short summary of other viral systems is provided.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
| | - Sambhavi Subramanian
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Kelly Trainor
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- Faculty of Biology, Coconino Community College, Flagstaff, AZ 86005, USA
| | - Megan McCaughan
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; (M.S.); (S.S.); (K.T.); (M.M.); (K.V.K.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Correspondence:
| |
Collapse
|
15
|
Vijayan KKV, Cross KA, Curtis AD, Van Rompay KKA, Pollara J, Fox CB, Tomai M, Hanke T, Fouda G, Hudgens MG, Permar SR, De Paris K. Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope-Specific Plasma Antibodies in Infant Rhesus Macaques. Front Immunol 2022; 13:840976. [PMID: 35572573 PMCID: PMC9094446 DOI: 10.3389/fimmu.2022.840976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime.
Collapse
Affiliation(s)
- K K Vidya Vijayan
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaitlyn A Cross
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alan D Curtis
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States.,Departent of Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | | | - Mark Tomai
- 3M Corporate Research Materials Laboratory, Saint Paul, MN, United States
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, United Kingdom.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Genevieve Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus ORF116 gene encodes an antagonist of the interferon response. J Gen Virol 2021; 102. [PMID: 34890310 DOI: 10.1099/jgv.0.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus of the Poxviridae family. Genetic and functional studies have revealed ORFV has multiple immunomodulatory genes that manipulate innate immune responses, during the early stage of infection. ORF116 is a novel gene of ORFV with hitherto unknown function. Characterization of an ORF116 deletion mutant showed that it replicated in primary lamb testis cells with reduced levels compared to the wild-type and produced a smaller plaque phenotype. ORF116 was shown to be expressed prior to DNA replication. The potential function of ORF116 was investigated by gene-expression microarray analysis in HeLa cells infected with wild-type ORFV or the ORF116 deletion mutant. The analysis of differential cellular gene expression revealed a number of interferon-stimulated genes (ISGs) differentially expressed at either 4 or 6 h post infection. IFI44 showed the greatest differential expression (4.17-fold) between wild-type and knockout virus. Other ISGs that were upregulated in the knockout included RIG-I, IFIT2, MDA5, OAS1, OASL, DDX60, ISG20 and IFIT1 and in addition the inflammatory cytokine IL-8. These findings were validated by infecting HeLa cells with an ORF116 revertant recombinant virus and analysis of transcript expression by quantitative real time-PCR (qRT-PCR). These observations suggested a role for the ORFV gene ORF116 in modulating the IFN response and inflammatory cytokines. This study represents the first functional analysis of ORF116.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
18
|
Pérez P, Martín-Acebes MA, Poderoso T, Lázaro-Frías A, Saiz JC, Sorzano CÓS, Esteban M, García-Arriaza J. The combined vaccination protocol of DNA/MVA expressing Zika virus structural proteins as efficient inducer of T and B cell immune responses. Emerg Microbes Infect 2021; 10:1441-1456. [PMID: 34213405 PMCID: PMC8284158 DOI: 10.1080/22221751.2021.1951624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne pathogen with public health importance due to the high risk of its mosquito vector dissemination and the severe neurological and teratogenic sequelae associated with infection. Vaccines with broad immune specificity and control against this re-emerging virus are needed. Here, we described that mice immunized with a priming dose of a DNA plasmid mammalian expression vector encoding ZIKV prM-E antigens (DNA-ZIKV) followed by a booster dose of a modified vaccinia virus Ankara (MVA) vector expressing the same prM-E ZIKV antigens (MVA-ZIKV) induced broad, polyfunctional and long-lasting ZIKV-specific CD4+ and CD8+ T-cell immune responses, with high levels of CD4+ T follicular helper cells, together with the induction of neutralizing antibodies. All those immune parameters were significantly stronger in the heterologous DNA-ZIKV/MVA-ZIKV immunization group compared to the homologous prime/boost immunizations regimens. Collectively, these results provided an optimized immunization protocol able to induce high levels of ZIKV-specific T-cell responses, as well as neutralizing antibodies and reinforce the combined use of DNA-based vectors and MVA-ZIKV as promising prophylactic vaccination schedule against ZIKV.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, Mariano Esteban
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain,Juan García-Arriaza
| |
Collapse
|
19
|
Cai C, Tang YD, Xu G, Zheng C. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cell Mol Life Sci 2021; 78:7427-7434. [PMID: 34714359 PMCID: PMC8554519 DOI: 10.1007/s00018-021-04001-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Viral infections pose a severe threat to humans by causing many infectious, even fatal, diseases, such as the current pandemic disease (COVID-19) since 2019, and understanding how the host innate immune system recognizes viruses has become more important. Endosomal and cytosolic sensors can detect viral nucleic acids to induce type I interferon and proinflammatory cytokines, subsequently inducing interferon-stimulated genes for restricting viral infection. Although viral RNA and DNA sensing generally rely on diverse receptors and adaptors, the crosstalk between DNA and RNA sensing is gradually appreciated. This minireview highlights the overlap between the RNA- and DNA-sensing mechanisms in antiviral innate immunity, which significantly amplifies the antiviral innate responses to restrict viral infection and might be a potential novel target for preventing and treating viral diseases.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guocai Xu
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
20
|
Diversity of cell death signaling pathways in macrophages upon infection with modified vaccinia virus Ankara (MVA). Cell Death Dis 2021; 12:1011. [PMID: 34711816 PMCID: PMC8551665 DOI: 10.1038/s41419-021-04286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Regulated cell death frequently occurs upon infection by intracellular pathogens, and extent and regulation is often cell-type-specific. We aimed to identify the cell death-signaling pathways triggered in macrophages by infection with modified vaccinia virus Ankara (MVA), an attenuated strain of vaccinia virus used in vaccination. While most target cells seem to be protected by antiapoptotic proteins encoded in the MVA genome, macrophages die when infected with MVA. We targeted key signaling components of specific cell death-pathways and pattern recognition-pathways using genome editing and small molecule inhibitors in an in vitro murine macrophage differentiation model. Upon infection with MVA, we observed activation of mitochondrial and death-receptor-induced apoptosis-pathways as well as the necroptosis-pathway. Inhibition of individual pathways had a little protective effect but led to compensatory death through the other pathways. In the absence of mitochondrial apoptosis, autocrine/paracrine TNF-mediated apoptosis and, in the absence of caspase-activity, necroptosis occurred. TNF-induction depended on the signaling molecule STING, and MAVS and ZBP1 contributed to MVA-induced apoptosis. The mode of cell death had a substantial impact on the cytokine response of infected cells, indicating that the immunogenicity of a virus may depend not only on its PAMPs but also on its ability to modulate individual modalities of cell death. These findings provide insights into the diversity of cell death-pathways that an infection can trigger in professional immune cells and advance our understanding of the intracellular mechanisms that govern the immune response to a virus.
Collapse
|
21
|
Döring M, De Azevedo K, Blanco-Rodriguez G, Nadalin F, Satoh T, Gentili M, Lahaye X, De Silva NS, Conrad C, Jouve M, Centlivre M, Lévy Y, Manel N. Single-cell analysis reveals divergent responses of human dendritic cells to the MVA vaccine. Sci Signal 2021; 14:14/697/eabd9720. [PMID: 34429383 DOI: 10.1126/scisignal.abd9720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modified vaccinia Ankara (MVA) is a live, attenuated human smallpox vaccine and a vector for the development of new vaccines against infectious diseases and cancer. Efficient activation of the immune system by MVA partially relies on its encounter with dendritic cells (DCs). MVA infection of DCs leads to multiple outcomes, including cytokine production, activation of costimulatory molecules for T cell stimulation, and cell death. Here, we examined how these diverse responses are orchestrated in human DCs. Single-cell analyses revealed that the response to MVA infection in DCs was limited to early viral gene expression. In response to the early events in the viral cycle, we found that DCs grouped into three distinct clusters. A cluster of infected cells sensed the MVA genome by the intracellular innate immunity pathway mediated by cGAS, STING, TBK1, and IRF3 and subsequently produced inflammatory cytokines. In response to these cytokines, a cluster of noninfected bystander cells increased costimulatory molecule expression. A separate cluster of infected cells underwent caspase-dependent apoptosis. Induction of apoptosis persisted after inhibition of innate immunity pathway mediators independently of previously described IRF-dependent or replication-dependent pathways and was a response to early MVA gene expression. Together, our study identified multiple mechanisms that underlie the interactions of MVA with human DCs.
Collapse
Affiliation(s)
- Marius Döring
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.,Vaccine Research Institute (VRI), Créteil, Paris, France
| | - Kevin De Azevedo
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Guillermo Blanco-Rodriguez
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Nadalin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Takeshi Satoh
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.,Vaccine Research Institute (VRI), Créteil, Paris, France
| | - Matteo Gentili
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Nilushi S De Silva
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mabel Jouve
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mireille Centlivre
- Vaccine Research Institute (VRI), Créteil, Paris, France.,INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Yves Lévy
- Vaccine Research Institute (VRI), Créteil, Paris, France.,INSERM U955, Université Paris Est Créteil, Créteil, France.,AP-HP, Hôpital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France. .,Vaccine Research Institute (VRI), Créteil, Paris, France
| |
Collapse
|
22
|
Batool M, Kim MS, Choi S. Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG-I-like receptors. Med Res Rev 2021; 42:399-425. [PMID: 34287999 DOI: 10.1002/med.21845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses, including the coronavirus, develop a unique strategy to evade the host immune response by interrupting the normal function of cytosolic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). RLRs rapidly detect atypical nucleic acids, thereby triggering the antiviral innate immune signaling cascade and subsequently activates the interferons transcription and induction of other proinflammatory cytokines and chemokines. Nonetheless, these receptors are manipulated by viral proteins to subvert the host immune system and sustain the infectivity and replication potential of the virus. RIG-I senses the single-stranded, double-stranded, and short double-stranded RNAs and recognizes the key signature, a 5'-triphosphate moiety, at the blunt end of the viral RNA. Meanwhile, the melanoma differentiation-associated gene 5 (MDA5) is triggered by longer double stranded RNAs, messenger RNAs lacking 2'-O-methylation in their 5'-cap, and RNA aggregates. Therefore, structural insights into the nucleic-acid-sensing and downstream signaling mechanisms of these receptors hold great promise for developing effective antiviral therapeutic interventions. This review highlights the critical roles played by RLRs in viral infections as well as their ligand recognition mechanisms. In addition, we highlight the crosstalk between the toll-like receptors and RLRs and provide a comprehensive overview of RLR-associated diseases as well as the therapeutic potential of RLRs for the development of antiviral-drugs. Moreover, we believe that these RLR-based antivirals will serve as a step toward countering the recent coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| |
Collapse
|
23
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
24
|
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler's Virus-Induced Demyelinating Disease. Int J Mol Sci 2021; 22:ijms22105254. [PMID: 34067536 PMCID: PMC8156427 DOI: 10.3390/ijms22105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.
Collapse
|
25
|
Rosenbaum P, Tchitchek N, Joly C, Rodriguez Pozo A, Stimmer L, Langlois S, Hocini H, Gosse L, Pejoski D, Cosma A, Beignon AS, Dereuddre-Bosquet N, Levy Y, Le Grand R, Martinon F. Vaccine Inoculation Route Modulates Early Immunity and Consequently Antigen-Specific Immune Response. Front Immunol 2021; 12:645210. [PMID: 33959127 PMCID: PMC8093451 DOI: 10.3389/fimmu.2021.645210] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Vaccination is one of the most efficient public healthcare measures to fight infectious diseases. Nevertheless, the immune mechanisms induced in vivo by vaccination are still unclear. The route of administration, an important vaccination parameter, can substantially modify the quality of the response. How the route of administration affects the generation and profile of immune responses is of major interest. Here, we aimed to extensively characterize the profiles of the innate and adaptive response to vaccination induced after intradermal, subcutaneous, or intramuscular administration with a modified vaccinia virus Ankara model vaccine in non-human primates. The adaptive response following subcutaneous immunization was clearly different from that following intradermal or intramuscular immunization. The subcutaneous route induced a higher level of neutralizing antibodies than the intradermal and intramuscular vaccination routes. In contrast, polyfunctional CD8+ T-cell responses were preferentially induced after intradermal or intramuscular injection. We observed the same dichotomy when analyzing the early molecular and cellular immune events, highlighting the recruitment of cell populations, such as CD8+ T lymphocytes and myeloid-derived suppressive cells, and the activation of key immunomodulatory gene pathways. These results demonstrate that the quality of the vaccine response induced by an attenuated vaccine is shaped by early and subtle modifications of the innate immune response. In this immunization context, the route of administration must be tailored to the desired type of protective immune response. This will be achieved through systems vaccinology and mathematical modeling, which will be critical for predicting the efficacy of the vaccination route for personalized medicine.
Collapse
Affiliation(s)
- Pierre Rosenbaum
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nicolas Tchitchek
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Candie Joly
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - André Rodriguez Pozo
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Lev Stimmer
- INSERM, U1169, Kremlin-Bicêtre, France
- CEA – INSERM, MIRCen, UMS27, Fontenay-aux-Roses, France
| | - Sébastien Langlois
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
- INSERM, U955, Team 16, Clinical and Infectious Diseases Department, Hospital Henri Mondor, University of Paris East, Créteil, France
| | - Leslie Gosse
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - David Pejoski
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Antonio Cosma
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Anne-Sophie Beignon
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Nathalie Dereuddre-Bosquet
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
- INSERM, U955, Team 16, Clinical and Infectious Diseases Department, Hospital Henri Mondor, University of Paris East, Créteil, France
| | - Roger Le Grand
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| | - Frédéric Martinon
- UMR1184 IMVA-HB, IDMIT Department, Université Paris-Saclay – INSERM U1184 – CEA, Fontenay-aux-Roses, France
- Vaccine Research Institute, Henri Mondor Hospital, Créteil, France
| |
Collapse
|
26
|
Amiset L, Fend L, Gatard-Scheikl T, Rittner K, Duong V, Rooke R, Muller S, Bonnefoy JY, Préville X, Haegel H. TLR2 ligation protects effector T cells from regulatory T-cell mediated suppression and repolarizes T helper responses following MVA-based cancer immunotherapy. Oncoimmunology 2021; 1:1271-1280. [PMID: 23243590 PMCID: PMC3518499 DOI: 10.4161/onci.21479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer immunotherapy is hampered by the immunosuppression maintained by regulatory T cells (Tregs) in tumor-bearing hosts. Stimulation of the Toll-like receptor 2 (TLR2) by Pam3Cys is known to affect Treg-mediated suppression. We found that Pam3Cys increases the proliferation of both CD4+ effector T cells (Teffs) and Tregs co-cultured in vitro, but did not induce the proliferation of Tregs alone upon CD3 and CD28 stimulation. In a mouse model of RMA-MUC1 tumors, Pam3Cys was administered either alone or in combination with a modified vaccinia ankara (MVA)-based mucin 1 (MUC1) therapeutic vaccine. The combination of Pam3Cys with MVA-MUC1 (1) diminished splenic Treg/CD4+ T-cell ratios to those found in tumor-free mice, (2) stimulated a specific anti-MUC1 interferon γ (IFNγ) response and (3) had a significant therapeutic effect on tumor growth and mouse survival. When CD4+ Teffs and Tregs were isolated from Pam3Cys-treated mice, Teffs had become resistant to Treg-mediated suppression while upregulating the expression of BclL-xL. Tregs from Pam3Cys-treated mice were fully suppressive for Teffs from naïve mice. Bcl-xL was induced by Pam3Cys with different kinetics in Tregs and Teffs. Teff from Pam3Cys-treated mice produced increased levels of Th1 and Th2-type cytokines and an interleukin (IL)-6-dependent secretion of IL-17 was observed in Teff:Treg co-cultures, suggesting that TLR2 stimulation had skewed the immune response toward a Th17 profile. Our results show for the first time that in a tumor-bearing host, TLR2 stimulation with Pam3Cys affects both Tregs and Teffs, protects Teff from Treg-mediated suppression and has strong therapeutic effects when combined with an MVA-based antitumor vaccine.
Collapse
Affiliation(s)
- Laurent Amiset
- Département d'Immunopharmacologie; Transgene S.A.; Parc d'Innovation; Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ma J, Zhao S, Gao X, Wang R, Liu J, Zhou X, Zhou Y. The Roles of Inflammasomes in Host Defense against Mycobacterium tuberculosis. Pathogens 2021; 10:pathogens10020120. [PMID: 33503864 PMCID: PMC7911501 DOI: 10.3390/pathogens10020120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) infection is characterized by granulomatous lung lesions and systemic inflammatory responses during active disease. Inflammasome activation is involved in regulation of inflammation. Inflammasomes are multiprotein complexes serving a platform for activation of caspase-1, which cleaves the proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 into their active forms. These cytokines play an essential role in MTB control. MTB infection triggers activation of the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes in vitro, but only AIM2 and apoptosis-associated speck-like protein containing a caspase-activation recruitment domain (ASC), rather than NLRP3 or caspase-1, favor host survival and restriction of mycobacterial replication in vivo. Interferons (IFNs) inhibits MTB-induced inflammasome activation and IL-1 signaling. In this review, we focus on activation and regulation of the NLRP3 and AIM2 inflammasomes after exposure to MTB, as well as the effect of inflammasome activation on host defense against the infection.
Collapse
Affiliation(s)
- Jialu Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Shasha Zhao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Xiao Gao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Rui Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
| | - Juan Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (J.M.); (S.Z.); (X.G.); (R.W.); (J.L.)
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence:
| |
Collapse
|
28
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Wu X, Yan Y, Zhao W, Wu J, Chodosh J, Zhang Q. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol 2020; 11:602256. [PMID: 33424848 PMCID: PMC7785583 DOI: 10.3389/fimmu.2020.602256] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Sanchez J, Gonçalves E, Llano A, Gonzáles P, Fernández-Maldonado M, Vogt A, Soria A, Perez S, Cedeño S, Fernández MA, Nourikyan J, de Bernard S, Ganoza C, Pedruzzi E, Bonduelle O, Mothe B, Gòmez CE, Esteban M, Garcia F, Lama JR, Brander C, Combadiere B. Immune Profiles Identification by Vaccinomics After MVA Immunization in Randomized Clinical Study. Front Immunol 2020; 11:586124. [PMID: 33244316 PMCID: PMC7683801 DOI: 10.3389/fimmu.2020.586124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous work has demonstrated the benefits of transcutaneous immunization in targeting Langerhans cells and preferentially inducing CD8 T-cell responses. Methods In this randomized phase Ib clinical trial including 20 HIV uninfected volunteers, we compared the safety and immunogenicity of the MVA recombinant vaccine expressing HIV-B antigen (MVA-B) by transcutaneous and intramuscular routes. We hypothesized that the quality of innate and adaptive immunity differs according to the route of immunization and explored the quality of the vector vaccine-induced immune responses. We also investigated the early blood transcriptome and serum cytokine levels to identify innate events correlated with the strength and quality of adaptive immunity. Results We demonstrate that MVA-B vaccine is safe by both routes, but that the quality and intensity of both innate and adaptive immunity differ significantly. Transcutaneous vaccination promoted CD8 responses in the absence of antibodies and slightly affected gene expression, involving mainly genes associated with metabolic pathways. Intramuscular vaccination, on the other hand, drove robust changes in the expression of genes involved in IL-6 and interferon signalling pathways, mainly those associated with humoral responses, and also some levels of CD8 response. Conclusion Thus, vaccine delivery route perturbs early innate responses that shape the quality of adaptive immunity. Clinical Trial Registration http://ClinicalTrials.gov, identifier PER-073-13.
Collapse
Affiliation(s)
- Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Elena Gonçalves
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and Allergy, Charité-Universitatsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Susana Perez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Samandhy Cedeño
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Marco Antonio Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP), Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | | | - Eric Pedruzzi
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carmen E Gòmez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Javier R Lama
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Behazine Combadiere
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| |
Collapse
|
31
|
Kanakan A, Mishra N, Srinivasa Vasudevan J, Sahni S, Khan A, Sharma S, Pandey R. Threading the Pieces Together: Integrative Perspective on SARS-CoV-2. Pathogens 2020; 9:E912. [PMID: 33158051 PMCID: PMC7694192 DOI: 10.3390/pathogens9110912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has challenged the research community globally to innovate, interact, and integrate findings across hierarchies. Research on SARS-CoV-2 has produced an abundance of data spanning multiple parallels, including clinical data, SARS-CoV-2 genome architecture, host response captured through transcriptome and genetic variants, microbial co-infections (metagenome), and comorbidities. Disease phenotypes in the case of COVID-19 present an intriguing complexity that includes a broad range of symptomatic to asymptomatic individuals, further compounded by a vast heterogeneity within the spectrum of clinical symptoms displayed by the symptomatic individuals. The clinical outcome is further modulated by the presence of comorbid conditions at the point of infection. The COVID-19 pandemic has produced an expansive wealth of literature touching many aspects of SARS-CoV-2 ranging from causal to outcome, predisposition to protective (possible), co-infection to comorbidity, and differential mortality globally. As challenges provide opportunities, the current pandemic's challenge has underscored the need and opportunity to work for an integrative approach that may be able to thread together the multiple variables. Through this review, we have made an effort towards bringing together information spanning across different domains to facilitate researchers globally in pursuit of their response to SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; (A.K.); (N.M.); (J.S.V.); (S.S.); (A.K.); (S.S.)
| |
Collapse
|
32
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
33
|
El-Jesr M, Teir M, Maluquer de Motes C. Vaccinia Virus Activation and Antagonism of Cytosolic DNA Sensing. Front Immunol 2020; 11:568412. [PMID: 33117352 PMCID: PMC7559579 DOI: 10.3389/fimmu.2020.568412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells express multiple molecules aimed at detecting incoming virus and infection. Recognition of virus infection leads to the production of cytokines, chemokines and restriction factors that limit virus replication and activate an adaptive immune response offering long-term protection. Recognition of cytosolic DNA has become a central immune sensing mechanism involved in infection, autoinflammation, and cancer immunotherapy. Vaccinia virus (VACV) is the prototypic member of the family Poxviridae and the vaccine used to eradicate smallpox. VACV harbors enormous potential as a vaccine vector and several attenuated strains are currently being developed against infectious diseases. In addition, VACV has emerged as a popular oncolytic agent due to its cytotoxic capacity even in hypoxic environments. As a poxvirus, VACV is an unusual virus that replicates its large DNA genome exclusively in the cytoplasm of infected cells. Despite producing large amounts of cytosolic DNA, VACV efficiently suppresses the subsequent innate immune response by deploying an arsenal of proteins with capacity to disable host antiviral signaling, some of which specifically target cytosolic DNA sensing pathways. Some of these strategies are conserved amongst orthopoxviruses, whereas others are seemingly unique to VACV. In this review we provide an overview of the VACV replicative cycle and discuss the recent advances on our understanding of how VACV induces and antagonizes innate immune activation via cytosolic DNA sensing pathways. The implications of these findings in the rational design of vaccines and oncolytics based on VACV are also discussed.
Collapse
Affiliation(s)
- Misbah El-Jesr
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | - Muad Teir
- Department of Microbial Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
34
|
Barnowski C, Ciupka G, Tao R, Jin L, Busch DH, Tao S, Drexler I. Efficient Induction of Cytotoxic T Cells by Viral Vector Vaccination Requires STING-Dependent DC Functions. Front Immunol 2020; 11:1458. [PMID: 32765505 PMCID: PMC7381110 DOI: 10.3389/fimmu.2020.01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus and currently under investigation as a promising vaccine vector against infectious diseases and cancer. MVA acquired mutations in host range and immunomodulatory genes, rendering the virus deficient for replication in most mammalian cells. MVA has a high safety profile and induces robust immune responses. However, the role of innate immune triggers for the induction of cytotoxic T cell responses after vaccination is incompletely understood. Stimulator of interferon genes (STING) is an adaptor protein which integrates signaling downstream of several DNA sensors and therefore mediates the induction of type I interferons and other cytokines or chemokines in response to various dsDNA viruses. Since the type I interferon response was entirely STING-dependent during MVA infection, we studied the effect of STING on primary and secondary cytotoxic T cell responses and memory T cell formation after MVA vaccination in STING KO mice. Moreover, we analyzed the impact of STING on the maturation of bone marrow-derived dendritic cells (BMDCs) and their functionality as antigen presenting cells for cytotoxic T cells during MVA infection in vitro. Our results show that STING has an impact on the antigen processing and presentation capacity of conventionel DCs and played a crucial role for DC maturation and type I interferon production. Importantly, STING was required for the induction of efficient cytotoxic T cell responses in vivo, since we observed significantly decreased short-lived effector and effector memory T cell responses after priming in STING KO mice. These findings indicate that STING probably integrates innate immune signaling downstream of different DNA sensors in DCs and shapes the cytotoxic T cell response via the DC maturation phenotype which strongly depends on type I interferons in this infection model. Understanding the detailed functions of innate immune triggers during MVA infection will contribute to the optimized design of MVA-based vaccines.
Collapse
Affiliation(s)
- Cornelia Barnowski
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gregor Ciupka
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
35
|
Sui Y, Berzofsky JA. Myeloid Cell-Mediated Trained Innate Immunity in Mucosal AIDS Vaccine Development. Front Immunol 2020; 11:315. [PMID: 32184782 PMCID: PMC7058986 DOI: 10.3389/fimmu.2020.00315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Trained innate immunity has recently emerged as a novel concept of innate immune cells, such as myeloid cells, exhibiting immune memory, and nonspecific heterologous immunity to protect against infections. The memory and specificity are mediated by epigenetic, metabolic, and functional reprogramming of the myeloid cells and myeloid progenitors (and/or NK cells) in the bone marrow and peripheral tissues such as gut and lung mucosa. A variety of agents, such as BCG, viruses, and their components, as well as TLR agonists, and cytokines have been shown to be involved in the induction of trained immunity. Since these agents have been widely used in AIDS vaccine development as antigen delivery vectors or adjuvants, myeloid cell mediated trained immunity might also play an important role in protecting against mucosal AIDS virus transmission or in control of virus replication in the major gut mucosal reservoir. Here we review the trained innate immunity induced by these vectors/adjuvants that have been used in AIDS vaccine studies and discuss their role in mucosal vaccine efficacy and possible utilization in AIDS vaccine development. Delineating the protective effect of the trained innate immunity mediated by myeloid cells will guide the design of novel AIDS vaccines.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jay A Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
36
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Gómez CE, Esteban M, García-Arriaza J. Deletion of Vaccinia Virus A40R Gene Improves the Immunogenicity of the HIV-1 Vaccine Candidate MVA-B. Vaccines (Basel) 2020; 8:vaccines8010070. [PMID: 32041218 PMCID: PMC7158668 DOI: 10.3390/vaccines8010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Development of a safe and efficacious vaccine against the HIV/AIDS pandemic remains a major scientific goal. We previously described an HIV/AIDS vaccine based on the modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120 and Gag-Pol-Nef (GPN) of clade B (termed MVA-B), which showed moderate immunogenicity in phase I prophylactic and therapeutic clinical trials. Here, to improve the immunogenicity of MVA-B, we generated a novel recombinant virus, MVA-B ΔA40R, by deleting in the MVA-B genome the vaccinia virus (VACV) A40R gene, which encodes a protein with unknown immune function. The innate immune responses triggered by MVA-B ΔA40R in infected human macrophages, in comparison to parental MVA-B, revealed an increase in the mRNA expression levels of interferon (IFN)-β, IFN-induced genes, and chemokines. Compared to priming with DNA-B (a mixture of DNA-gp120 plus DNA-GPN) and boosting with MVA-B, mice immunized with a DNA-B/MVA-B ΔA40R regimen induced higher magnitude of adaptive and memory HIV-1-specific CD4+ and CD8+ T-cell immune responses that were highly polyfunctional, mainly directed against Env. and of an effector memory phenotype, together with enhanced levels of antibodies against HIV-1 gp120. Reintroduction of the A40R gene into the MVA-B ΔA40R genome (virus termed MVA-B ΔA40R-rev) promoted in infected cells high mRNA and protein A40 levels, with A40 protein localized in the cell membrane. MVA-B ΔA40R-rev significantly reduced mRNA levels of IFN-β and of several other innate immune-related genes in infected human macrophages. In immunized mice, MVA-B ΔA40R-rev reduced the magnitude of the HIV-1-specific CD4+ and CD8+ T cell responses compared to MVA-B ΔA40R. These results revealed an immunosuppressive role of the A40 protein, findings relevant for the optimization of poxvirus vectors as vaccines.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.); (M.E.)
- Correspondence: ; Tel.: +34-915-854-560
| |
Collapse
|
37
|
Zhao X, Chu H, Wong BHY, Chiu MC, Wang D, Li C, Liu X, Yang D, Poon VKM, Cai J, Chan JFW, To KKW, Zhou J, Yuen KY. Activation of C-Type Lectin Receptor and (RIG)-I-Like Receptors Contributes to Proinflammatory Response in Middle East Respiratory Syndrome Coronavirus-Infected Macrophages. J Infect Dis 2020; 221:647-659. [PMID: 31562757 PMCID: PMC7107474 DOI: 10.1093/infdis/jiz483] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) poses an ongoing threat to public health worldwide. The studies of MERS patients with severe disease and experimentally infected animals showed that robust viral replication and intensive proinflammatory response in lung tissues contribute to high pathogenicity of MERS-CoV. We sought to identify pattern recognition receptor (PRR) signaling pathway(s) that mediates the inflammatory cascade in human macrophages upon MERS-CoV infection. METHODS The potential signaling pathways were manipulated individually by pharmacological inhibition, small interfering ribonucleic acid (siRNA) depletion, and antibody blocking. The MERS-CoV-induced proinflammatory response was evaluated by measuring the expression levels of key cytokines and/or chemokines. Reverse transcription-quantitative polymerase chain reaction assay, flow cytometry analysis, and Western blotting were applied to evaluate the activation of related PRRs and engagement of adaptors. RESULTS MERS-CoV replication significantly upregulated C-type lectin receptor (CLR) macrophage-inducible Ca2+-dependent lectin receptor (Mincle). The role of Mincle for MERS-CoV-triggered cytokine/chemokine induction was established based on the results of antibody blockage, siRNA depletion of Mincle and its adaptor spleen tyrosine kinase (Syk), and Syk pharmacological inhibition. The cytokine and/or chemokine induction was significantly attenuated by siRNA depletion of retinoic acid-inducible-I-like receptors (RLR) or adaptor, indicating that RLR signaling also contributed to MERS-CoV-induced proinflammatory response. CONCLUSIONS The CLR and RLR pathways are activated and contribute to the proinflammatory response in MERS-CoV-infected macrophages.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Bosco Ho-Yin Wong
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
| | | | - Dong Wang
- Department of Microbiology, Pokfulam, Hong Kong
| | - Cun Li
- Department of Microbiology, Pokfulam, Hong Kong
| | | | - Dong Yang
- Department of Microbiology, Pokfulam, Hong Kong
| | | | | | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Pokfulam, Hong Kong
- Department of Microbiology, Pokfulam, Hong Kong
- Carol Yu Centre for Infection, Pokfulam, Hong Kong
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
38
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Di Pilato M, Gómez CE, Esteban M, García-Arriaza J. An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design. Vaccines (Basel) 2019; 7:vaccines7040208. [PMID: 31817622 PMCID: PMC6963416 DOI: 10.3390/vaccines7040208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infection production levels of heterologous antigens. Here, we have generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of gp120-specific CD4+ and CD8+ T-cell responses, compared to DNA-gp120/MVA-B; with most of the responses being mediated by the CD8+ T-cell compartment, with a T effector memory phenotype. DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4+ T follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings revealed that this new optimized vaccinia virus promoter could be considered a promising strategy in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Mauro Di Pilato
- Infection and Immunity Group, Istituto di Ricerca in Biomedicina (IRB), Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| |
Collapse
|
39
|
Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sci 2019; 240:117084. [PMID: 31759040 DOI: 10.1016/j.lfs.2019.117084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
As soon as a pathogen invades through the physical barriers of its corresponding host, host mounts a series of protective immune response to get rid of the invading pathogen. Host's pattern recognition receptors (PRR), localized at the cellular surface, cytoplasm and also in the nucleus; recognises pathogen associated molecular patterns (PAMPs) and plays crucial role in directing the immune response to be specific. Inflammatory responses are among the earliest strategies to tackle the pathogen by the host and are tightly regulated by multiple molecular pathways. Inflammasomes are multi-subunit protein complex consisting of a receptor molecule viz. NLRP3, an adaptor molecule- Apoptosis-associated speck-like protein containing a CARD (ASC) and an executioner caspase. Upon infection and/or injury; inflammasome components assemble and oligomerizes leading to the auto cleavage of the pro-caspase-1 to its active form. The activated caspase-1 cleaves immature form of the pro-inflammatory cytokines to their mature form e.g. IL1-β and IL-18 which mount inflammatory response. Moreover, C-terminal end of the Gasdermin D molecule is also cleaved by the caspase-1. The activated N-terminal Gasdermin D molecule form pores in the infected cells leading to their pyroptosis. Hence, inflammasomes drive inflammation during infection and controls the establishment of the pathogen by mounting inflammatory response and activation of the pyroptotic cell death.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
40
|
Zakrzewska K, Arvia R, Torcia MG, Clemente AM, Tanturli M, Castronovo G, Sighinolfi G, Giuggioli D, Ferri C. Effects of Parvovirus B19 In Vitro Infection on Monocytes from Patients with Systemic Sclerosis: Enhanced Inflammatory Pathways by Caspase-1 Activation and Cytokine Production. J Invest Dermatol 2019; 139:2125-2133.e1. [DOI: 10.1016/j.jid.2019.03.1144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023]
|
41
|
Abstract
DNA viruses are linked to many infectious diseases and contribute significantly to human morbidity and mortality worldwide. Moreover, DNA viral infections are usually lifelong and hard to eradicate. Under certain circumstances, these viruses can cause fatal disease, especially in children and immunocompromised patients. An efficient innate immune response against these viruses is critical, not only as the first line of host defense against viral infection but also for mounting more specific and robust adaptive immunity against the virus. Recognition of the viral DNA genome is the very first step of this whole process and is crucial for understanding viral pathogenesis as well as for preventing and treating DNA virus-associated diseases. This review focuses on the current state of our knowledge on how human DNA viruses are sensed by the host innate immune system and how viral proteins counteract this immune response.
Collapse
Affiliation(s)
- Zhe Ma
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Guoxin Ni
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
42
|
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol 2019; 10:451. [PMID: 31118894 PMCID: PMC6504709 DOI: 10.3389/fphar.2019.00451] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation has a crucial role in protection against various pathogens. The inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen sensing and initiation of the inflammatory response in physiological and pathological conditions. The most characterized inflammasome is the NLRP3 inflammasome, which is a known sensor of cell stress and is tightly regulated in resting cells. However, altered regulation of the NLRP3 inflammasome is found in several pathological conditions, including autoimmune disease and cancer. NLRP3 expression was shown to be post-transcriptionally regulated and multiple miRNA have been implicated in post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA based post-transcriptional control of NLRP3 has become a focus of much research, especially as a potential therapeutic approach. In this review, we provide a summary of the recent investigations on the role of miRNA in the post-transcriptional control of the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine production. Current approaches to targeting the inflammasome product were shown to be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several animal models, their therapeutic application in patients remains to be determined.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
43
|
Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 2019; 145:57-72. [PMID: 29981801 DOI: 10.1016/j.addr.2018.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Subunit vaccines containing one or more target antigens from pathogenic organisms represent safer alternatives to whole pathogen vaccines. However, the antigens by themselves are not sufficiently immunogenic and require additives known as adjuvants to enhance immunogenicity and protective efficacy. Assembly of the antigens into virus-like nanoparticles (VLPs) is a better approach as it allows presentation of the epitopes in a more native context. The repetitive, symmetrical, and high density display of antigens on the VLPs mimic pathogen-associated molecular patterns seen on bacteria and viruses. The antigens, thus, might be better presented to stimulate host's innate as well as adaptive immune systems thereby eliciting both humoral and cellular immune responses. Bacteriophages such as phage T4 provide excellent platforms to generate the nanoparticle vaccines. The T4 capsid containing two non-essential outer proteins Soc and Hoc allow high density array of antigen epitopes in the form of peptides, domains, full-length proteins, or even multi-subunit complexes. Co-delivery of DNAs, targeting molecules, and/or molecular adjuvants provides additional advantages. Recent studies demonstrate that the phage T4 VLPs are highly immunogenic, do not need an adjuvant, and provide complete protection against bacterial and viral pathogens. Thus, phage T4 could potentially be developed as a "universal" VLP platform to design future multivalent vaccines against complex and emerging pathogens.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
44
|
Tsitoura E, Kazazi D, Oz-Arslan D, Sever EA, Khalili S, Vassilaki N, Aslanoglou E, Dérian N, Six A, Sezerman OU, Klatzmann D, Mavromara P. Comparison of Dendritic Cell Activation by Virus-Based Vaccine Delivery Vectors Emphasizes the Transcriptional Downregulation of the Oxidative Phosphorylation Pathway. Hum Gene Ther 2019; 30:429-445. [PMID: 30351174 DOI: 10.1089/hum.2018.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antigen delivery platforms based on engineered viruses or virus-like particles are currently developed as vaccines against infectious diseases. As the interaction of vaccines with dendritic cells (DCs) shapes the immunological response, we compared the interaction of a range of virus-based vectors and virus-like particles with DCs in a murine model of systemic administration and transcriptome analyses of splenic DCs. The transcriptome profiles of DCs separated the vaccine vectors into two distinct groups characterized by high- and low-magnitude differential gene expression, which strongly correlated with (1) the surface expression of costimulatory molecules CD40, CD83, and CD86 on DCs, and (2) antigen-specific T-cell responses. Pathway analysis using PANOGA (Pathway and Network-Oriented GWAS Analysis) revealed that the JAK/STAT pathway was significantly activated by both groups of vaccines. In contrast, the oxidative phosphorylation pathway was significantly downregulated only by the high-magnitude DC-stimulating vectors. A gene signature including exclusively chemokine-, cytokine-, and receptor-related genes revealed a vector-specific pattern. Overall, this in vivo DC stimulation model demonstrated a strong relationship between the levels of induced DC maturation and the intensity of T-cell-specific immune responses with a distinct cytokine/chemokine profile, metabolic shifting, and cell surface expression of maturation markers. It could represent an important tool for vaccine design.
Collapse
Affiliation(s)
- Eliza Tsitoura
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Dorothea Kazazi
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Devrim Oz-Arslan
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
- 2 Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Elif Arik Sever
- 3 Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Shirin Khalili
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Niki Vassilaki
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Elina Aslanoglou
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Nicolas Dérian
- 4 Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- 5 AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Adrien Six
- 4 Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- 5 AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Osman Ugur Sezerman
- 3 Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - David Klatzmann
- 4 Sorbonne Université, INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
- 5 AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Penelope Mavromara
- 1 Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
- 6 Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
45
|
Unterholzner L, Almine JF. Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology 2018; 156:217-227. [PMID: 30499584 PMCID: PMC6376273 DOI: 10.1111/imm.13030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Intracellular DNA and RNA sensors play a vital part in the innate immune response to viruses and other intracellular pathogens, causing the secretion of type I interferons, cytokines and chemokines from infected cells. Pathogen RNA can be detected by retinoic-acid inducible gene I-like receptors in the cytosol, whereas cytosolic DNA is recognized by DNA sensors such as cyclic GMP-AMP synthase (cGAS). The resulting local immune response, which is initiated within hours of infection, is able to eliminate many pathogens before they are able to establish an infection in the host. For this reason, all viruses, and some intracellular bacteria and protozoa, need to evade detection by nucleic acid sensors. Immune evasion strategies include the sequestration and modification of nucleic acids, and the inhibition or degradation of host factors involved in innate immune signalling. Large DNA viruses, such as herpesviruses, often use multiple viral proteins to inhibit signalling cascades at several different points; for instance herpes simplex virus 1 targets both DNA sensors cGAS and interferon-γ-inducible protein 16, as well as the adaptor protein STING (stimulator of interferon genes) and other signalling factors in the pathway. Viruses with a small genome encode only a few immunomodulatory proteins, but these are often multifunctional, such as the NS1 protein from influenza A virus, which inhibits RNA sensing in multiple ways. Intracellular bacteria and protozoa can also be detected by nucleic acid sensors. However, as the type I interferon response is not always beneficial for the host under these circumstances, some bacteria subvert, rather than evade, these signalling cascades for their own gain.
Collapse
Affiliation(s)
- Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Jessica F Almine
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
46
|
Li R, Lin J, Hou X, Han S, Weng H, Xu T, Li N, Chai T, Wei L. Characterization and Roles of Cherry Valley Duck NLRP3 in Innate Immunity During Avian Pathogenic Escherichia coli Infection. Front Immunol 2018; 9:2300. [PMID: 30349536 PMCID: PMC6186827 DOI: 10.3389/fimmu.2018.02300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain containing 3 (NLRP3) is a pattern recognition receptor that is involved in host innate immunity and located in the cytoplasm. In the present study, the full-length cDNA of Cherry Valley duck NLRP3 (duNLRP3) (2,805 bp encode 935 amino acids) was firstly cloned from the spleen of healthy Cherry Valley ducks, and the phylogenetic tree indicated that the duNLRP3 has the closest relationship with Anas platyrhynchos in the bird branch. According to quantitative real-time PCR analysis, the duNLRP3 mRNA has a broad expression spectrum in healthy Cherry Valley duck tissues, and the highest expression is in the pancreas. There was significant up-regulation of duNLRP3 mRNA expression in the liver and down-regulation in the spleen after infection with avian pathogenic Escherichia coli (APEC) O1K1, especially at 3 days after the infection. Ducks hatched from NLRP3-lentiviral vector-injected eggs had significantly higher duNLRP3 mRNA expression in the liver, spleen, brain, and cecum, which are tissues usually with lower background expression. The mRNA expression levels of inflammatory cytokines IL-1β, IL-18, and TNF-α significantly increased after the APEC infection in those tissues. The bacterial content in the liver and spleen decreased significantly compared with the NC-lentiviral vector-injected ducks. In addition, in the duck embryo fibroblasts, both of the overexpression and knockdown of duNLRP3 can trigger the innate immune response during the E. coli infection. Specifically, overexpression induced antibacterial activation, and knockdown reduced the antibacterial activity of the host cells. The IL-1β, IL-18, and TNF-α mRNA expressions showed up-regulation or down-regulation. The results demonstrate that duNLRP3 has a certain antibacterial activity during E. coli infection. These findings also contribute to better understanding the importance of duNLRP3 in regulating the inflammatory response and the innate immune system of ducks.
Collapse
Affiliation(s)
- Rong Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Jing Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Xiaolan Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Shaojie Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Hongyu Weng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Ting Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Tongjie Chai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an, China
| |
Collapse
|
47
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
48
|
Langenmayer MC, Lülf-Averhoff AT, Adam-Neumair S, Sutter G, Volz A. Tracking Modified Vaccinia Virus Ankara in the Chicken Embryo: In Vivo Tropism and Pathogenesis of Egg Infections. Viruses 2018; 10:v10090452. [PMID: 30149505 PMCID: PMC6165063 DOI: 10.3390/v10090452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
The Modified Vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus serving as a promising vector vaccine platform to develop vaccines against infectious diseases. In contrast to the well-established replication deficiency and safety of MVA in mammals, much less is known about MVA infection in avian hosts. Here, we used a recombinant MVA expressing fluorescent reporter proteins under transcriptional control of specific viral early and late promoters to study in vivo tropism, distribution, and pathogenesis of MVA infections in embryonated chicken eggs. The chorioallantoic membrane (CAM) of embryonated chicken eggs was inoculated with recombinant MVA, MVA or phosphate-buffered saline. The infection was analyzed by fluorescence microscopy, histology, immunohistochemistry, and virus titration of embryonic tissues. After infection of the CAM, MVA spread to internal and external embryonic tissues with the liver as a major target organ. Macrophages and hematopoietic cells were identified as primary target cells of MVA infection and may be involved in virus spread. Increasing doses of MVA did not result in increased lesion severity or embryonic death. Despite MVA generalization to embryonic tissues, the CAM seems to be the major site of MVA replication. The absence of considerable organ lesions and MVA-associated mortality highlights an excellent safety profile of MVA in chicken hosts.
Collapse
Affiliation(s)
- Martin C Langenmayer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany.
| | | | - Silvia Adam-Neumair
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany.
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany.
| |
Collapse
|
49
|
Removal of the C6 Vaccinia Virus Interferon-β Inhibitor in the Hepatitis C Vaccine Candidate MVA-HCV Elicited in Mice High Immunogenicity in Spite of Reduced Host Gene Expression. Viruses 2018; 10:v10080414. [PMID: 30096846 PMCID: PMC6116028 DOI: 10.3390/v10080414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8⁺ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8⁺ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8⁺ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.
Collapse
|
50
|
Ainouze M, Rochefort P, Parroche P, Roblot G, Tout I, Briat F, Zannetti C, Marotel M, Goutagny N, Auron P, Traverse-Glehen A, Lunel-Potencier A, Golfier F, Masson M, Robitaille A, Tommasino M, Carreira C, Walzer T, Henry T, Zanier K, Trave G, Hasan UA. Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathog 2018; 14:e1007158. [PMID: 30089163 PMCID: PMC6124776 DOI: 10.1371/journal.ppat.1007158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/05/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1β is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1β. Yet, upon expression of the viral early genes, IL-1β transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1β promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1β. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1β regulation.
Collapse
Affiliation(s)
- Michelle Ainouze
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Pauline Rochefort
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Peggy Parroche
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Guillaume Roblot
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Issam Tout
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - François Briat
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Claudia Zannetti
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Marie Marotel
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Nadege Goutagny
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Philip Auron
- Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, France
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | | | | | | | | | | | - Thierry Walzer
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Thomas Henry
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | | | | | - Uzma Ayesha Hasan
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| |
Collapse
|