1
|
Bulumulla S, Xiao L, Feng Y, Ash A, Ryan U, Barbosa AD. Update on transmission of zoonotic Giardia in cattle. Trends Parasitol 2025; 41:210-221. [PMID: 39893145 DOI: 10.1016/j.pt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Giardia is the most common protozoan cause of diarrhoeal illness in humans worldwide. Despite this, our understanding of the zoonotic transmission of Giardia, and in particular the role of cattle as a zoonotic reservoir, is not well understood, due to the limitations of current typing systems and a recent taxonomic revision of the genus. Newly improved multilocus sequencing typing tools are not yet widely used and are not applicable to all species. However, data generated to date suggest that zoonotic transmission of Giardia of bovine origin is limited. Carefully designed epidemiological investigations using improved typing tools are essential to understand the extent of zoonotic transmission from cattle. Improved on-farm biosecurity measures are also needed to control the transmission of zoonotic Giardia in cattle.
Collapse
Affiliation(s)
- Sugandika Bulumulla
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Amanda Ash
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Una Ryan
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Amanda D Barbosa
- Harry Butler Institute, College of Environmental and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| |
Collapse
|
2
|
Varsani A, Hopkins A, Lund MC, Krupovic M. 2024 taxonomic update for the families Naryaviridae, Nenyaviridae, and Vilyaviridae. Arch Virol 2024; 170:18. [PMID: 39671105 DOI: 10.1007/s00705-024-06186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The families Naryaviridae (order Rivendellvirales), Nenyaviridae (order Rohanvirales), and Vilyaviridae (order Cirlivirales), all within the class Arfiviricetes of the phylum Cressdnaviricota, include single-stranded DNA viruses associated with protozoan parasites of the genera Entamoeba and Giardia as well as viruses found in various environmental samples, also likely infecting protozoans. Here, we provide a taxonomic update for these three families, which were recently expanded with multiple new members. In particular, we established seven new genera and nine new species in the family Naryaviridae, one new genus with one new species in the family Nenyaviridae, and three new genera and nine new species in the family Vilyaviridae. We also summarize the genomic properties and protein characteristics, including conserved motifs of the rolling-circle replication initiation proteins, of the viruses in the three families. Notably, the high GC content of vilyavirids (51-61%) and considerably lower GC content of naryavirids and nenyavirids (33-44%) appear to represent an adaptation to their hosts, Giardia and Entamoeba species, respectively.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Andrew Hopkins
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael C Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
3
|
He L, Zhang Y, Li Z, Xiao G, Tian L, Ayanniyi OO, Zhang Q, Yang C. Occurrence and molecular characterization of Giardia spp. in snakes from China. Comp Immunol Microbiol Infect Dis 2024; 114:102247. [PMID: 39383620 DOI: 10.1016/j.cimid.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Giardia intestinalis is a major diarrhea-causing parasite that colonizes the proximal small intestine of humans and various other mammalian species, including pets and livestock. Despite its global occurrence, there is limited information about the epidemiology of Giardia in reptiles, particularly snakes. The aim of this study was to amplify the beta-giardin (bg) gene of Giardia by polymerase chain reaction (PCR), followed by a comparative evolutionary tree analysis to determine the occurrence and molecular characterization of Giardia in snakes. We collected 603 asymptomatic samples from 26 provinces in China, representing species such as Pantherophis guttatus, Pantherophis obsoletus, Pituophis melanoleucus, Thamnophis sirtalis, Lampropeltis getula, and Heterodon nasicus. Ultimately, a occurrence of Giardia infection of 4.15 % was detected in these snakes, with corn snakes (Pantherophis guttatus) having a significantly higher occurrence than other species. Molecular analysis identified assemblage F as the predominant genotype, and also identified an assemblage B that can infect humans and a variety of mammals. The results of this study illustrate the potential risk of transmission of Giardia from snakes to humans, especially in environments where close contact occurs. The present epidemiological study examines epidemiological investigations of Giardia in reptiles, provides data to understand the zoonotic risk of Giardia, and emphasizes the need for targeted surveillance, stringent hygiene measures, and public awareness campaigns to reduce these risks.
Collapse
Affiliation(s)
- Lingru He
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yilei Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zhouchun Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Dangtu Laying Hen Science and Technology Backyard, Maanshan 243199, China
| | - Guodong Xiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Lijie Tian
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Olalekan Opeyemi Ayanniyi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Qingxun Zhang
- Beijing Biodiversity Conservation Research Center, Beijing 100076, China.
| | - Congshan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| |
Collapse
|
4
|
Aranda-Chan V, Cárdenas-Guerra RE, Otero-Pedraza A, Pacindo-Cabrales EE, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Insights into Peptidyl-Prolyl cis- trans Isomerases from Clinically Important Protozoans: From Structure to Potential Biotechnological Applications. Pathogens 2024; 13:644. [PMID: 39204244 PMCID: PMC11357558 DOI: 10.3390/pathogens13080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are present in a wide variety of microorganisms, including protozoan parasites such as Trypanosoma cruzi, Trypanosoma brucei, Trichomonas vaginalis, Leishmania major, Leishmania donovani, Plasmodium falciparum, Plasmodium vivax, Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, and Cryptosporidium hominis, all of which cause important neglected diseases. PPIases are classified as cyclophilins, FKBPs, or parvulins and play crucial roles in catalyzing the cis-trans isomerization of the peptide bond preceding a proline residue. This activity assists in correct protein folding. However, experimentally, the biological structure-function characterization of PPIases from these protozoan parasites has been poorly addressed. The recombinant production of these enzymes is highly relevant for this ongoing research. Thus, this review explores the structural diversity, functions, recombinant production, activity, and inhibition of protozoan PPIases. We also highlight their potential as biotechnological tools for the in vitro refolding of other recombinant proteins from these parasites. These applications are invaluable for the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Alejandro Otero-Pedraza
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Esdras Enoc Pacindo-Cabrales
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (V.A.-C.); (R.E.C.-G.); (A.O.-P.); (E.E.P.-C.); (C.I.F.-P.); (O.M.-F.)
| |
Collapse
|
5
|
Ihara S, Nguyen BV, Miyamoto Y, Eckmann L. Mucosal vaccination in a murine gnotobiotic model of Giardia lamblia infection. Infect Immun 2024; 92:e0006524. [PMID: 38722167 PMCID: PMC11237505 DOI: 10.1128/iai.00065-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024] Open
Abstract
Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.
Collapse
Affiliation(s)
- Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Brian V. Nguyen
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Hagen KD, Hart CJS, McInally SG, Dawson SC. Harnessing the power of new genetic tools to illuminate Giardia biology and pathogenesis. Genetics 2024; 227:iyae038. [PMID: 38626297 PMCID: PMC11151923 DOI: 10.1093/genetics/iyae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024] Open
Abstract
Giardia is a prevalent single-celled microaerophilic intestinal parasite causing diarrheal disease and significantly impacting global health. Double diploid (essentially tetraploid) Giardia trophozoites have presented a formidable challenge to the development of molecular genetic tools to interrogate gene function. High sequence divergence and the high percentage of hypothetical proteins lacking homology to proteins in other eukaryotes have limited our understanding of Giardia protein function, slowing drug target validation and development. For more than 25 years, Giardia A and B assemblages have been readily amenable to transfection with plasmids or linear DNA templates. Here, we highlight the utility and power of genetic approaches developed to assess protein function in Giardia, with particular emphasis on the more recent clustered regularly interspaced palindromic repeats/Cas9-based methods for knockdowns and knockouts. Robust and reliable molecular genetic approaches are fundamental toward the interrogation of Giardia protein function and evaluation of druggable targets. New genetic approaches tailored for the double diploid Giardia are imperative for understanding Giardia's unique biology and pathogenesis.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Christopher J S Hart
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Shane G McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Egan S, Barbosa AD, Feng Y, Xiao L, Ryan U. Rabbits as reservoirs: An updated perspective of the zoonotic risk from Cryptosporidium and Giardia. Vet Parasitol 2024; 327:110151. [PMID: 38422710 DOI: 10.1016/j.vetpar.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Rabbits are highly abundant in many countries and can serve as reservoirs of diseases for a diversity of pathogens including the enteric protozoan parasites, Cryptosporidium and Giardia. Both parasites shed environmentally robust environmental stages (oo/cysts) and have been responsible for numerous waterborne outbreaks of diseases. Cryptosporidium hominis and C. parvum are responsible for most infections in humans, while Giardia duodenalis assemblages A and B, cause most human cases of giardiasis. Cryptosporidium cuniculus, the dominant species infecting rabbits, is the only spceies other than C. hominis and C. parvum to have caused a waterborne outbreak of gastritis, which occurred in the United Kingdom in 2008. This review examines the prevalence of Cryptosporidium and Giardia species in rabbits to better understand the public health risks of contamination of water sources with Cryptosporidium and Giardia oo/cysts from rabbits. Despite the abundance of C. cuniculus in rabbits, reports in humans are relatively rare, with the exception of the United Kingdom and New Zealand, and reports of C. cuniculus in humans from the United Kingdom have declined substantially since the 2008 outbreak. Subtyping of C. cuniculus has supported the potential for zoonotic transmission. Relatively few studies have been conducted on Giardia, but assemblage B dominates. However, improved typing methods are required to better understand the transmission dynamics of Giardia assemblages in rabbits. Similarly, it is not well understood if pet rabbits or contaminated water are the main source of C. cuniculus infections in humans. Well-planned studies using high-resolution typing tools are required to understand the transmission dynamics better and quantify the public health risk of Cryptosporidium and Giardia from rabbits.
Collapse
Affiliation(s)
- Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Amanda D Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia; CAPES Foundation, Ministry of Education of Brazil, Brasilia DF 70040-020, Brazil
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Pipaliya SV, Dacks JB, Croxen MA. Genomic survey maps differences in the molecular complement of vesicle formation machinery between Giardia intestinalis assemblages. PLoS Negl Trop Dis 2023; 17:e0011837. [PMID: 38109380 PMCID: PMC10758263 DOI: 10.1371/journal.pntd.0011837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/01/2024] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Giardia intestinalis is a globally important microbial pathogen with considerable public health, agricultural, and economic burden. Genome sequencing and comparative analyses have elucidated G. intestinalis to be a taxonomically diverse species consisting of at least eight different sub-types (assemblages A-H) that can infect a great variety of animal hosts, including humans. The best studied of these are assemblages A and B which have a broad host range and have zoonotic transmissibility towards humans where clinical Giardiasis can range from asymptomatic to diarrheal disease. Epidemiological surveys as well as previous molecular investigations have pointed towards critical genomic level differences within numerous molecular pathways and families of parasite virulence factors within assemblage A and B isolates. In this study, we explored the necessary machinery for the formation of vesicles and cargo transport in 89 Canadian isolates of assemblage A and B G. intestinalis. Considerable variability within the molecular complement of the endolysosomal ESCRT protein machinery, adaptor coat protein complexes, and ARF regulatory system have previously been reported. Here, we confirm inter-assemblage, but find no intra-assemblage variation within the trafficking systems examined. This variation includes losses of subunits belonging to the ESCRTIII as well as novel lineage specific duplications in components of the COPII machinery, ARF1, and ARFGEF families (BIG and CYTH). Since differences in disease manifestation between assemblages A and B have been controversially reported, our findings may well have clinical implications and even taxonomic, as the membrane trafficking system underpin parasite survival, pathogenesis, and propagation.
Collapse
Affiliation(s)
- Shweta V. Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice [Budweis], Czech Republic
| | - Matthew A. Croxen
- Division of Diagnostic and Applied Microbiology, Department of Lab Medicine and Pathology, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Alberta Precision Laboratories, Alberta Public Health Laboratory, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Chang Y, Li J, Zhang L. Genetic diversity and molecular diagnosis of Giardia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105482. [PMID: 37451417 DOI: 10.1016/j.meegid.2023.105482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Giardia is a genus of flagellated protozoan parasites that infect the small intestine of humans and animals, causing the diarrheal illness known as giardiasis. Giardia exhibits significant genetic diversity among its isolates, which can have important implications for disease transmission and clinical presentation. This diversity is influenced by the coevolution of Giardia with its host, resulting in the development of unique genetic assemblages with distinct phenotypic characteristics. Although panmixia has not been observed, some assemblages appear to have a broader host range and exhibit higher transmission rates. Molecular diagnostic methods enable researchers to examine the genetic diversity of Giardia populations, enhancing our understanding of the genetic diversity, population structure, and transmission patterns of this pathogen and providing insights into clinical presentations of giardiasis.
Collapse
Affiliation(s)
- Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan 450046, China.
| |
Collapse
|
10
|
Kim J, Park EA, Shin MY, Park SJ. Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia. Microbiol Spectr 2023; 11:e0491922. [PMID: 36877015 PMCID: PMC10100927 DOI: 10.1128/spectrum.04919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2023] [Indexed: 03/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that control the eukaryotic cell cycle. Limited information is available on Giardia lamblia CDKs (GlCDKs), GlCDK1 and GlCDK2. After treatment with the CDK inhibitor flavopiridol-HCl (FH), division of Giardia trophozoites was transiently arrested at the G1/S phase and finally at the G2/M phase. The percentage of cells arrested during prophase or cytokinesis increased, whereas DNA synthesis was not affected by FH treatment. Morpholino-mediated depletion of GlCDK1 caused arrest at the G2/M phase, while GlCDK2 depletion resulted in an increase in the number of cells arrested at the G1/S phase and cells defective in mitosis and cytokinesis. Coimmunoprecipitation experiments with GlCDKs and the nine putative G. lamblia cyclins (Glcyclins) identified Glcyclins 3977/14488/17505 and 22394/6584 as cognate partners of GlCDK1 and GlCDK2, respectively. Morpholino-based knockdown of Glcyclin 3977 or 22394/6584 arrested cells in the G2/M phase or G1/S phase, respectively. Interestingly, GlCDK1- and Glcyclin 3977-depleted Giardia showed significant flagellar extension. Altogether, our results suggest that GlCDK1/Glcyclin 3977 plays an important role in the later stages of cell cycle control and in flagellar biogenesis. In contrast, GlCDK2 along with Glcyclin 22394 and 6584 functions from the early stages of the Giardia cell cycle. IMPORTANCE Giardia lamblia CDKs (GlCDKs) and their cognate cyclins have not yet been studied. In this study, the functional roles of GlCDK1 and GlCDK2 were distinguished using morpholino-mediated knockdown and coimmunoprecipitation. GlCDK1 with Glcyclin 3977 plays a role in flagellum formation as well as cell cycle control of G. lamblia, whereas GlCDK2 with Glcyclin 22394/6584 is involved in cell cycle control.
Collapse
Affiliation(s)
- Juri Kim
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Ah Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Mee Young Shin
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon-Jung Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Wielinga C, Williams A, Monis P, Thompson RCA. Proposed taxonomic revision of Giardia duodenalis. INFECTION, GENETICS AND EVOLUTION 2023; 111:105430. [PMID: 36972861 DOI: 10.1016/j.meegid.2023.105430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Giardia duodenalis, Giardia enterica, Giardia intestinalis and Giardia lamblia are the synonyms for a species complex of 8-11 phylogenetically distinct species of Giardia infecting a broad range of animals including humans. Retrospective alignment of 8409 gene sequences from 3 loci confirmed host associations of Assemblages and sub-Assemblages within this species complex and molecular species delimitation testing confirmed that the Assemblages and sub-Assemblages AI and AII should be recognised as distinct species. It is recommended to synonymise the Assemblages with historic species descriptions based on host associations and consider descriptions for new species where no corresponding description exists. Synonyms, Giardia duodenalis, Giardia intestinalis and Giardia enterica, to be removed from synonymy: synonymise "Giardia duodenalis-Assemblage AI" syn. n. to Giardia duodenalis (Davaine, 1875), Kofoid and Christansen, 1915, synonymise "Giardia duodenalis-Assemblage AII" syn. n. to Giardia intestinalis (Lambl, 1859; Blanchard, 1885), Alexeieff, 1914 and synonymise "Giardia duodenalis-Assemblage B" syn. n. to Giardia enterica (Grassi, 1881a), Kofoid, 1920. Host specific Assemblages synonymised: synonymise canid-associated "Giardia duodenalis-Assemblage C" syn. n. to Giardia canisHegner, 1922; synonymise artiodactyl-associated "Giardia duodenalis-Assemblage E" syn. n. to Giardia bovisFantham, 1921; synonymise feline-associated "Giardia duodenalis-Assemblage F" syn. n. to Giardia catiDeschiens, 1925; and synonymise rodent-associated "Giardia duodenalis-Assemblage G" syn. n. to Giardia simoniLavier, 1924. New description for parasite type infecting specific host: canid-associated "Giardia duodenalis-Assemblage D" named Giardia lupus, sp. n. (LSID: urn:lsid:zoobank.org:act:1651A8CB-CBA8-40D9-AB59-D4AB11AC18A3). New proposed names and descriptions for consideration for parasite types infecting specific hosts: cervid-associated "Giardia duodenalis-sub-Assemblage AIII" for consideration "cervus" and Pinnipedia-associated "Giardia duodenalis-Assemblage H" for consideration "pinnipedis".
Collapse
Affiliation(s)
- Caroline Wielinga
- School of Veterinary and Health Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Andrew Williams
- School of Veterinary and Health Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Paul Monis
- South Australian Water Corporation, Adelaide, South Australia 5000, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Health Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
12
|
Tijani MK, Köster PC, Guadano-Procesi I, George IS, Abodunrin E, Adeola A, Dashti A, Bailo B, González-Barrio D, Carmena D. High Diversity of Giardia duodenalis Assemblages and Sub-Assemblages in Asymptomatic School Children in Ibadan, Nigeria. Trop Med Infect Dis 2023; 8:tropicalmed8030152. [PMID: 36977153 PMCID: PMC10051407 DOI: 10.3390/tropicalmed8030152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Giardia duodenalis is a significant contributor to the burden of diarrheal disease in sub-Saharan Africa. This study assesses the occurrence and molecular diversity of G. duodenalis and other intestinal parasites in apparently healthy children (n = 311) in Ibadan, Nigeria. Microscopy was used as a screening method and PCR and Sanger sequencing as confirmatory and genotyping methods, respectively. Haplotype analyses were performed to examine associations between genetic variants and epidemiological variables. At microscopy examination, G. duodenalis was the most prevalent parasite found (29.3%, 91/311; 95% CI: 24.3–34.7), followed by Entamoeba spp. (18.7%, 58/311; 14.5–23.4), Ascaris lumbricoides (1.3%, 4/311; 0.4–3.3), and Taenia sp. (0.3%, 1/311; 0.01–1.8). qPCR confirmed the presence of G. duodenalis in 76.9% (70/91) of the microscopy-positive samples. Of them, 65.9% (60/91) were successfully genotyped. Assemblage B (68.3%, 41/60) was more prevalent than assemblage A (28.3%, 17/60). Mixed A + B infections were identified in two samples (3.3%, 2/60). These facts, together with the absence of animal-adapted assemblages, suggest that human transmission of giardiasis was primarily anthroponotic. Efforts to control G. duodenalis (and other fecal-orally transmitted pathogens) should focus on providing safe drinking water and improving sanitation and personal hygiene practices.
Collapse
Affiliation(s)
- Muyideen K. Tijani
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 221 85 Lund, Sweden
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - Isabel Guadano-Procesi
- Department of Clinical Sciences and Translational Medicine, Faculty of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Imo S. George
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Elizabeth Abodunrin
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Adedamola Adeola
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan 200284, Nigeria
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
- Correspondence: (D.G.-B.); (D.C.)
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Madrid, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
- Correspondence: (D.G.-B.); (D.C.)
| |
Collapse
|
13
|
Sangkanu S, Paul AK, Chuprom J, Mitsuwan W, Boonhok R, de Lourdes Pereira M, Oliveira SMR, Wilairatana P, Rahmatullah M, Wiart C, Nawaz M, Sin C, Kayesth S, Nissapatorn V. Conserved Candidate Antigens and Nanoparticles to Develop Vaccine against Giardia intestinalis. Vaccines (Basel) 2022; 11:vaccines11010096. [PMID: 36679941 PMCID: PMC9863896 DOI: 10.3390/vaccines11010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Giardia intestinalis (Giardia lambia, Giardia duodenalis) infections in humans may be asymptomatic or symptomatic and associated with diarrhea (without blood), abdominal cramps, bloating, flatulence, and weight loss. The protozoan Giardia is the third most common cause of diarrhea and death in children under five, preceded only by rotavirus and by Cryptosporidium parvum and C. hominis infections. Antimicrobial drugs, particularly 5-nitroimidazole (5-NIs), are used to treat giardiasis in humans. Immunologically naive or immunocompromised host are more vulnerable to Giardia infection, whereas a degree of resistance to this protozoan is present in humans living in endemic areas. This suggests that vaccination may be a potential and appropriate means to control this parasitic disease outbreak and protect the human population. This review discusses Giardia antigens related to vaccine development. Additionally, based on the latest development of nanoparticle technology, a combination of methods for future research and development is proposed for the design of the next generation of powerful immunogens and an effective vaccine against Giardia.
Collapse
Affiliation(s)
- Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Julalak Chuprom
- School of Languages and General Education (SOLGEN), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Research Excellence Center for Innovation and Health Products (RECIHP), Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Sunil Kayesth
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence:
| |
Collapse
|
14
|
Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, Aebischer T, Langeland N, Hanevik K. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia. Int J Parasitol Drugs Drug Resist 2022; 21:51-60. [PMID: 36682328 PMCID: PMC9871439 DOI: 10.1016/j.ijpddr.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Astrid L Gamlem
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kirsti B Hauge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Juha Vahokoski
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Application of Proteomics to the Study of the Therapeutics and Pathogenicity of Giardia duodenalis. Diagnostics (Basel) 2022; 12:diagnostics12112744. [DOI: 10.3390/diagnostics12112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Giardia duodenalis remains a neglected tropical disease. A key feature of the sustained transmission of Giardia is the ability to form environmentally resistant cysts. For the last 38 years, proteomics has been utilised to study various aspects of the parasite across different life cycle stages. Thirty-one articles have been published in PubMed from 2012 to 2022 related to the proteomics of G. duodenalis. Currently, mass spectrometry with LC-MS/MS and MALDI-TOF/TOF has been commonly utilised in proteomic analyses of Giardia, which enables researchers to determine potential candidates for diagnostic biomarkers as well as vaccine and drug targets, in addition to allowing them to investigate the virulence of giardiasis, the pathogenicity mechanisms of G. duodenalis, and the post-translational modifications of Giardia proteins throughout encystation. Over the last decade, valuable information from proteomics analyses of G. duodenalis has been discovered in terms of the pathogenesis and virulence of Giardia, which may provide guidance for the development of better means with which to prevent and reduce the impacts of giardiasis. Nonetheless, there is room for improving proteomics analyses of G. duodenalis, since genomic sequences for additional assemblages of Giardia have uncovered previously unknown proteins associated with the Giardia proteome. Therefore, this paper aims to review the applications of proteomics for the characterisation of G. duodenalis pathogenicity and the discovery of novel vaccine as well as drug targets, in addition to proposing some general directions for future Giardia proteomic research.
Collapse
|
16
|
Seabolt MH, Roellig DM, Konstantinidis KT. Genomic comparisons confirm Giardia duodenalis sub-assemblage AII as a unique species. Front Cell Infect Microbiol 2022; 12:1010244. [PMID: 36325462 PMCID: PMC9618722 DOI: 10.3389/fcimb.2022.1010244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Giardia duodenalis is a parasitic flagellated protozoan which infects a wide range of mammalian hosts, including humans, and is subdivided into at least eight genetic assemblages commonly thought to represent cryptic species. Molecular studies have shown that G. duodenalis assemblage A, which parasitizes humans and animals, contains several phylogenetically distinct groupings known as sub-assemblages. Molecular studies employing poor phylogenetic-resolution markers routinely recover these sub-assemblages, implying that they represent evolutionarily distinct clades and possibly cryptic species, a hypothesis which is supported by epidemiologic trends. Here, we further tested this hypothesis by using available data from 41 whole genomes to characterize sub-assemblages and coalescent techniques for statistical estimation of species boundaries coupled to functional gene content analysis, thereby assessing the stability and distinctiveness of clades. Our analysis revealed two new sub-assemblage clades as well as novel signatures of gene content geared toward differential host adaptation and population structuring via vertical inheritance rather than recombination or panmixia. We formally propose sub-assemblage AII as a new species, Giardia hominis, while preserving the name Giardia duodenalis for sub-assemblage AI. Additionally, our bioinformatic methods broadly address the challenges of identifying cryptic microbial species to advance our understanding of emerging disease epidemiology, which should be broadly applicable to other lower eukaryotic taxa of interest. Giardia hominis n. sp. Zoobank LSID: urn:lsid: zoobank.org:pub:4298F3E1-E3EF-4977-B9DD-5CC59378C80E.
Collapse
Affiliation(s)
- Matthew H. Seabolt
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Public Health Office, Leidos Inc., Reston, VA, United States
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Konstantinos T. Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
17
|
Abou-Seri HM, Ibrahim A, Zahran F. Possible Correlation between Giardia duodenalis Genotypes and Fecal Calprotectin in Children with Diarrhea. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:488-496. [PMID: 36694565 PMCID: PMC9825697 DOI: 10.18502/ijpa.v17i4.11275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Background Giardiasis is one of the leading causes of diarrhea, particularly among children under the age of five in developing countries. Fecal calprotectin (FC) is an important biomarker for diagnosis and monitoring of inflammtory bowel disease, but other diagnoses should be considered in light of its elevation. We aimed to evaluate FC level in patients diagnosed with giardiasis and elucidate a possible correlation between Giardia genotypes and FC levels. Methods Overall, 120 fecal samples were collected from children aged 4-12 years and tested for giardiasis by light microscopy. Out of which, 50 samples were enrolled within two groups: group I "cases" and group II "controls" and then subjected to PCR amplification, sequencing of the beta-giardin (bg) gene of the parasite, and FC evaluation. Results Assemblage B was identified in 75%, and assemblage A in 25% of samples. FC levels were statistically elevated in "group I" in comparison to "group II". Likewise, there was a statistically significant difference between FC levels in patients infected with assemblage A and assemblage B with a mean of 114 μg/gm and 202 μg/gm, respectively. Conclusion The study highlighted the possible association between Giardia genotype B and elevated FC levels, further detailed studies are necessary to clarify these finding.
Collapse
Affiliation(s)
- Hanan M Abou-Seri
- Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Asmaa Ibrahim
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City (GEBRI, USC), Sadat, Egypt
| | - Fatima Zahran
- Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Dougherty M, Bartelt LA. Giardia and growth impairment in children in high-prevalence settings: consequence or co-incidence? Curr Opin Infect Dis 2022; 35:417-423. [PMID: 35980005 PMCID: PMC10373467 DOI: 10.1097/qco.0000000000000877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Giardia is a common intestinal parasite worldwide, and infection can be associated with clear, and sometimes persistent symptomatology. However, in children in high-prevalence settings, it is most often not associated with or is perhaps even protective against acute diarrhea. Nonetheless, recent longitudinal studies in high-prevalence settings increasingly identify an association with long-term outcomes that has been difficult to discern. RECENT FINDINGS Recent studies have made progress in disentangling this apparent paradox. First, prospective, well characterized cohort studies have repeatedly identified associations between Giardia infection, gut function, and child growth. Second, experimental animal and in-vitro models have further characterized the biological plausibility that Giardia could impair intestinal function and subsequently child development through different pathways, depending upon biological and environmental factors. Finally, new work has shed light on the potential for Giardia conspiring with specific other gut microbes, which may explain discrepant findings in the literature, help guide future higher resolution analyses of this pathogen, and inform new opportunities for intervention. SUMMARY Recent prospective studies have confirmed a high, if not universal, prevalence of persistent Giardia infections in low-and-middle income countries associated with child-growth shortfalls and altered gut permeability. However, the predominance of subclinical infections limits understanding of the true clinical impact of endemic pediatric giardiasis, and global disease burdens remain uncalculated. Integrating the role of Giardia in multipathogen enteropathies and how nutritional, microbial, metabolic, and pathogen-strain variables influence Giardia infection outcomes could sharpen delineations between pathogenic and potentially beneficial attributes of this enigmatic parasite.
Collapse
Affiliation(s)
- Michael Dougherty
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill
- Rex Digestive Healthcare, UNC REX Healthcare, Raleigh
| | - Luther A. Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Innovative Hybrid-Alignment Annotation Method for Bioinformatics Identification and Functional Verification of a Novel Nitric Oxide Synthase in Trichomonas vaginalis. BIOLOGY 2022; 11:biology11081210. [PMID: 36009837 PMCID: PMC9404748 DOI: 10.3390/biology11081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Both the annotation and identification of genes in pathogenic parasites remain challenging. As a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV). However, nitric oxide synthase (NOS) has not yet been annotated in the TV genome. By aligning whole coding sequences of TV against a thousand sequences of known proteins from other organisms via the Smith–Waterman and Needleman–Wunsch algorithms, we developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV. A novel NOS of TV (TV NOS) with a high witness-to-suspect ratio, which was originally annotated as a hydrogenase in the NCBI database, was successfully identified. We then performed in silico modeling of the protein structure and the molecular docking of all cofactors (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD)), cloned the gene, expressed and purified the protein, and ultimately performed mass spectrometry analysis and enzymatic activity assays. We clearly showed that although the predicted structure of TV NOS is not similar to that of NOS proteins of other species, all cofactor-binding motifs can interact with their ligands with high affinities. Most importantly, the purified protein is a functional NOS, as it has a high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes. Abstract Both the annotation and identification of genes in pathogenic parasites are still challenging. Although, as a survival factor, nitric oxide (NO) has been proven to be synthesized in Trichomonas vaginalis (TV), nitric oxide synthase (NOS) has not yet been annotated in the TV genome. We developed a witness-to-suspect strategy to identify incorrectly annotated genes in TV via the Smith–Waterman and Needleman–Wunsch algorithms through in-depth and repeated alignment of whole coding sequences of TV against thousands of sequences of known proteins from other organisms. A novel NOS of TV (TV NOS), which was annotated as hydrogenase in the NCBI database, was successfully identified; this TV NOS had a high witness-to-suspect ratio and contained all the NOS cofactor-binding motifs (NADPH, tetrahydrobiopterin (BH4), heme and flavin adenine dinucleotide (FAD) motifs). To confirm this identification, we performed in silico modeling of the protein structure and cofactor docking, cloned the gene, expressed and purified the protein, performed mass spectrometry analysis, and ultimately performed an assay to measure enzymatic activity. Our data showed that although the predicted structure of the TV NOS protein was not similar to the structure of NOSs of other species, all cofactor-binding motifs could interact with their ligands with high affinities. We clearly showed that the purified protein had high enzymatic activity for generating NO in vitro. This study provides an innovative approach to identify incorrectly annotated genes in TV and highlights a novel NOS that might serve as a virulence factor of TV.
Collapse
|
20
|
Veldhuis FL, Nijsse R, Wagenaar JA, Arkesteijn G, Kooyman FNJ. Variation in haplotypes in single cysts of assemblages C and D, but not of assemblage E of Giardia duodenalis. BMC Microbiol 2022; 22:166. [PMID: 35754024 PMCID: PMC9235224 DOI: 10.1186/s12866-022-02581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Background Giardia duodenalis, a single-celled intestinal parasite, is divided into eight assemblages (A-H), with differences in host specificity. Giardia duodenalis reproduces asexually and cycles between the binucleated trophozoite (4 N) and the infectious cyst with four nuclei (16 N). Interaction between the nuclei is limited. Therefore, genetic drift causes differences in genetic make-up between the non-daughter nuclei; the allelic sequence heterozygosity (ASH). The ASH is low (0.01%—0.0023%) for the related assemblages A and E, higher (0.43–0.53) for assemblage B and much higher (0.74% -0.89%) for the assemblage C and D at the root of the phylogenetic tree. The heterozygosity in assemblage F, in the same clade as assemblage A and E, was unknown. The heterozygosity in the sequences of the gdh and dis3 genes was used as proxy for the ASH and whole genome amplification of single cysts followed by cloning and Sanger sequencing of dis3 fragment could reveal the genetic variation within the cyst. The aim of the study was to determine the level of heterozygosity within pooled and single cysts of different assemblages. Results The heterozygosity in gdh and dis3 was determined in pooled cysts of the assemblages A to F. Heterozygosity in the isolates of the assemblages C (n = 2) and D (n = 1) ranged from 0.41% to 0.82% for gdh and dis3 and no heterozygosity was found in the isolates of the assemblages A (n = 4), E (n = 3) and F (n = 3). The heterozygosity in assemblage B (n = 7) was intermediate (0% to 0.62%). Next, the number of haplotypes of dis3 was determined for single cysts of assemblages C, D and E. In the assemblages C and D, two to four haplotypes were found per cyst, while in assemblage E only one haplotype was identified. Conclusions Having high heterozygosity is characteristic for the assemblages C and D, while having a low heterozygosity is characteristic for the clade with the assemblages A, E and F. Presence of more than 1 haplotype per cyst in assemblage C and D suggests differences between the non-daughter nuclei, in contrast to the one haplotype in assemblage E.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02581-3.
Collapse
Affiliation(s)
- Floor L Veldhuis
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rolf Nijsse
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ger Arkesteijn
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frans N J Kooyman
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Asghari A, Motazedian MH, Asgari Q, Shamsi L, Sarkari B, Shahabi S, Mohammadi-Ghalehbin B. Occurrence, genetic characterization, and zoonotic importance of Giardia duodenalis in various species of rodents (Mus musculus, Rattus norvegicus, and Rattus rattus). Comp Immunol Microbiol Infect Dis 2022; 85:101812. [PMID: 35429925 DOI: 10.1016/j.cimid.2022.101812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/11/2023]
Abstract
Giardia duodenalis is a well-known flagellated parasite and the causative agent of protozoal diarrhea in animals and humans worldwide. Current study was aimed at determination of G. duodenalis prevalence, genetic variation and zoonotic significance in various species of rodents in Shiraz, southwestern Iran. In brief, 120 fecal specimens were collected from rodents (Rattus rattus, Rattus norvegicus, and Mus musculus) during May up to November 2021 and microscopically examined for Giardia cysts. Further molecular characterization of positive samples was done by nested-PCR, followed by nucleotide sequencing of the triose phosphate isomerase (tpi) gene. A total prevalence of 3.3% (4/120) was observed in rodents, with highest rate in black rats [5% (2/40)]. Regarding brown rats and house mice, only one sample was found to be positive, showing 2.5% and 2.5% prevalence, respectively. It is noteworthy that Giardia B and G assemblages were found in black rats (one case/genotype), whereas the only positive samples from brown rats and house mice were characterized as assemblage G. The major findings of the present study were the presence of both zoonotic and non-zoonotic Giardia assemblages in examined rats in Shiraz and the potential of black rats to harbor Giardia infection to humans. These concerns should be taken seriously in terms of public health. Nevertheless, the true epidemiology and assemblage distribution of Giardia is still open to question.
Collapse
Affiliation(s)
- Ali Asghari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Hossein Motazedian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Laya Shamsi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeed Shahabi
- Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
22
|
Genotypic and Epidemiologic Profiles of Giardia duodenalis in Four Brazilian Biogeographic Regions. Microorganisms 2022; 10:microorganisms10050940. [PMID: 35630389 PMCID: PMC9142931 DOI: 10.3390/microorganisms10050940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Human infections with gut protozoan parasites are neglected and not targeted by specific control initiatives, leading to a knowledge gap concerning their regional diversity and epidemiology. The present study aims to explore Giardia duodenalis genetic diversity and assess the epidemiologic scenario of subclinical infections in different Brazilian biogeographic regions. Cross-sectional surveys (n = 1334 subjects) were conducted in four municipalities in order to obtain fecal samples and socioenvironmental data. Microscopy of non-diarrheal feces and nucleotide sequencing of a β-giardin gene fragment were performed. From a total of 51 samples that could be sequenced, 27 (52.9%) β-giardin sequences were characterized as assemblage A and 24 (47.1%) as assemblage B. In the Amazon, assemblage B was the most frequently detected, predominantly BIII, and with two novel sub-assemblages. Assemblage A predominated in the extra-Amazon region, with five novel sub-assemblages. Prevalence reached 17.8% (64/360) in the Amazon, 8.8% (48/544) in the Atlantic Forest, 7.4% (22/299) in Cerrado and 2.3% (3/131) in the Semiarid. People living in poverty and extreme poverty presented significantly higher positivity rates. In conclusion, subclinical giardiasis is endemic in Brazilian communities in different biogeographic regions, presenting high genetic diversity and a heterogeneous genotypic distribution.
Collapse
|
23
|
Rojas L, Grüttner J, Ma’ayeh S, Xu F, Svärd SG. Dual RNA Sequencing Reveals Key Events When Different Giardia Life Cycle Stages Interact With Human Intestinal Epithelial Cells In Vitro. Front Cell Infect Microbiol 2022; 12:862211. [PMID: 35573800 PMCID: PMC9094438 DOI: 10.3389/fcimb.2022.862211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals’ intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia’s molecular pathogenesis.
Collapse
Affiliation(s)
- Laura Rojas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- *Correspondence: Staffan G. Svärd,
| |
Collapse
|
24
|
Ihara S, Miyamoto Y, Le CHY, Tran VN, Hanson EM, Fischer M, Hanevik K, Eckmann L. Conserved metabolic enzymes as vaccine antigens for giardiasis. PLoS Negl Trop Dis 2022; 16:e0010323. [PMID: 35468132 PMCID: PMC9037923 DOI: 10.1371/journal.pntd.0010323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/12/2022] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4β7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.
Collapse
Affiliation(s)
- Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Christine H. Y. Le
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Vivien N. Tran
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Elaine M. Hanson
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Marvin Fischer
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
25
|
Köster PC, Lapuente J, Pizarro A, Prieto-Pérez L, Pérez-Tanoira R, Dashti A, Bailo B, Muadica AS, González-Barrio D, Calero-Bernal R, Ponce-Gordo F, Carmena D. Presence and genetic diversity of enteric protists in captive and semi-captive non-human primates in côte d’Ivoire, Sierra Leone, and Peru. Int J Parasitol Parasites Wildl 2022; 17:26-34. [PMID: 34976722 PMCID: PMC8688894 DOI: 10.1016/j.ijppaw.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
Abstract
Little information is currently available on the occurrence and genetic diversity of pathogenic and commensal protist species in captive and semi-captive non-human primates (NHP) resident in zoological gardens or sanctuaries in low- and medium-income countries. In this molecular-based study, we prospectively collected individual faecal samples from apparently healthy NHP at the Abidjan Zoological Garden (AZG) in Côte d’Ivoire, the Tacugama Sanctuary (TS) in Sierra Leone, and the Quistococha Zoological Garden (QZG) in Peru between November 2018 and February 2020. We evaluated for the presence of pathogenic (Cryptosporidium spp., Entamoeba histolytica, Giardia duodenalis, Blastocystis sp., Enterocytozoon bieneusi, Balantioides coli) and commensal (Entamoeba dispar, Troglodytella abrassarti) protist species using PCR methods and Sanger sequencing. Giardia duodenalis was the most prevalent species found (25.9%, 30/116), followed by Blastocystis sp. (22.4%, 26/116), and E. dispar (18.1%, 21/116). We detected E. bieneusi (4.2%, 1/24) and T. abrassarti (12.5%, 3/24) only on NHP from AZG. Cryptosporidium spp., E. histolytica, and B. coli were undetected at the three sampling sites investigated here. Sequence analyses revealed the presence of zoonotic sub-assemblages BIII (n = 1) in AZG and BIV (n = 1) in TS within G. duodenalis. We identified Blastocystis subtype ST3 (100%, 6/6) in AZG, ST1 (80.0%, 12/15), ST2 (6.7%, 1/15), and ST3 (13.3%, 2/15) in TS, and ST2 (80.0%, 4/5) and ST3 (20.0%, 1/5) in QZG. The only E. bieneusi isolate detected here was identified as zoonotic genotype CAF4. Our PCR-based data indicate that potentially pathogenic protist species including G. duodenalis, Blastocystis sp., E. bieneusi, and B. coli are present at variable rates in the three NHP populations investigated here. The identification of zoonotic genotypes within these species indicates that human-NHP transmission is possible, although the extent and directionality of these events need to be elucidated in future molecular surveys. Giardia and Blastocystis are highly prevalent in confined non-human primates. Diarrhoea-causing Cryptosporidium and Entamoeba histolytica were undetected. First description of Enterocytozoon bieneusi genotype CAF4 in non-human primates. Confined non-human primates harbour protist species with zoonotic potential. Cross-species (including human) transmission is possible in zoos and sanctuaries.
Collapse
|
26
|
Zajaczkowski P, Lee R, Fletcher-Lartey SM, Alexander K, Mahimbo A, Stark D, Ellis JT. The controversies surrounding Giardia intestinalis assemblages A and B. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100055. [PMID: 35284870 PMCID: PMC8906113 DOI: 10.1016/j.crpvbd.2021.100055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
Giardia intestinalis continues to be one of the most encountered parasitic diseases around the world. Although more frequently detected in developing countries, Giardia infections nonetheless pose significant public health problems in developed countries as well. Molecular characterisation of Giardia isolates from humans and animals reveals that there are two genetically different assemblages (known as assemblage A and B) that cause human infections. However, the current molecular assays used to genotype G. intestinalis isolates are quite controversial. This is in part due to a complex phenomenon where assemblages are incorrectly typed and underreported depending on which targeted locus is sequenced. In this review, we outline current knowledge based on molecular epidemiological studies and raise questions as to the reliability of current genotyping assays and a lack of a globally accepted method. Additionally, we discuss the clinical symptoms caused by G. intestinalis infection and how these symptoms vary depending on the assemblage infecting an individual. We also introduce the host-parasite factors that play a role in the subsequent clinical presentation of an infected person, and explore which assemblages are most seen globally.
Collapse
Affiliation(s)
- Patricia Zajaczkowski
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | | | - Kate Alexander
- Public Health Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Abela Mahimbo
- Faculty of Health, School of Public Health, University of Technology Sydney, Australia
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - John T Ellis
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| |
Collapse
|
27
|
Maloney JG, Molokin A, Solano-Aguilar G, Dubey JP, Santin M. A hybrid sequencing and assembly strategy for generating culture free Giardia genomes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100114. [PMID: 35909595 PMCID: PMC9325754 DOI: 10.1016/j.crmicr.2022.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Giardia duodenalis is a pathogenic intestinal protozoan parasite of humans and many other animals. Giardia duodenalis is found throughout the world, and infection is known to have adverse health consequences for human and other mammalian hosts. Yet, many aspects of the biology of this ubiquitous parasite remain unresolved. Whole genome sequencing and comparative genomics can provide insight into the biology of G. duodenalis by helping to reveal traits that are shared by all G. duodenalis assemblages or unique to an individual assemblage or strain. However, these types of analyses are currently hindered by the lack of available G. duodenalis genomes, due, in part, to the difficulty in obtaining the genetic material needed to perform whole genome sequencing. In this study, a novel approach using a multistep cleaning procedure coupled with a hybrid sequencing and assembly strategy was assessed for use in producing high quality G. duodenalis genomes directly from cysts obtained from feces of two naturally infected hosts, a cat and dog infected with assemblage A and D, respectively. Cysts were cleaned and concentrated using cesium chloride gradient centrifugation followed by immunomagnetic separation. Whole genome sequencing was performed using both Illumina MiSeq and Oxford Nanopore MinION platforms. A hybrid assembly strategy was found to produce higher quality genomes than assemblies from either platform alone. The hybrid G. duodenalis genomes obtained from fecal isolates (cysts) in this study compare favorably for quality and completeness against reference genomes of G. duodenalis from cultured isolates. The whole genome assembly for assemblage D is the most contiguous genome available for this assemblage and is an important reference genome for future comparative studies. The data presented here support a hybrid sequencing and assembly strategy as a suitable method to produce whole genome sequences from DNA obtained from G. duodenalis cysts which can be used to produce novel reference genomes necessary to perform comparative genomics studies of this parasite. Assemblage A and D genomes were generated directly from cysts isolated from feces. Genomes were sequenced using Illumina and Oxford Nanopore sequencing platforms. A hybrid sequencing/assembly strategy was used to generate G. duodenalis genomes. A hybrid strategy yields reference quality genomes from fecal isolates. These methods have generated the most contiguous Assemblage D genome to date.
Collapse
|
28
|
Treitli SC, Peña-Diaz P, Hałakuc P, Karnkowska A, Hampl V. High quality genome assembly of the amitochondriate eukaryote Monocercomonoides exilis. Microb Genom 2021; 7. [PMID: 34951395 PMCID: PMC8767320 DOI: 10.1099/mgen.0.000745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monocercomonoides exilis is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of M. exilis using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3′UTR regions and characterise the Kozak sequence in the 5′UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.
Collapse
Affiliation(s)
- Sebastian Cristian Treitli
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Priscila Peña-Diaz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 42 Vestec, Czech Republic
| |
Collapse
|
29
|
Garzon T, Ortega-Tirado D, Lopez-Romero G, Alday E, Robles-Zepeda RE, Garibay-Escobar A, Velazquez C. "Immunoinformatic Identification of T-Cell and B-Cell Epitopes From Giardia lamblia Immunogenic Proteins as Candidates to Develop Peptide-Based Vaccines Against Giardiasis". Front Cell Infect Microbiol 2021; 11:769446. [PMID: 34778111 PMCID: PMC8579046 DOI: 10.3389/fcimb.2021.769446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Giardiasis is one of the most common gastrointestinal infections worldwide, mainly in developing countries. The etiological agent is the Giardia lamblia parasite. Giardiasis mainly affects children and immunocompromised people, causing symptoms such as diarrhea, dehydration, abdominal cramps, nausea, and malnutrition. In order to develop an effective vaccine against giardiasis, it is necessary to understand the host-Giardia interactions, the immunological mechanisms involved in protection against infection, and to characterize the parasite antigens that activate the host immune system. In this study, we identify and characterize potential T-cell and B-cell epitopes of Giardia immunogenic proteins by immunoinformatic approaches, and we discuss the potential role of those epitopes to stimulate the host´s immune system. We selected the main immunogenic and protective proteins of Giardia experimentally investigated. We predicted T-cell and B-cell epitopes using immunoinformatic tools (NetMHCII and BCPREDS). Variable surface proteins (VSPs), structural (giardins), metabolic, and cyst wall proteins were identified as the more relevant immunogens of G. lamblia. We described the protein sequences with the highest affinity to bind MHC class II molecules from mouse (I-Ak and I-Ad) and human (DRB1*03:01 and DRB1*13:01) alleles, as well as we selected promiscuous epitopes, which bind to the most common range of MHC class II molecules in human population. In addition, we identified the presence of conserved epitopes within the main protein families (giardins, VSP, CWP) of Giardia. To our knowledge, this is the first in silico study that analyze immunogenic proteins of G. lamblia by combining bioinformatics strategies to identify potential T-cell and B-cell epitopes, which can be potential candidates in the development of peptide-based vaccines. The bioinformatics analysis demonstrated in this study provides a deeper understanding of the Giardia immunogens that bind to critical molecules of the host immune system, such as MHC class II and antibodies, as well as strategies to rational design of peptide-based vaccine against giardiasis.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
30
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Cai W, Ryan U, Xiao L, Feng Y. Zoonotic giardiasis: an update. Parasitol Res 2021; 120:4199-4218. [PMID: 34623485 DOI: 10.1007/s00436-021-07325-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Giardia duodenalis is a common intestinal parasite in various hosts, with the disease giardiasis being a zoonosis. The use of molecular typing tools has improved our understanding of the distribution and zoonotic potential of G. duodenalis genotypes in different animals. The present review summarizes recent data on the distribution of G. duodenalis genotypes in humans and animals in different areas. The dominance of G. duodenalis assemblages A and B in humans and common occurrence of host-adapted assemblages in most domesticated animals suggests that zoonotic giardiasis is probably less common than believed and could be attributed mainly to contact with or contamination from just a few species of animals such as nonhuman primates, equines, rabbits, guinea pigs, chinchillas, and beavers. Future studies should be directed to advanced genetic characterization of isolates from well-designed epidemiological investigations, especially comparative analyses of isolates from humans and animals living in the same household or community. This will likely lead to better understanding of zoonotic transmission of G. duodenalis in different environmental and socioeconomic settings.
Collapse
Affiliation(s)
- Weilong Cai
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Una Ryan
- Vector- and Water-Borne Pathogen Research Group, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Pipaliya SV, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, Hehl AB, Faso C, Dacks JB. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol 2021; 19:167. [PMID: 34446013 PMCID: PMC8394649 DOI: 10.1186/s12915-021-01077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Santos
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dayana Salas-Leiva
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Corina D Wirdnam
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, CAS, v.v.i. Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
33
|
Abstract
Giardia duodenalis captured the attention of Leeuwenhoek in 1681 while he was examining his own diarrheal stool, but, ironically, it did not really gain attention as a human pathogen until the 1960s, when outbreaks were reported. Key technological advances, including in vitro cultivation, genomic and proteomic databases, and advances in microscopic and molecular approaches, have led to an understanding that this is a eukaryotic organism with a reduced genome rather than a truly premitochondriate eukaryote. This has included the discovery of mitosomes (vestiges of mitochondria), a transport system with many of the features of the Golgi apparatus, and even evidence for a sexual or parasexual cycle. Cell biology approaches have led to a better understanding of how Giardia survives with two nuclei and how it goes through its life cycle as a noninvasive organism in the hostile environment of the lumen of the host intestine. Studies of its immunology and pathogenesis have moved past the general understanding of the importance of the antibody response in controlling infection to determining the key role of the Th17 response. This work has led to understanding of the requirement for a balanced host immune response that avoids the extremes of an excessive response with collateral damage or one that is unable to clear the organism. This understanding is especially important in view of the remarkable ranges of early manifestations, which range from asymptomatic to persistent diarrhea and weight loss, and longer-term sequelae that include growth stunting in children who had no obvious symptoms and a high frequency of postinfectious irritable bowel syndrome (IBS).
Collapse
|
34
|
Sarzhanov F, Köster PC, Dogruman-Al F, Bailo B, Dashti A, Demirel-Kaya F, Carmena D. Detection of enteric parasites and molecular characterization of Giardia duodenalis and Blastocystis sp. in patients admitted to hospital in Ankara, Turkey. Parasitology 2021; 148:550-561. [PMID: 32981546 PMCID: PMC10950376 DOI: 10.1017/s0031182020001821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
This epidemiological study assesses the occurrence of enteric parasites in 4303 patients attended at two public hospitals in Ankara (Turkey) during 2018-2019. Microscopy was used as a screening test. Giardia duodenalis was also identified using a commercial ELISA for the detection of parasite-specific coproantigens. Giardia-positive samples by microscopy/ELISA were confirmed by real-time PCR and characterized using a multilocus genotyping scheme. Blastocystis sp. was genotyped in a sample subset. Blastocystis sp. (11.1%, 95% CI 11.4‒14.8%) and G. duodenalis (1.56%, 95% CI 1.22‒1.96) were the most prevalent pathogens found. Cryptosporidium spp., Entamoeba histolytica and intestinal helminths were only sporadically (<0.5%) found. For G. duodenalis, sequence (n = 30) analyses revealed the presence of sub-assemblages AII (23.3%), discordant AII/AIII (23.3%) and mixed AII + AIII (6.7%) within assemblage A, and BIII (10.0%), BIV (3.3%) and discordant BIII/BIV (23.3%) within assemblage B. Two additional sequences (6.7%) were assigned to the latter assemblage but sub-assemblage information was unknown. No associations between G. duodenalis assemblages/sub-assemblages and sociodemographic and clinical variables could be demonstrated. For Blastocystis sp., sequence (n = 6) analyses identified subtypes ST1, ST2 and ST3 at equal proportions. This is the first molecular characterization of G. duodenalis based on MLG conducted in Turkey to date.
Collapse
Affiliation(s)
- Fakhriddin Sarzhanov
- Department of Medical Microbiology, School of Medicine, Gazi University, 06490Ankara, Turkey
- Faculty of Medicine, Akhmet Yassawi International Kazakh-Turkish University, 161200Turkestan, Kazakhstan
| | - Pamela Carolina Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Funda Dogruman-Al
- Section of Medical Parasitology, Department of Medical Microbiology, School of Medicine, Gazi University, 06490Ankara, Turkey
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Filiz Demirel-Kaya
- Medical Microbiology Laboratory, Ankara Education and Research Hospital, Health Science University, 06230Ankara, Turkey
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
35
|
Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F, Richter J, Regnath T, Sobottka I, Reiter-Owona I, Diefenbach A, Gosten-Heinrich P, Friesen J, Ignatius R, Aebischer T, Klotz C. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis 2021; 15:e0009277. [PMID: 33764999 PMCID: PMC8023459 DOI: 10.1371/journal.pntd.0009277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/06/2021] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Background Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by two different subtypes, i.e., assemblage A and B. Genotyping is hampered by allelic sequence heterozygosity (ASH) mainly in assemblage B, and by occurrence of mixed infections. Here we assessed the suitability of current genotyping protocols of G. duodenalis for epidemiological applications such as molecular tracing of transmission chains. Methodology/Principal findings Two G. duodenalis isolate collections, from an outpatient tropical medicine clinic and from several primary care laboratories, were characterized by assemblage-specific qPCR (TIF, CATH gene loci) and a common multi locus sequence typing (MLST; TPI, BG, GDH gene loci). Assemblage A isolates were further typed at additional loci (HCMP22547, CID1, RHP26, HCMP6372, DIS3, NEK15411). Of 175/202 (86.6%) patients the G. duodenalis assemblage could be identified: Assemblages A 25/175 (14.3%), B 115/175 (65.7%) and A+B mixed 35/175 (20.0%). By incorporating allelic sequence heterozygosity in the analysis, the three marker MLST correctly identified 6/9 (66,7%) and 4/5 (80.0%) consecutive samples from chronic assemblage B infections in the two collections, respectively, and identified a cluster of five independent patients carrying assemblage B parasites of identical MLST type. Extended MLST for assemblage A altogether identified 5/6 (83,3%) consecutive samples from chronic assemblage A infections and 15 novel genotypes. Based on the observed A+B mixed infections it is estimated that only 75% and 50% of assemblage A or B only cases represent single strain infections, respectively. We demonstrate that typing results are consistent with this prediction. Conclusions/Significance Typing of assemblage A and B isolates with resolution for epidemiological applications is possible but requires separate genotyping protocols. The high frequency of multiple infections and their impact on typing results are findings with immediate consequences for result interpretation in this field. Giardia duodenalis is a leading cause of gastroenteritis worldwide. Humans are mainly infected by the two different genetic subtypes, assemblage A and B. Molecular typing tools for epidemiological applications such as tracking transmission, attribution to a source and outbreak investigations have been developed and are highly desirable. However, to what degree the tetraploid genome with allelic sequence heterogeneity (ASH), and the frequent occurrence of mixed, assemblage A and B infections hamper performance is unclear. Here, we assessed the suitability of current genotyping protocols for deciphering the molecular epidemiology of G. duodenalis. Against a common reporting bias, we incorporated ASH in the analysis and we show that typing with resolution for epidemiological applications is possible for both, assemblage A and B isolates, but requires separate protocols. We also demonstrate how the high frequency of multiple infections overall impacts on typing results, which has immediate consequences for result interpretation in this field.
Collapse
Affiliation(s)
- Andreas Woschke
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mirko Faber
- Department for Infectious Disease Epidemiology, Gastrointestinal Infections, Zoonoses and Tropical Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Klaus Stark
- Department for Infectious Disease Epidemiology, Gastrointestinal Infections, Zoonoses and Tropical Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Martha Holtfreter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frank Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité University Medicine and Berlin Institute of Health, Corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | - Joachim Richter
- Department of Gastroenterology, Hepatology and Infectiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Tropical Medicine and International Health, Charité University Medicine and Berlin Institute of Health, Corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | | | - Ingo Sobottka
- LADR GmbH, Medizinisches Versorgungszentrum, Geesthacht, Germany
| | - Ingrid Reiter-Owona
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Clinic Bonn, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
- Department of Microbiology and Hygiene, Labor Berlin, Charité - Vivantes GmbH, Berlin, Germany
| | - Petra Gosten-Heinrich
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | | | - Ralf Ignatius
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
- MVZ Labor 28, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
36
|
Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Appl Environ Microbiol 2021; 87:AEM.02275-20. [PMID: 33397705 DOI: 10.1128/aem.02275-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is the causative agent of giardiasis, one of the most common diarrheal infections in humans. Evolutionary relationships among G. duodenalis genotypes (or subtypes) of assemblage B, one of two genetic assemblages causing the majority of human infections, remain unclear due to poor phylogenetic resolution of current typing methods. In this study, we devised a methodology to identify new markers for a streamlined multilocus sequence typing (MLST) scheme based on comparisons of all core genes against the phylogeny of whole-genome sequences (WGS). Our analysis identified three markers with resolution comparable to that of WGS data. Using newly designed PCR primers for our novel MLST loci, we typed an additional 68 strains of assemblage B. Analyses of these strains and previously determined genome sequences showed that genomes of this assemblage can be assigned to 16 clonal complexes, each with unique gene content that is apparently tuned to differential virulence and ecology. Obtaining new genomes of Giardia spp. and other eukaryotic microbial pathogens remains challenging due to difficulties in culturing the parasites in the laboratory. Hence, the methods described here are expected to be widely applicable to other pathogens of interest and advance our understanding of their ecology and evolution.IMPORTANCE Giardia duodenalis assemblage B is a major waterborne pathogen and the most commonly identified genotype causing human giardiasis worldwide. The lack of morphological characters for classification requires the use of molecular techniques for strain differentiation; however, the absence of scalable and affordable next-generation sequencing (NGS)-based typing methods has prevented meaningful advancements in high-resolution molecular typing for further understanding of the evolution and epidemiology of assemblage B. Prior studies have reported high sequence diversity but low phylogenetic resolution at standard loci in assemblage B, highlighting the necessity of identifying new markers for accurate and robust molecular typing. Data from comparative analyses of available genomes in this study identified three loci that together form a novel high-resolution typing scheme with high concordance to whole-genome-based phylogenomics and which should aid in future public health endeavors related to this parasite. In addition, data from newly characterized strains suggest evidence of biogeographic and ecologic endemism.
Collapse
|
37
|
Messa A, Köster PC, Garrine M, Gilchrist C, Bartelt LA, Nhampossa T, Massora S, Kotloff K, Levine MM, Alonso PL, Carmena D, Mandomando I. Molecular diversity of Giardia duodenalis in children under 5 years from the Manhiça district, Southern Mozambique enrolled in a matched case-control study on the aetiology of diarrhoea. PLoS Negl Trop Dis 2021; 15:e0008987. [PMID: 33465074 PMCID: PMC7846004 DOI: 10.1371/journal.pntd.0008987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
Giardia duodenalis is an enteric parasite commonly detected in children. Exposure to this organism may lead to asymptomatic or symptomatic infection. Additionally, early-life infections by this protozoan have been associated with impaired growth and cognitive function in poor resource settings. The Global Enteric Multicenter Study (GEMS) in Mozambique demonstrated that G. duodenalis was more frequent among controls than in diarrhoeal cases (≥3 loosing stools in the previous 24 hours). However, no molecular investigation was conducted to ascertain the molecular variability of the parasite. Therefore, we describe here the frequency and genetic diversity of G. duodenalis infections in children younger than five years of age with and without diarrhoea from the Manhiça district in southern Mozambique enrolled in the context of GEMS. Genomic DNA from 757 G. duodenalis-positive stool samples by immunoassay collected between 2007-2012, were reanalysed by multiplex PCR targeting the E1-HP and C1-P21 genes for the differentiation of assemblages A and B. Overall, 47% (353) of the samples were successfully amplified in at least one locus. Assemblage B accounted for 90% (319/353) of all positives, followed by assemblage A (8%, 29/353) and mixed A+B infections (1%, 5/353). No association between the presence of a given assemblage and the occurrence of diarrhoea could be demonstrated. A total of 351 samples were further analysed by a multi-locus sequence genotyping (MLSG) approach at the glutamate dehydrogenase (gdh), ß-giardin (bg) and triose phosphate isomerase (tpi) genes. Overall, 63% (222/351) of samples were genotyped and/or sub-genotyped in at least one of the three markers. Sequence analysis revealed the presence of assemblages A (10%; 23/222) and B (90%; 199/222) with high molecular diversity at the nucleotide level within the latter; no mixed infections were identified under the MLSG scheme. Assemblage A sequences were assigned to sub-assemblages AI (0.5%, 1/222), AII (7%, 15/222) or ambiguous AII/AIII (3%, 7/222). Within assemblage B, sequences were assigned to sub-assemblages BIII (13%, 28/222), BIV (14%, 31/222) and ambiguous BIII/BIV (59%, 132/222). BIII/BIV sequences accumulated the majority of the single nucleotide polymorphisms detected, particularly in the form of double peaks at chromatogram inspection. This study demonstrated that the occurrence of gastrointestinal illness (diarrhoea) was not associated to a given genotype of G. duodenalis in Mozambican children younger than five years of age. The assemblage B of the parasite was responsible for nine out of ten infections detected in this paediatric population. The extremely high genetic diversity observed within assemblage B isolates was compatible with an hyperendemic epidemiological scenario where infections and reinfections were common. The obtained molecular data may be indicative of high coinfection rates by different G. duodenalis assemblages/sub-assemblages and/or genetic recombination events, although the exact contribution of both mechanisms to the genetic diversity of the parasite remains unknown.
Collapse
Affiliation(s)
- Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Carol Gilchrist
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sérgio Massora
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myron M. Levine
- Center for Vaccine Development (CVD), University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| |
Collapse
|
38
|
Saghaug CS, Klotz C, Kallio JP, Aebischer T, Langeland N, Hanevik K. Genetic Diversity of the Flavohemoprotein Gene of Giardia lamblia: Evidence for High Allelic Heterozygosity and Copy Number Variation. Infect Drug Resist 2020; 13:4531-4545. [PMID: 33376360 PMCID: PMC7755369 DOI: 10.2147/idr.s274543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates. Methods gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNV's potential impact on protein function were created using Phyre2. Results A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function. Conclusion In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Capewell P, Krumrie S, Katzer F, Alexander CL, Weir W. Molecular Epidemiology of Giardia Infections in the Genomic Era. Trends Parasitol 2020; 37:142-153. [PMID: 33067130 DOI: 10.1016/j.pt.2020.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Giardia duodenalis is a major gastrointestinal parasite of humans and animals across the globe. It is also of interest from an evolutionary perspective as it possesses many features that are unique among the eukaryotes, including its distinctive binucleate cell structure. While genomic analysis of a small number of isolates has provided valuable insights, efforts to understand the epidemiology of the disease and the population biology of the parasite have been limited by the molecular tools currently available. We review these tools and assess the impact of affordable and rapid genome sequencing systems increasingly being deployed in diagnostic settings. While these technologies have direct implications for public and veterinary health, they will also improve our understanding of the unique biology of this fascinating parasite.
Collapse
Affiliation(s)
- Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Sarah Krumrie
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Claire L Alexander
- Scottish Parasitology Diagnostic and Reference Laboratories, Glasgow, G31 2ER, UK
| | - William Weir
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
40
|
Ahmad AA, El-Kady AM, Hassan TM. Genotyping of Giardia duodenalis in children in upper Egypt using assemblage- specific PCR technique. PLoS One 2020; 15:e0240119. [PMID: 33002078 PMCID: PMC7529291 DOI: 10.1371/journal.pone.0240119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/18/2020] [Indexed: 01/25/2023] Open
Abstract
Giardia duodenalis is a common gastrointestinal protozoan parasite, causing diarrheal illness in humans worldwide. Yet, the distribution of G. duodenalis genotypes among human patients and their clinical relevance remains controversial. This study aimed to detect G. duodenalis in children in Upper Egypt and identify causative genotypes and elucidate a possible correlation between genotype and clinical presentation. One hundred sixty-five children, regardless of symptoms, were tested for giardiasis. Giardia positive stool samples (40/165) were subjected to PCR amplification targeting the tpi gene with positive PCR results in only 35 cases (87.5%). Assemblage-specific amplification of genotypes (A, B, and the zoonotic E strains) revealed predominantly G. duodenalis Assemblage A (45.7%). Assemblage B and mixed A and B infections were detected in 31.4% and 22.8% of children, respectively. Assemblage E was not detected. G. duodenalis assemblage A was dominant in children who complained of diarrhea and abdominal cramps. In contrast, asymptomatic children with positive stool samples display a higher frequency of assemblage B and mixed infections. The study highlights the predominance of Giardia Assemblage A in our study locality. This study is the first for this endemic area to use the copro-PCR technique for diagnosis and genotyping of giardiasis. Study results show the value of simple species-specific primers for genotyping in communities with little access to laboratory resources. Further genetic studies are needed to clarify the association between parasite genetic diversity and patient symptomatology.
Collapse
Affiliation(s)
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tasneem M. Hassan
- Department of Medical Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
41
|
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front Genet 2020; 11:913. [PMID: 33014015 PMCID: PMC7461913 DOI: 10.3389/fgene.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.
Collapse
Affiliation(s)
- Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Eukaryotic Single Cell Genomics Platform, Karolinska Institute, Science for Life Laboratory (SciLifeLab), Solna, Sweden
| | - Sara Campos
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, Eckmann L, Andersson JO, Svärd SG, Jerlström-Hultqvist J. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom 2020; 6:mgen000402. [PMID: 32618561 PMCID: PMC7641422 DOI: 10.1099/mgen.0.000402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris-mouse pathosystem.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | | | - Elin Einarsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
- Present address: Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala Universitet, SE-751 24 Uppsala, Sweden
| |
Collapse
|
43
|
Costache C, Kalmár Z, Colosi HA, Baciu AM, Opriş RV, Györke A, Colosi IA. First multilocus sequence typing (MLST) of Giardia duodenalis isolates from humans in Romania. Parasit Vectors 2020; 13:387. [PMID: 32736595 PMCID: PMC7393877 DOI: 10.1186/s13071-020-04248-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Giardia duodenalis is one of the most prevalent and highly diverse human parasites, encompassing a complex of eight genetically distinct assemblages, each further divided into sub-assemblages. While in recent years, G. duodenalis genotype distribution patterns in humans have been intensely studied, there is still very little information available on the diversity of Giardia genotypes and sub-assemblages infecting people in Romania. In the present study, we investigated the genetic diversity of Giardia duodenalis in asymptomatic patients from Romania. Methods Over an 11-month period, human feces from 7805 healthy adults were screened by microscopic analysis for G. duodenalis cysts during their obligatory periodic check-ups. DNA extraction was performed from microscopic-positive fecal samples, followed by multilocus sequence typing of four genetic loci of the ITS region, gdh, tpi and bg genes, followed by DNA sequencing and phylogenetic analysis. Statistical analysis was performed using EpiInfo 2000 software. Results The prevalence of giardiasis in the present study was 0.42% (33/7805). Twenty-three samples (76.67%) were successfully genotyped at each locus. The bg and tpi genes had the highest typing success rate (100%). The identified assemblages were assemblage A in 27 cases (subtypes A2 and A3), and B in 3 cases. Conclusions To our knowledge, the present study is the first report of multilocus sequence typing of G. duodenalis isolated from humans in Romania. The present results may shed light on G. duodenalis infection in humans at a regional and national level, thus increasing awareness against this parasitic infection. ![]()
Collapse
Affiliation(s)
- Carmen Costache
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Zsuzsa Kalmár
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania.
| | - Horațiu Alexandru Colosi
- Department of Medical Education, Discipline of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Alina Mihaela Baciu
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Răzvan Vlad Opriş
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Adriana Györke
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Molecular Sciences, Discipline of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania
| |
Collapse
|
44
|
Kooyman FNJ, Wagenaar JA, Zomer A. Whole-genome sequencing of dog-specific assemblages C and D of Giardia duodenalis from single and pooled cysts indicates host-associated genes. Microb Genom 2020; 5. [PMID: 31821130 PMCID: PMC6939161 DOI: 10.1099/mgen.0.000302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Giardia duodenalis (syn. Giardia intestinalis or Giardia lamblia) infSAects over 280 million people each year and numerous animals. G. duodenalis can be subdivided into eight assemblages with different host specificity. Unculturable assemblages have so far resisted genome sequencing efforts. In this study, we isolated single and pooled cysts of assemblages C and D from dog faeces by FACS, and sequenced them using multiple displacement amplification and Illumina paired-end sequencing. The genomes of assemblages C and D were compared with genomes of assemblages A and B from humans and assemblage E from ruminants and pigs. The genomes obtained from the pooled cysts and from the single cysts were considered complete (>99 % marker genes observed) and the allelic sequence heterozygosity (ASH) values of assemblages C and D were 0.89 and 0.74 %, respectively. These ASH values were slightly higher than for assemblage B (>0.43 %) and much higher than for assemblages A and E, which ranged from 0.002 to 0.037 %. The flavohaemoglobin and 4Fe-4S binding domain family encoding genes involved in O2 and NO detoxification were only present in assemblages A, B and E. Cathepsin B orthologs were found in all genomes. Six clades of cathepsin B orthologs contained one gene of each genome, while in three clades not all assemblages were represented. We conclude that whole-genome sequencing from a single Giardia cyst results in complete draft genomes, making the genomes of unculturable Giardia assemblages accessible. Observed differences between the genomes of assemblages C and D on one hand and the assemblages A, B and E on the other hand are possibly associated with host specificity.
Collapse
Affiliation(s)
- Frans N. J. Kooyman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- *Correspondence: Frans N. J. Kooyman,
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA, Batoff GW, Yee J, Dixon BR, Wasmuth JD. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors 2020; 13:108. [PMID: 32111234 PMCID: PMC7048089 DOI: 10.1186/s13071-020-3968-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Currently available short read genome assemblies of the tetraploid protozoan parasite Giardia intestinalis are highly fragmented, highlighting the need for improved genome assemblies at a reasonable cost. Long nanopore reads are well suited to resolve repetitive genomic regions resulting in better quality assemblies of eukaryotic genomes. Subsequent addition of highly accurate short reads to long-read assemblies further improves assembly quality. Using this hybrid approach, we assembled genomes for three Giardia isolates, two with published assemblies and one novel, to evaluate the improvement in genome quality gained from long reads. We then used the long reads to predict structural variants to examine this previously unexplored source of genetic variation in Giardia. Methods With MinION reads for each isolate, we assembled genomes using several assemblers specializing in long reads. Assembly metrics, gene finding, and whole genome alignments to the reference genomes enabled direct comparison to evaluate the performance of the nanopore reads. Further improvements from adding Illumina reads to the long-read assemblies were evaluated using gene finding. Structural variants were predicted from alignments of the long reads to the best hybrid genome for each isolate and enrichment of key genes was analyzed using random genome sampling and calculation of percentiles to find thresholds of significance. Results Our hybrid assembly method generated reference quality genomes for each isolate. Consistent with previous findings based on SNPs, examination of heterozygosity using the structural variants found that Giardia BGS was considerably more heterozygous than the other isolates that are from Assemblage A. Further, each isolate was shown to contain structural variant regions enriched for variant-specific surface proteins, a key class of virulence factor in Giardia. Conclusions The ability to generate reference quality genomes from a single MinION run and a multiplexed MiSeq run enables future large-scale comparative genomic studies within the genus Giardia. Further, prediction of structural variants from long reads allows for more in-depth analyses of major sources of genetic variation within and between Giardia isolates that could have effects on both pathogenicity and host range.![]()
Collapse
Affiliation(s)
- Stephen M J Pollo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada
| | - Sarah J Reiling
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - Janneke Wit
- Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew L Workentine
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rebecca A Guy
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - G William Batoff
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, ON, Canada
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada. .,Host-Parasite Interactions Training Program, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
46
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
47
|
Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data 2020; 7:38. [PMID: 32019935 PMCID: PMC7000408 DOI: 10.1038/s41597-020-0377-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/21/2020] [Indexed: 01/26/2023] Open
Abstract
Giardia intestinalis is a protist causing diarrhea in humans. The first G. intestinalis genome, from the WB isolate, was published more than ten years ago, and has been widely used as the reference genome for Giardia research. However, the genome is fragmented, thus hindering research at the chromosomal level. We re-sequenced the Giardia genome with Pacbio long-read sequencing technology and obtained a new reference genome, which was assembled into near-complete chromosomes with only four internal gaps at long repeats. This new genome is not only more complete but also better annotated at both structural and functional levels, providing more details about gene families, gene organizations and chromosomal structure. This near-complete reference genome will be a valuable resource for the Giardia community and protist research. It also showcases how a fragmented genome can be improved with long-read sequencing technology completed with optical maps. Measurement(s) | DNA • sequence_assembly • sequence feature annotation | Technology Type(s) | DNA sequencing • sequence assembly process • sequence annotation | Sample Characteristic - Organism | Giardia intestinalis |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11695659
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Aaron Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
48
|
Mizuno T, Matey EJ, Bi X, Songok EM, Ichimura H, Tokoro M. Extremely diversified haplotypes observed among assemblage B population of Giardia intestinalis in Kenya. Parasitol Int 2019; 75:102038. [PMID: 31837398 DOI: 10.1016/j.parint.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
In molecular epidemiological studies of Giardia intestinalis, an pathogenic intestinal flagellate, due to the presence of allelic sequence heterogeneity (ASH) on the tetraploid genome, the image of haplotype diversity in the field remains uncertain. Here we employed the nine assemblage B positive stool samples, which had previously reported from Kenyan children, for the clonal sequence analysis of multiple gene loci (glutamate dehydrogenase (GDH), triosephosphate isomerase (TPI), and beta-giardin (BG)). The diversified unique assemblage B haplotypes as GDH (n = 67), TPI (n = 84), and BG (n = 62), and the assemblage A haplotypes as GDH (n = 7), TPI (n = 14), and BG (n = 15), which were hidden in the previous direct-sequence results, were detected. Among the assemblage B haplotypes, Bayesian phylogeny revealed multiple statistically significant clusters (9, 7, and 7 clusters for GDH, TPI, and BG, respectively). A part of the clusters (2 for GDH and 1 for BG), which included >4 haplotypes from an individual sample, indicated the presence of co-transmission with multiple strains sharing a recent ancestor. Locus-dependent discrepancies, such as different compositions of derived samples in clusters and different genotyping results for the assemblages, were also observed and considered to be the traces of both intra- and inter-assemblage genetic recombination respectively. Our clonal sequence analysis for giardial population, which applied firstly in Kenya, could reveal the higher rates of ASH far beyond the levels reported in other areas and address the complex population structure. The clonal analysis is indispensable for the molecular field study of G. intestinalis.
Collapse
Affiliation(s)
- Tetsushi Mizuno
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Xiuqiong Bi
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Hiroshi Ichimura
- Department of Viral Infection and International Health, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaharu Tokoro
- Department of Parasitology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
49
|
Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, Gruca A, Grynberg M, Kajava AV, Promponas VJ, Anisimova M, Jakobsen KS, Linke D. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 2019; 47:10994-11006. [PMID: 31584084 PMCID: PMC6868369 DOI: 10.1093/nar/gkz841] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with 'ready-to-use' deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others.
Collapse
Affiliation(s)
- Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton. CB10 1SD, UK
| | - Patryk Jarnot
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Universite Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Institut de Biologie Computationnelle, 34095 Montpellier, France
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY 1678 Nicosia, Cyprus
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
50
|
Ryan U, Zahedi A. Molecular epidemiology of giardiasis from a veterinary perspective. ADVANCES IN PARASITOLOGY 2019; 106:209-254. [PMID: 31630759 DOI: 10.1016/bs.apar.2019.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A total of eight Giardia species are accepted. These include: Giardia duodenalis (syn. Giardia intestinalis and Giardia lamblia), which infects humans and animals, Giardia agilis, Giardia ardeae, Giardia psittaci, Giardia muris, Giardia microti, Giardia peramelis and G. cricetidarum, which infect non-human hosts including amphibians, birds, rodents and marsupials. Giardia duodenalis is a species complex consisting of eight assemblages (A-H), with assemblages A and B the dominant assemblages in humans. Molecular studies to date on the zoonotic potential of Giardia in animals are problematic and are hampered by lack of concordance between loci. Livestock (cattle, sheep, goats and pigs) are predominantly infected with G. duodenalis assemblage E, which has recently been shown to be zoonotic, followed by assemblage A. In cats and dogs, assemblages A, B, C, D and F are commonly reported but relatively few studies have conducted molecular typing of humans and their pets and the results are contradictory with some studies support zoonotic transmission but the majority of studies suggesting separate transmission cycles. Giardia also infects a broad range of wildlife hosts and although much less well studied, host-adapted species as well as G. duodenalis assemblages (A-H) have been identified. Fish and other aquatic wildlife represent a source of infection for humans with Giardia via water contamination and/or consumption of undercooked fish and interestingly, assemblage B and A predominated in the two molecular studies conducted to date. Our current knowledge of the transmission dynamics of Giardia is still poor and the development of more discriminatory typing tools such as whole genome sequencing (WGS) of Giardia isolates is therefore essential.
Collapse
Affiliation(s)
- Una Ryan
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia.
| | - Alireza Zahedi
- College of Science, Health, Education and Engineering, Murdoch University, Perth, WA, Australia
| |
Collapse
|