1
|
Wang Y, Chen X. Identification of potential MMP-8 inhibitors through virtual screening of natural product databases. In Silico Pharmacol 2025; 13:11. [PMID: 39780770 PMCID: PMC11704116 DOI: 10.1007/s40203-024-00299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Matrix metalloproteinase-8 (MMP-8), a type II collagenase, is a key enzyme in the degradation of collagens and is implicated in various pathological processes, making it a promising target for drug discovery. Despite advancements in the development of MMP-8 inhibitors, concerns over potential adverse effects persist. This study aims to address these concerns by focusing on the development of novel compounds with improved safety profiles while maintaining efficacy. In this study, we employed a computational approach to screen potent and safe inhibitors of MMP-8 from the Natural Product Activity and Species Source Database (NPASS). Initially, we constructed a pharmacophore model based on the crystal structure of the MMP-8-FIN complex (PDB ID: 4EY6) utilizing the Pharmit tool. This model then guided the selection of 44 promising molecules from NPASS, setting the stage for further analysis and evaluation. We comprehensively evaluated their drug-likeness and toxicity profiles. Molecules 21, 4, and 44 were identified as potentially effective MMP-8 inhibitors through a robust pipeline that included ADMET profiling, molecular docking, and molecular dynamics simulations. Notably, molecule 21 stood out for its low toxicity, high binding stability, and favorable ADMET profile, while molecule 44 demonstrated excellent affinity. These compounds offer structural novelty compared to known MMP-8 inhibitors. These computational results can be combined with in vitro experiments in the future to validate their activity and safety. These findings provide an important reference for drug design of MMP-8 inhibitors.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan, 250014 China
| | - Xiushan Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, 266580 China
| |
Collapse
|
2
|
Latham AS, Geer CE, Ackart DF, Weninger KN, Gross CC, Podell BK, Basaraba RJ, Moreno JA. Immune cell infiltration and modulation of the blood-brain barrier in a guinea pig model of tuberculosis: Observations without evidence of bacterial dissemination to the brain. PLoS One 2024; 19:e0307577. [PMID: 39739680 DOI: 10.1371/journal.pone.0307577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/08/2024] [Indexed: 01/02/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is a chronic inflammatory disease. Although typically associated with inflammation of the lungs and other peripheral tissues, increasing evidence has uncovered neurological consequences attributable to Mtb infection. These include deficits in memory and cognition, increased risk for neurodegenerative disease, and progressive neuropathology. Although the neurological effects of the disease, without CNS infection, have been characterized, the mechanism of neurotoxicity is unknown. We hypothesized that alterations to the blood-brain barrier (BBB) allows peripheral immune cells to enter the brain, initiating a neuroinflammatory response. To test this hypothesis, guinea pigs were exposed by aerosol to a laboratory and a clinical Mtb strain for 15 days. Following Mtb infection, proteins critical to BBB function, including claudin V and collagen IV, are modulated without evidence of bacterial dissemination to the brain. This is correlated with increased contact of astrocytic processes to vessels in the brain, as well as increased expression of the water channel protein aquaporin 4 (AQP4) on endfeet. Upon further investigation, we discovered the potential role of glial reactivity, which is increased following infection with both bacterial strains, in the progression of BBB changes and, ultimately, the permeability of peripheral immune cells into the brain. Through these data, we have obtained a preliminary understanding of the mechanisms of cellular stress in the brain following pulmonary Mtb infection which should be further investigated in future studies.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Charlize E Geer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - David F Ackart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kristin N Weninger
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chase C Gross
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Brain Research Center, Colorado State University, Fort Collins, Colorado, United States of America
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
3
|
Vollmuth N, Sin J, Kim BJ. Host-microbe interactions at the blood-brain barrier through the lens of induced pluripotent stem cell-derived brain-like endothelial cells. mBio 2024; 15:e0286223. [PMID: 38193670 PMCID: PMC10865987 DOI: 10.1128/mbio.02862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Microbe-induced meningoencephalitis/meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when pathogens are able to cross the blood-brain barrier (BBB) and gain access to the CNS. The BBB consists of highly specialized brain endothelial cells that exhibit specific properties to allow tight regulation of CNS homeostasis and prevent pathogen crossing. However, during meningoencephalitis/meningitis, the BBB fails to protect the CNS. Modeling the BBB remains a challenge due to the specialized characteristics of these cells. In this review, we cover the induced pluripotent stem cell-derived, brain-like endothelial cell model during host-pathogen interaction, highlighting the strengths and recent work on various pathogens known to interact with the BBB. As stem cell technologies are becoming more prominent, the stem cell-derived, brain-like endothelial cell model has been able to reveal new insights in vitro, which remain challenging with other in vitro cell-based models consisting of primary human brain endothelial cells and immortalized human brain endothelial cell lines.
Collapse
Affiliation(s)
- Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, Alabama, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
4
|
Yang R, Wang X, Liu H, Chen J, Tan C, Chen H, Wang X. Egr-1 is a key regulator of the blood-brain barrier damage induced by meningitic Escherichia coli. Cell Commun Signal 2024; 22:44. [PMID: 38233877 PMCID: PMC10795328 DOI: 10.1186/s12964-024-01488-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hulin Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiaqi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, China.
| |
Collapse
|
5
|
Guo M, Zhang J, Wang Q, Tang J, Li Y, Zhou H, Lin H, Ma Z, Fan H. Porcine circovirus type 2 and Glaesserella parasuis serotype 4 co-infection activates Snail1 to disrupt the intercellular junctions and facilitate bacteria translocation across the tracheal epithelium. Vet Microbiol 2024; 288:109954. [PMID: 38104440 DOI: 10.1016/j.vetmic.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-β and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-β and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.
Collapse
Affiliation(s)
- Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; College of Animal Science, Anhui Science and Technology University, Fengyang, China.
| |
Collapse
|
6
|
Kulkarni A, Jozefiaková J, Bhide K, Mochnaćová E, Bhide M. Differential transcriptome response of blood brain barrier spheroids to neuroinvasive Neisseria and Borrelia. Front Cell Infect Microbiol 2023; 13:1326578. [PMID: 38179419 PMCID: PMC10766361 DOI: 10.3389/fcimb.2023.1326578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background The blood-brain barrier (BBB), a highly regulated interface between the blood and the brain, prevents blood-borne substances and pathogens from entering the CNS. Nevertheless, pathogens like Neisseria meningitidis and Borrelia bavariensis can breach the BBB and infect the brain parenchyma. The self-assembling BBB-spheroids can simulate the cross talk occurring between the cells of the barrier and neuroinvasive pathogens. Methods BBB spheroids were generated by co-culturing human brain microvascular endothelial cells (hBMECs), pericytes and astrocytes. The BBB attributes of spheroids were confirmed by mapping the localization of cells, observing permeability of angiopep2 and non-permeability of dextran. Fluorescent Neisseria, Borrelia or E. coli (non-neuroinvasive) were incubated with spheroids to observe the adherence, invasion and spheroid integrity. Transcriptome analysis with NGS was employed to investigate the response of BBB cells to infections. Results hBMECs were localized throughout the spheroids, whereas pericytes and astrocytes were concentrated around the core. Within 1 hr of exposure, Neisseria and Borrelia adhered to spheroids, and their microcolonization increased from 5 to 24 hrs. Integrity of spheroids was compromised by both Neisseria and Borrelia, but not by E. coli infection. Transcriptome analysis revealed a significant change in the expression of 781 genes (467 up and 314 down regulated) in spheroids infected with Neisseria, while Borrelia altered the expression of 621 genes (225 up and 396 down regulated). The differentially expressed genes could be clustered into various biological pathways like cell adhesion, extracellular matrix related, metallothionines, members of TGF beta, WNT signaling, and immune response. Among the differentially expressed genes, 455 (48%) genes were inversely expressed during Neisseria and Borrelia infection. Conclusion The self-assembling spheroids were used to perceive the BBB response to neuroinvasive pathogens - Neisseria and Borrelia. Compromised integrity of spheroids during Neisseria and Borrelia infection as opposed to its intactness and non-adherence of E. coli (non-neuroinvasive) denotes the pathogen dependent fate of BBB. Genes categorized into various biological functions indicated weakened barrier properties of BBB and heightened innate immune response. Inverse expression of 48% genes commonly identified during Neisseria and Borrelia infection exemplifies unique response of BBB to varying neuropathogens.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelína Mochnaćová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Yamaga S, Tanigaki K, Nakamura E, Sasaki N, Kato Y, Kuboniwa M, Matsusaki M, Amano A, Takeuchi H. Cigarette smoke extract impairs gingival epithelial barrier function. Sci Rep 2023; 13:9228. [PMID: 37286570 PMCID: PMC10244868 DOI: 10.1038/s41598-023-36366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
We previously showed that junctional adhesion molecule 1 (JAM1) and coxsackievirus and adenovirus receptor (CXADR), tight junction-associated proteins, have important roles to maintain epithelial barrier function in gingival tissues. Smoking is considered to be a significant risk factor for periodontal disease. The present study was conducted to examine the effects of cigarette smoke extract (CSE) on JAM1 and CXADR in human gingival epithelial cells. CSE was found to cause translocation of JAM1 from the cellular surface to EGFR-positive endosomes, whereas CXADR did not. Using a three-dimensional multilayered gingival epithelial tissue model, CSE administration was found to increase permeability to lipopolysaccharide and peptidoglycan, whereas overexpression of JAM1 in the tissue model prevented penetration by those substrates. Furthermore, vitamin C increased JAM1 expression, and inhibited penetration of LPS and PGN induced by CSE. These findings strongly suggest that CSE disrupts gingival barrier function via dislocation of JAM1, thus allowing bacterial virulence factors to penetrate into subepithelial tissues. Furthermore, they indicate that vitamin C increases JAM1 expression and prevents disruption of gingival barrier function by CSE.
Collapse
Affiliation(s)
- Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Keita Tanigaki
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Yuta Kato
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Masae Kuboniwa
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita-Osaka, 565-0871, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita-Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Atanasova T, Stankova T, Bivolarska A, Vlaykova T. Matrix Metalloproteinases in Oral Health-Special Attention on MMP-8. Biomedicines 2023; 11:1514. [PMID: 37371608 DOI: 10.3390/biomedicines11061514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a large family of Ca2+ and Zn2+ dependent proteolytic enzymes, able to cleave the various components of the extracellular matrix (ECM), as well as a range of other regulatory molecules. Several reports have proven the important role of both MMPs and their endogenous inhibitors, TIPMs, in oral health, the initial development of the tooth, and during enamel maturation. In this mini-review, we aim to summarize the literature information about the functions of MMPs, paying more attention to MMP-8 (collagenase-2 or neutrophil collagenase) in the development and progression of periodontitis, peri-implantitis, and carious lesions. We also emphasize the role of particular gene variants in MMP8 as predisposing factors for some oral diseases.
Collapse
Affiliation(s)
- Tsvetelina Atanasova
- Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Tatyana Vlaykova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
9
|
Zhang Z, Du X, Zhang S, Liu H, Fu Y, Wang F, Zhang H. Adverse effects of microcystins on sperm: A systematic review. Toxicology 2023; 490:153507. [PMID: 37030550 DOI: 10.1016/j.tox.2023.153507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Eutrophication of water bodies can lead to cyanobacterial blooms, with the resultant release of microcystins (MCs), posing a threat to the ecosystem and human health. MCs are environmental toxins with male reproductive toxicity. However, there is a dearth of reviews focusing on sperm or spermatogenesis. In this paper, studies on sperm toxicity caused by MCs in recent 20 years were collected and summarized, aiming at revealing the toxic effects and potential mechanisms of MCs on sperm. Based on the previous findings, MCs can decline sperm quality and count, and cause malformation in vertebrates and invertebrates. The reason might be that MCs cause indirect damage to sperm through impairing the structure and function of the testis. The mechanisms of MCs-induced sperm toxicity mainly result from alterations in genetic material, abnormalities in the structure and function of sperm. The epigenetic modifications such as miRNA and piRNA were also involved in MC-LR-induced sperm damage. In conclusion, MCs exposure is harmful to sperm, but its direct effects and mechanisms on sperm are still not known, which remains a significant research direction. Our review will provide a basis for the protection of male reproductive health damage caused by microcystins.
Collapse
Affiliation(s)
- Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Yao C, Liu X, Tang Y, Wang C, Duan C, Liu X, Chen M, Zhou Y, Tang E, Xiang Y, Li Y, Ji A, Cai T. Lipopolysaccharide induces inflammatory microglial activation through CD147-mediated matrix metalloproteinase expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35352-35365. [PMID: 36534246 PMCID: PMC9761036 DOI: 10.1007/s11356-022-24292-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Microglia-mediated neuroinflammation plays a vital role in the pathophysiological processes of multiple neurodegenerative diseases. Lipopolysaccharide (LPS) is an environmental poison that can induce inflammatory microglial activation. Matrix metalloproteinases (MMPs) are vital factors regulating microglial activation, and CD147 is a key MMP inducer, which can induce inflammation by inducing MMPs. However, whether it is involved in the regulation of microglial activation has not been reported. In this study, the role of CD147 in LPS-induced microglial inflammatory activation was investigated by establishing in vivo and in vitro models. The results suggested that LPS-induced microglial activation was accompanied by the induction of CD147 expression while the inhibition of CD147 expression could inhibit LPS-induced microglial inflammatory activation. In addition, the results also indicated that the role of CD147 in LPS-induced pro-inflammatory activation of microglia was related to its downstream MMP-3, MMP-8, and autophagy. Furthermore, the inhibition of MMP-3, MMP-8, and autophagy attenuated LPS-induced inflammatory activation of microglia. At the same time, there was a certain interaction between MMPs and autophagy, which is shown that inhibiting the expression of MMPs could inhibit autophagy, whereas inhibiting autophagy could inhibit the expression of MMPs. Taken together, we provided the first evidence that CD147/MMPs can be involved in LPS-induced inflammatory activation of microglia through an autophagy-dependent manner.
Collapse
Affiliation(s)
- Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou, China
| | - Chenggang Duan
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ying Xiang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China
| | - Ailing Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Third Military Medical University), Chongqing, China.
| |
Collapse
|
11
|
Yang R, Wang J, Wang F, Zhang H, Tan C, Chen H, Wang X. Blood-Brain Barrier Integrity Damage in Bacterial Meningitis: The Underlying Link, Mechanisms, and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24032852. [PMID: 36769171 PMCID: PMC9918147 DOI: 10.3390/ijms24032852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Despite advances in supportive care and antimicrobial treatment, bacterial meningitis remains the most serious infection of the central nervous system (CNS) that poses a serious risk to life. This clinical dilemma is largely due to our insufficient knowledge of the pathology behind this disease. By controlling the entry of molecules into the CNS microenvironment, the blood-brain barrier (BBB), a highly selective cellular monolayer that is specific to the CNS's microvasculature, regulates communication between the CNS and the rest of the body. A defining feature of the pathogenesis of bacterial meningitis is the increase in BBB permeability. So far, several contributing factors for BBB disruption have been reported, including direct cellular damage brought on by bacterial virulence factors, as well as host-specific proteins or inflammatory pathways being activated. Recent studies have demonstrated that targeting pathological factors contributing to enhanced BBB permeability is an effective therapeutic complement to antimicrobial therapy for treating bacterial meningitis. Hence, understanding how these meningitis-causing pathogens affect the BBB permeability will provide novel perspectives for investigating bacterial meningitis's pathogenesis, prevention, and therapies. Here, we summarized the recent research progress on meningitis-causing pathogens disrupting the barrier function of BBB. This review provides handy information on BBB disruption by meningitis-causing pathogens, and helps design future research as well as develop potential combination therapies.
Collapse
Affiliation(s)
- Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jundan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Fen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huipeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
12
|
Dave N, Albiheyri RS, Wanford JJ, Green LR, Oldfield NJ, Turner DPJ, Martinez-Pomares L, Bayliss CD. Variable disruption of epithelial monolayers by Neisseria meningitidis carriage isolates of the hypervirulent MenW cc11 and MenY cc23 lineages. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36821361 DOI: 10.1099/mic.0.001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air-liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis. Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.
Collapse
Affiliation(s)
- Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Raed S Albiheyri
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Present address: Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infectious Disease, King's College, London, UK
| | - Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.,Present address: Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
13
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
14
|
Peng BX, Li F, Mortimer M, Xiao X, Ni Y, Lei Y, Li M, Guo LH. Perfluorooctanoic acid alternatives hexafluoropropylene oxides exert male reproductive toxicity by disrupting blood-testis barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157313. [PMID: 35842142 DOI: 10.1016/j.scitotenv.2022.157313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
As alternatives to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide (HFPO) homologues, including hexafluoropropylene oxide dimer acid (HFPO-DA), hexafluoropropylene oxide trimer acid (HFPO-TA), and hexafluoropropylene oxide tetramer acid (HFPO-TeA), have attracted widespread attention recently due to their environmental ubiquity and high potential for bioaccumulation and toxicity. In the present study, a set of in vivo mouse and in vitro mouse testicular Sertoli TM4 cell experiments were employed to explore the male reproductive toxicity and underlying mechanisms of HFPO homologues on blood-testis barrier. Tissue and permeability analyses of mice testes after 28-day treatment with 5 mg/kg/day HFPO-DA or PFOA, or 0.05 mg/kg/day HFPO-TA or HFPO-TeA indicated that there was an increase in the degradation of TJ protein occludin in mice with a disrupted blood-testis barrier (BTB). Following exposure to 100 μM HFPO-DA, HFPO-TA or 10 μM PFOA, HFPO-TeA, transepithelial electrical resistance measurements of TM4 cells also indicated BTB disruption. Additionally, as a result of the exposure, matrix metalloproteinase-9 expression was enhanced through activation of p38 MAPK, which promoted the degradation of occludin. On the whole, the results indicated HFPO homologues and PFOA induced BTB disruption through upregulation of p-p38/p38 MAPK/MMP-9 pathway, which promoted the degradation of TJ protein occludin and caused the disruption of TJ.
Collapse
Affiliation(s)
- Bi-Xia Peng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China.
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310063, China
| | - Yuyang Lei
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
15
|
Srivastava P, Kim KS. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022; 14:2370. [PMID: 36365188 PMCID: PMC9692612 DOI: 10.3390/pharmaceutics14112370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant (MDR) superbugs can breach the blood-brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. We also emphasize the benefits of probiotic-derived bEVs to human health and propose a novel direction for the development of innovative heterologous expression systems to combat BBB-crossing pathogens.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
16
|
Endres LM, Jungblut M, Divyapicigil M, Sauer M, Stigloher C, Christodoulides M, Kim BJ, Schubert-Unkmeir A. Development of a multicellular in vitro model of the meningeal blood-CSF barrier to study Neisseria meningitidis infection. Fluids Barriers CNS 2022; 19:81. [PMID: 36289516 PMCID: PMC9597984 DOI: 10.1186/s12987-022-00379-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host–pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. Methods We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. Results Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. Conclusions Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00379-z.
Collapse
Affiliation(s)
- Leo M. Endres
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Marvin Jungblut
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mustafa Divyapicigil
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Markus Sauer
- grid.8379.50000 0001 1958 8658Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Stigloher
- grid.8379.50000 0001 1958 8658Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Myron Christodoulides
- grid.5491.90000 0004 1936 9297Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Brandon J. Kim
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA ,grid.265892.20000000106344187Department of Microbiology Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.411015.00000 0001 0727 7545Center for Convergent Biosciences & Medicine, University of Alabama, Tuscaloosa, AL USA ,grid.411015.00000 0001 0727 7545Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL USA
| | - Alexandra Schubert-Unkmeir
- grid.8379.50000 0001 1958 8658Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
17
|
Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. J Virol 2022; 96:e0105022. [PMID: 36005758 PMCID: PMC9472762 DOI: 10.1128/jvi.01050-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with laboratory-attenuated rabies virus (RABV), but not wild-type (wt) RABV, can enhance the permeability of the blood-brain barrier (BBB), which is considered a key determinant for RABV pathogenicity. A previous study showed that the enhancement of BBB permeability is directly due not to RABV infection but to virus-induced inflammatory molecules. In this study, the effect of the matrix metallopeptidase (MMP) family on the permeability of the BBB during RABV infection was evaluated. We found that the expression level of MMP8 was upregulated in mice infected with lab-attenuated RABV but not with wt RABV. Lab-attenuated RABV rather than wt RABV activates inflammatory signaling pathways mediated by the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Activated NF-κB (p65) and AP-1 (c-Fos) bind to the MMP8 promoter, resulting in upregulation of its transcription. Analysis of mouse brains infected with the recombinant RABV expressing MMP8 indicated that MMP8 enhanced BBB permeability, leading to infiltration of inflammatory cells into the central nervous system (CNS). In brain-derived endothelial cells, treatment with MMP8 recombinant protein caused the degradation of tight junction (TJ) proteins, and the application of an MMP8 inhibitor inhibited the degradation of TJ proteins after RABV infection. Furthermore, an in vivo experiment using an MMP8 inhibitor during RABV infection demonstrated that BBB opening was diminished. In summary, our data suggest that the infection of lab-attenuated RABV enhances the BBB opening by upregulating MMP8. IMPORTANCE The ability to change BBB permeability was associated with the pathogenicity of RABV. BBB permeability was enhanced by infection with lab-attenuated RABV instead of wt RABV, allowing immune cells to infiltrate into the CNS. We found that MMP8 plays an important role in enhancing BBB permeability by degradation of TJ proteins during RABV infection. Using an MMP8 selective inhibitor restores the reduction of TJ proteins. We reveal that MMP8 is upregulated via the MAPK and NF-κB inflammatory pathways, activated by lab-attenuated RABV infection but not wt RABV. Our findings suggest that MMP8 has a critical role in modulating the opening of the BBB during RABV infection, which provides fresh insight into developing effective therapeutics for rabies and infection with other neurotropic viruses.
Collapse
|
18
|
Dou BB, Yang X, Yang FM, Yan K, Peng W, Tang J, Peng MZ, He QY, Chen HC, Yuan FY, Bei WC. The VraSR two-component signal transduction system contributes to the damage of blood-brain barrier during Streptococcus suis meningitis. Microb Pathog 2022; 172:105766. [PMID: 36087689 DOI: 10.1016/j.micpath.2022.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen that can cause high morbidity and mortality in both humans and swine. As the most important life-threatening infection of the central nervous system (CNS), meningitis is an important syndrome of S. suis infection. The vancomycin resistance associated sensor/regulator (VraSR) is a critical two-component signal transduction system that affects the ability of S. suis to resist the host innate immune system and promotes its ability to adhere to brain microvascular endothelial cells (BMECs). Prior work also found mice infected with ΔvraSR had no obvious neurological symptoms, unlike mice infected with wild-type SC19. Whether and how VraSR participates in the development of S. suis meningitis remains unknown. Here, we found ΔvraSR-infected mice did not show obvious meningitis, compared with wild-type SC19-infected mice. Moreover, the proinflammatory cytokines and chemokines in serum and brains of ΔvraSR-infected mice, including IL-6, TNF-α, MCP-1 and IFN-γ, were significantly lower than wild-type infected group. Besides, blood-brain barrier (BBB) permeability also confirmed that the mutant had lower ability to disrupt BBB. Furthermore, in vivo and in vitro experiments showed that SC19 could increase BBB permeability by downregulating tight junction (TJ) proteins such as ZO-1, β-Catenin, Occludin, and Clauidn-5, compared with mutant ΔvraSR. These findings provide new insight into the influence of S. suis VraSR on BBB disruption during the pathogenic process of streptococcal meningitis, thereby offering potential targets for future preventative and therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Bei-Bei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng-Ming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jia Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming-Zheng Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qi-Yun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China
| | - Fang-Yan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei-Cheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China.
| |
Collapse
|
19
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
20
|
Joshi M, Purohit M, Shah DP, Patel D, Depani P, Moryani P, Krishnakumar A. Pathogenomic in silico approach identifies NSP-A and Fe-IIISBP as possible drug targets in Neisseria Meningitidis MC58 and development of pharmacophores as novel therapeutic candidates. Mol Divers 2022:10.1007/s11030-022-10480-y. [PMID: 35879631 DOI: 10.1007/s11030-022-10480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Meningitis creates a life-threatening clinical crisis. Moreover, the administered antibiotics result into multi-drug resistance, thereby necessitating development of alternative therapeutic strategies. This study aimed at identifying novel-drug targets in Neisseria meningitidis and therapeutic molecules which can be exploited for the treatment of meningitis. Novel targets were identified by applying a pathogenomic approach involving protein data-set mining, subtractive channel analysis and subsequent qualitative analysis comprising of in silico pharmacokinetics, molecular docking and pharmacophore generation. Pathogenomic studies revealed Neisserial Surface Protein A (NSP-A) and Iron-III-Substrate Binding Protein (Fe-IIISBP) as potential targets. Two pharmacophore models comprising of 2-(biaryl) carbapenems, efavirenz, praziquantel and pyrimethamine for NSP-A and 2-(biaryl) carbapenems, trimipramine and pyrimethamine for Fe-IIISBP, showed successful docking, followed drug-likeness criteria and generated pharmacophore model with a score of 8.08 and 8.818, respectively, which had further been docked to the target stably. Thus, our study identifies NSP-A and Fe-IIISBP as novel targets in Neisseria meningitidis for which 2-(biaryl) carbapenems, efavirenz, praziquantel, trimipramine and pyrimethamine may be employed for effective treatment of meningitis.
Collapse
Affiliation(s)
- Madhavi Joshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Maitree Purohit
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Dhriti P Shah
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Devanshi Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Preksha Depani
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Premkumar Moryani
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
21
|
Yang RC, Huang K, Zhang HP, Li L, Zhang YF, Tan C, Chen HC, Jin ML, Wang XR. SARS-CoV-2 productively infects human brain microvascular endothelial cells. J Neuroinflammation 2022; 19:149. [PMID: 35705998 PMCID: PMC9198209 DOI: 10.1186/s12974-022-02514-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/01/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The emergence of the novel, pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global health emergency. SARS-CoV-2 is highly contagious and has a high mortality rate in severe patients. However, there is very limited information on the effect of SARS-CoV-2 infection on the integrity of the blood-brain barrier (BBB). METHODS RNA-sequencing profiling was performed to analyze the transcriptomic changes in human brain microvascular endothelial cells (hBMECs) after SARS-CoV-2 infection. Bioinformatic tools were used for differential analysis. Immunofluorescence, real-time quantitative PCR, and Western blotting analysis were used to explore biological phenotypes. RESULTS A total of 927 differentially expressed genes were identified, 610 of which were significantly upregulated while the remaining 317 were downregulated. We verified the significant induction of cytokines, chemokines, and adhesion molecules in hBMECs by SARS-CoV-2, suggesting an activation of the vascular endothelium in brain. Moreover, we demonstrated that SARS-CoV-2 infection could increase the BBB permeability, by downregulating as well as remodeling the intercellular tight junction proteins. CONCLUSIONS Our findings demonstrated that SARS-CoV-2 infection can cause BBB dysfunction, providing novel insights into the understanding of SARS-CoV-2 neuropathogenesis. Moreover, this finding shall constitute a new approach for future prevention and treatment of SARS-CoV-2-induced CNS infection.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Hui-Peng Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Yu-Fei Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Mei-Lin Jin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
22
|
Tao Q, Xu D, Jia K, Cao X, Ye C, Xie S, Hu DL, Peng L, Fang R. NLRP6 Serves as a Negative Regulator of Neutrophil Recruitment and Function During Streptococcus pneumoniae Infection. Front Microbiol 2022; 13:898559. [PMID: 35694317 PMCID: PMC9174927 DOI: 10.3389/fmicb.2022.898559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is an invasive pathogen with high morbidity and mortality in the immunocompromised children and elderly. NOD-like receptor family pyrin domain containing 6 (NLRP6) plays an important role in the host innate immune response against pathogen infections. Our previous studies have shown that NLRP6 plays a negative regulatory role in host defense against S. pneumoniae, but the underlying mechanism is still unclear. The further negative regulatory role of NLRP6 in the host was investigated in this study. Our results showed that NLRP6−/− mice in the lung had lower bacterial burdens after S. pneumoniae infection and expressed higher level of tight junction (TJ) protein occludin compared to WT mice, indicating the detrimental role of NLRP6 in the host defense against S. pneumoniae infection. Transcriptome analysis showed that genes related to leukocytes migration and recruitment were differentially expressed between wild-type (WT) and NLRP6 knockout (NLRP6−/−) mice during S. pneumoniae infection. Also, NLRP6−/− mice showed higher expression of chemokines including C-X-C motif chemokine ligand 1 (CXCL1) and 2 (CXCL2) and lower gene expression of complement C3a receptor 1 (C3aR1) and P-selectin glycoprotein ligand-1 (PSGL-1) which are the factors that inhibit the recruitment of neutrophils. Furthermore, NLRP6−/− neutrophils showed increased intracellular bactericidal ability and the formation of neutrophil extracellular traps (NETs) during S. pneumoniae infection. Taken together, our study suggests that NLRP6 is a negative regulator of neutrophil recruitment and function during S. pneumoniae infection. Our study provides a new insight to develop novel strategies to treat invasive pneumococcal infection.
Collapse
Affiliation(s)
- Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Department of Medical Microbiology and Infection Prevention at University of Groningen/University Medical Center Groningen, Groningen, Netherlands
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xinrui Cao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Sanlei Xie
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Lianci Peng,
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Herbivore Science, Chongqing, China
- *Correspondence: Rendong Fang,
| |
Collapse
|
23
|
Treponema pallidum Tp0751 alters the expression of tight junction proteins by promoting bEnd3 cell apoptosis and IL-6 secretion. Int J Med Microbiol 2022; 312:151553. [DOI: 10.1016/j.ijmm.2022.151553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 02/02/2023] Open
|
24
|
Pangarikar A, Prachi GP, Devarathnamma MV, Asapalli S, Guttiganur N, Devanoorkar A. Estimation of gingival crevicular fluid matrix metalloproteinase-3 levels in chronic periodontitis before and after scaling and root planing: A clinicobiochemical study. THE SAINT'S INTERNATIONAL DENTAL JOURNAL 2022. [DOI: 10.4103/sidj.sidj_10_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
25
|
Kim T, Jeon J, Park JS, Park Y, Kim J, Noh H, Kim HS, Seo H. Matrix Metalloproteinase-8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson's Disease Model Mice. Biomol Ther (Seoul) 2021; 29:483-491. [PMID: 34045367 PMCID: PMC8411029 DOI: 10.4062/biomolther.2020.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that involves the loss of dopaminergic neurons in the substantia nigra (SN). Matrix metalloproteinases-8 (MMP-8), neutrophil collagenase, is a functional player in the progressive pathology of various inflammatory disorders. In this study, we administered an MMP-8 inhibitor (MMP-8i) in Leucine-rich repeat kinase 2 (LRRK2) G2019S transgenic mice, to determine the effects of MMP-8i on PD pathology. We observed a significant increase of ionized calcium-binding adapter molecule 1 (Iba1)-positive activated microglia in the striatum of LRRK2 G2019S mice compared to normal control mice, indicating enhanced neuro-inflammatory responses. The increased number of Iba1-positive activated microglia in LRRK2 G2019S PD mice was down-regulated by systemic administration of MMP-8i. Interestingly, this LRRK2 G2019S PD mice showed significantly reduced size of cell body area of tyrosine hydroxylase (TH) positive neurons in SN region and MMP-8i significantly recovered cellular atrophy shown in PD model indicating distinct neuro-protective effects of MMP-8i. Furthermore, MMP-8i administration markedly improved behavioral abnormalities of motor balancing coordination in rota-rod test in LRRK2 G2019S mice. These data suggest that MMP-8i attenuates the pathological symptoms of PD through anti-inflammatory processes.
Collapse
Affiliation(s)
- Taewoo Kim
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeha Jeon
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin-Sun Park
- Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Yeongwon Park
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jooeui Kim
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Haneul Noh
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
26
|
Zheng K, He FB, Liu H, He Q. Genetic variations of toll-like receptors: Impact on susceptibility, severity and prognosis of bacterial meningitis. INFECTION GENETICS AND EVOLUTION 2021; 93:104984. [PMID: 34214672 DOI: 10.1016/j.meegid.2021.104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/24/2023]
Abstract
Bacterial meningitis (BM) is a serious infectious disease of the central nervous system,which is mainly caused by Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Group B Streptococcus and Listeria monocytogenes. Throughout the world, BM has become one of the most lethal diseases that commonly occurs in children. Toll like receptors (TLRs) are one of the most important immune defense lines in infectious diseases, and play an essential role in host defense. Accumulating evidence shows that genetic variations in TLRs are associated with host responses in BM. This review aims to summarize the role of different TLRs and their genetic variations in the susceptibility, severity and prognosis of BM and discuss the identified risk factors for better treatment and improvement of the course and outcome of BM.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China; Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi 214151, Jiangsu, China
| | - Felix B He
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
27
|
Jin T, Guan N, Du Y, Zhang X, Li J, Xia X. Cronobacter sakazakii ATCC 29544 Translocated Human Brain Microvascular Endothelial Cells via Endocytosis, Apoptosis Induction, and Disruption of Tight Junction. Front Microbiol 2021; 12:675020. [PMID: 34163451 PMCID: PMC8215149 DOI: 10.3389/fmicb.2021.675020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Cronobacter sakazakii (C. sakazakii) is an emerging opportunistic foodborne pathogen that can cause neonatal necrotizing enterocolitis, meningitis, sepsis in neonates and infants with a relatively high mortality rate. Bacterial transcytosis across the human brain microvascular endothelial cells (HBMEC) is vital for C. sakazakii to induce neonatal meningitis. However, few studies focus on the mechanisms by which C. sakazakii translocates HBMEC. In this study, the translocation processes of C. sakazakii on HBMEC were explored. C. sakazakii strains could effectively adhere to, invade and intracellularly survive in HBMEC. The strain ATCC 29544 exhibited the highest translocation efficiency across HBMEC monolayer among four tested strains. Bacteria-contained intracellular endosomes were detected in C. sakazakii-infected HBMEC by a transmission electron microscope. Endocytosis-related proteins CD44, Rab5, Rab7, and LAMP2 were increased after infection, while the level of Cathepsin L did not change. C. sakazakii induced TLR4/NF-κB inflammatory signal pathway activation in HBMEC, with increased NO production and elevated mRNA levels of IL-8, IL-6, TNF-α, IL-1β, iNOS, and COX-2. C. sakazakii infection also caused LDH release, caspase-3 activation, and HBMEC apoptosis. Meanwhile, increased Dextran-FITC permeability and decreased trans epithelial electric resistance indicated that C. sakazakii disrupted tight junction of HBMEC monolayers, which was confirmed by the decreased levels of tight junction-related proteins ZO-1 and Occludin. These findings suggest that C. sakazakii induced intracellular bacterial endocytosis, stimulated inflammation and apoptosis, disrupted monolayer tight junction in HBMEC, which all together contribute to bacterial translocation.
Collapse
Affiliation(s)
- Tong Jin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Yuhang Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xinpeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jiahui Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
28
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
29
|
Dos Santos Souza I, Maïssa N, Ziveri J, Morand PC, Coureuil M, Nassif X, Bourdoulous S. Meningococcal disease: A paradigm of type-IV pilus dependent pathogenesis. Cell Microbiol 2021; 22:e13185. [PMID: 32185901 DOI: 10.1111/cmi.13185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus-dependent virulence mechanisms, up to the identification of promising anti-virulence compounds that target type IV pili.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Nawal Maïssa
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Philippe C Morand
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Mathieu Coureuil
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Xavier Nassif
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
30
|
Sun Q, Li N, Jia L, Guo W, Jiang H, Liu B, Bao C, Liu M, Huang J, Lei L. Ribosomal Protein SA-Positive Neutrophil Elicits Stronger Phagocytosis and Neutrophil Extracellular Trap Formation and Subdues Pro-Inflammatory Cytokine Secretion Against Streptococcus suis Serotype 2 Infection. Front Immunol 2021; 11:585399. [PMID: 33603733 PMCID: PMC7884477 DOI: 10.3389/fimmu.2020.585399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2), an important zoonotic pathogen that causes septicemia, arthritis, and irreversible meningitis in pigs and humans, can be transmitted to humans from pigs. S. suis causes huge economic losses to the swine industry and poses a serious threat to public health. Previously, we found that the brain tissues of mice with SS2-induced meningitis showed disrupted structural integrity and significantly enhanced polymorphonuclear neutrophil (PMN) infiltration. We showed that the brain tissues of SS2-infected mice had increased ribosomal protein SA (RPSA)-positive PMN counts. However, the inflammatory responses of RPSA+ PMNs to SS2 and their effects on the blood-brain barrier (BBB) remain unclear. Therefore, in studying the pathogenesis of SS2-induced meningitis, it is essential that we explore the functions of RPSA+ PMNs and their effects on the BBB. Herein, using flow cytometry and immunofluorescence microscopy analyses, we found that RPSA expression enhances PMN-induced phagocytosis and PMN-induced formation of neutrophil extracellular traps (NETs), which facilitate further elimination of bacteria. PMN surface expression of RPSA also alleviates local inflammation and tissue injuries by inhibiting secretion of the pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the single-cell BBB model showed that RPSA disrupts BBB integrity by downregulating expression of tight junction-associated membrane proteins on PMNs. Taken together, our data suggest that PMN-surface expression of RPSA is a double-edged sword. RPSA+ PMN owns a stronger ability of bacterial cleaning and weakens inflammatory cytokines release which are useful to anti-infection, but does hurt BBB. Partly, RPSA+ PMN may be extremely useful to control the infection as a therapeutic cellular population, following novel insights into the special PMN population.
Collapse
Affiliation(s)
- Qiang Sun
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Na Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenfei Guo
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengmeng Liu
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Jing Huang
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
31
|
Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C, Judea-Pusta C, Uivarosan D, Munteanu MA, Bungau S. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22031413. [PMID: 33573368 PMCID: PMC7866808 DOI: 10.3390/ijms22031413] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is the pathological condition, in which the nervous system or neuron loses its structure, function, or both, leading to progressive degeneration or the death of neurons, and well-defined associations of tissue system, resulting in clinical manifestations. Neuroinflammation has been shown to precede neurodegeneration in several neurodegenerative diseases (NDs). No drug is yet known to delay or treat neurodegeneration. Although the etiology and potential causes of NDs remain widely indefinable, matrix metalloproteinases (MMPs) evidently have a crucial role in the progression of NDs. MMPs, a protein family of zinc (Zn2+)-containing endopeptidases, are pivotal agents that are involved in various biological and pathological processes in the central nervous system (CNS). The current review delineates the several emerging evidence demonstrating the effects of MMPs in the progression of NDs, wherein they regulate several processes, such as (neuro)inflammation, microglial activation, amyloid peptide degradation, blood brain barrier (BBB) disruption, dopaminergic apoptosis, and α-synuclein modulation, leading to neurotoxicity and neuron death. Published papers to date were searched via PubMed, MEDLINE, etc., while using selective keywords highlighted in our manuscript. We also aim to shed a light on pathophysiological effect of MMPs in the CNS and focus our attention on its detrimental and beneficial effects in NDs, with a special focus on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), and Huntington's disease (HD), and discussed various therapeutic strategies targeting MMPs, which could serve as potential modulators in NDs. Over time, several agents have been developed in order to overcome challenges and open up the possibilities for making selective modulators of MMPs to decipher the multifaceted functions of MMPs in NDs. There is still a greater need to explore them in clinics.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Shaveta Bhardwaj
- Department of Pharmacology, GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, Punjab, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India; (G.K.); (A.S.); (S.S.)
| | - Camelia Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (C.J.-P.)
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
32
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
33
|
Sharafutdinov I, Esmaeili DS, Harrer A, Tegtmeyer N, Sticht H, Backert S. Campylobacter jejuni Serine Protease HtrA Cleaves the Tight Junction Component Claudin-8. Front Cell Infect Microbiol 2020; 10:590186. [PMID: 33364202 PMCID: PMC7752809 DOI: 10.3389/fcimb.2020.590186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni express the high temperature requirement protein A (HtrA), a secreted serine protease, which is implicated in virulence properties of the pathogen. Previous studies have shown that C. jejuni HtrA can cleave the epithelial transmembrane proteins occludin and E-cadherin in the tight and adherens junctions, respectively. In the present report, we studied the interaction of HtrA with another human tight junction protein, claudin-8. Confocal immunofluorescence experiments have shown that C. jejuni infection of the intestinal polarized epithelial cells in vitro leads to a relocation of claudin-8. Wild-type C. jejuni induced the downregulation of claudin-8 signals in the tight junctions and an accumulation of claudin-8 agglomerates in the cytoplasm, which were not seen during infection with isogenic ΔhtrA knockout deletion or protease-inactive S197A point mutants. Western blotting of protein samples from infected vs. uninfected cells revealed that an 18-kDa carboxy-terminal fragment is cleaved-off from the 26-kDa full-length claudin-8 protein, but not during infection with the isogenic ΔhtrA mutant. These results were confirmed by in vitro cleavage assays using the purified recombinant C. jejuni HtrA and human claudin-8 proteins. Recombinant HtrA cleaved purified claudin-8 in vitro giving rise to the same 18-kDa sized carboxy-terminal cleavage product. Mapping studies revealed that HtrA cleavage occurs in the first extracellular loop of claudin-8. Three-dimensional modeling of the claudin-8 structure identified an exposed HtrA cleavage site between the amino acids alanine 58 and asparagine 59, which is in well agreement with the mapping studies. Taken together, HtrA operates as a secreted virulence factor targeting multiple proteins both in the tight and adherens junctions. This strategy may help the bacteria to open the cell-to-cell junctions, and to transmigrate across the intestinal epithelium by a paracellular mechanism and establish an acute infection.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Delara Soltan Esmaeili
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
34
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
35
|
Frankenberger R, Pfützner A. Orale Immunkompetenz in der Corona-Pandemie vs. Systemrelevanz der Zahnmedizin. GESUNDHEITSÖKONOMIE & QUALITÄTSMANAGEMENT 2020. [DOI: 10.1055/a-1286-8376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ZusammenfassungDie Covid-19-Pandemie hat das deutsche Gesundheitssystem im Jahr 2020 vor erhebliche Herausforderungen gestellt. In diesem Zusammenhang ist es bemerkenswert, dass für die Zahnmedizin kein sogenannter Rettungsschirm aufgespannt wurde. Dies bedeutet, dass nach Ansicht der Bundesregierung Zahnärzte als nicht systemrelevant eingestuft wurden und somit offiziell auch nicht zu den Ärzten gehören. Diese Annahme ist grundfalsch und gefährlich, wie im Folgenden anhand eines wichtigen Beispiels erörtert wird.Das SARS-CoV-2-Virus führt bei infizierten Personen zu einem Beschwerdebild von leichten Erkältungszeichen bis hin zu lebensbedrohlichen beatmungsbedürftigen COVID-19-Pneumonien. Ein besonderes Risiko für schwere Verläufe haben Menschen höheren Alters sowie Patienten mit Diabetes, Bluthochdruck und anderen schweren Erkrankungen. Die Haupteintrittspforte für das SARS-CoV-2-Virus in den menschlichen Körper ist u. a. die orale Mukosa, denn die Viren reichern sich dort bevorzugt an und der ACE2-Rezeptor wird dort hochgradig exprimiert. Dieser Penetrationsweg erklärt die häufigeren schweren Verläufe bei älteren Diabetespatienten, deren Immunsystem bereits generell beeinträchtigt ist. Diabetes mellitus induziert eine chronische systemische Entzündung, die sich gerade im Mundbereich regelmäßig als Parodontitis manifestiert. Bei Diabetikern zwangsläufig oft auftretende Hyperglykämien schwächen die Mukosa-Barriere zusätzlich. Es ist daher dringend ratsam, bei Präventionsmaßnahmen für Diabetespatienten den Mund- und Rachenraum nicht zu ignorieren. Neben der parodontalprophylaktischen Betreuung ist gerade in Absenz von Zahnärzten die aktivierte Matrix-Metalloproteinase 8 (aMMP8) ein etablierter Biomarker. Die aktuellen Empfehlungen zur Prävention der SARS-CoV-2-assoziierten COVID-19-Erkrankung sollte daher um die Aspekte der Messung und Sanierung des Mund- und Rachenraums sowie einer regelmäßigen Desinfektion der oralen Mukosa erweitert werden.
Collapse
Affiliation(s)
- Roland Frankenberger
- Abteilung für Zahnerhaltungskunde, Philipps-Universität Marburg und Universitätsklinikum Gießen und Marburg
| | - Andreas Pfützner
- Pfützner Science & Health Institute, Mainz
- Institute for Internal Medicine and Laboratory Medicine, University for Digital Technologies in Medicine and Dentistry, Wiltz, Luxembourg
| |
Collapse
|
36
|
Azimi S, Wheldon LM, Oldfield NJ, Ala'Aldeen DAA, Wooldridge KG. A role for fibroblast growth factor receptor 1 in the pathogenesis of Neisseria meningitidis. Microb Pathog 2020; 149:104534. [PMID: 33045339 DOI: 10.1016/j.micpath.2020.104534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Neisseria meningitidis (the meningococcus) remains an important cause of human disease, including meningitis and sepsis. Adaptation to the host environment includes many interactions with specific cell surface receptors, resulting in intracellular signalling and cytoskeletal rearrangements that contribute to pathogenesis. Here, we assessed the interactions between meningococci and Fibroblast Growth Factor Receptor 1-IIIc (FGFR1-IIIc): a receptor specific to endothelial cells of the microvasculature, including that of the blood-brain barrier. We show that the meningococcus recruits FGFR1-IIIc onto the surface of human blood microvascular endothelial cells (HBMECs). Furthermore, we demonstrate that expression of FGFR1-IIIc is required for optimal invasion of HBMECs by meningococci. We show that the ability of N. meningitidis to interact with the ligand-binding domain of FGFR1-IIIc is shared with the other pathogenic Neisseria species, N. gonorrhoeae, but not with commensal bacteria including non-pathogenic Neisseria species.
Collapse
Affiliation(s)
- Sheyda Azimi
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Lee M Wheldon
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Neil J Oldfield
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Dlawer A A Ala'Aldeen
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK
| | - Karl G Wooldridge
- Molecular Bacteriology and Immunology Group, School of Life Sciences, University of Nottingham, UK.
| |
Collapse
|
37
|
Duarte Lobo D, Nobre RJ, Oliveira Miranda C, Pereira D, Castelhano J, Sereno J, Koeppen A, Castelo-Branco M, Pereira de Almeida L. The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathol Commun 2020; 8:152. [PMID: 32867861 PMCID: PMC7457506 DOI: 10.1186/s40478-020-00955-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is a common feature in neurodegenerative diseases. However, BBB integrity has not been assessed in spinocerebellar ataxias (SCAs) such as Machado-Joseph disease/SCA type 3 (MJD/SCA3), a genetic disorder, triggered by polyglutamine-expanded ataxin-3. To investigate that, BBB integrity was evaluated in a transgenic mouse model of MJD and in human post-mortem brain tissues. Firstly, we investigated the BBB permeability in MJD mice by: i) assessing the extravasation of the Evans blue (EB) dye and blood-borne proteins (e.g fibrinogen) in the cerebellum by immunofluorescence, and ii) in vivo Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The presence of ataxin-3 aggregates in brain blood vessels and the levels of tight junction (TJ)-associated proteins were also explored by immunofluorescence and western blotting. Human brain samples were used to confirm BBB permeability by evaluating fibrinogen extravasation, co-localization of ataxin-3 aggregates with brain blood vessels and neuroinflammation. In the cerebellum of the mouse model of MJD, there was a 5-fold increase in EB accumulation when compared to age-matched controls. Moreover, vascular permeability displayed a 13-fold increase demonstrated by DCE-MRI. These results were validated by the 2-fold increase in fibrinogen extravasation in transgenic animals comparing to controls. Interestingly, mutant ataxin-3 aggregates were detected in cerebellar blood vessels of transgenic mice, accompanied by alterations of TJ-associated proteins in cerebellar endothelial cells, namely a 29% decrease in claudin-5 oligomers and a 10-fold increase in an occludin cleavage fragment. These results were validated in post-mortem brain samples from MJD patients as we detected fibrinogen extravasation across BBB, the presence of ataxin-3 aggregates in blood vessels and associated microgliosis. Altogether, our results prove BBB impairment in MJD/SCA3. These findings contribute for a better understanding of the disease mechanisms and opens the opportunity to treat MJD with medicinal products that in normal conditions would not cross the BBB.
Collapse
|
38
|
Ma T, Zhou Y, Xia Y, Meng X, Jin H, Wang B, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Maternal Exposure to Di- n-butyl Phthalate Promotes the Formation of Testicular Tight Junctions through Downregulation of NF-κB/COX-2/PGE 2/MMP-2 in Mouse Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8245-8258. [PMID: 32525310 DOI: 10.1021/acs.est.0c01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrated that maternal exposure to di-n-butyl phthalate (DBP) resulted in developmental disorder of the male reproductive organ; however, the underlying mechanism has not been thoroughly elucidated to date. The present study was aimed to investigate the effects of maternal exposure to DBP on the formation of the Sertoli cell (SC)-based tight junctions (TJs) in the testes of male offspring mice and the underlying molecular mechanism. By observing the pathological structure and ultrastructure, permeability analysis of the testis of 22 day male offspring in vivo, and transepithelial electrical resistance measurement of inter-SCs in vitro, we found that the formation of TJs between SCs in offspring mice was accelerated, which was paralleled by the accumulation of TJ protein occludin at 50 mg/kg/day DBP exposure in utero and 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) in vitro. Our in vitro results demonstrated that 0.1 mM MBP downregulated the expression of matrix metalloproteinase-2 (MMP-2) by inhibiting the activation of nuclear factor-κB (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) cascades via attenuated binding of NF-κB to both the MMP-2 promoter and COX-2 promoter. Taken together, the data confirmed that maternal exposure to a relatively low dose of DBP promoted the formation of testicular TJs through downregulation of NF-κB/COX-2/PGE2/MMP-2, which might promote the development of the testis during puberty. Our findings may provide new perspectives for prenatal DBP exposure, which is a potential environmental contributor, leading to earlier puberty in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
39
|
Huber P. Targeting of the apical junctional complex by bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183237. [DOI: 10.1016/j.bbamem.2020.183237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
|
40
|
Martin-Fernandez M, Vaquero-Roncero LM, Almansa R, Gómez-Sánchez E, Martín S, Tamayo E, Esteban-Velasco MC, Ruiz-Granado P, Aragón M, Calvo D, Rico-Feijoo J, Ortega A, Gómez-Pesquera E, Lorenzo-López M, López J, Doncel C, González-Sanchez C, Álvarez D, Zarca E, Ríos-Llorente A, Diaz-Alvarez A, Sanchez-Barrado E, Andaluz-Ojeda D, Calvo-Vecino JM, Muñoz-Bellvís L, Gomez-Herreras JI, Abad-Molina C, Bermejo-Martin JF, Aldecoa C, Heredia-Rodríguez M. Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients. BJS Open 2020; 4:524-534. [PMID: 32073224 PMCID: PMC7260414 DOI: 10.1002/bjs5.50265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Stratification of the severity of infection is currently based on the Sequential Organ Failure Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify the severity of infection in surgical patients. Methods Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulopoiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first 12 h after diagnosis at three Spanish hospitals. Results There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomarkers indicating endothelial dysfunction (mid‐regional proadrenomedullin (MR‐ProADM), syndecan 1, thrombomodulin, angiopoietin 2, endothelial cell‐specific molecule 1, vascular cell adhesion molecule 1 and E‐selectin) had stronger associations with sepsis than infection alone. MR‐ProADM had the highest odds ratio (OR) in multivariable analysis (OR 11·53, 95 per cent c.i. 4·15 to 32·08; P = 0·006) and the best area under the curve (AUC) for detecting sepsis (0·86, 95 per cent c.i. 0·80 to 0·91; P < 0·001). In a comparison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8·09, 1·34 to 48·91; P = 0·028) and lipocalin 2 (OR 6·62, 2·47 to 17·77; P = 0·002), had the strongest association with septic shock, but lipocalin 2 exhibited the highest AUC (0·81, 0·73 to 0·90; P < 0·001). Conclusion MR‐ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of sepsis and septic shock respectively in surgical patients with infection.
Collapse
Affiliation(s)
- M Martin-Fernandez
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - L M Vaquero-Roncero
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - R Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - E Gómez-Sánchez
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - S Martín
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - E Tamayo
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M C Esteban-Velasco
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - P Ruiz-Granado
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Aragón
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - D Calvo
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J Rico-Feijoo
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - A Ortega
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - E Gómez-Pesquera
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - M Lorenzo-López
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J López
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - C Doncel
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C González-Sanchez
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain
| | - D Álvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Zarca
- Clinical Analysis Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - A Ríos-Llorente
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - A Diaz-Alvarez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - E Sanchez-Barrado
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - D Andaluz-Ojeda
- Intensive Care Medicine Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J M Calvo-Vecino
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| | - L Muñoz-Bellvís
- Department of General and Gastrointestinal Surgery, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL) and Universidad de Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer (CIBERONC), Madrid, Spain
| | - J I Gomez-Herreras
- Group for Biomedical Research in Critical Care (BioCritic), Anaesthesiology and Reanimation Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - C Abad-Molina
- Microbiology and Immunology Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - J F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.,Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C Aldecoa
- Anaesthesiology and Reanimation Service, Hospital Universitario Río Hortega, Valladolid, Spain
| | - M Heredia-Rodríguez
- Anaesthesiology and Reanimation Service, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
41
|
Káňová E, Tkáčová Z, Bhide K, Kulkarni A, Jiménez-Munguía I, Mertinková P, Drážovská M, Tyagi P, Bhide M. Transcriptome analysis of human brain microvascular endothelial cells response to Neisseria meningitidis and its antigen MafA using RNA-seq. Sci Rep 2019; 9:18763. [PMID: 31822804 PMCID: PMC6904618 DOI: 10.1038/s41598-019-55409-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/28/2019] [Indexed: 01/25/2023] Open
Abstract
Interaction of Neisseria meningitidis (NM) with human brain microvascular endothelial cells (hBMECs) initiates of multiple cellular processes, which allow bacterial translocation across the blood-brain barrier (BBB). NM is equipped with several antigens, which interacts with the host cell receptors. Recently we have shown that adhesin MafA (UniProtKB-X5EG71), relatively less studied protein, is one of those surface exposed antigens that adhere to hBMECs. The present study was designed to comprehensively map the undergoing biological processes in hBMECs challenged with NM or MafA using RNA sequencing. 708 and 726 differentially expressed genes (DEGs) were identified in hBMECs exposed to NM and MafA, respectively. Gene ontology analysis of the DEGs revealed that several biological processes, which may alter the permeability of BBB, were activated. Comparative analysis of DEGs revealed that MafA, alike NM, might provoke TLR-dependent pathway and augment cytokine response. Moreover, both MafA and NM were able to induce genes involved in cell surface modifications, endocytosis, extracellular matrix remodulation and anoikis/apoptosis. In conclusion, this study for the first time describes effect of NM on the global gene expression in hBMECs using high-throughput RNA-seq. It also presents ability of MafA to induce gene expression, which might aid NM in breaching the BBB.
Collapse
Affiliation(s)
- Evelína Káňová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Monika Drážovská
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Punit Tyagi
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04001, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
42
|
Meningitic Escherichia coli Induction of ANGPTL4 in Brain Microvascular Endothelial Cells Contributes to Blood-Brain Barrier Disruption via ARHGAP5/RhoA/MYL5 Signaling Cascade. Pathogens 2019; 8:pathogens8040254. [PMID: 31766605 PMCID: PMC6963727 DOI: 10.3390/pathogens8040254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial meningitis is currently recognized as one of the most important life-threatening infections of the central nervous system (CNS) with high morbidity and mortality, despite the advancements in antimicrobial treatment. The disruption of blood–brain barrier (BBB) induced by meningitis bacteria is crucial for the development of bacterial meningitis. However, the complete mechanisms involving in the BBB disruption remain to be elucidated. Here, we found meningitic Escherichia coli induction of angiopoietin-like 4 (ANGPTL4) in brain microvascular endothelial cells (BMECs) contributes to BBB disruption via ARHGAP5/RhoA/MYL5 signaling cascade, by the demonstration that ANGPTL4 was significantly upregulated in meningitis E. coli infection of BMECs as well as mice, and treatment of the recombinant ANGPTL4 protein led to an increased permeability of the BBB in vitro and in vivo. Moreover, we found that ANGPTL4 did not affect the expression of tight junction proteins involved in BBB disruption, but it increased the expression of MYL5, which was found to have a negative role on the regulation of barrier function during meningitic E. coli infection, through the activation of RhoA signaling pathway. To our knowledge, this is the first report demonstrating the disruption of BBB induced by ANGPTL4 through the ARHGAP5/RhoA/MYL5 pathway, which largely supports the involvement of ANGPTL4 during meningitic E. coli invasion and further expands the theoretical basis for the mechanism of bacterial meningitis.
Collapse
|
43
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
44
|
Wang J, Zhang C, Zhu J, Ding J, Chen Y, Han X. Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:662-678. [PMID: 31279213 DOI: 10.1016/j.scitotenv.2019.06.387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 05/17/2023]
Abstract
Microcystin-leucine-arginine (MC-LR), which produced by toxic cyanobacteria and widely present in eutrophic waters, has been shown to have potent acute hepatotoxicity. MC-LR has been revealed to inflict damage to brain, while the neurotoxicity of chronic exposure to MC-LR and mechanisms underlying it are still confusing. Here, the mice were exposed to MC-LR dissolved in drinking water at dose of 1, 7.5, 15, and 30 μg/L for consecutive 180 days. MC-LR accumulated in mouse brains and impaired the blood-brain barrier by inducing the expression of matrix metalloproteinase-8 (MMP-8), which was regulated by NF-κB, c-Fos and c-Jun. Furthermore, MC-LR exposure induced microglial and astrocyte activation and resultant neuroinflammatory response. This study highlights the risks to human health of the current microcystin exposure.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Changliang Zhang
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinling Zhu
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China; State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
45
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
46
|
Schlegel J, Peters S, Doose S, Schubert-Unkmeir A, Sauer M. Super-Resolution Microscopy Reveals Local Accumulation of Plasma Membrane Gangliosides at Neisseria meningitidis Invasion Sites. Front Cell Dev Biol 2019; 7:194. [PMID: 31572726 PMCID: PMC6753371 DOI: 10.3389/fcell.2019.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.
Collapse
Affiliation(s)
- Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Simon Peters
- Institute of Hygiene and Microbiology, Julius Maximilian University Würzburg, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
48
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
49
|
Martins Gomes SF, Westermann AJ, Sauerwein T, Hertlein T, Förstner KU, Ohlsen K, Metzger M, Shusta EV, Kim BJ, Appelt-Menzel A, Schubert-Unkmeir A. Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells as a Cellular Model to Study Neisseria meningitidis Infection. Front Microbiol 2019; 10:1181. [PMID: 31191497 PMCID: PMC6548865 DOI: 10.3389/fmicb.2019.01181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs.
Collapse
Affiliation(s)
- Sara F Martins Gomes
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Till Sauerwein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, Cologne, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Marco Metzger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brandon J Kim
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | | |
Collapse
|
50
|
Yang RC, Qu XY, Xiao SY, Li L, Xu BJ, Fu JY, Lv YJ, Amjad N, Tan C, Kim KS, Chen HC, Wang XR. Meningitic Escherichia coli-induced upregulation of PDGF-B and ICAM-1 aggravates blood-brain barrier disruption and neuroinflammatory response. J Neuroinflammation 2019; 16:101. [PMID: 31092253 PMCID: PMC6521501 DOI: 10.1186/s12974-019-1497-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Blood-brain barrier (BBB) disruption and neuroinflammation are considered key mechanisms of pathogenic Escherichia coli invasion of the brain. However, the specific molecules involved in meningitic E. coli-induced BBB breakdown and neuroinflammatory response remain unclear. Our previous RNA-sequencing data from human brain microvascular endothelial cells (hBMECs) revealed two important host factors: platelet-derived growth factor-B (PDGF-B) and intercellular adhesion molecule-1 (ICAM-1), which were significantly upregulated in hBMECs after meningitic E. coli infection. Whether and how PDGF-B and ICAM-1 contribute to the development of E. coli meningitis are still unclear. Methods The western blot, real-time PCR, enzyme-linked immunosorbent assay, immunohistochemistry, and immunofluorescence were applied to verify the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in vivo and in vitro. Evan’s blue assay and electric cell-substrate impedance sensing assay were combined to identify the effects of PDGF-B on BBB permeability. The CRISPR/Cas9 technology, cell-cell adhesion assay, and electrochemiluminescence assay were used to investigate the role of ICAM-1 in neuroinflammation subversion. Results We verified the significant induction of PDGF-B and ICAM-1 by meningitic E. coli in mouse as well as monolayer hBMECs models. Functionally, we showed that the increase of PDGF-B may directly enhance the BBB permeability by decreasing the expression of tight junction proteins, and the upregulation of ICAM-1 contributed to neutrophils or monocytes recruitment as well as neuroinflammation subversion in response to meningitic E. coli infection. Conclusions Our findings demonstrated the roles of PDGF-B and ICAM-1 in mediating bacterial-induced BBB damage as well as neuroinflammation, providing new concepts and potential targets for future prevention and treatment of bacterial meningitis.
Collapse
Affiliation(s)
- Rui-Cheng Yang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin-Yi Qu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Si-Yu Xiao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liang Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo-Jie Xu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Yang Fu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu-Jin Lv
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Nouman Amjad
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chen Tan
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kwang Sik Kim
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Huan-Chun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang-Ru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|