1
|
Gbedande K, Ibitokou SA, Endrino MJD, Yap GS, Brown MG, Stephens R. Heightened innate immune state induced by viral vector leads to enhanced response to challenge and prolongs malaria vaccine protection. iScience 2024; 27:111468. [PMID: 39758993 PMCID: PMC11697717 DOI: 10.1016/j.isci.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
Cytomegalovirus is a promising vaccine vector; however, mechanisms promoting CD4 T cell responses to challenge, by CMV as a vector, are unknown. The ability of MCMV to prolong immunity generated by short-lived malaria vaccine was tested. MCMV provided non-specific protection to challenge with Plasmodium and increased interleukin-12 (IL-12) and CD8α+ dendritic cell (DC) numbers through prolonged MCMV-dependent interferon gamma (IFN-γ) production. This late innate response to MCMV increased IL-12 upon challenge and increased the polyclonal CD4 effector T cell response to Plasmodium, protecting in an IL-12-dependent manner. Although Plasmodium-vaccine-induced protection decayed by d200, MCMV restored protection through IFN-γ. Mechanistically, protection depended on MCMV-induced-IFN-γ increasing CD8α+ DCs and IL-12p40. MCMV expressing a Plasmodium epitope increased parasite-specific CD4 effector and effector memory T cells persisting after malaria vaccination, both phenotypes reported to protect. Overall, enhanced innate cell status, a mechanism of heterologous protection by MCMV, led to a stronger T cell response to challenge.
Collapse
Affiliation(s)
- Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Mark Joseph D. Endrino
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - George S. Yap
- Center for Immunity and Inflammation, and Department of Medicine, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
| | - Michael G. Brown
- Department of Medicine, Division of Nephrology, and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Sanchez GM, Hirsch ES, VanValkenburg A, Mayer DP, Gbedande K, Francis RL, Song W, Antao OQ, Brimmer KE, Lemenze A, Stephens R, Johnson WE, Weinstein JS. Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus. Cell Rep 2024; 43:114978. [PMID: 39527476 PMCID: PMC11682828 DOI: 10.1016/j.celrep.2024.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/28/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Collapse
Affiliation(s)
- Gina M Sanchez
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Eden S Hirsch
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Arthur VanValkenburg
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel P Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Komi Gbedande
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Rebecca L Francis
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Olivia Q Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kyleigh E Brimmer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - W Evan Johnson
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
3
|
Tsogtsaikhan S, Inoue SI, Bayarsaikhan G, Macalinao ML, Kimura D, Miyakoda M, Yamamoto M, Hara H, Yoshida H, Yui K. Regulation of memory CD4+ T-cell generation by intrinsic and extrinsic IL-27 signaling during malaria infection. Int Immunol 2024; 36:629-640. [PMID: 38895753 DOI: 10.1093/intimm/dxae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
The generation and maintenance of memory T cells are regulated by various factors, including cytokines. Previous studies have shown that IL-27 is produced during the early acute phase of Plasmodium chabaudi chabaudi AS (Pcc) infection and inhibits the development of Th1-type memory CD4+ T cells. However, whether IL-27 acts directly on its receptor on Plasmodium-specific CD4+ T cells or indirectly via its receptor on other immune cells remains unclear. We aimed to determine the role of IL-27 receptor signaling in different immune cell types in regulating the generation and phenotype of memory CD4+ T cells during Plasmodium infection. We utilized Plasmodium-specific T-cell antigen receptor (TCR) transgenic mice, PbT-II, and Il27rα-/- mice to assess the direct and indirect effects of IL-27 signaling on memory CD4+ T-cell generation. Mice were transferred with PbT-II or Il27rα-/- PbT-II cells and infected with Pcc. Conditional knockout mice lacking the IL-27 receptor in T cells or dendritic cells were employed to discern the specific immune cell types involved in IL-27 receptor signaling. High levels of memory in PbT-II cells with Th1-shift occurred only when both PbT-II and host cells lacked the IL-27 receptor, suggesting the predominant inhibitory role of IL-27 signaling in both cell types. Furthermore, IL-27 receptor signaling in T cells limited the number of memory CD4+ T cells, while signaling in both T and dendritic cells contributed to the Th1 dominance of memory CD4+ T cells. These findings underscore the complex cytokine signaling network regulating memory CD4+ T cells during Plasmodium infection.
Collapse
Affiliation(s)
- Sanjaadorj Tsogtsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Maria Lourdes Macalinao
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Macalinao ML, Inoue SI, Tsogtsaikhan S, Matsumoto H, Bayarsaikhan G, Jian JY, Kimura K, Yasumizu Y, Inoue T, Yoshida H, Hafalla J, Kimura D, Yui K. IL-27 produced during acute malaria infection regulates Plasmodium-specific memory CD4 + T cells. EMBO Mol Med 2023; 15:e17713. [PMID: 37855243 DOI: 10.15252/emmm.202317713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Malaria infection elicits both protective and pathogenic immune responses, and IL-27 is a critical cytokine that regulate effector responses during infection. Here, we identified a critical window of CD4+ T cell responses that is targeted by IL-27. Neutralization of IL-27 during acute infection with Plasmodium chabaudi expanded specific CD4+ T cells, which were maintained at high levels thereafter. In the chronic phase, Plasmodium-specific CD4+ T cells in IL-27-neutralized mice consisted mainly of CD127+ KLRG1- and CD127- KLRG1+ subpopulations that displayed distinct cytokine production, proliferative capacity, and are maintained in a manner independent of active infection. Single-cell RNA-seq analysis revealed that these CD4+ T cell subsets formed independent clusters that express unique Th1-type genes. These IL-27-neutralized mice exhibited enhanced cellular and humoral immune responses and protection. These findings demonstrate that IL-27, which is produced during the acute phase of malaria infection, inhibits the development of unique Th1 memory precursor CD4+ T cells, suggesting potential implications for the development of vaccines and other strategic interventions.
Collapse
Affiliation(s)
- Maria Lourdes Macalinao
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sanjaadorj Tsogtsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hirotaka Matsumoto
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Jiun-Yu Jian
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Julius Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Ren Z, Shi Q, Xu S, Xu J, Yin Y, Lin Z, Xu S, Ma X, Liu Y, Zhu G, He X, Lu J, Li Y, Zhang W, Liu J, Yang Y, Han ET, Cao J, Lu F. Elicitation of T-cell-derived IFN-γ-dependent immunity by highly conserved Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII). Parasit Vectors 2023; 16:269. [PMID: 37553591 PMCID: PMC10410920 DOI: 10.1186/s13071-023-05897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Infections with Plasmodium ovale are widely distributed but rarely investigated, and the resulting burden of disease has been underestimated. Plasmodium ovale curtisi Duffy binding protein domain region II (PocDBP-RII) is an essential ligand for reticulocyte recognition and host cell invasion by P. ovale curtisi. However, the genomic variation, antigenicity and immunogenicity of PocDBP-RII remain major knowledge gaps. METHODS A total of 93 P. ovale curtisi samples were collected from migrant workers who returned to China from 17 countries in Africa between 2012 and 2016. The genetic polymorphism, natural selection and copy number variation (CNV) were investigated by sequencing and real-time PCR. The antigenicity and immunogenicity of the recombinant PocDBP-RII (rPocDBP-RII) protein were further examined, and the humoral and cellular responses of immunized mice were assessed using protein microarrays and flow cytometry. RESULTS Efficiently expressed and purified rPocDBP-RII (39 kDa) was successfully used as an antigen for immunization in mice. The haplotype diversity (Hd) of PocDBP-RII gene was 0.105, and the nucleotide diversity index (π) was 0.00011. No increased copy number was found among the collected isolates of P. ovale curtisi. Furthermore, rPocDBP-RII induced persistent antigen-specific antibody production with a serum IgG antibody titer of 1: 16,000. IFN-γ-producing T cells, rather than IL-10-producing cells, were activated in response to the stimulation of rPocDBP-RII. Compared to PBS-immunized mice (negative control), there was a higher percentage of CD4+CD44highCD62L- T cells (effector memory T cells) and CD8+CD44highCD62L+ T cells (central memory T cells) in rPocDBP-RII‑immunized mice. CONCLUSIONS PocDBP-RII sequences were highly conserved in clinical isolates of P. ovale curtisi. rPocDBP-RII protein could mediate protective blood-stage immunity through IFN-γ-producing CD4+ and CD8+ T cells and memory T cells, in addition to inducing specific antibodies. Our results suggested that rPocDBP-RII protein has potential as a vaccine candidate to provide assessment and guidance for malaria control and elimination activities.
Collapse
Affiliation(s)
- Zhenyu Ren
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiyang Shi
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Simin Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Changshu Second People's Hospital, Suzhou, 215500, Jiangsu, People's Republic of China
| | - Jiahui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yi Yin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhijie Lin
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xiaoqin Ma
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xinlong He
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jingyuan Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yinyue Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wenwen Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jiali Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yun Yang
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory On Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.
| | - Feng Lu
- Department of Pathogenic Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Affiliated Hospital of Yangzhou University, Yangzhou, 225000, People's Republic of China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
6
|
Gbedande K, Ibitokou SA, Ong ML, Degli-Esposti MA, Brown MG, Stephens R. Boosting Live Malaria Vaccine with Cytomegalovirus Vector Can Prolong Immunity through Innate and Adaptive Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539025. [PMID: 37205446 PMCID: PMC10187235 DOI: 10.1101/2023.05.02.539025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vaccines to persistent parasite infections have been challenging, and current iterations lack long-term protection. Cytomegalovirus (CMV) chronic vaccine vectors drive protection against SIV, tuberculosis and liver-stage malaria correlated with antigen-specific CD8 T cells with a Tem phenotype. This phenotype is likely driven by a combination of antigen-specific and innate adjuvanting effects of the vector, though these mechanisms are less well understood. Sterilizing immunity from live Plasmodium chabaudi vaccination lasts less than 200 days. While P. chabaudi-specific antibody levels remain stable after vaccination, the decay of parasite-specific T cells correlates with loss of challenge protection. Therefore, we enlisted murine CMV as a booster strategy to prolong T cell responses against malaria. To study induced T cell responses, we included P. chabaudi MSP-1 epitope B5 (MCMV-B5). We found that MCMV vector alone significantly protected against a challenge P. chabaudi infection 40-60 days later, and that MCMV-B5 was able to make B5-specific Teff, in addition to previously-reported Tem, that survive to the challenge timepoint. Used as a booster, MCMV-B5 prolonged protection from heterologous infection beyond day 200, and increased B5 TCR Tg T cell numbers, including both a highly-differentiated Tem phenotype and Teff, both previously reported to protect. B5 epitope expression was responsible for maintenance of Th1 and Tfh B5 T cells. In addition, the MCMV vector had adjuvant properties, contributing non-specifically through prolonged stimulation of IFN-γ. In vivo neutralization of IFN-γ, but not IL-12 and IL-18, late in the course of MCMV, led to loss of the adjuvant effect. Mechanistically, sustained IFN-γ from MCMV increased CD8α+ dendritic cell numbers, and led to increased IL-12 production upon Plasmodium challenge. In addition, neutralization of IFN-γ before challenge reduced the polyclonal Teff response to challenge. Our findings suggest that, as protective epitopes are defined, an MCMV vectored booster can prolong protection through the innate effects of IFN-γ.
Collapse
Affiliation(s)
- Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103
| | - Samad A Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
| | - Monique L Ong
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
| | - Mariapia A Degli-Esposti
- Centre for Experimental Immunology, Lions Eye Institute; Nedlands, Western Australia, Australia
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University; Clayton, Victoria, Australia
| | - Michael G Brown
- Department of Medicine, Division of Nephrology, and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Cancer Center, 205 S. Orange Avenue, Newark, NJ 07103
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
7
|
Li D, Ainiwaer A, Zheng X, Wang M, Shi Y, Rousu Z, Hou X, Kang X, Maimaiti M, Wang H, Li J, Zhang C. Upregulation of LAG3 modulates the immune imbalance of CD4+ T-cell subsets and exacerbates disease progression in patients with alveolar echinococcosis and a mouse model. PLoS Pathog 2023; 19:e1011396. [PMID: 37172058 DOI: 10.1371/journal.ppat.1011396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023] Open
Abstract
Infection with the cestode Echinococcus multilocularis (E. multilocularis) causes alveolar echinococcosis (AE), a tumor-like disease predominantly affecting the liver but able to spread to any organ. T cells develop functional defects during chronic E. multilocularis infection, mostly due to upregulation of inhibitory receptors such as T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) and programmed death-1 (PD-1). However, the role of lymphocyte activation gene-3 (LAG3), an inhibitory receptor, in AE infection remains to be determined. Here, we discovered that high expression of LAG3 was mainly found in CD4+ T cells and induced regulatory T cells (iTregs) in close liver tissue (CLT) from AE patients. In a mouse model of E. multilocularis infection, LAG3 expression was predominantly found in T helper 2 (Th2) and Treg subsets, which secreted significantly more IL-4 and IL-10, resulting in host immune tolerance and disease progression at a late stage. Furthermore, LAG3 deficiency was found to drive the development of effector memory CD4+ T cells and enhance the type 1 CD4+ T-cell immune response, thus inhibiting metacestode growth in vivo. In addition, CD4+ T cells from LAG3-deficient mice produced more IFN-γ and less IL-4 when stimulated by E. multilocularis protoscoleces (EmP) antigen in vitro. Finally, adoptive transfer experiments showed that LAG3-knockout (KO) CD4+ T cells were more likely to develop into Th1 cells and less likely to develop into Tregs in recipient mice. Our work reveals that high expression of LAG3 accelerates AE disease progression by modulating the immune imbalance of CD4+ T-cell subsets. These findings may provide a novel immunotherapeutic strategy against E. multilocularis infection.
Collapse
Affiliation(s)
- Dewei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abidan Ainiwaer
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuran Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Maolin Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zibigu Rousu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Hou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuejiao Kang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Muesier Maimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| | - Jing Li
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, and WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Drewry LL, Pewe LL, Hancox LS, Van de Wall S, Harty JT. CD4 T Cell-Dependent and -Independent Roles for IFN-γ in Blood-Stage Malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1305-1313. [PMID: 36939394 PMCID: PMC10121907 DOI: 10.4049/jimmunol.2200899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Production of IFN-γ by CD4 T cells is widely theorized to control Plasmodium parasite burden during blood-stage malaria. Surprisingly, the specific and crucial mechanisms through which this highly pleiotropic cytokine acts to confer protection against malarial disease remain largely untested in vivo. Here we used a CD4 T cell-restricted Cre-Lox IFN-γ excision mouse model to test whether and how CD4 T cell-derived IFN-γ controls blood-stage malaria. Although complete absence of IFN-γ compromised control of the acute and the chronic, recrudescent blood-stage infections with P. c. chabaudi, we identified a specific, albeit modest, role for CD4 T cell-derived IFN-γ in limiting parasite burden only during the chronic stages of P. c. chabaudi malaria. CD4 T cell IFN-γ promoted IgG Ab class switching to the IgG2c isotype during P. c. chabaudi malaria in C57BL/6 mice. Unexpectedly, our data do not support gross defects in phagocytic activity in IFN-γ-deficient hosts infected with blood-stage malaria. Together, our data confirm CD4 T cell-dependent roles for IFN-γ but suggest CD4 T cell-independent roles for IFN-γ in immune responses to blood-stage malaria.
Collapse
|
9
|
Ibitokou SA, Gbedande K, Opata MM, Carpio VH, Marshall KM, Stephens R. Effects of Low-Level Persistent Infection on Maintenance of Immunity by CD4 T Cell Subsets and Th1 Cytokines. Infect Immun 2023; 91:e0053122. [PMID: 36920200 PMCID: PMC10016079 DOI: 10.1128/iai.00531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
CD4 T cells are required, along with antibodies, for complete protection from blood-stage infection with Plasmodium spp., which cause malaria. Without continuous exposure, as on emigration of people from endemic areas, protection from malaria decays. As in other persistent infections, low-level Plasmodium chabaudi infection protects the host from reinfection at 2 months postinfection, a phenomenon termed premunition. Premunition is correlated with T cell responses, rather than antibody levels. We previously showed that while both effector T cells (Teff) and memory T cells (Tmem) are present after infection, Teff protect better than Tmem. Here, we studied T cell kinetics post-infection by labeling dividing Ifng+ T cells with 5-bromo-2'-deoxyuridine (BrdU) in infected Ifng reporter mice. Large drops in specific T cell numbers and Ifng+ cells upon clearance of parasites suggest a mechanism for decay of protection. Although protection decays, CD4 Tmem persist, including a highly differentiated CD27- effector memory (Tem) subset that maintains some Ifng expression. In addition, pretreatment of chronically infected animals with neutralizing antibody to interferon gamma (IFN-γ) or with clodronate liposomes before reinfection decreases premunition, supporting a role for Th1-type immunity to reinfection. A pulse-chase experiment comparing chronically infected to treated animals showed that recently divided Ifng+ T cells, particularly IFN-γ+ TNF+ IL-2- T cells, are promoted by persistent infection. These data suggest that low-level persistent infection reduces CD4+ Tmem and multifunctional Teff survival, but promotes IFN-γ+ TNF+ IL-2- T cells and Ifng+ terminally differentiated effector T cells, and prolongs immunity.
Collapse
Affiliation(s)
- Samad A. Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Komi Gbedande
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor H. Carpio
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karis M. Marshall
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Wei H, Xie A, Li J, Fang C, Liu L, Xing J, Shi F, Mo F, Chen D, Xie H, Yang Q, Pan X, Tang X, Huang J. PD-1+ CD4 T cell immune response is mediated by HIF-1α/NFATc1 pathway after P. yoelii infection. Front Immunol 2022; 13:942862. [PMID: 36091043 PMCID: PMC9449323 DOI: 10.3389/fimmu.2022.942862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
The morbidity and mortality of malaria are still high. Programmed cell death-1(PD-1) is an important co-inhibitory factor and CD8 T cells with PD-1 were reported to be exhausted cells. It remains unknown what the role of CD4 T cells expressing PD-1 is and what the upstream regulating molecules of PD-1 in CD4 T cells are. The C57BL/6 mice were injected with Plasmodium yoelii (P. yoelii) in this study. Expressions of PD-1, activation markers, and cytokines were tested. The differentially expressed genes between PD-1+/- CD4 T cells were detected by microarray sequencing. Western blot, chromatin immunoprecipitation (ChIP), siRNA, hypoxia inducible factor-1α (HIF-1α) inducer and inhibitor were used to explore PD-1’s upstream molecules, respectively. The proportions of PD-1+ CD4 T cells increased post P. yoelii infection. PD-1+ CD4 T cells expressed more activated surface markers and could produce more cytokines. Nuclear factor of activated T cells 1 (NFATc1) was found to be a key transcription factor to induce PD-1 expression after infection. Both the inducer and the inhibitor of HIF-1α could change the expressions of NFATc1 and PD-1 in vivo and in vitro, respectively. Taken together, P. yoelii infection induced NFATc1 expression by HIF-1α. The highly expressed NFATc1 entered the nucleus and initiated PD-1 expression. PD-1+ CD4 T cells appeared to be more activated and could secrete more cytokines to regulate the host’s immune responses against malaria.
Collapse
Affiliation(s)
- Haixia Wei
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Lin Liu
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Junmin Xing
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dianhui Chen
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingfei Pan
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| | - Jun Huang
- Department of Basic Medical Science, China Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingfei Pan, ; Xiaoping Tang, ; Jun Huang,
| |
Collapse
|
11
|
Hohman LS, Mou Z, Carneiro MB, Ferland G, Kratofil RM, Kubes P, Uzonna JE, Peters NC. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. PLoS Pathog 2021; 17:e1009944. [PMID: 34543348 PMCID: PMC8483310 DOI: 10.1371/journal.ppat.1009944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.
Collapse
Affiliation(s)
- Leah S. Hohman
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matheus B. Carneiro
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Gabriel Ferland
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Rachel M. Kratofil
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jude E. Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Jian JY, Inoue SI, Bayarsaikhan G, Miyakoda M, Kimura D, Kimura K, Nozaki E, Sakurai T, Fernandez-Ruiz D, Heath WR, Yui K. CD49d marks Th1 and Tfh-like antigen-specific CD4+ T cells during Plasmodium chabaudi infection. Int Immunol 2021; 33:409-422. [PMID: 33914894 DOI: 10.1093/intimm/dxab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Jiun-Yu Jian
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Eriko Nozaki
- Core Laboratory for Proteomics and Genomics, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| |
Collapse
|
13
|
Smith NL, Nahrendorf W, Sutherland C, Mooney JP, Thompson J, Spence PJ, Cowan GJM. A Conserved TCRβ Signature Dominates a Highly Polyclonal T-Cell Expansion During the Acute Phase of a Murine Malaria Infection. Front Immunol 2020; 11:587756. [PMID: 33329568 PMCID: PMC7719809 DOI: 10.3389/fimmu.2020.587756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023] Open
Abstract
CD4+ αβ T-cells are key mediators of the immune response to a first Plasmodium infection, undergoing extensive activation and splenic expansion during the acute phase of an infection. However, the clonality and clonal composition of this expansion has not previously been described. Using a comparative infection model, we sequenced the splenic CD4+ T-cell receptor repertoires generated over the time-course of a Plasmodium chabaudi infection. We show through repeat replicate experiments, single-cell RNA-seq, and analyses of independent RNA-seq data, that following a first infection - within a highly polyclonal expansion - T-effector repertoires are consistently dominated by TRBV3 gene usage. Clustering by sequence similarity, we find the same dominant clonal signature is expanded across replicates in the acute phase of an infection, revealing a conserved pathogen-specific T-cell response that is consistently a hallmark of a first infection, but not expanded upon re-challenge. Determining the host or parasite factors driving this conserved response may uncover novel immune targets for malaria therapeutic purposes.
Collapse
Affiliation(s)
- Natasha L. Smith
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Arroyo EN, Pepper M. B cells are sufficient to prime the dominant CD4+ Tfh response to Plasmodium infection. J Exp Med 2020; 217:jem.20190849. [PMID: 31748243 PMCID: PMC7041722 DOI: 10.1084/jem.20190849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Arroyo and Pepper demonstrate that interactions with B cells, not dendritic cells, are required for the priming of the CD4+ T cell response during Plasmodium infection. This results in a Tfh-biased response as reported by others in both mice and humans. CD4+ T follicular helper (Tfh) cells dominate the acute response to a blood-stage Plasmodium infection and provide signals to direct B cell differentiation and protective antibody expression. We studied antigen-specific CD4+ Tfh cells responding to Plasmodium infection in order to understand the generation and maintenance of the Tfh response. We discovered that a dominant, phenotypically stable, CXCR5+ Tfh population emerges within the first 4 d of infection and results in a CXCR5+ CCR7+ Tfh/central memory T cell response that persists well after parasite clearance. We also found that CD4+ T cell priming by B cells was both necessary and sufficient to generate this Tfh-dominant response, whereas priming by conventional dendritic cells was dispensable. This study provides important insights into the development of CD4+ Tfh cells during Plasmodium infection and highlights the heterogeneity of antigen-presenting cells involved in CD4+ T cell priming.
Collapse
Affiliation(s)
- E Nicole Arroyo
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
15
|
Carpio VH, Aussenac F, Puebla-Clark L, Wilson KD, Villarino AV, Dent AL, Stephens R. T Helper Plasticity Is Orchestrated by STAT3, Bcl6, and Blimp-1 Balancing Pathology and Protection in Malaria. iScience 2020; 23:101310. [PMID: 32634740 PMCID: PMC7339051 DOI: 10.1016/j.isci.2020.101310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hybrid Th1/Tfh cells (IFN-γ+IL-21+CXCR5+) predominate in response to several persistent infections. In Plasmodium chabaudi infection, IFN-γ+ T cells control parasitemia, whereas antibody and IL-21+Bcl6+ T cells effect final clearance, suggesting an evolutionary driver for the hybrid population. We found that CD4-intrinsic Bcl6, Blimp-1, and STAT3 coordinately regulate expression of the Th1 master regulator T-bet, supporting plasticity of CD4 T cells. Bcl6 and Blimp-1 regulate CXCR5 levels, and T-bet, IL-27Rα, and STAT3 modulate cytokines in hybrid Th1/Tfh cells. Infected mice with STAT3 knockout (KO) T cells produced less antibody and more Th1-like IFN-γ+IL-21−CXCR5lo effector and memory cells and were protected from re-infection. Conversely, T-bet KO mice had reduced Th1-bias upon re-infection and prolonged secondary parasitemia. Therefore, each feature of the CD4 T cell population phenotype is uniquely regulated in this persistent infection, and the cytokine profile of memory T cells can be modified to enhance the effectiveness of the secondary response. Plasmodium infection induces a CXCR5+IFN-γ+IL-21+ hybrid Th1/Tfh cell subset STAT3/WSX-1, T-bet, Bcl6, and Blimp-1 regulate different aspects of Th1/Tfh phenotype T cell-intrinsic STAT3 regulates degree of Th1 commitment of hybrid Th1/Tfh Shifting the plastic response toward Th1-like cells promotes resistance from reinfection
Collapse
Affiliation(s)
- Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Florentin Aussenac
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Lucinda Puebla-Clark
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | - Alejandro V Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0435, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0435, USA.
| |
Collapse
|
16
|
Latham LE, Wikenheiser DJ, Stumhofer JS. ICOS signaling promotes a secondary humoral response after re-challenge with Plasmodium chabaudi chabaudi AS. PLoS Pathog 2020; 16:e1008527. [PMID: 32348365 PMCID: PMC7213745 DOI: 10.1371/journal.ppat.1008527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/11/2020] [Accepted: 04/08/2020] [Indexed: 02/03/2023] Open
Abstract
The co-stimulatory molecule ICOS is associated with the induction and regulation of T helper cell responses, including the differentiation of follicular helper T (Tfh) cells and the formation and maintenance of memory T cells. However, the role of ICOS signaling in secondary immune responses is largely unexplored. Here we show that memory T cell formation and maintenance are influenced by persistent infection with P. chabaudi chabaudi AS infection, as memory T cell numbers decline in wild-type and Icos-/- mice after drug-clearance. Following drug-clearance Icos-/- mice display a relapsing parasitemia that occurs more frequently and with higher peaks compared to wild-type mice after re-challenge. The secondary immune response in Icos-/- mice is characterized by significant impairment in the expansion of effector cells with a Tfh-like phenotype, which is associated with a diminished and delayed parasite-specific Ab response and the absence of germinal centers. Similarly, the administration of an anti-ICOSL antagonizing antibody to wild-type mice before and after reinfection with P. c. chabaudi AS leads to an early defect in Tfh cell expansion and parasite-specific antibody production, confirming a need for ICOS-ICOSL interactions to promote memory B cell responses. Furthermore, adoptive transfer of central memory T (TCM) cells from wild-type and Icos-/- mice into tcrb-/- mice to directly evaluate the ability of TCM cells to give rise to Tfh cells revealed that TCM cells from wild-type mice acquire a mixed Th1- and Tfh-like phenotype after P. c. chabaudi AS infection. While TCM cells from Icos-/- mice expand and display markers of activation to a similar degree as their WT counterparts, they displayed a reduced capacity to upregulate markers indicative of a Tfh cell phenotype, resulting in a diminished humoral response. Together these findings verify that ICOS signaling in memory T cells plays an integral role in promoting T cell effector responses during secondary infection with P. c. chabaudi AS.
Collapse
Affiliation(s)
- Leah E. Latham
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Daniel J. Wikenheiser
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| | - Jason S. Stumhofer
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, AR, United States of America
| |
Collapse
|
17
|
Abstract
Immunity to malaria has been linked to the availability and function of helper CD4+ T cells, cytotoxic CD8+ T cells and γδ T cells that can respond to both the asymptomatic liver stage and the symptomatic blood stage of Plasmodium sp. infection. These T cell responses are also thought to be modulated by regulatory T cells. However, the precise mechanisms governing the development and function of Plasmodium-specific T cells and their capacity to form tissue-resident and long-lived memory populations are less well understood. The field has arrived at a point where the push for vaccines that exploit T cell-mediated immunity to malaria has made it imperative to define and reconcile the mechanisms that regulate the development and functions of Plasmodium-specific T cells. Here, we review our current understanding of the mechanisms by which T cell subsets orchestrate host resistance to Plasmodium infection on the basis of observational and mechanistic studies in humans, non-human primates and rodent models. We also examine the potential of new experimental strategies and human infection systems to inform a new generation of approaches to harness T cell responses against malaria.
Collapse
|
18
|
Gao W, Sun X, Li D, Sun L, He Y, Wei H, Jin F, Cao Y. Toll-like receptor 7 and Toll-like receptor 9 agonists effectively enhance immunological memory in Plasmodium chabaudi infected BALB/c mice. Int Immunopharmacol 2020; 81:106248. [PMID: 32007799 DOI: 10.1016/j.intimp.2020.106248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyan Gao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China; Department of Obstetrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaodan Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Danni Li
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Lin Sun
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Yang He
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Huanping Wei
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yaming Cao
- Department of Immunology, Basic Medicine College of China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
19
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
20
|
Liu G, Li Y, Qin L, Yan Y, Ye Y, Chen Y, Huang C, Zhao S, Yao Y, Su Z, Chen X. SIV infection aggravates malaria in a Chinese rhesus monkey coinfection model. BMC Infect Dis 2019; 19:965. [PMID: 31718574 PMCID: PMC6852750 DOI: 10.1186/s12879-019-4465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/11/2019] [Indexed: 01/26/2023] Open
Abstract
Background The co-occurrence of human immunodeficiency virus (HIV) infection and malaria in humans in endemic areas raises the question of whether one of these infections affects the course of the other. Although epidemiological studies have shown the impact of HIV infection on malaria, the mechanism(s) are not yet fully understood. Using a Chinese rhesus macaque coinfection model with simian immunodeficiency virus (SIV) and Plasmodium cynomolgi (Pc) malaria, we investigated the effect of concurrent SIV infection on the course of malaria and the underlying immunological mechanism(s). Methods We randomly assigned ten Chinese rhesus monkeys to two groups based on body weight and age. The SIV-Pc coinfection animals (S + P group) were infected intravenously with SIVmac251 eight weeks prior to malaria infection, and the control animals (P group) were infected intravenously with only Pc-infected red blood cells. After malaria was cured with chloroquine phosphate, we also initiated a secondary malaria infection that lasted 4 weeks. We monitored body weight, body temperature and parasitemia, measured SIV viral loads, hemoglobin and neopterin, and tracked the CD4+, CD8+, and CD4+ memory subpopulations, Ki67 and apoptosis by flow cytometry. Then, we compared these parameters between the two groups. Results The animals infected with SIV prior to Pc infection exhibited more severe malaria symptoms characterized by longer episodes, higher parasitemia, more severe anemia, greater body weight loss and higher body temperature than the animals infected with Pc alone. Concurrent SIV infection also impaired immune protection against the secondary Pc challenge infection. The coinfected animals showed a reduced B cell response to Pc malaria and produced lower levels of Pc-specific antibodies. In addition, compared to the animals subjected to Pc infection alone, the animals coinfected with SIV and Pc had suppressed total CD4+ T cells, CD4+CD28highCD95high central memory T cells, and CD4+CD28lowCD95− naïve T cells, which may result from the imbalanced immune activation and faster CD4+ T cell turnover in coinfected animals. Conclusions SIV infection aggravates malaria physiologically and immunologically in Chinese rhesus monkeys. This nonhuman primate SIV and Pc malaria coinfection model might be a useful tool for investigating human HIV and malaria coinfection and developing effective therapeutics.
Collapse
Affiliation(s)
- Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Youjia Li
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China.,Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China
| | - Yongxiang Yan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China
| | - Yijian Ye
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yue Chen
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Cuizhu Huang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China
| | - Yongchao Yao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China.,Shenzhen Institute of Geriatrics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Su
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Diseases, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou, 510530, China.
| |
Collapse
|
21
|
Soon MS, Engel JA, Lee HJ, Haque A. Development of circulating CD4 + T-cell memory. Immunol Cell Biol 2019; 97:617-624. [PMID: 31120158 DOI: 10.1111/imcb.12272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
Abstract
The ability of circulating CD4+ T cells to retain memories of previous antigenic encounters is a cardinal feature of the adaptive immune system. Over the past two decades, since the first description of central and effector memory T cells, many studies have examined molecular mechanisms controlling CD8+ T-cell memory, with comparatively less research into CD4+ T-cell memory. Here, we review a number of seminal studies showing that circulating memory CD4+ T cells develop directly from effector cells; and in so doing, preserve features of their effector precursors. We examine mechanisms controlling the development and phenotypes of memory CD4+ T cells, and provide an updated model that accommodates both the central and effector memory paradigm and the diverse T helper cell classification system.
Collapse
Affiliation(s)
- Megan Sf Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hyun J Lee
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Secretory Microneme Proteins Induce T-Cell Recall Responses in Mice Chronically Infected with Toxoplasma gondii. mSphere 2019; 4:4/1/e00711-18. [PMID: 30814319 PMCID: PMC6393730 DOI: 10.1128/msphere.00711-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current diagnosis of toxoplasmosis relies almost exclusively on antibody detection, and while detection of IgG provides a useful estimate of prior infection, it does not alone indicate immune status. In contrast, detection of IFN-γ responses to T. gondii antigens has been used to monitor immune responsiveness in HIV-infected patients, thus providing valuable predictions about the potential for disease reactivation. However, specific T. gondii antigens that can be used in assays to detect cellular immunity remain largely undefined. In this study, we examined the diagnostic potential of microneme antigens of T. gondii using IFN-γ detection assays. Our findings demonstrate that MIC antigens (MIC1, MIC3, MIC4, and MIC6) elicit IFN-γ responses from memory T cells in chronically infected mice. Monitoring IFN-γ production by T cells stimulated with MIC antigens provided high sensitivity and specificity for detection of T. gondii infection in mice. Taken together, these studies suggest that microneme antigens might be useful as an adjunct to serological testing to monitor immune status during infection. Microneme (MIC) proteins play important roles in the recognition, adhesion, and invasion of host cells by Toxoplasma gondii. Previous studies have shown that MIC proteins are highly immunogenic in the mouse and recognized by human serum antibodies. Here we report that T. gondii antigens MIC1, MIC3, MIC4, and MIC6 were capable of inducing memory responses leading to production of gamma interferon (IFN-γ) by T cells from T. gondii-infected mice. Production of IFN-γ was demonstrated using enzyme-linked immunosorbent spot (ELISPOT) assay and also intracellular cytokine staining. All four MIC antigens displayed very high sensitivity (100%) and specificity (86 to 100%) for detecting chronic infection. Interestingly, IFN-γ was produced by both CD4+ and CD8+ T cells in BALB/c mice but primarily by CD4+ T cells in C57BL/6 mice. Phenotypic characterization of IFN-γ-producing CD4+ and CD8+ T cells in BALB/c mice and CD4+ T cells in C57BL/6 mice revealed effector memory T cells (CD44hi CD62Llo) as the predominant cells that contributed to IFN-γ production in response to MIC antigens. Effector memory responses were seen in mice of different major histocompatibility complex class II (MHC-II) haplotypes, suggesting that MIC antigens contain epitopes that are broadly recognized. IMPORTANCE Current diagnosis of toxoplasmosis relies almost exclusively on antibody detection, and while detection of IgG provides a useful estimate of prior infection, it does not alone indicate immune status. In contrast, detection of IFN-γ responses to T. gondii antigens has been used to monitor immune responsiveness in HIV-infected patients, thus providing valuable predictions about the potential for disease reactivation. However, specific T. gondii antigens that can be used in assays to detect cellular immunity remain largely undefined. In this study, we examined the diagnostic potential of microneme antigens of T. gondii using IFN-γ detection assays. Our findings demonstrate that MIC antigens (MIC1, MIC3, MIC4, and MIC6) elicit IFN-γ responses from memory T cells in chronically infected mice. Monitoring IFN-γ production by T cells stimulated with MIC antigens provided high sensitivity and specificity for detection of T. gondii infection in mice. Taken together, these studies suggest that microneme antigens might be useful as an adjunct to serological testing to monitor immune status during infection.
Collapse
|
23
|
Cheng Q, Liu J, Pei Y, Zhang Y, Zhou D, Pan W, Zhang J. Neddylation contributes to CD4+ T cell-mediated protective immunity against blood-stage Plasmodium infection. PLoS Pathog 2018; 14:e1007440. [PMID: 30462731 PMCID: PMC6249024 DOI: 10.1371/journal.ppat.1007440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
CD4+ T cells play predominant roles in protective immunity against blood-stage Plasmodium infection, both for IFN-γ-dependent effector mechanisms and providing B cell helper signals. Neddylation, an ubiquitination-like process triggered by covalent conjugation of NEDD8 to specific targets, has emerged as a potential regulator of T cell activities to TCR engagement. However, its contribution to T cell-mediated immunity to blood-stage malaria remains unclear. Here using an experimental model induced by Plasmodium yoelii 17XNL, and conditional knockout mice with T cell-specific deficiency of crucial components of neddylation pathway, we demonstrate activation of neddylation in T cells during blood-stage Plasmodium infection is essential for parasite control and host survival. Mechanistically, we show that apart from promoting CD4+ T cell activation, proliferation, and development of protective T helper 1 (Th1) cell response as suggested previously, neddylation is also required for supporting CD4+ T cell survival, mainly through B-cell lymphoma-2 (Bcl-2) mediated suppression of the mitochondria-dependent apoptosis. Furthermore, we provide evidence that neddylation contributes to follicular helper T (Tfh) cell differentiation, probably via augmenting the ubiquitin ligase Itch activity and proteasomal degradation of FoxO1, thereby facilitating germinal center (GC) formation and parasite-specific antibody production. This study identifies neddylation as a positive regulator of anti-Plasmodium immunity and provides insight into an involvement of such pathway in host resistance to infectious diseases. Malaria, which is caused by the intracellular parasite Plasmodium, remains a major infectious disease with significant morbidity and mortality annually. Better understanding of the molecular mechanisms involved in protective immunity against the pathogenic blood-stage Plasmodium will facilitate development of anti-malarial drugs and vaccines. Neddylation has recently been identified as a potential regulator of T cell function. Here, we directly addressed the effects of neddylation on T cell responses and the outcome of blood-stage P. yoelii 17XNL malaria. We show that activation of neddylation in T cells is essential for IFN-γ-mediated proinflammatory response and generation of parasite-specific antibodies, thus contributing to full resolution of the infection. This is primarily associated with the reported beneficial effects of neddylation on CD4+ T cell activities, including activation, proliferation, and differentiation into T helper 1 (Th1) cells. Additionally, we establish a novel role of neddylation in parasite-responsive CD4+ T cell survival and follicular helper T (Tfh) cell differentiation. Therefore, we provide evidence that neddylation may represent a novel mechanism in orchestrating optimum CD4+ T cell effector response and subsequent humoral immunity to blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| |
Collapse
|
24
|
Shankar EM, Vignesh R, Dash AP. Recent advances on T-cell exhaustion in malaria infection. Med Microbiol Immunol 2018; 207:167-174. [PMID: 29936565 DOI: 10.1007/s00430-018-0547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
Collapse
Affiliation(s)
- Esaki M Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences (DLS), School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India.
| | - R Vignesh
- Laboratory-Based Department, Universiti Kuala Lumpur Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Malaysia
| | - A P Dash
- Central University of Tamil Nadu (CUTN), Thiruvarur, Tamilnadu, 610 005, India
| |
Collapse
|
25
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 21:1839-1852. [PMID: 29141217 DOI: 10.1016/j.celrep.2017.10.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/15/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure.
Collapse
Affiliation(s)
- Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Angela D Pack
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy C Graham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Scott E Lindner
- Center for Malaria Research, Penn State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Graduate Program in Biosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
26
|
Draheim M, Wlodarczyk MF, Crozat K, Saliou JM, Alayi TD, Tomavo S, Hassan A, Salvioni A, Demarta-Gatsi C, Sidney J, Sette A, Dalod M, Berry A, Silvie O, Blanchard N. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol Med 2018; 9:1605-1621. [PMID: 28935714 PMCID: PMC5666312 DOI: 10.15252/emmm.201708123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T‐cell subsets are critical to hamper pathology. Yet the antigen‐presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood‐stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP‐specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite‐specific Th1 cells and inhibit the development of IL‐10+CD4 T cells. This work profiles the P. berghei blood‐stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria‐specific CD4 T‐cell responses.
Collapse
Affiliation(s)
- Marion Draheim
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Myriam F Wlodarczyk
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Karine Crozat
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Tchilabalo Dilezitoko Alayi
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Stanislas Tomavo
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ali Hassan
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Anna Salvioni
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Claudia Demarta-Gatsi
- CNRS, INSERM, Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Marc Dalod
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Antoine Berry
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC University of Paris 06, Paris, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
27
|
Yang J, Du F, Zhou X, Wang L, Li S, Fang R, Zhao J. Brain proteomic differences between wild-type and CD44- mice induced by chronic Toxoplasma gondii infection. Parasitol Res 2018; 117:2623-2633. [PMID: 29948204 DOI: 10.1007/s00436-018-5954-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/31/2018] [Indexed: 11/29/2022]
Abstract
Chronic clinical Toxoplasma gondii (T. gondii) infection is the primary disease state that causes severe encephalitis. CD44 is a member of the cell adhesion molecule family and plays an important role in T. gondii infection. However, proteomic changes in CD44 during chronic T. gondii infection have rarely been reported. Thus, an iTRAQ-based proteomic study coupled with 2D-LC-MS/MS analysis was performed to screen CD44-related proteins during chronic T. gondii infection. As a result, a total of 2612 proteins were reliably identified and quantified. Subsequently, 259, 106, and 249 differentially expressed proteins (DEPs) were compared between CD44- mice (A) vs wild-type mice (B), B vs wild-type mice infected with T. gondii (C), and C vs CD44- mice infected with T. gondii (D). Gene ontology, KEGG pathway, and protein-protein interaction analyses were performed on the DEPs. According to the results, immune-related proteins were altered significantly among the A vs B, B vs C, and C vs D comparisons, which might indicate that chronic T. gondii infection caused changes in the host immune response. Additionally, Ca2+- and metabolism-related proteins were upregulated in C vs D, which supported the hypothesis that CD44 mediated the production of host Ca2+ and IFN-γ and that the parasite preferentially invaded cells expressing high levels of CD44. The present findings validate and enable a more comprehensive knowledge of the role of CD44 in hosts chronically infected with T. gondii, thus providing new ideas for future studies on the specific functions of CD44 in latent toxoplasmosis.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Fen Du
- Hubei Centre for Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiaoliu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Lixia Wang
- Hubei Provincial Centre for Diseases Control and Prevention, Wuhan, 430079, Hubei, People's Republic of China
| | - Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Wilson KD, Ochoa LF, Solomon OD, Pal R, Cardona SM, Carpio VH, Keiser PH, Cardona AE, Vargas G, Stephens R. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. J Neuroinflammation 2018; 15:173. [PMID: 29866139 PMCID: PMC5987620 DOI: 10.1186/s12974-018-1207-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.
Collapse
Affiliation(s)
- Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Lorenzo F Ochoa
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rahul Pal
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Sandra M Cardona
- Department of Biology, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Philip H Keiser
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0435, USA
| | - Astrid E Cardona
- Department of Biology, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Gracie Vargas
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA. .,Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0435, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
29
|
Opata MM, Ibitokou SA, Carpio VH, Marshall KM, Dillon BE, Carl JC, Wilson KD, Arcari CM, Stephens R. Protection by and maintenance of CD4 effector memory and effector T cell subsets in persistent malaria infection. PLoS Pathog 2018; 14:e1006960. [PMID: 29630679 PMCID: PMC5908200 DOI: 10.1371/journal.ppat.1006960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 03/04/2018] [Indexed: 01/12/2023] Open
Abstract
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages. Malaria causes significant mortality but current vaccine candidates have poor efficacy and duration, as does natural immunity to malaria. T helper cells (CD4+) are essential to protection from malaria, but it is unknown what kinds of T cells would be both protective and long-lasting. Here, we explored the mechanisms of survival used by memory T cells in malaria, and their ability to protect immunodeficient animals from malaria. We identified four mechanisms by which memory T cells are maintained in chronic infection. We also showed that highly activated effector T cells protect better than memory T cells in general, however, effector T cells have a shorter lifespan suggesting a mechanism for short-lived immunity. In total, we identified two protective T cell subsets that are long-lived. Unfortunately, the memory T cell subset that protects, is not the predominant memory T cell population generated by natural infection, suggesting a mechanism for the poor immunity seen in malaria. Our work suggests that vaccines that induce these two T cell subsets may improve on current immunity from malaria infection and disease.
Collapse
Affiliation(s)
- Michael M. Opata
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Samad A. Ibitokou
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Victor H. Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Karis M. Marshall
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Brian E. Dillon
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jordan C. Carl
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyle D. Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Christine M. Arcari
- Department of Preventive Medicine & Community Health, University of Texas Medical Branch Galveston, TX, United States of America
| | - Robin Stephens
- Departments of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zander RA, Vijay R, Pack AD, Guthmiller JJ, Graham AC, Lindner SE, Vaughan AM, Kappe SHI, Butler NS. Th1-like Plasmodium-Specific Memory CD4 + T Cells Support Humoral Immunity. Cell Rep 2018; 23:1230-1237. [PMID: 29694898 DOI: 10.1016/j.celrep.2018.04.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Ademolue TW, Awandare GA. Evaluating antidisease immunity to malaria and implications for vaccine design. Immunology 2017; 153:423-434. [PMID: 29211303 PMCID: PMC5838420 DOI: 10.1111/imm.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Immunity to malaria could be categorized broadly as antiparasite or antidisease immunity. While most vaccine research efforts have focused on antiparasite immunity, the evidence from endemic populations suggest that antidisease immunity is an important component of natural immunity to malaria. The processes that mediate antidisease immunity have, however, attracted little to no attention, and most interests have been directed towards the antibody responses. This review evaluates the evidence for antidisease immunity in endemic areas and discusses the possible mechanisms responsible for it. Given the key role that inflammation plays in the pathogenesis of malaria, regulation of the inflammatory response appears to be a major mechanism for antidisease immunity in naturally exposed individuals.
Collapse
Affiliation(s)
- Temitope W Ademolue
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
32
|
Ibitokou SA, Dillon BE, Sinha M, Szczesny B, Delgadillo A, Reda Abdelrahman D, Szabo C, Abu-Elheiga L, Porter C, Tuvdendorj D, Stephens R. Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:643-656. [PMID: 29237780 DOI: 10.4049/jimmunol.1602110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/09/2017] [Indexed: 01/13/2023]
Abstract
Understanding the mechanisms of CD4 memory T cell (Tmem) differentiation in malaria is critical for vaccine development. However, the metabolic regulation of CD4 Tmem differentiation is not clear, particularly in persistent infections. In this study, we investigated the role of fatty acid synthesis (FAS) in Tmem development in Plasmodium chabaudi chronic mouse malaria infection. We show that T cell-specific deletion and early pharmaceutical inhibition of acetyl CoA carboxylase 1, the rate limiting step of FAS, inhibit generation of early memory precursor effector T cells (MPEC). To compare the role of FAS during early differentiation or survival of Tmem in chronic infection, a specific inhibitor of acetyl CoA carboxylase 1, 5-(tetradecyloxy)-2-furoic acid, was administered at different times postinfection. Strikingly, the number of Tmem was only reduced when FAS was inhibited during T cell priming and not during the Tmem survival phase. FAS inhibition during priming increased effector T cell (Teff) proliferation and strongly decreased peak parasitemia, which is consistent with improved Teff function. Conversely, MPEC were decreased, in a T cell-intrinsic manner, upon early FAS inhibition in chronic, but not acute, infection. Early cure of infection also increased mitochondrial volume in Tmem compared with Teff, supporting previous reports in acute infection. We demonstrate that the MPEC-specific effect was due to the higher fatty acid content and synthesis in MPEC compared with terminally differentiated Teff. In conclusion, FAS in CD4 T cells regulates the early divergence of Tmem from Teff in chronic infection.
Collapse
Affiliation(s)
- Samad A Ibitokou
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Brian E Dillon
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Mala Sinha
- Biomedical Informatics, Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555
| | | | | | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555
| | - Lutfi Abu-Elheiga
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Craig Porter
- Shriners Hospital for Children, Galveston, TX 77550
| | - Demidmaa Tuvdendorj
- Division of Endocrinology, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
33
|
Fernandez-Ruiz D, Lau LS, Ghazanfari N, Jones CM, Ng WY, Davey GM, Berthold D, Holz L, Kato Y, Enders MH, Bayarsaikhan G, Hendriks SH, Lansink LIM, Engel JA, Soon MSF, James KR, Cozijnsen A, Mollard V, Uboldi AD, Tonkin CJ, de Koning-Ward TF, Gilson PR, Kaisho T, Haque A, Crabb BS, Carbone FR, McFadden GI, Heath WR. Development of a Novel CD4 + TCR Transgenic Line That Reveals a Dominant Role for CD8 + Dendritic Cells and CD40 Signaling in the Generation of Helper and CTL Responses to Blood-Stage Malaria. THE JOURNAL OF IMMUNOLOGY 2017; 199:4165-4179. [PMID: 29084838 DOI: 10.4049/jimmunol.1700186] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.
Collapse
Affiliation(s)
- Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lei Shong Lau
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Claerwen M Jones
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Wei Yi Ng
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Gayle M Davey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Dorothee Berthold
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Lauren Holz
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Kato
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Matthias H Enders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Ganchimeg Bayarsaikhan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia.,Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sanne H Hendriks
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Lianne I M Lansink
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Jessica A Engel
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Megan S F Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Kylie R James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vanessa Mollard
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; and
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Brendan S Crabb
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; and
| | - Francis R Carbone
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3000, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Salles ÉMD, Menezes MND, Siqueira R, Borges da Silva H, Amaral EP, Castillo-Méndez SI, Cunha I, Cassado ADA, Vieira FS, Olivieri DN, Tadokoro CE, Alvarez JM, Coutinho-Silva R, D'Império-Lima MR. P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria. PLoS Pathog 2017; 13:e1006595. [PMID: 28859168 PMCID: PMC5597262 DOI: 10.1371/journal.ppat.1006595] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome. Malaria still causes the death of approximately half a million people yearly despite efforts to develop vaccines. The ability of Plasmodium parasites to survive the immune effector mechanisms indicates how suitable the immune response must be to eliminate the infection. CD4 T cells have a dual role in protection against blood-stage malaria by producing IFNγ and helping B cells to secrete antibodies. Infected erythrocytes release adenosine triphosphate (ATP), a damage signal that can be recognized by purinergic receptors. Among them, the P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here, we evaluated the role of P2X7 receptor in the CD4 T cell response during blood-stage Plasmodium chabaudi malaria. We observed that the selective expression of P2X7 receptor in CD4 T cells was required for T helper 1 (Th1) cell differentiation, contributing to IFNγ production and parasite control. In contrast, we found an increase in follicular T helper (Tfh) cell population, germinal center reaction and anti-parasite antibody production in the absence of the P2X7 receptor. Our findings provide mechanistic insights into malaria pathogenesis by demonstrating the importance of damage signals for the fine-tuning between Th1 and Tfh cell populations and thus for the outcome of the disease.
Collapse
Affiliation(s)
- Érika Machado de Salles
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Nogueira de Menezes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Renan Siqueira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Henrique Borges da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Laboratory Medicine and Pathology, Center of Immunology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Eduardo Pinheiro Amaral
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Isabela Cunha
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Flávia Sarmento Vieira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - José Maria Alvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Robson Coutinho-Silva
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Meio Ambiente da Região Amazônica, Rio de Janeiro, Brazil
| | | |
Collapse
|
35
|
Solana JC, Ramírez L, Corvo L, de Oliveira CI, Barral-Netto M, Requena JM, Iborra S, Soto M. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 2017; 11:e0005644. [PMID: 28558043 PMCID: PMC5466331 DOI: 10.1371/journal.pntd.0005644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. Despite numerous efforts made, a vaccine against leishmaniasis for humans is not available. Attempts based on parasite fractions or selected antigens failed to confer long lasting protection. On the other side, leishmanization, which consists in the inoculation of live virulent parasites in hidden parts of the body, is effective against cutaneous leishmaniasis in humans but objectionable in terms of biosafety. Some efforts have been made to design live vaccines to make leishmanization safer. A promising strategy is the development of genetically attenuated parasites, able to confer immunity without undesirable side effects. Here, we have employed an attenuated L. infantum line (LiΔHSP70-II) as a vaccine against heterologous challenge with L. major in two experimental models. Infection with LiΔHSP70-II parasites does not cause pathology and induces long-term protection based on the induction of IFN-γ producing T cells that are recruited rapidly and specifically to the site of challenge with the virulent parasites. These results support the idea of using attenuated parasites for vaccination.
Collapse
Affiliation(s)
- José Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ). Salvador, Bahia, Brazil
| | - José María Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| |
Collapse
|
36
|
Raballah E, Kempaiah P, Karim Z, Orinda GO, Otieno MF, Perkins DJ, Ong’echa JM. CD4 T-cell expression of IFN-γ and IL-17 in pediatric malarial anemia. PLoS One 2017; 12:e0175864. [PMID: 28426727 PMCID: PMC5398558 DOI: 10.1371/journal.pone.0175864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
In Plasmodium falciparum holoendemic transmission regions of western Kenya, life-threatening pediatric malaria manifests primarily as severe malarial anemia (SMA, Hb≤6.0 g/dL with any density parasitemia). To determine the role that CD4+ T-cell-driven inflammatory responses have in the pathogenesis of SMA, peripheral CD4+ T-cell populations and their intracellular production of pro-inflammatory cytokines (IFN-γ and IL-17) were characterized in children aged 12–36 months of age stratified into two groups: non-severe malarial anemia (non-SMA, Hb≥6.0 g/dL, n = 50) and SMA (n = 39). In addition, circulating IFN-γ and IL-17 were measured as part of a Cytokine 25-plex Antibody Bead Kit, Human (BioSource™ International). Children with SMA had higher overall proportions of circulating lymphocytes (P = 0.003) and elevated proportions of lymphocytes expressing IFN-γ (P = 0.014) and comparable IL-17 (P = 0.101). In addition, SMA was characterized by decreased memory-like T-cells (CD4+CD45RA-) expressing IL-17 (P = 0.009) and lower mean fluorescence intensity in memory-like CD4+ T-cells for both IFN-γ (P = 0.063) and IL-17 (P = 0.006). Circulating concentrations of IFN-γ were higher in children with SMA (P = 0.009), while IL-17 levels were comparable between the groups (P = 0.164). Furthermore, circulating levels of IFN-γ were negatively correlated with IL-17 levels in both groups of children (SMA: r = -0.610, P = 0.007; and non-SMA: r = -0.516, P = 0.001), while production of both cytokines by lymphocytes were positively correlated (SMA: r = 0.349, P = 0.037; and non-SMA: r = 0.475, P = 0.001). In addition, this correlation was only maintained by the memory-like CD4+ T cells (r = 0.365, P = 0.002) but not the naïve-like CD4+ T cells. However, circulating levels of IFN-γ were only associated with naïve-like CD4+ T cells producing IFN-γ (r = 0.547, P = 0.028), while circulating levels of IL-17 were not associated with any of the cell populations. Taken together, these results suggest that enhanced severity of malarial anemia is associated with higher overall levels of circulating lymphocytes, enhanced intracellular production of IFN-γ by peripheral lymphocytes and high circulating IFN-γ levels. In addition, the observed inverse relationship between the circulating levels of IFN-γ and IL-17 together with the reduction in the levels of memory-like CD4+ T cells expressing IL-17 in children with SMA may suggest possible relocation of these cells in the deeper tissues for their pathological effect.
Collapse
Affiliation(s)
- Evans Raballah
- University of New Mexico Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Prakasha Kempaiah
- Center for Global Health, Department of Internal Medicine, University of New Mexico, Health Sciences Centre, Albuquerque, NM, United States of America
| | - Zachary Karim
- Center for Global Health, Department of Internal Medicine, University of New Mexico, Health Sciences Centre, Albuquerque, NM, United States of America
| | - George O. Orinda
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Michael F. Otieno
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Douglas J. Perkins
- University of New Mexico Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Center for Global Health, Department of Internal Medicine, University of New Mexico, Health Sciences Centre, Albuquerque, NM, United States of America
| | - John Michael Ong’echa
- University of New Mexico Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- * E-mail:
| |
Collapse
|
37
|
Chronic Plasmodium chabaudi Infection Generates CD4 Memory T Cells with Increased T Cell Receptor Sensitivity but Poor Secondary Expansion and Increased Apoptosis. Infect Immun 2017; 85:IAI.00744-16. [PMID: 28031266 DOI: 10.1128/iai.00744-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 01/13/2023] Open
Abstract
Exposure to blood-stage malaria infection is often persistent, leading to generation of CD4 effector and effector memory T cells that contribute to protection. We showed previously that chronic exposure to blood-stage Plasmodium chabaudi offers the best protection from parasitemia and pathology in reinfection cases, correlating with an increase in Th1 cells. Although much is known about the features of resting or exhausted memory T cells (Tmem), little is known about the functional capacities of chronically stimulated but protective T cells. To determine the functional capacity of CD4 T cells generated by chronic infection upon reexposure to parasite, we compared their responses to known features of classical Tmem. The numbers of cytokine-producing T cells increased following infection in the polyclonal populations, suggesting an increase in pathogen-specific T cells. Malaria antigen-specific B5 T cell receptor (TCR) transgenic (Tg) T cells from chronic infection proliferated on reinfection and were highly sensitive to TCR stimulation without costimulation, as shown for Tmem in acute stimulations. However, B5 Tmem did not accumulate more than naive B5 T cells in vivo or in vitro and became apoptotic. Failure to accumulate was partly the result of chronic stimulation, since eliminating persistent parasites before reinfection slightly increased the accumulation of B5 Tg T cells upon reinfection. The levels of specific gamma interferon-positive, interleukin-10-positive T cells, which protect animals from pathology, increased after malaria infection. These data demonstrate that although chronic infection generates a protective T cell population with increased TCR sensitivity and cytokine production, they do not reexpand upon reexposure due to increased apoptosis.
Collapse
|
38
|
Staphylococcus aureus-dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination. Sci Rep 2016; 6:38043. [PMID: 27901071 PMCID: PMC5128924 DOI: 10.1038/srep38043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.
Collapse
|
39
|
A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP1 19. Sci Rep 2016; 6:34527. [PMID: 27708348 PMCID: PMC5052570 DOI: 10.1038/srep34527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate.
Collapse
|
40
|
Villegas-Mendez A, Inkson CA, Shaw TN, Strangward P, Couper KN. Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:3152-3164. [PMID: 27630165 PMCID: PMC5055201 DOI: 10.4049/jimmunol.1600968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ-yellow fluorescent protein (YFP) and IL-10-GFP dual reporter mice, we show that primary malaria infection-induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell-derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP- T cell-derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10-producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Colette A Inkson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Tovah N Shaw
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Patrick Strangward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
41
|
Kalra A, Mukherjee P, Chauhan VS. Characterization of fine specificity of the immune response to a Plasmodium falciparum rhoptry neck protein, PfAARP. Malar J 2016; 15:457. [PMID: 27604988 PMCID: PMC5015194 DOI: 10.1186/s12936-016-1510-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunological characterization of potential blood-stage malaria antigens would be a valuable strategy in the development of an effective vaccine. Identifying B and CD4(+) T cell epitopes will be important in understanding the nature of immune response. A previous study has shown that Plasmodium falciparum apical asparagine-rich protein (PfAARP) stimulates immune response and induces potent invasion-inhibitory antibodies. Antibodies to PfAARP provide synergistic effects in inhibition of parasite invasion when used in combination with antibodies to other antigens. In the present study, an attempt was made to identify B cell and CD4(+) T cell epitopes of PfAARP. METHODS Balb/c mice were immunized with recombinant PfAARP and both cellular and humoral responses were analysed at various time points. Computerized databases [immune epitope database (IEDB) and B cell epitope prediction (BCEPred)] were used to predict epitope sequences within PfAARP and predicted peptides were synthesized. In addition, nine 18 amino acid, long-overlapping peptides spanning the entire length of PfAARP were synthesized. Using these peptides, B cell and CD4(+) T cell responses in PfAARP immunized mice were measured by ELISA and ELISPOT assays. RESULTS Here, it is demonstrated that immunization of mice with PfAARP induced long-lasting, high-titre antibodies (4 months post immunization). Also, the recombinant protein was effective in inducing a pronounced Th1 type of immune response quantified by IFN-γ ELISA and ELISPOT. It was found that the predicted peptides did not represent the immunogenic regions of PfAARP. However, of the nine overlapping peptides, three peptides (peptides 3, 5 and 7) were strongly recognized by PfAARP-immunized sera and represented B cell epitopes. Also, peptide 3 elicited IFN- γ response, suggesting it to be a T-cell epitope. CONCLUSIONS Induction of long-lasting humoral and cellular response on PfAARP immunization in mice underscores its possible use as a blood-stage malaria vaccine candidate. Mapping of immunogenic regions may help in designing fusion chimera containing immunologically relevant regions of other vaccine target antigens and/or for multi-component vaccine candidates.
Collapse
Affiliation(s)
- Aakanksha Kalra
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Paushali Mukherjee
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Virander S Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
42
|
Alba MP, Suarez CF, Varela Y, Patarroyo MA, Bermudez A, Patarroyo ME. TCR-contacting residues orientation and HLA-DRβ* binding preference determine long-lasting protective immunity against malaria. Biochem Biophys Res Commun 2016; 477:654-660. [DOI: 10.1016/j.bbrc.2016.06.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023]
|
43
|
Fontana MF, Baccarella A, Craft JF, Boyle MJ, McIntyre TI, Wood MD, Thorn KS, Anidi C, Bayat A, Chung MR, Hamburger R, Kim CY, Pearman E, Pham J, Tang JJ, Boon L, Kamya MR, Dorsey G, Feeney ME, Kim CC. A Novel Model of Asymptomatic Plasmodium Parasitemia That Recapitulates Elements of the Human Immune Response to Chronic Infection. PLoS One 2016; 11:e0162132. [PMID: 27583554 PMCID: PMC5008831 DOI: 10.1371/journal.pone.0162132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022] Open
Abstract
In humans, immunity to Plasmodium sp. generally takes the form of protection from symptomatic malaria (i.e., 'clinical immunity') rather than infection ('sterilizing immunity'). In contrast, mice infected with Plasmodium develop sterilizing immunity, hindering progress in understanding the mechanistic basis of clinical immunity. Here we present a novel model in which mice persistently infected with P. chabaudi exhibit limited clinical symptoms despite sustaining patent parasite burdens for many months. Characterization of immune responses in persistently infected mice revealed development of CD4+ T cell exhaustion, increased production of IL-10, and expansion of B cells with an atypical surface phenotype. Additionally, persistently infected mice displayed a dramatic increase in circulating nonclassical monocytes, a phenomenon that we also observed in humans with both chronic Plasmodium exposure and asymptomatic infection. Following pharmacological clearance of infection, previously persistently infected mice could not control a secondary challenge, indicating that persistent infection disrupts the sterilizing immunity that typically develops in mouse models of acute infection. This study establishes an animal model of asymptomatic, persistent Plasmodium infection that recapitulates several central aspects of the immune response in chronically exposed humans. As such, it provides a novel tool for dissection of immune responses that may prevent development of sterilizing immunity and limit pathology during infection.
Collapse
Affiliation(s)
- Mary F. Fontana
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Alyssa Baccarella
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Joshua F. Craft
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Michelle J. Boyle
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
- The Burnet Institute, Center for Biomedical Research, Melbourne, Australia
| | - Tara I. McIntyre
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Matthew D. Wood
- Department of Pathology, Division of Neuropathology, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Kurt S. Thorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Chioma Anidi
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Aqieda Bayat
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Me Ree Chung
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Rebecca Hamburger
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Chris Y. Kim
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Emily Pearman
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Jennifer Pham
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Jia J. Tang
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Louis Boon
- EPIRUS Biopharmaceuticals, Utrecht, Netherlands BV
| | - Moses R. Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Margaret E. Feeney
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, San Francisco, California, 94143, United States of America
| | - Charles C. Kim
- Division of Experimental Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, 94143, United States of America
- * E-mail:
| |
Collapse
|
44
|
Horne-Debets JM, Karunarathne DS, Faleiro RJ, Poh CM, Renia L, Wykes MN. Mice lacking Programmed cell death-1 show a role for CD8(+) T cells in long-term immunity against blood-stage malaria. Sci Rep 2016; 6:26210. [PMID: 27217330 PMCID: PMC4877649 DOI: 10.1038/srep26210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
Even after years of experiencing malaria, caused by infection with Plasmodium species, individuals still have incomplete immunity and develop low-density parasitemia on re-infection. Previous studies using the P. chabaudi (Pch) mouse model to understand the reason for chronic malaria, found that mice with a deletion of programmed cell death-1 (PD-1KO) generate sterile immunity unlike wild type (WT) mice. Here we investigated if the mechanism underlying this defect during acute immunity also impacts on long-term immunity. We infected WT and PD-1KO mice with Pch-malaria and measured protection as well as immune responses against re-infections, 15 or 20 weeks after the original infection had cleared. WT mice showed approximately 1% parasitemia compared to sterile immunity in PD-1KO mice on re-infection. An examination of the mechanisms of immunity behind this long-term protection in PD-1KO mice showed a key role for parasite-specific CD8+ T cells even when CD4+ T cells and B cells responded to re-infection. These studies indicate that long-term CD8+ T cell-meditated protection requires consideration for future malaria vaccine design, as part of a multi-cell type response.
Collapse
Affiliation(s)
- Joshua M Horne-Debets
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Deshapriya S Karunarathne
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| | - Rebecca J Faleiro
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia.,The School of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 136648, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Michelle N Wykes
- The QIMR Berghofer Medical Research Institute, Infectious Disease Programme, Queensland, 4029, Australia
| |
Collapse
|
45
|
Group B Streptococcus Induces a Robust IFN-γ Response by CD4(+) T Cells in an In Vitro and In Vivo Model. J Immunol Res 2016; 2016:5290604. [PMID: 26989699 PMCID: PMC4771917 DOI: 10.1155/2016/5290604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/06/2016] [Indexed: 11/17/2022] Open
Abstract
Group B Streptococcus (GBS) serotype III causes life-threatening infections. Cytokines have emerged as important players for the control of disease, particularly IFN-γ. Although potential sources of this cytokine have been proposed, no specific cell line has ever been described as a leading contributor. In this study, CD4+ T cell activation profiles in response to GBS were evaluated through in vivo, ex vivo, and in vitro approaches. Total splenocytes readily produce a type 1 proinflammatory response by releasing IFN-γ, TNF-α, and IL-6 and actively recruit T cells via chemokines like CXCL9, CXCL10, and CCL3. Responding CD4+ T cells differentiate into Th1 cells producing large amounts of IFN-γ, TNF-α, and IL-2. In vitro studies using dendritic cell and CD4+ T cell cocultures infected with wild-type GBS or a nonencapsulated mutant suggested that GBS capsular polysaccharide, one of the major bacterial virulence factors, differentially modulates surface expression of CD69 and IFN-γ production. Overall, CD4+ T cells are important producers of IFN-γ and might thus influence the course of GBS infection through the expression balance of this cytokine.
Collapse
|
46
|
Mendonça VRD, Barral-Netto M. Immunoregulation in human malaria: the challenge of understanding asymptomatic infection. Mem Inst Oswaldo Cruz 2015; 110:945-55. [PMID: 26676319 PMCID: PMC4708013 DOI: 10.1590/0074-02760150241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic Plasmodium infection carriers represent a major threat
to malaria control worldwide as they are silent natural reservoirs and do not seek
medical care. There are no standard criteria for
asymptomaticPlasmodium infection; therefore, its diagnosis relies
on the presence of the parasite during a specific period of symptomless infection.
The antiparasitic immune response can result in reducedPlasmodium
sp. load with control of disease manifestations, which leads to asymptomatic
infection. Both the innate and adaptive immune responses seem to play major roles in
asymptomatic Plasmodiuminfection; T regulatory cell activity
(through the production of interleukin-10 and transforming growth factor-β) and
B-cells (with a broad antibody response) both play prominent roles. Furthermore,
molecules involved in the haem detoxification pathway (such as haptoglobin and haeme
oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase)
have emerged in recent years as potential biomarkers and thus are helping to unravel
the immune response underlying asymptomatic Plasmodium infection.
The acquisition of large data sets and the use of robust statistical tools, including
network analysis, associated with well-designed malaria studies will likely help
elucidate the immune mechanisms responsible for asymptomatic infection.
Collapse
Affiliation(s)
- Vitor R de Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| |
Collapse
|
47
|
Carpio VH, Opata MM, Montañez ME, Banerjee PP, Dent AL, Stephens R. IFN-γ and IL-21 Double Producing T Cells Are Bcl6-Independent and Survive into the Memory Phase in Plasmodium chabaudi Infection. PLoS One 2015; 10:e0144654. [PMID: 26646149 PMCID: PMC4672895 DOI: 10.1371/journal.pone.0144654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
CD4 T cells are required to fight malaria infection by promoting both phagocytic activity and B cell responses for parasite clearance. In Plasmodium chabaudi infection, one specific CD4 T cell subset generates anti-parasitic IFN-γ and the antibody-promoting cytokine, IL-21. To determine the lineage of these multifunctional T cells, we followed IFN-γ+ effector T cells (Teff) into the memory phase using Ifng-reporter mice. While Ifng+ Teff expanded, the level of the Th1 lineage-determining transcription factor T-bet only peaked briefly. Ifng+ Teff also co-express ICOS, the B cell area homing molecule CXCR5, and other Tfh lineage-associated molecules including Bcl6, the transcription factor required for germinal center (GC) T follicular helper cells (Tfh) differentiation. Because Bcl6 and T-bet co-localize to the nucleus of Ifng+ Teff, we hypothesized that Bcl6 controls the Tfh-like phenotype of Ifng+ Teff cells in P. chabaudi infection. We first transferred Bcl6-deficient T cells into wildtype hosts. Bcl6-deficient T cells did not develop into GC Tfh, but they still generated CXCR5+IFN-γ+IL-21+IL-10+ Teff, suggesting that this predominant population is not of the Tfh-lineage. IL-10 deficient mice, which have increased IFN-γ and T-bet expression, demonstrated expansion of both IFN-γ+IL-21+CXCR5+ cells and IFN-γ+ GC Tfh cells, suggesting a Th1 lineage for the former. In the memory phase, all Ifng+ T cells produced IL-21, but only a small percentage of highly proliferative Ifng+ T cells maintained a T-bethi phenotype. In chronic malaria infection, serum IFN-γ correlates with increased protection, and our observation suggests Ifng+ T cells are maintained by cellular division. In summary, we found that Ifng+ T cells are not strictly Tfh derived during malaria infection. T cells provide the host with a survival advantage when facing this well-equipped pathogen, therefore, understanding the lineage of pivotal T cell players will aid in the rational design of an effective malaria vaccine.
Collapse
Affiliation(s)
- Victor H. Carpio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael M. Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marelle E. Montañez
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinaki P. Banerjee
- Center for Human Immunobiology of Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robin Stephens
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Farooq F, Bergmann-Leitner ES. Immune Escape Mechanisms are Plasmodium's Secret Weapons Foiling the Success of Potent and Persistently Efficacious Malaria Vaccines. Clin Immunol 2015; 161:136-43. [PMID: 26342537 DOI: 10.1016/j.clim.2015.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Despite decades of active research, an efficacious vaccine mediating long-term protection is still not available. This review highlights various mechanisms and the different facets by which the parasites outsmart the immune system. An understanding of how the parasites escape immune recognition and interfere with the induction of a protective immune response that provides sterilizing immunity will be crucial to vaccine design.
Collapse
Affiliation(s)
- Fouzia Farooq
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, U.S. Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.
| |
Collapse
|
49
|
Opata MM, Carpio VH, Ibitokou SA, Dillon BE, Obiero JM, Stephens R. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5346-54. [PMID: 25911759 DOI: 10.4049/jimmunol.1403216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/18/2015] [Indexed: 01/25/2023]
Abstract
CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.
Collapse
Affiliation(s)
- Michael M Opata
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Victor H Carpio
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Samad A Ibitokou
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Brian E Dillon
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Joshua M Obiero
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555; and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
50
|
Boyle MJ, Jagannathan P, Bowen K, McIntyre TI, Vance HM, Farrington LA, Greenhouse B, Nankya F, Rek J, Katureebe A, Arinaitwe E, Dorsey G, Kamya MR, Feeney ME. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis 2015; 212:416-25. [PMID: 25646355 DOI: 10.1093/infdis/jiv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mechanisms mediating immunity to malaria remain unclear, but animal data and experimental human vaccination models suggest a critical role for CD4(+) T cells. Advances in multiparametric flow cytometry have revealed that the functional quality of pathogen-specific CD4(+) T cells determines immune protection in many infectious models. Little is known about the functional characteristics of Plasmodium-specific CD4(+) T-cell responses in immune and nonimmune individuals. METHODS We compared T-cell responses to Plasmodium falciparum among household-matched children and adults residing in settings of high or low malaria transmission in Uganda. Peripheral blood mononuclear cells were stimulated with P. falciparum antigen, and interferon γ (IFN-γ), interleukin 2, interleukin 10, and tumor necrosis factor α (TNF-α) production was analyzed via multiparametric flow cytometry. RESULTS We found that the magnitude of the CD4(+) T-cell responses was greater in areas of high transmission but similar between children and adults in each setting type. In the high-transmission setting, most P. falciparum-specific CD4(+) T-cells in children produced interleukin 10, while responses in adults were dominated by IFN-γ and TNF-α. In contrast, in the low-transmission setting, responses in both children and adults were dominated by IFN-γ and TNF-α. CONCLUSIONS These findings highlight major differences in the CD4(+) T-cell response of immune adults and nonimmune children that may be relevant for immune protection from malaria.
Collapse
Affiliation(s)
- Michelle J Boyle
- Department of Medicine Center for Biomedical Research, Burnet Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | - John Rek
- Infectious Diseases Research Collaboration
| | | | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine Department of Pediatrics, University of California-San Francisco
| |
Collapse
|