1
|
Sousa SSDS, Cruz ACR, Aragão CF, Cereja GJGP, da Silva SP, de Sousa RMM, Amorim MT, da Silva EVP, Nunes BTD, Pinheiro VCS. Retrospective Study of Arbovirus Circulation in Northeast Brazil in 2019 and 2022: Insights into the Re-Emergence of DENV-3 and the Co-Infection of DENV-1 and CHIKV. Viruses 2025; 17:475. [PMID: 40284918 PMCID: PMC12031139 DOI: 10.3390/v17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Arboviruses transmitted by Aedes aegypti cause high number of cases and deaths annually. The aim was to investigate the presence of the presence of Dengue (DENV), Zika (ZIKV) and Chikungunya (CHIKV) viruses in endemic areas of Maranhão, northeastern Brazil. The study was carried out in Caxias, Codó, Peritoró, and São Mateus do Maranhão in 2019 (Caxias) and 2022. The blood samples were subjected to RNA extraction and then tested by RT-qPCR. Cell culture was used to attempt viral isolation and subsequent sequencing. In total, 171 samples were analyzed (32 from 2019, 18.7%) and 72 (42.1%) were found to have arboviruses: 68 (39.7%) from Caxias; 2 (1.1%) from Codó; 1 (0.6%) from Peritoró; and 1 (0.6%) from São Mateus. Overall, 85.3% (n = 58) of the positive samples were infected with DENV-1, 4 (four) (5.9%) with DENV-2 (Caxias), 1 (one) (1.5%) with DENV-3 (Caxias), and in 6 (six) (7.3%) samples CHIKV was detected, with one co-infection of DENV-1 and CHIKV (Caxias). The DENV-1 genotype V and the ECSA genotype of CHIKV were characterized in samples from Caxias. The detection of DENV-1, DENV-2, DENV-3, and more CHIKV in the interior of Maranhão alerts to the importance of virological studies in these areas.
Collapse
Affiliation(s)
- Sêmilly Suélen da Silva Sousa
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Estadual do Maranhão—UEMA, São Luis 65055-310, Brazil;
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| | - Ana Cecília Ribeiro Cruz
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
- Centro de Ciencias Biológicas e da Saúde, Universidade Estadual do Pará—UEPA, Belém 66087-662, Brazil
| | - Carine Fortes Aragão
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Glennda Juscely Galvão Pereira Cereja
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Sandro Patroca da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Raira Maria Morais de Sousa
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| | - Murilo Tavares Amorim
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Eliana Vieira Pinto da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Bruno Tardelli Diniz Nunes
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Valéria Cristina Soares Pinheiro
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Estadual do Maranhão—UEMA, São Luis 65055-310, Brazil;
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| |
Collapse
|
2
|
Bastide P, Rocu P, Wirtz J, Hassler GW, Chevenet F, Fargette D, Suchard MA, Dellicour S, Lemey P, Guindon S. Modeling the velocity of evolving lineages and predicting dispersal patterns. Proc Natl Acad Sci U S A 2024; 121:e2411582121. [PMID: 39546571 PMCID: PMC11588136 DOI: 10.1073/pnas.2411582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny. Here, we introduce a family of models-the so-called Phylogenetic Integrated Velocity (PIV) models-that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the United States indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.
Collapse
Affiliation(s)
- Paul Bastide
- Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, CNRS, Montpellier34090, France
- Université Paris Cité, CNRS, Mathématiques appliquées ‘a Paris 5, ParisF-75006, France
| | - Pauline Rocu
- Équipe Méthodes et Algorithmes pour la Bioinformatique, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS—UMR 5506, Montpellier34095, France
| | - Johannes Wirtz
- Centre d’Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier34293, France
| | - Gabriel W. Hassler
- Department of Economics, Sociology, and Statistics, RAND, Santa Monica, CA90407-2138
| | - François Chevenet
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle, IRD, CNRS, Université de Montpellier, Montpellier34394, France
| | - Denis Fargette
- Plant Health Institute of Montpellier, IRD, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Université de Montpellier, Montpellier34394, France
| | - Marc A. Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA90095-1772
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA90095
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA90095-1766
| | - Simon Dellicour
- Spatial Epidemiology Lab, Université Libre de Bruxelles, BrusselsB-1050, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Katholieke Universiteit Leuven, LeuvenB-3000, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Katholieke Universiteit Leuven, LeuvenB-3000, Belgium
| | - Stéphane Guindon
- Équipe Méthodes et Algorithmes pour la Bioinformatique, Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, CNRS—UMR 5506, Montpellier34095, France
| |
Collapse
|
3
|
Bastide P, Rocu P, Wirtz J, Hassler GW, Chevenet F, Fargette D, Suchard MA, Dellicour S, Lemey P, Guindon S. Modeling the velocity of evolving lineages and predicting dispersal patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597755. [PMID: 38895258 PMCID: PMC11185746 DOI: 10.1101/2024.06.06.597755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny (Lemey et al., 2010). Here, we introduce a new family of models - the so-called "Phylogenetic Integrated Velocity" (PIV) models - that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the U.S.A. indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.
Collapse
Affiliation(s)
- Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Pauline Rocu
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier. CNRS - UMR 5506. Montpellier, France
| | - Johannes Wirtz
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Gabriel W. Hassler
- Department of Economics, Sociology, and Statistics, RAND, Santa Monica, CA, USA
| | | | - Denis Fargette
- PHIM, IRD, INRAE, CIRAD, Université de Montpellier, Montpellier, France
| | - Marc A. Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Stéphane Guindon
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier. CNRS - UMR 5506. Montpellier, France
| |
Collapse
|
4
|
Vi TT, Thi Hue Kien D, Thi Long V, Dui LT, Tuyet Nhu VT, Thi Giang N, Thi Xuan Trang H, Yacoub S, Simmons CP. A serotype-specific and tiled amplicon multiplex PCR method for whole genome sequencing of dengue virus. J Virol Methods 2024; 328:114968. [PMID: 38796133 DOI: 10.1016/j.jviromet.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Dengue fever, a mosquito-borne viral disease of significant public health concern in tropical and subtropical regions, is caused by any of the four serotypes of the dengue virus (DENV1-4). Cutting-edge technologies like next-generation sequencing (NGS) are revolutionizing virology, enabling in-depth exploration of DENV's genetic diversity. Here, we present an optimized workflow for full-genome sequencing of DENV 1-4 utilizing tiled amplicon multiplex PCR and Illumina sequencing. Our assay, sequenced on the Illumina MiSeq platform, demonstrates its ability to recover the full-length dengue genome across various viral abundances in clinical specimens with high-quality base coverage. This high quality underscores its suitability for precise examination of intra-host diversity, enriching our understanding of viral evolution and holding potential for improved diagnostic and intervention strategies in regions facing dengue outbreaks.
Collapse
Affiliation(s)
- Tran Thuy Vi
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Duong Thi Hue Kien
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam.
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Wellcome Trust Africa Asia Programme, District 5, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, University of Oxford, UK
| | - Cameron P Simmons
- World Mosquito Program, Monash University, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
5
|
Sajid M, Tur Razia I, Kanwal A, Ahsan M, Tahir RA, Sajid M, Khan MS, Mukhtar N, Parveen G, Sehgal SA. Computational Advancement towards the Identification of Natural Inhibitors for Dengue Virus: A Brief Review. Comb Chem High Throughput Screen 2024; 27:2464-2484. [PMID: 37859315 DOI: 10.2174/0113862073244468230921050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 08/03/2023] [Indexed: 10/21/2023]
Abstract
Viral infectious illnesses represent a severe hazard to human health due to their widespread incidence worldwide. Among these ailments, the dengue virus (DENV) infection stands out. World Health Organization (WHO) estimates that DENV infection affects ~400 million people each year, with potentially fatal symptoms showing up in 1% of the cases. In several instances, academic and pharmaceutical researchers have conducted several pilot and clinical studies on a variety of topics, including viral epidemiology, structure and function analyses, infection source and route, therapeutic targets, vaccinations, and therapeutic drugs. Amongst Takeda, TAK-003, Sanofi, Dengvaxia®, and Butantan/NIH/Merck, Dengvaxia® (CYD-TDV) is the only licensed vaccination yet; however, the potential inhibitors are under development. The biology and evolution of DENVs are briefly discussed in this review, which also compiles the most recent studies on prospective antiviral targets and antiviral candidates. In conclusion, the triumphs and failures have influenced the development of anti-DENV medications, and the findings in this review article will stimulate more investigation.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Iashia Tur Razia
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Ayesha Kanwal
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, Punjab, Pakistan
| | - Rana Adnan Tahir
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Punjab, Pakistan
| | - Muhammad Sajid
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| | | | - Naila Mukhtar
- Department of Botany, University of Okara, Okara, Punjab, Pakistan
| | - Gulnaz Parveen
- Department of Botany, Women University Swabi, Swabi, KPK, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology, and Bioinformatics, The Islamia University of Bahawalpur, Punjab, Pakistan
- Department of Bioinformatics, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
6
|
Gibb R, Colón-González FJ, Lan PT, Huong PT, Nam VS, Duoc VT, Hung DT, Dong NT, Chien VC, Trang LTT, Kien Quoc D, Hoa TM, Tai NH, Hang TT, Tsarouchi G, Ainscoe E, Harpham Q, Hofmann B, Lumbroso D, Brady OJ, Lowe R. Interactions between climate change, urban infrastructure and mobility are driving dengue emergence in Vietnam. Nat Commun 2023; 14:8179. [PMID: 38081831 PMCID: PMC10713571 DOI: 10.1038/s41467-023-43954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue is expanding globally, but how dengue emergence is shaped locally by interactions between climatic and socio-environmental factors is not well understood. Here, we investigate the drivers of dengue incidence and emergence in Vietnam, through analysing 23 years of district-level case data spanning a period of significant socioeconomic change (1998-2020). We show that urban infrastructure factors (sanitation, water supply, long-term urban growth) predict local spatial patterns of dengue incidence, while human mobility is a more influential driver in subtropical northern regions than the endemic south. Temperature is the dominant factor shaping dengue's distribution and dynamics, and using long-term reanalysis temperature data we show that warming since 1950 has expanded transmission risk throughout Vietnam, and most strongly in current dengue emergence hotspots (e.g., southern central regions, Ha Noi). In contrast, effects of hydrometeorology are complex, multi-scalar and dependent on local context: risk increases under either short-term precipitation excess or long-term drought, but improvements in water supply mitigate drought-associated risks except under extreme conditions. Our findings challenge the assumption that dengue is an urban disease, instead suggesting that incidence peaks in transitional landscapes with intermediate infrastructure provision, and provide evidence that interactions between recent climate change and mobility are contributing to dengue's expansion throughout Vietnam.
Collapse
Affiliation(s)
- Rory Gibb
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK.
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Felipe J Colón-González
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Data for Science and Health, Wellcome Trust, London, UK
| | - Phan Trong Lan
- General Department of Preventative Medicine (GDPM), Ministry of Health, Hanoi, Vietnam
| | - Phan Thi Huong
- General Department of Preventative Medicine (GDPM), Ministry of Health, Hanoi, Vietnam
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology (NIHE), Hanoi, Vietnam
| | - Vu Trong Duoc
- National Institute of Hygiene and Epidemiology (NIHE), Hanoi, Vietnam
| | - Do Thai Hung
- Pasteur Institute Nha Trang, Nha Trang, Khanh Hoa Province, Vietnam
| | | | - Vien Chinh Chien
- Tay Nguyen Institute of Hygiene and Epidemiology (TIHE), Buon Ma Thuot, Dak Lak Province, Vietnam
| | - Ly Thi Thuy Trang
- Tay Nguyen Institute of Hygiene and Epidemiology (TIHE), Buon Ma Thuot, Dak Lak Province, Vietnam
| | - Do Kien Quoc
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Minh Hoa
- Center for Disease Control, Dong Nai Province, Vietnam
| | | | | | | | | | | | | | | | - Oliver J Brady
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel Lowe
- Department of Infectious Disease Epidemiology & Dynamics, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
8
|
Man O, Kraay A, Thomas R, Trostle J, Lee GO, Robbins C, Morrison AC, Coloma J, Eisenberg JNS. Characterizing dengue transmission in rural areas: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011333. [PMID: 37289678 PMCID: PMC10249895 DOI: 10.1371/journal.pntd.0011333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dengue has historically been considered an urban disease associated with dense human populations and the built environment. Recently, studies suggest increasing dengue virus (DENV) transmission in rural populations. It is unclear whether these reports reflect recent spread into rural areas or ongoing transmission that was previously unnoticed, and what mechanisms are driving this rural transmission. We conducted a systematic review to synthesize research on dengue in rural areas and apply this knowledge to summarize aspects of rurality used in current epidemiological studies of DENV transmission given changing and mixed environments. We described how authors defined rurality and how they defined mechanisms for rural dengue transmission. We systematically searched PubMed, Web of Science, and Embase for articles evaluating dengue prevalence or cumulative incidence in rural areas. A total of 106 articles published between 1958 and 2021 met our inclusion criteria. Overall, 56% (n = 22) of the 48 estimates that compared urban and rural settings reported rural dengue incidence as being as high or higher than in urban locations. In some rural areas, the force of infection appears to be increasing over time, as measured by increasing seroprevalence in children and thus likely decreasing age of first infection, suggesting that rural dengue transmission may be a relatively recent phenomenon. Authors characterized rural locations by many different factors, including population density and size, environmental and land use characteristics, and by comparing their context to urban areas. Hypothesized mechanisms for rural dengue transmission included travel, population size, urban infrastructure, vector and environmental factors, among other mechanisms. Strengthening our understanding of the relationship between rurality and dengue will require a more nuanced definition of rurality from the perspective of DENV transmission. Future studies should focus on characterizing details of study locations based on their environmental features, exposure histories, and movement dynamics to identify characteristics that may influence dengue transmission.
Collapse
Affiliation(s)
- Olivia Man
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alicia Kraay
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
- Institution for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Ruth Thomas
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Trostle
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Gwenyth O. Lee
- Rutgers Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Rutgers Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Charlotte Robbins
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Phadungsombat J, Vu HTT, Nguyen QT, Nguyen HTV, Nguyen HTN, Dang BT, Nakayama EE, Ishizaki A, Ichimura H, Shioda T, Pham TN. Molecular Characterization of Dengue Virus Strains from the 2019-2020 Epidemic in Hanoi, Vietnam. Microorganisms 2023; 11:1267. [PMID: 37317240 DOI: 10.3390/microorganisms11051267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Dengue virus (DENV), which has circulated in Vietnam for several decades, has multiple serotypes and genotypes. A 2019 dengue outbreak resulted in a larger number of cases than any other outbreak. We conducted a molecular characterization using samples collected in 2019-2020 from dengue patients in Hanoi and nearby cities located in northern Vietnam. The circulating serotypes were DENV-1 (25%, n = 22) and DENV-2 (73%, n = 64). Phylogenetic analyses revealed that all DENV-1 (n = 13) were genotype I and clustered to local strains circulating during the previous outbreak in the 2017, whereas DENV-2 consisted of two genotypes: Asian-I (n = 5), related to local strains from 2006-2022, and cosmopolitan (n = 18), the predominant genotype in this epidemic. The current cosmopolitan virus was identified as having an Asian-Pacific lineage. The virus was closely related to strains in other recent outbreaks in Southeast Asian countries and China. Multiple introductions occurred in 2016-2017, which were possibly from maritime Southeast Asia (Indonesia, Singapore, and Malaysia), mainland Southeast Asia (Cambodia and Thailand), or China, rather than from an expansion of localized Vietnamese cosmopolitan strains that were previously detected in the 2000s. We also analyzed the genetic relationship between Vietnam's cosmopolitan strain and recent global strains reported from Asia, Oceania, Africa, and South America. This analysis revealed that viruses of Asian-Pacific lineage are not restricted to Asia but have spread to Peru and Brazil in South America.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | - Bich Thi Dang
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Thach Ngoc Pham
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| |
Collapse
|
10
|
Taurel AF, Luong CQ, Nguyen TTT, Do KQ, Diep TH, Nguyen TV, Cao MT, Hoang TND, Huynh PT, Huynh TKL, Le MH, Nealon J, Moureau A. Age distribution of dengue cases in southern Vietnam from 2000 to 2015. PLoS Negl Trop Dis 2023; 17:e0011137. [PMID: 36827445 PMCID: PMC9994699 DOI: 10.1371/journal.pntd.0011137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 03/08/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Dengue is the most common vector-borne viral infection. In recent times, an increase in the age of cases with clinical dengue has been reported in the national surveillance system and published literature of Vietnam. This change not only alter the risk of transmission and disease burden in different populations but also will impact for prevention and control strategies. A retrospective study was conducted from 2000 to 2015 in 19 provinces of southern Vietnam to describe the changes in age distribution of dengue cases and circulating serotypes. METHODOLOGY/PRINCIPAL FINDINGS The study is a time trend analysis of the data aggregated from the database of dengue surveillance system. The database consisted of clinically diagnosed and laboratory-confirmed cases of dengue in southern Vietnam from 2000 to 2015. In the study period, the mean age of dengue cases increased from 12.2 ± 8.8 years old (y/o) to 16.8 ± 13.3 y/o between 2000 and 2015. Majority of severe cases were observed in the age group of 5-9 y/o and 10-14 y/o. Overall, the mortality and case fatality rates (CFR) were lowest during 2010 to 2015, and all four serotypes of dengue were observed. CONCLUSIONS/SIGNIFICANCE With the exception of severe form, the age distribution of clinical cases of dengue appears to be shifting towards older age groups. An increase in the mean age of clinical cases of dengue has been observed in southern Vietnam over the past decade, and the highest incidence was observed in age group of 5-14 y/o. All serotypes of dengue were in circulation.
Collapse
Affiliation(s)
| | | | | | - Kien Quoc Do
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh Hai Diep
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh Vu Nguyen
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Thang Cao
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | - Minh Hieu Le
- Pasteur Institute Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
11
|
Li L, Guo X, Zhang X, Zhao L, Li L, Wang Y, Xie T, Yin Q, Jing Q, Hu T, Li Z, Wu R, Zhao W, Xin SX, Shi B, Liu J, Xia S, Peng Z, Yang Z, Zhang F, Chen XG, Zhou X. A unified global genotyping framework of dengue virus serotype-1 for a stratified coordinated surveillance strategy of dengue epidemics. Infect Dis Poverty 2022; 11:107. [PMID: 36224651 PMCID: PMC9556283 DOI: 10.1186/s40249-022-01024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dengue is the fastest spreading arboviral disease, posing great challenges on global public health. A reproduceable and comparable global genotyping framework for contextualizing spatiotemporal epidemiological data of dengue virus (DENV) is essential for research studies and collaborative surveillance. METHODS Targeting DENV-1 spreading prominently in recent decades, by reconciling all qualified complete E gene sequences of 5003 DENV-1 strains with epidemiological information from 78 epidemic countries/areas ranging from 1944 to 2018, we established and characterized a unified global high-resolution genotyping framework using phylogenetics, population genetics, phylogeography, and phylodynamics. RESULTS The defined framework was discriminated with three hierarchical layers of genotype, subgenotype and clade with respective mean pairwise distances 2-6%, 0.8-2%, and ≤ 0.8%. The global epidemic patterns of DENV-1 showed strong geographic constraints representing stratified spatial-genetic epidemic pairs of Continent-Genotype, Region-Subgenotype and Nation-Clade, thereby identifying 12 epidemic regions which prospectively facilitates the region-based coordination. The increasing cross-transmission trends were also demonstrated. The traditional endemic countries such as Thailand, Vietnam and Indonesia displayed as persisting dominant source centers, while the emerging epidemic countries such as China, Australia, and the USA, where dengue outbreaks were frequently triggered by importation, showed a growing trend of DENV-1 diffusion. The probably hidden epidemics were found especially in Africa and India. Then, our framework can be utilized in an accurate stratified coordinated surveillance based on the defined viral population compositions. Thereby it is prospectively valuable for further hampering the ongoing transition process of epidemic to endemic, addressing the issue of inadequate monitoring, and warning us to be concerned about the cross-national, cross-regional, and cross-continental diffusions of dengue, which can potentially trigger large epidemics. CONCLUSIONS The framework and its utilization in quantitatively assessing DENV-1 epidemics has laid a foundation and re-unveiled the urgency for establishing a stratified coordinated surveillance platform for blocking global spreading of dengue. This framework is also expected to bridge classical DENV-1 genotyping with genomic epidemiology and risk modeling. We will promote it to the public and update it periodically.
Collapse
Affiliation(s)
- Liqiang Li
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Guo
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoqing Zhang
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lingzhai Zhao
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Wang
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Tian Xie
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Yin
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qinlong Jing
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Tian Hu
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ziyao Li
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rangke Wu
- School of Foreign Studies, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Benyun Shi
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, 211816, China
| | - Jiming Liu
- Department of Computer Science, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Shang Xia
- National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiqiang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Fuchun Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| | - Xiao-Guang Chen
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohong Zhou
- Institute of Tropical Medicine, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Zafar S, Shipin O, Paul RE, Rocklöv J, Haque U, Rahman MS, Mayxay M, Pientong C, Aromseree S, Poolphol P, Pongvongsa T, Vannavong N, Overgaard HJ. Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9421. [PMID: 34502007 PMCID: PMC8430616 DOI: 10.3390/ijerph18179421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Dengue is a continuous health burden in Laos and Thailand. We assessed and mapped dengue vulnerability in selected provinces of Laos and Thailand using multi-criteria decision approaches. An ecohealth framework was used to develop dengue vulnerability indices (DVIs) that explain links between population, social and physical environments, and health to identify exposure, susceptibility, and adaptive capacity indicators. Three DVIs were constructed using two objective approaches, Shannon's Entropy (SE) and the Water-Associated Disease Index (WADI), and one subjective approach, the Best-Worst Method (BWM). Each DVI was validated by correlating the index score with dengue incidence for each spatial unit (district and subdistrict) over time. A Pearson's correlation coefficient (r) larger than 0.5 and a p-value less than 0.05 implied a good spatial and temporal performance. Spatially, DVIWADI was significantly correlated on average in 19% (4-40%) of districts in Laos (mean r = 0.5) and 27% (15-53%) of subdistricts in Thailand (mean r = 0.85). The DVISE was validated in 22% (12-40%) of districts in Laos and in 13% (3-38%) of subdistricts in Thailand. The DVIBWM was only developed for Laos because of lack of data in Thailand and was significantly associated with dengue incidence on average in 14% (0-28%) of Lao districts. The DVIWADI indicated high vulnerability in urban centers and in areas with plantations and forests. In 2019, high DVIWADI values were observed in sparsely populated areas due to elevated exposure, possibly from changes in climate and land cover, including urbanization, plantations, and dam construction. Of the three indices, DVIWADI was the most suitable vulnerability index for the study area. The DVIWADI can also be applied to other water-associated diseases, such as Zika and chikungunya, to highlight priority areas for further investigation and as a tool for prevention and interventions.
Collapse
Affiliation(s)
- Sumaira Zafar
- Department of Environmental Engineering and Management, Asian Institute of Technology; Pathumthani 12120, Thailand;
| | - Oleg Shipin
- Department of Environmental Engineering and Management, Asian Institute of Technology; Pathumthani 12120, Thailand;
| | - Richard E. Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France;
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Ubydul Haque
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, North Texas, Fort Worth, TX 76107, USA;
| | - Md. Siddikur Rahman
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (M.S.R.); (C.P.); (S.A.); (H.J.O.)
- Department of Statistics, Begum Rokeya University, Rangpur 5402, Bangladesh
| | - Mayfong Mayxay
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane 43130, Laos;
- Lao-Oxford-Mahosot Hospital-Welcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane 43130, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford OX3 7LG, UK
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (M.S.R.); (C.P.); (S.A.); (H.J.O.)
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (M.S.R.); (C.P.); (S.A.); (H.J.O.)
| | - Petchaboon Poolphol
- The Office of Disease Prevention and Control Region 10(th), Ubon Ratchathani 34000, Thailand;
| | | | | | - Hans J. Overgaard
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (M.S.R.); (C.P.); (S.A.); (H.J.O.)
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1430 Ås, Norway
| |
Collapse
|
13
|
Long H, Zhang C, Chen C, Tang J, Zhang B, Wang Y, Pang J, Su W, Li K, Di B, Chen YQ, Shu Y, Du X. Assessment of the global circulation and endemicity of dengue. Transbound Emerg Dis 2021; 69:2148-2155. [PMID: 34197697 DOI: 10.1111/tbed.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 11/30/2022]
Abstract
Dengue is a significant public health issue, affecting hundreds of millions of people worldwide. As it is spreading from tropical and subtropical zones, some regions previously recognised as non-endemic are at risk of becoming endemic. However, the global circulation of dengue is not fully understood and quantitative measurements of endemicity levels are lacking, posing an obstacle in the precise control of dengue spread. In this study, a sequence-based pipeline was designed based on random sampling to study the transmission of dengue. The limited intercontinental transmission was identified, while regional circulation of dengue was quantified in terms of importation, local circulation and exportation. Additionally, hypo- and hyper-endemic regions were identified using a new metric, with the former characterised by low local circulation and increased importation, whereas the latter by high local circulation and reduced importation. In this study, the global circulation pattern of dengue was examined and a sequence-based endemicity measurement was proposed, which will be helpful for future surveillance and targeted control of dengue.
Collapse
Affiliation(s)
- Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Cai Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yinghan Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jiali Pang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenzhe Su
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Kuibiao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Biao Di
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Nguyen-Tien T, Do DC, Le XL, Dinh TH, Lindeborg M, Nguyen-Viet H, Lundkvist Å, Grace D, Lindahl J. Risk factors of dengue fever in an urban area in Vietnam: a case-control study. BMC Public Health 2021; 21:664. [PMID: 33827489 PMCID: PMC8028770 DOI: 10.1186/s12889-021-10687-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Dengue is a mosquito-borne flavivirus present in many metropolitan cities of tropical countries. Methods During and after the dengue season (September 2018 to January 2019), we conducted a case-control study in order to determine the risk factors for dengue fever in Hanoi city, Vietnam. 98 dengue patients and 99 patients with other acute infections, such as Hepatitis B virus infection, were recruited at Department of Infectious Disease of Bach Mai national hospital in Hanoi. Patients were interviewed using a structured questionnaire covering demographic, housing, environmental factors and knowledge, attitude, and practice on dengue prevention and control. Univariate analysis and multivariable logistic regression were used to determine the risk factors of dengue status. Results The mean score of knowledge items and practice items was only 7.9 out of total 19 points and 3.9 out of total 17 points, respectively. While the mean score of attitude items was 4.8 out of total 6 points. Multivariable logistic regression indicated that older patients had lesser risk of getting dengue infection as compared to younger adults aged 16–30, and patients living in peri-urban districts were less likely to suffer of dengue fever than patients living in central urban districts (OR = 0.31; 95% CI 0.13–0.75). This study could not find any association with occupation, water storage habit, knowledge, attitude, or practice on dengue prevention. Conclusions All patients had a relatively low level of knowledge and practice on dengue prevention and control. However, the attitude of the participants was good. We found that age group and living district were the risk factors correlated with the dengue status. Communication programs on raising dengue awareness should be repeated all year round and target particular groups of adolescents, younger adults, landlords and migrants from other provinces to improve their knowledge and encourage them to implement preventive measures against dengue fever. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10687-y.
Collapse
Affiliation(s)
- Thang Nguyen-Tien
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. .,International Livestock Research Institute, Hanoi, Vietnam.
| | - Duy Cuong Do
- Infectious Diseases Department, Bach Mai hospital, Hanoi, Vietnam
| | - Xuan Luat Le
- Infectious Diseases Department, Bach Mai hospital, Hanoi, Vietnam
| | - Thi Hai Dinh
- Infectious Diseases Department, Bach Mai hospital, Hanoi, Vietnam
| | - Mats Lindeborg
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hung Nguyen-Viet
- International Livestock Research Institute, Hanoi, Vietnam.,Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| | - Johanna Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,International Livestock Research Institute, Hanoi, Vietnam.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Su Yin M, Bicout DJ, Haddawy P, Schöning J, Laosiritaworn Y, Sa-angchai P. Added-value of mosquito vector breeding sites from street view images in the risk mapping of dengue incidence in Thailand. PLoS Negl Trop Dis 2021; 15:e0009122. [PMID: 33684130 PMCID: PMC7971869 DOI: 10.1371/journal.pntd.0009122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/18/2021] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue is an emerging vector-borne viral disease across the world. The primary dengue mosquito vectors breed in containers with sufficient water and nutrition. Outdoor containers can be detected from geotagged images using state-of-the-art deep learning methods. In this study, we utilize such container information from street view images in developing a risk mapping model and determine the added value of including container information in predicting dengue risk. We developed seasonal-spatial models in which the target variable dengue incidence was explained using weather and container variable predictors. Linear mixed models with fixed and random effects are employed in our models to account for different characteristics of containers and weather variables. Using data from three provinces of Thailand between 2015 and 2018, the models are developed at the sub-district level resolution to facilitate the development of effective targeted intervention strategies. The performance of the models is evaluated with two baseline models: a classic linear model and a linear mixed model without container information. The performance evaluated with the correlation coefficients, R-squared, and AIC shows the proposed model with the container information outperforms both baseline models in all three provinces. Through sensitivity analysis, we investigate the containers that have a high impact on dengue risk. Our findings indicate that outdoor containers identified from street view images can be a useful data source in building effective dengue risk models and that the resulting models have potential in helping to target container elimination interventions.
Collapse
Affiliation(s)
- Myat Su Yin
- Faculty of ICT, Mahidol University, Nakhon Pathom, Thailand
| | - Dominique J. Bicout
- Biomathematics and Epidemiology, EPSP-TIMC, UMR CNRS 5525, Grenoble-Alpes University, VetAgro Sup, Grenoble, France
- Laue–Langevin Institute, Theory group, Grenoble, France
| | - Peter Haddawy
- Faculty of ICT, Mahidol University, Nakhon Pathom, Thailand
- Bremen Spatial Cognition Center, University of Bremen, Bremen, Germany
| | - Johannes Schöning
- Bremen Spatial Cognition Center, University of Bremen, Bremen, Germany
| | - Yongjua Laosiritaworn
- Information Technology Center, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | | |
Collapse
|
16
|
Li Y, Shetty AC, Lon C, Spring M, Saunders DL, Fukuda MM, Hien TT, Pukrittayakamee S, Fairhurst RM, Dondorp AM, Plowe CV, O’Connor TD, Takala-Harrison S, Stewart K. Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces. Int J Health Geogr 2020; 19:13. [PMID: 32276636 PMCID: PMC7149848 DOI: 10.1186/s12942-020-00207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam. METHODS The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns. RESULTS Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns. CONCLUSIONS Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.
Collapse
Affiliation(s)
- Yao Li
- Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, College Park, 20742 MD USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M. Fukuda
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | | | - Timothy D. O’Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Kathleen Stewart
- Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
17
|
Pollett S, Fauver JR, Berry IM, Melendrez M, Morrison A, Gillis LD, Johansson MA, Jarman RG, Grubaugh ND. Genomic Epidemiology as a Public Health Tool to Combat Mosquito-Borne Virus Outbreaks. J Infect Dis 2020; 221:S308-S318. [PMID: 31711190 PMCID: PMC11095994 DOI: 10.1093/infdis/jiz302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing technologies, exponential increases in the availability of virus genomic data, and ongoing advances in phylogenomic methods have made genomic epidemiology an increasingly powerful tool for public health response to a range of mosquito-borne virus outbreaks. In this review, we offer a brief primer on the scope and methods of phylogenomic analyses that can answer key epidemiological questions during mosquito-borne virus public health emergencies. We then focus on case examples of outbreaks, including those caused by dengue, Zika, yellow fever, West Nile, and chikungunya viruses, to demonstrate the utility of genomic epidemiology to support the prevention and control of mosquito-borne virus threats. We extend these case studies with operational perspectives on how to best incorporate genomic epidemiology into structured surveillance and response programs for mosquito-borne virus control. Many tools for genomic epidemiology already exist, but so do technical and nontechnical challenges to advancing their use. Frameworks to support the rapid sharing of multidimensional data and increased cross-sector partnerships, networks, and collaborations can support advancement on all scales, from research and development to implementation by public health agencies.
Collapse
Affiliation(s)
- S. Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland
- Marie Bashir Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - J. R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | - L. D. Gillis
- Bureau of Public Health Laboratories–Miami, Florida Department of Health
| | - M. A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - R. G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - N. D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
18
|
Teissier Y, Paul R, Aubry M, Rodo X, Dommar C, Salje H, Sakuntabhai A, Cazelles B, Cao-Lormeau VM. Long-term persistence of monotypic dengue transmission in small size isolated populations, French Polynesia, 1978-2014. PLoS Negl Trop Dis 2020; 14:e0008110. [PMID: 32142511 PMCID: PMC7080275 DOI: 10.1371/journal.pntd.0008110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/18/2020] [Accepted: 02/02/2020] [Indexed: 01/18/2023] Open
Abstract
Understanding the transition of epidemic to endemic dengue transmission remains a challenge in regions where serotypes co-circulate and there is extensive human mobility. French Polynesia, an isolated group of 117 islands of which 72 are inhabited, distributed among five geographically separated subdivisions, has recorded mono-serotype epidemics since 1944, with long inter-epidemic periods of circulation. Laboratory confirmed cases have been recorded since 1978, enabling exploration of dengue epidemiology under monotypic conditions in an isolated, spatially structured geographical location. A database was constructed of confirmed dengue cases, geolocated to island for a 35-year period. Statistical analyses of viral establishment, persistence and fade-out as well as synchrony among subdivisions were performed. Seven monotypic and one heterotypic dengue epidemic occurred, followed by low-level viral circulation with a recrudescent epidemic occurring on one occasion. Incidence was asynchronous among the subdivisions. Complete viral die-out occurred on several occasions with invasion of a new serotype. Competitive serotype replacement has been observed previously and seems to be characteristic of the South Pacific. Island population size had a strong impact on the establishment, persistence and fade-out of dengue cases and endemicity was estimated achievable only at a population size in excess of 175 000. Despite island remoteness and low population size, dengue cases were observed somewhere in French Polynesia almost constantly, in part due to the spatial structuration generating asynchrony among subdivisions. Long-term persistence of dengue virus in this group of island populations may be enabled by island hopping, although could equally be explained by a reservoir of sub-clinical infections on the most populated island, Tahiti. Dengue virus is the most significant arthropod-borne virus infecting man. Understanding how long dengue virus can persist in populations of varying size is key to understanding its epidemiology. This is, however, impossible to achieve in settings where dengue is endemic, because of continued human movement and is further complexified by the occurrence of several co-circulating serotypes. By contrast, French Polynesia, an isolated group of 72 inhabited islands in the South Pacific, has had intermittent majoritarily monotypic dengue epidemics since the 1940s and offers a unique opportunity to address questions of viral persistence, turnover and the importance of spatial sub-structure in determining dengue epidemiology. Collating and analyzing a database of laboratory-confirmed dengue cases from across French Polynesia over a 35 year period we were able to show that dengue virus die-out can occur with or without replacement by a new serotype, monotypic transmission of dengue viruses fails to be maintained within small island populations but can persist for years among isolated islands connected via air and sea links. This remarkable long-term persistence of dengue virus in French Polynesia could be maintained by asynchronous viral transmission among connected islands and/or by repeated seeding from a reservoir of sub-clinical infections in the most populated island, Tahiti.
Collapse
Affiliation(s)
- Yoann Teissier
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
- Université Paris Descartes, PSL University, Paris, France
| | - Richard Paul
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, UMR 2000 CNRS, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- * E-mail: (RP); (VMCL)
| | - Maite Aubry
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Xavier Rodo
- ICREA, Barcelona, Spain
- CLIMA (Climate and Health) Program, ISGlobal, Barcelona, Spain
| | - Carlos Dommar
- CLIMA (Climate and Health) Program, ISGlobal, Barcelona, Spain
| | - Henrik Salje
- Institut Pasteur, Mathematical Modelling of Infectious Diseases Unit, UMR 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, UMR 2000 CNRS, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Bernard Cazelles
- International Center for Mathematical and Computational Modeling of Complex Systems (UMMISCO), UMI 209, Sorbonne Université - IRD, Bondy cedex, France
- iGLOBE, UMI CNRS 3157, University of Arizona, Tucson, Arizona, United States of America
- IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
| | - Van-Mai Cao-Lormeau
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
- * E-mail: (RP); (VMCL)
| |
Collapse
|
19
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
20
|
Nguyen-Tien T, Lundkvist Å, Lindahl J. Urban transmission of mosquito-borne flaviviruses - a review of the risk for humans in Vietnam. Infect Ecol Epidemiol 2019; 9:1660129. [PMID: 31528273 PMCID: PMC6735309 DOI: 10.1080/20008686.2019.1660129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023] Open
Abstract
Vietnam is a tropical country where mosquito-borne diseases are common. This review explores the transmission of mosquito-borne flaviviruses in urban areas of Vietnam. It concludes that urban transmission has mainly been studied for Dengue virus, and so far, much less for Japanese encephalitis virus. Dengue is the most common flavivirus in Vietnam. Due to fast urbanization and favorable climatic conditions, the viral transmission concentrates mainly to large cities with high population density including Ha Noi, Nha Trang and Ho Chi Minh. Human cases of Japanese encephalitis have been controlled by an expanded immunization program. However, this virus is still circulating throughout the country, also in cities due to the pig rearing practices in urban and peri-urban areas. Zika virus is an additional major concern because it has long circulated in the Northern area and is now increasingly diagnosed in urban areas of the Central, Central Highlands and Southern regions using the same mosquito vectors as Dengue virus. There was alarge outbreak of Zika disease from 2016 to early 2017, with most infections observed in Ho Chi Minh city, the largest town in Vietnam. Other flaviviruses circulate in Vietnam but have not been investigated in terms of urban transmission.
Collapse
Affiliation(s)
- Thang Nguyen-Tien
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johanna Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Forecasting dengue fever in Brazil: An assessment of climate conditions. PLoS One 2019; 14:e0220106. [PMID: 31393908 PMCID: PMC6687106 DOI: 10.1371/journal.pone.0220106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Local climate conditions play a major role in the biology of the Aedes aegypti mosquito, the main vector responsible for transmitting dengue, zika, chikungunya and yellow fever in urban centers. For this reason, a detailed assessment of periods in which changes in climate conditions affect the number of human cases may improve the timing of vector-control efforts. In this work, we develop new machine-learning algorithms to analyze climate time series and their connection to the occurrence of dengue epidemic years for seven Brazilian state capitals. Our method explores the impact of two key variables-frequency of precipitation and average temperature-during a wide range of time windows in the annual cycle. Our results indicate that each Brazilian state capital considered has its own climate signatures that correlate with the overall number of human dengue-cases. However, for most of the studied cities, the winter preceding an epidemic year shows a strong predictive power. Understanding such climate contributions to the vector's biology could lead to more accurate prediction models and early warning systems.
Collapse
|
22
|
Swetnam D, Widen SG, Wood TG, Reyna M, Wilkerson L, Debboun M, Symonds DA, Mead DG, Beaty BJ, Guzman H, Tesh RB, Barrett ADT. Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerg Infect Dis 2019; 24:2184-2194. [PMID: 30457531 PMCID: PMC6256381 DOI: 10.3201/eid2412.180382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Host migration and emerging pathogens are strongly associated, especially with regard to zoonotic diseases. West Nile virus (WNV), a mosquitoborne pathogen capable of causing severe, sometimes fatal, neuroinvasive disease in humans, is maintained in highly mobile avian hosts. Using phylogeographic approaches, we investigated the relationship between WNV circulation in the United States and the flight paths of terrestrial birds. We demonstrated southward migration of WNV in the eastern flyway and northward migration in the central flyway, which is consistent with the looped flight paths of many terrestrial birds. We also identified 3 optimal locations for targeted WNV surveillance campaigns in the United States—Illinois, New York, and Texas. These results illustrate the value of multidisciplinary approaches to surveillance of infectious diseases, especially zoonotic diseases.
Collapse
|
23
|
Salvo MA, Aliota MT, Moncla LH, Velez ID, Trujillo AI, Friedrich TC, Osorio JE. Tracking dengue virus type 1 genetic diversity during lineage replacement in an hyperendemic area in Colombia. PLoS One 2019; 14:e0212947. [PMID: 30845200 PMCID: PMC6405123 DOI: 10.1371/journal.pone.0212947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus responsible for the most common and burdensome arthropod-borne viral disease of humans[1]. DENV evolution has been extensively studied on broad geographic and time scales, using sequences from a single gene[2,3]. It is believed that DENV evolution in humans is dominated primarily by purifying selection due to the constraint of maintaining fitness in both humans and mosquitoes[4,5]. Few studies have explored DENV evolutionary dynamics using whole genome sequences, nor have they explored changes in viral diversity that occur during intra-epidemic periods. We used deep sequencing of the viral coding region to characterize DENV-1 evolution in a Colombian population sampled during two high-prevalence dengue seasons in which serotype dominance shifted. Our data demonstrate patterns of strain extinction and replacement within DENV-1 as its prevalence waned and DENV-3 became established. A comparison of whole-genome versus single-gene-based phylogenetic analyses highlights an important difference in evolutionary patterns. We report a trend of higher nonsynonymous to synonymous diversity ratios among non-structural (NS) genes, and statistically significantly higher values among these ratios in the NS1 gene after DENV-1 strain replacement. These results suggest that positive selection could be driving DENV evolution within individual communities. Signals of positive selection coming from distinct samples may be drowned out when combining multiple regions with differing patterns of endemic transmission as commonly done by large-scale geo-temporal assessments. Here, we frame our findings within a small, local transmission history which aids significance. Moreover, these data suggest that the NS1 gene, rather than the E gene, may be a target of positive selection, although not mutually exclusive, and potentially useful sentinel of adaptive changes at the population level.
Collapse
Affiliation(s)
- Mauricio A. Salvo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Louise H. Moncla
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ivan D. Velez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellin, Colombia
| | - Andrea I. Trujillo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellin, Colombia
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Koo C, Tien WP, Xu H, Ong J, Rajarethinam J, Lai YL, Ng LC, Hapuarachchi HC. Highly Selective Transmission Success of Dengue Virus Type 1 Lineages in a Dynamic Virus Population: An Evolutionary and Fitness Perspective. iScience 2018; 6:38-51. [PMID: 30240624 PMCID: PMC6137288 DOI: 10.1016/j.isci.2018.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 06/19/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
Arbovirus transmission is modulated by host, vector, virus, and environmental factors. Even though viral fitness plays a salient role in host and vector adaptation, the transmission success of individual strains in a heterogeneous population may be stochastic. Our large-scale molecular epidemiological analyses of a dengue virus type 1 population revealed that only a subset of strains (16.7%; n = 6) were able to sustain transmission, despite the population being widely dispersed, dynamic, and heterogeneous. The overall dominance was variable even among the “established” lineages, albeit sharing comparable evolutionary characteristics and replication profiles. These findings indicated that virological parameters alone were unlikely to have a profound effect on the survival of viral lineages, suggesting an important role for non-viral factors in the transmission success of lineages. Our observations, therefore, emphasize the strategic importance of a holistic understanding of vector, human host, and viral factors in the control of vector-borne diseases. The sustained transmission of dengue virus 1 lineages is highly selective The overall dominance is variable even among the “established” lineages The lineage dominance is not merely determined by virus evolution and fitness The non-viral factors play an important role in the survival of virus lineages
Collapse
Affiliation(s)
- Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Wei Ping Tien
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Janet Ong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Jayanthi Rajarethinam
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
25
|
Viral immunogenicity determines epidemiological fitness in a cohort of DENV-1 infection in Brazil. PLoS Negl Trop Dis 2018; 12:e0006525. [PMID: 29813061 PMCID: PMC5993327 DOI: 10.1371/journal.pntd.0006525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023] Open
Abstract
The dynamics of dengue virus (DENV) circulation depends on serotype, genotype and lineage replacement and turnover. In São José do Rio Preto, Brazil, we observed that the L6 lineage of DENV-1 (genotype V) remained the dominant circulating lineage even after the introduction of the L1 lineage. We investigated viral fitness and immunogenicity of the L1 and L6 lineages and which factors interfered with the dynamics of DENV epidemics. The results showed a more efficient replicative fitness of L1 over L6 in mosquitoes and in human and non-human primate cell lines. Infections by the L6 lineage were associated with reduced antigenicity, weak B and T cell stimulation and weak host immune system interactions, which were associated with higher viremia. Our data, therefore, demonstrate that reduced viral immunogenicity and consequent greater viremia determined the increased epidemiological fitness of DENV-1 L6 lineage in São José do Rio Preto.
Collapse
|
26
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
27
|
Abstract
Phylogeographic methods can help reveal the movement of genes between populations of organisms. This has been widely done to quantify pathogen movement between different host populations, the migration history of humans, and the geographic spread of languages or gene flow between species using the location or state of samples alongside sequence data. Phylogenies therefore offer insights into migration processes not available from classic epidemiological or occurrence data alone. Phylogeographic methods have however several known shortcomings. In particular, one of the most widely used methods treats migration the same as mutation, and therefore does not incorporate information about population demography. This may lead to severe biases in estimated migration rates for data sets where sampling is biased across populations. The structured coalescent on the other hand allows us to coherently model the migration and coalescent process, but current implementations struggle with complex data sets due to the need to infer ancestral migration histories. Thus, approximations to the structured coalescent, which integrate over all ancestral migration histories, have been developed. However, the validity and robustness of these approximations remain unclear. We present an exact numerical solution to the structured coalescent that does not require the inference of migration histories. Although this solution is computationally unfeasible for large data sets, it clarifies the assumptions of previously developed approximate methods and allows us to provide an improved approximation to the structured coalescent. We have implemented these methods in BEAST2, and we show how these methods compare under different scenarios.
Collapse
Affiliation(s)
- Nicola F Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David A Rasmussen
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
28
|
Brunker K, Lemey P, Marston DA, Fooks AR, Lugelo A, Ngeleja C, Hampson K, Biek R. Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Mol Ecol 2018; 27:773-788. [PMID: 29274171 PMCID: PMC5900915 DOI: 10.1111/mec.14470] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Landscape heterogeneity plays an important role in disease spread and persistence, but quantifying landscape influences and their scale dependence is challenging. Studies have focused on how environmental features or global transport networks influence pathogen invasion and spread, but their influence on local transmission dynamics that underpin the persistence of endemic diseases remains unexplored. Bayesian phylogeographic frameworks that incorporate spatial heterogeneities are promising tools for analysing linked epidemiological, environmental and genetic data. Here, we extend these methodological approaches to decipher the relative contribution and scale-dependent effects of landscape influences on the transmission of endemic rabies virus in Serengeti district, Tanzania (area ~4,900 km2 ). Utilizing detailed epidemiological data and 152 complete viral genomes collected between 2004 and 2013, we show that the localized presence of dogs but not their density is the most important determinant of diffusion, implying that culling will be ineffective for rabies control. Rivers and roads acted as barriers and facilitators to viral spread, respectively, and vaccination impeded diffusion despite variable annual coverage. Notably, we found that landscape effects were scale-dependent: rivers were barriers and roads facilitators on larger scales, whereas the distribution of dogs was important for rabies dispersal across multiple scales. This nuanced understanding of the spatial processes that underpin rabies transmission can be exploited for targeted control at the scale where it will have the greatest impact. Moreover, this research demonstrates how current phylogeographic frameworks can be adapted to improve our understanding of endemic disease dynamics at different spatial scales.
Collapse
Affiliation(s)
- Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
- Animal and Plant Health AgencyAddlestoneUK
| | - Philippe Lemey
- Department of Microbiology and ImmunologyKU Leuven – University of LeuvenLeuvenBelgium
| | | | | | - Ahmed Lugelo
- Department of Veterinary Medicine and Public HealthSokoine University of AgricultureMorogoroUnited Republic of Tanzania
| | - Chanasa Ngeleja
- Tanzania Veterinary Laboratory AgencyDar es SalaamUnited Republic of Tanzania
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- The Boyd Orr Centre for Population and Ecosystem HealthUniversity of GlasgowGlasgowUK
| |
Collapse
|
29
|
Molecular epidemiology reveals the role of war in the spread of HIV in Ukraine. Proc Natl Acad Sci U S A 2018; 115:1051-1056. [PMID: 29339468 DOI: 10.1073/pnas.1701447115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ukraine has one of the largest HIV epidemics in Europe, historically driven by people who inject drugs (PWID). The epidemic showed signs of stabilization in 2012, but the recent war in eastern Ukraine may be reigniting virus spread. We investigated the movement of HIV-infected people within Ukraine before and during the conflict. We analyzed HIV-1 subtype-A pol nucleotide sequences sampled during 2012-2015 from 427 patients of 24 regional AIDS centers and used phylogeographic analysis to reconstruct virus movement among different locations in Ukraine. We then tested for correlations between reported PWID behaviors and reconstructed patterns of virus spread. Our analyses suggest that Donetsk and Lugansk, two cities not controlled by the Ukrainian government in eastern Ukraine, were significant exporters of the virus to the rest of the country. Additional analyses showed that viral dissemination within the country changed after 2013. Spearman correlation analysis showed that incoming virus flow was correlated with the number of HIV-infected internally displaced people. Additionally, there was a correlation between more intensive virus movement and locations with a higher proportion of PWID practicing risky sexual behaviors. Our findings suggest that effective prevention responses should involve internally displaced people and people who frequently travel to war-affected regions. Scale-up of harm reduction services for PWID will be an important factor in preventing new local HIV outbreaks in Ukraine.
Collapse
|
30
|
Pham Thi KL, Briant L, Gavotte L, Labbe P, Perriat-Sanguinet M, Cornillot E, Vu TD, Nguyen TY, Tran VP, Nguyen VS, Devaux C, Afelt A, Tran CC, Phan TN, Tran ND, Frutos R. Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam. Parasit Vectors 2017; 10:556. [PMID: 29121985 PMCID: PMC5680899 DOI: 10.1186/s13071-017-2422-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Dengue virus remains a major threat in Vietnam, while chikungunya virus is expected to become one. Surveillance was conducted from 2012 to 2014 in Vietnam to assess the presence of dengue and chikungunya viruses in patients hospitalized with acute fever in five Vietnam provinces neighboring Lao PDR and Cambodia. Surveillance was extended to mosquitoes present in the vicinity of the patients’ households. Results A total 558 human serum samples were collected along with 1104 adult mosquitoes and 12,041 larvae from 2250 households. Dengue virus was found in 17 (3%) human serum samples and in 9 (0.8%) adult mosquitoes. Chikungunya virus was detected in 2 adult mosquitoes (0.18%) while no chikungunya virus was detected in humans. Differing densities of mosquito populations were found, with the highest in the Long An Province border with Cambodia. Long An Province also displayed the lowest rate of infection, despite a very high Breteau Index, high human population density and presence of the main cross border road system. The highest incidence was found in Dac Nong Province, where the Breteau and Container indices were the second lowest. Dengue virus was detected in five Aedes albopictus, three Aedes aegypti and one Culex vishnui. Chikungunya virus was detected in two Ae. aegypti. All infected mosquitoes belonged to haplotypes described in other parts of the world and a number of novel haplotypes were found among uninfected mosquitoes. Conclusions Dengue is considered to be regularly introduced to Vietnam from Cambodia, mostly through human movement. The data reported here provides a complementary picture. Due to intensive international trade, long-distance transportation of mosquito populations may play a role in the regular importation of dengue in Vietnam through Ho Chi Minh City. It is important to decipher the movement of mosquitoes in Vietnam, not only at the Lao PDR and Cambodia borders but also through international trade routes. Mosquito surveillance programs should address and follow mosquito populations instead of mosquito species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2422-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim Lien Pham Thi
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam. .,IRIM, University of Montpellier, CNRS, Montpellier, France. .,Cirad, Intertryp, UMR 17, TA-A17/G, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France.
| | | | - Laurent Gavotte
- ISEM, University of Montpellier, CNRS, EPHE IRD, Montpellier, France
| | - Pierrick Labbe
- ISEM, University of Montpellier, CNRS, EPHE IRD, Montpellier, France
| | | | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Montpellier, France.,IRCM, University of Montpellier, INSERM, ICM,, Montpellier, France
| | - Trong Duoc Vu
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Thi Yen Nguyen
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Vu Phong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Van Soai Nguyen
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Christian Devaux
- Aix Marseille Université, CNRS, IRD, INSERM, AP-HM, URMITE, IHU-Méditerranée infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Aneta Afelt
- University of Warsaw, Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Prosta 69, 00-838, Warsaw, Poland
| | - Chi Cuong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Thi Nga Phan
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 10000, Vietnam
| | - Roger Frutos
- Cirad, Intertryp, UMR 17, TA-A17/G, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France. .,IES, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
31
|
Faria NR, da Costa AC, Lourenço J, Loureiro P, Lopes ME, Ribeiro R, Alencar CS, Kraemer MUG, Villabona-Arenas CJ, Wu CH, Thézé J, Khan K, Brent SE, Romano C, Delwart E, Custer B, Busch MP, Pybus OG, Sabino EC. Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Sci Rep 2017; 7:15216. [PMID: 29123142 PMCID: PMC5680240 DOI: 10.1038/s41598-017-15152-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023] Open
Abstract
Outbreaks caused by Dengue, Zika and Chikungunya viruses can spread rapidly in immunologically naïve populations. By analysing 92 newly generated viral genome sequences from blood donors and recipients, we assess the dynamics of dengue virus serotype 4 during the 2012 outbreak in Rio de Janeiro. Phylogenetic analysis indicates that the outbreak was caused by genotype II, although two isolates of genotype I were also detected for the first time in Rio de Janeiro. Evolutionary analysis and modelling estimates are congruent, indicating a reproduction number above 1 between January and June, and at least two thirds of infections being unnoticed. Modelling analysis suggests that viral transmission started in early January, which is consistent with multiple introductions, most likely from the northern states of Brazil, and with an increase in within-country air travel to Rio de Janeiro. The combination of genetic and epidemiological data from blood donor banks may be useful to anticipate epidemic spread of arboviruses.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Antonio Charlys da Costa
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Paula Loureiro
- Faculdade de Ciências Médicas, Fundação Hemope, Recife, Brazil
| | | | - Roberto Ribeiro
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kamran Khan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E Brent
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Camila Romano
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Brian Custer
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, California, USA.,University of California San Francisco, San Francisco, California, USA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Ester C Sabino
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil. .,LIM46, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
32
|
Tian H, Sun Z, Faria NR, Yang J, Cazelles B, Huang S, Xu B, Yang Q, Pybus OG, Xu B. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl Trop Dis 2017; 11:e0005694. [PMID: 28771468 PMCID: PMC5542384 DOI: 10.1371/journal.pntd.0005694] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022] Open
Abstract
The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Zhe Sun
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| | | | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Bernard Cazelles
- Ecologie & Evolution, UMR 7625, UPMC-ENS, Paris, France
- UMMISCO UMI 209 IRD - UPMC, Bondy, France
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Bo Xu
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
| | - Qiqi Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (OP); (BiX)
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, School of Environment, Tsinghua University, Beijing, China
- * E-mail: (OP); (BiX)
| |
Collapse
|
33
|
Megawati D, Masyeni S, Yohan B, Lestarini A, Hayati RF, Meutiawati F, Suryana K, Widarsa T, Budiyasa DG, Budiyasa N, Myint KSA, Sasmono RT. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses. PLoS Negl Trop Dis 2017; 11:e0005483. [PMID: 28531223 PMCID: PMC5456401 DOI: 10.1371/journal.pntd.0005483] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/02/2017] [Accepted: 03/11/2017] [Indexed: 01/28/2023] Open
Abstract
A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients' sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region.
Collapse
Affiliation(s)
- Dewi Megawati
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Sri Masyeni
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Asri Lestarini
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Rahma F. Hayati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Febrina Meutiawati
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - Ketut Suryana
- Wangaya General Hospital. Jl. Kartini No 133 Denpasar, Bali, Indonesia
| | - Tangking Widarsa
- Faculty of Medicine and Health Sciences, Warmadewa University, Jl. Terompong No. 24 Denpasar, Bali, Indonesia
| | - Dewa G. Budiyasa
- Sanjiwani General Hospital. Jl. Ciung Wenara No 2 Gianyar, Bali, Indonesia
| | - Ngurah Budiyasa
- Wangaya General Hospital. Jl. Kartini No 133 Denpasar, Bali, Indonesia
| | - Khin S. A. Myint
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jl. Diponegoro No. 69, Jakarta, Indonesia
| |
Collapse
|
34
|
Synchrony of Dengue Incidence in Ho Chi Minh City and Bangkok. PLoS Negl Trop Dis 2016; 10:e0005188. [PMID: 28033384 PMCID: PMC5199033 DOI: 10.1371/journal.pntd.0005188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/15/2016] [Indexed: 01/07/2023] Open
Abstract
Background Ho Chi Minh City and Bangkok are highly dengue endemic. The extent to which disease patterns are attributable to local versus regional dynamics remains unclear. To address this gap we compared key transmission parameters across the locations. Methods and Principal Findings We used 2003–2009 age-stratified case data to inform catalytic transmission models. Further, we compared the spatial clustering of serotypes within each city. We found that annual case numbers were highly consistent across the two cities (correlation of 0.77, 95% CI: 0.74–0.79) as was the annual force of infection (correlation of 0.57, 95% CI: 0.46–0.68). Serotypes were less similar with serotype-specific correlations ranging from 0.65 for DENV1 to -0.14 for DENV4. Significant spatial clustering of serotypes was observed in HCMC at distances <500m, similar to previous observations from Bangkok. Discussions Dengue dynamics are comparable across these two hubs. Low correlation in serotype distribution suggests that similar built environments, vector populations and climate, rather than viral flow drives these observations. All four serotypes of dengue have circulated endemically throughout Southeast Asia for decades. However, despite the enormous burden of disease, there remains poor understanding of the similarity in disease patterns across the region. We analyzed data from over 100,000 cases of dengue from two of the largest cities in the region, Bangkok and Ho Chi Minh City between 2001 and 2009. We use basic statistical methods to reconstruct the annual probability of infection in the two cities during this time period using methods that are robust to differences in reporting mechanisms. We find that both the epidemic curves and annual probabilities of infection were highly correlated across the cities, however, serotype-specific correlations were far more variable. Finally, we used geocoded case homes from Ho Chi Minh to demonstrate that cases in the city clustered at spatial scales (<500m) similar to that previously observed in Bangkok. These findings show that dengue dynamics are highly comparable across these two urban hubs; however, the low correlation in serotype distribution suggests that similar built environments and climate, rather than viral flow drives these observations.
Collapse
|
35
|
Mota MTDO, Terzian AC, Silva MLCR, Estofolete C, Nogueira ML. Mosquito-transmitted viruses - the great Brazilian challenge. Braz J Microbiol 2016; 47 Suppl 1:38-50. [PMID: 27818091 PMCID: PMC5156505 DOI: 10.1016/j.bjm.2016.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
Arboviruses pose a serious threat to public health worldwide, overloading the healthcare system and causing economic losses. These viruses form a very diverse group, and in Brazil, arboviruses belonging to the families Flaviviridae and Togaviridae are predominant. Unfortunately, the number of arboviruses increases in proportion with factors such as deforestation, poor sanitation, climate changes, and introduction of new viruses like Chikungunya virus and Zika virus. In Brazil, dengue is endemic, along with the presence of other arboviruses. The situation is complicated by the scarcity of diagnostic infrastructure and the absence of approved vaccines for these diseases. Disease control, thus, relies solely on vector control. Therefore, enhanced clinical knowledge and improved general awareness about these arboviruses are indispensable to tackle diagnostic inadequacies.
Collapse
Affiliation(s)
| | - Ana Carolina Terzian
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | - Cássia Estofolete
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
36
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
37
|
Tian H, Huang S, Zhou S, Bi P, Yang Z, Li X, Chen L, Cazelles B, Yang J, Luo L, Jing Q, Yuan W, Pei Y, Sun Z, Yue T, Kwan MP, Liu Q, Wang M, Tong S, Brownstein JS, Xu B. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China. ENVIRONMENTAL RESEARCH 2016; 150:299-305. [PMID: 27336234 DOI: 10.1016/j.envres.2016.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment-mosquito-urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Sen Zhou
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, China; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Peng Bi
- Discipline of Public Health, University of Adelaide, Adelaide, Australia
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| | - Xiujun Li
- School of Public Health, Shandong University, Jinan, China
| | - Lifan Chen
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Bernard Cazelles
- UMMISCO, UMI 209 IRD - UPMC, 93142 Bondy, France; Eco-Evolutionary Mathematic, IBENS UMR 8197, ENS, 75230 Paris Cedex 05, France
| | - Jing Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qinlong Jing
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wenping Yuan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Yao Pei
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, China
| | - Zhe Sun
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, China
| | - Tianxiang Yue
- State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing, China
| | - Mei-Po Kwan
- Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shilu Tong
- School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | | | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, China; Department of Geography, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
38
|
Tahsin T, Weissenbacher D, Rivera R, Beard R, Firago M, Wallstrom G, Scotch M, Gonzalez G. A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records. J Am Med Inform Assoc 2016; 23:934-41. [PMID: 26911818 PMCID: PMC4997033 DOI: 10.1093/jamia/ocv172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. MATERIALS AND METHODS We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. RESULTS We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. DISCUSSION Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. CONCLUSION Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles.
Collapse
Affiliation(s)
- Tasnia Tahsin
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Davy Weissenbacher
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Robert Rivera
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Rachel Beard
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Mari Firago
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Garrick Wallstrom
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Matthew Scotch
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - Graciela Gonzalez
- Department of Biomedical Informatics, Arizona State University, 13212 E Shea Blvd, Scottsdale, AZ 85259, USA
| |
Collapse
|
39
|
Cunha MDP, Guimarães VN, Souza M, de Paula Cardoso DDD, de Almeida TNV, de Oliveira TS, Fiaccadori FS. Phylodynamics of DENV-1 reveals the spatiotemporal co-circulation of two distinct lineages in 2013 and multiple introductions of dengue virus in Goiás, Brazil. INFECTION GENETICS AND EVOLUTION 2016; 43:130-4. [PMID: 27223633 DOI: 10.1016/j.meegid.2016.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023]
Abstract
Dengue virus type 1 (DENV-1) was the first serotype introduced in Brazil, during in the 1980s. Since then, this virus has spread in the Brazilian territory, causing several outbreaks. In 2013 the highest number of dengue cases was notified, when compared to the previous years in Brazil, and the state of Goiás reported over 160 thousand cases. In this study, we aimed to present the Phylodynamics of DENV-1 isolates from the state of Goiás, Brazil, during 2013 outbreak, based on the envelope gene (E) sequences. Phylogenetic analysis revealed that Brazilian DENV-1 isolates are grouped together with viruses from genotype V in two distinct lineages (lineage I and lineage II) reflecting co-circulation. Phylogeographic analyses showed that these lineages were introduced in different moments in Goiás, Brazil, using distinct routes, likely originated from the Caribbean. Lineage I was first introduced coming from Rio de Janeiro (2007-2012), followed by the introduction from Argentina (2010-2013). Lineage II was introduced in a single moment from Rio de Janeiro and this clade has existed since 2007-2010. The different viral introduction events demonstrate the viral dispersion process with neighboring regions, which is essential for the maintenance of outbreaks and introduction of new emerging viruses. In conclusion, obtained data reveals the importance of continuous molecular surveillance of this virus in different regions, providing a better understanding of DENV-1 circulation, considering the evolutionary and virus spread patterns.
Collapse
Affiliation(s)
| | | | - Menira Souza
- Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
40
|
Villabona-Arenas CJ, de Oliveira JL, de Sousa-Capra C, Balarini K, Pereira da Fonseca CRT, Zanotto PMDA. Epidemiological dynamics of an urban Dengue 4 outbreak in São Paulo, Brazil. PeerJ 2016; 4:e1892. [PMID: 27069820 PMCID: PMC4824887 DOI: 10.7717/peerj.1892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
Background: Dengue studies at the urban scale are scarce and required for guiding control efforts. In Brazil, the burden of dengue is high and challenges city public health administrations with limited resources. Here we studied the dynamics of a dengue epidemic in a single city. Methods: Serum samples from dengue suspected cases were collected and tested, from December 2012 and July 2013 in Guarujá, Brazil. We use incidence series analysis to provide a detailed view of the reproduction number dynamics and a Bayesian analysis to infer the spread of the serotype using geographic and temporal data. Results: We obtained nucleotide sequences from 354 envelope genes and georeferenced 286 samples during the course of the outbreak. Serotype 4 was responsible for the epidemic. We identified at least two major lineages that overlapped in distribution. We observed high reproduction numbers and high cladogenesis prior to the escalation of clinical case notifications. Three densely populated non-adjacent neighborhoods played a pivotal role during the onset and/or course of the epidemic. Discussion: Our findings point to high dengue virus transmission with a substantial proportion of unapparent cases that led to a late recognition of an outbreak. Usually source reductions initiatives tend to be insufficient once an epidemic has been established. Nevertheless, health authorities in Guarujá prioritized vector control on specific places with clusters of georeferenced viremic patients, which appear to have diminished the epidemic impact.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo , São Paulo , Brazil
| | - Jessica Luana de Oliveira
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; Department of Biomedicine, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| | - Carla de Sousa-Capra
- Office of Epidemiological Surveillance, Department of Health of Guarujá , Guarujá, São Paulo , Brazil
| | - Karime Balarini
- Clinical Laboratory Analysis Center, ITAPEMA , Guarujá , Brazil
| | | | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
41
|
Fansiri T, Pongsiri A, Klungthong C, Ponlawat A, Thaisomboonsuk B, Jarman RG, Scott TW, Lambrechts L. No evidence for local adaptation of dengue viruses to mosquito vector populations in Thailand. Evol Appl 2016; 9:608-18. [PMID: 27099625 PMCID: PMC4831462 DOI: 10.1111/eva.12360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
Despite their epidemiological importance, the evolutionary forces that shape the spatial structure of dengue virus genetic diversity are not fully understood. Fine-scale genetic structure of mosquito vector populations and evidence for genotype × genotype interactions between dengue viruses and their mosquito vectors are consistent with the hypothesis that the geographical distribution of dengue virus genetic diversity may reflect viral adaptation to local mosquito populations. To test this hypothesis, we measured vector competence in all sympatric and allopatric combinations of 14 low-passage dengue virus isolates and two wild-type populations of Aedes aegypti mosquitoes sampled in Bangkok and Kamphaeng Phet, two sites located about 300 km apart in Thailand. Despite significant genotype × genotype interactions, we found no evidence for superior vector competence in sympatric versus allopatric vector-virus combinations. Viral phylogenetic analysis revealed no geographical clustering of the 14 isolates, suggesting that high levels of viral migration (gene flow) in Thailand may counteract spatially heterogeneous natural selection. We conclude that it is unlikely that vector-mediated selection is a major driver of dengue virus adaptive evolution at the regional scale that we examined. Dengue virus local adaptation to mosquito vector populations could happen, however, in places or times that we did not test, or at a different geographical scale.
Collapse
Affiliation(s)
- Thanyalak Fansiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Arissara Pongsiri
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Chonticha Klungthong
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Alongkot Ponlawat
- Department of Entomology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand
| | - Richard G Jarman
- Department of Virology Armed Forces Research Institute of Medical Sciences Bangkok Thailand; Present address: Viral Diseases Branch Walter Reed Army Institute of Research Silver Spring MD USA
| | - Thomas W Scott
- Department of Entomology and Nematology University of California Davis CA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - Louis Lambrechts
- Insect-Virus Interactions Group Department of Genomes and Genetics Institut Pasteur Paris France; Unité de Recherche Associée Centre National de la Recherche Scientifique Paris France
| |
Collapse
|
42
|
Lu L, Van Dung N, Bryant JE, Carrique-Mas J, Van Cuong N, Anh PH, Rabaa MA, Baker S, Simmonds P, Woolhouse ME. Evolution and phylogeographic dissemination of endemic porcine picornaviruses in Vietnam. Virus Evol 2016; 2:vew001. [PMID: 27774295 PMCID: PMC4989877 DOI: 10.1093/ve/vew001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the Picornaviridae are important and often zoonotic viruses responsible for a variety of human and animal diseases. However, the evolution and spatial dissemination of different picornaviruses circulating in domestic animals are not well studied. We examined the rate of evolution and time of origin of porcine enterovirus G (EV-G) and porcine kobuvirus species C lineages (PKV-C) circulating in pig farms in Vietnam and from other countries. We further explored the spatiotemporal spread of EV-G and PKV-C in Southwest Vietnam using phylogeographic models. Multiple types of EV-G are co-circulating in Vietnam. The two dominant EV-G types among isolates from Vietnam (G1 and G6) showed strong phylogenetic clustering. Three clades of PKV-C (PKV-C1-3) represent more recent introductions into Vietnam; PKV-C2 is closely related to PKV-C from Southwest China, indicating possible cross-border dissemination. In addition, high virus lineage migration rates were estimated within four districts in Dong Thap province in Vietnam for both EV-G types (G1, G6) and all PKV-C (C1-3) clades. We found that Chau Thanh district is a primary source of both EV-G and PKV-C clades, consistent with extensive pig trading in and out of the district. Understanding the evolution and spatial dissemination of endemic picornaviruses in pigs may inform future strategies for the surveillance and control of picornaviruses.
Collapse
Affiliation(s)
- Lu Lu
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nguyen Van Dung
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Cuong
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Pham Honh Anh
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Maia A Rabaa
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, 764 Vo Van Kiet, W.1, Dist. 5, Ho Chi Minh City, Vietnam,; Nuffield Department of Medicine, Oxford University, Old Rd, Oxford OX3 7LF, UK and; The London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT, UK
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK,; Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark E Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
43
|
Dellicour S, Rose R, Pybus OG. Explaining the geographic spread of emerging epidemics: a framework for comparing viral phylogenies and environmental landscape data. BMC Bioinformatics 2016; 17:82. [PMID: 26864798 PMCID: PMC4750353 DOI: 10.1186/s12859-016-0924-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/28/2016] [Indexed: 11/22/2022] Open
Abstract
Background Phylogenetic analysis is now an important tool in the study of viral outbreaks. It can reconstruct epidemic history when surveillance epidemiology data are sparse, and can indicate transmission linkages among infections that may not otherwise be evident. However, a remaining challenge is to develop an analytical framework that can test hypotheses about the effect of environmental variables on pathogen spatial spread. Recent phylogeographic approaches can reconstruct the history of virus dispersal from sampled viral genomes and infer the locations of ancestral infections. Such methods provide a unique source of spatio-temporal information, and are exploited here. Results We present and apply a new statistical framework that combines genomic and geographic data to test the impact of environmental variables on the mode and tempo of pathogen dispersal during emerging epidemics. First, the spatial history of an emerging pathogen is estimated using standard phylogeographic methods. The inferred dispersal path for each phylogenetic lineage is then assigned a “weight” using environmental data (e.g. altitude, land cover). Next, tests measure the association between each environmental variable and lineage movement. A randomisation procedure is used to assess statistical confidence and we validate this approach using simulated data. We apply our new framework to a set of gene sequences from an epidemic of rabies virus in North American raccoons. We test the impact of six different environmental variables on this epidemic and demonstrate that elevation is associated with a slower rabies spread in a natural population. Conclusion This study shows that it is possible to integrate genomic and environmental data in order to test hypotheses concerning the mode and tempo of virus dispersal during emerging epidemics. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-0924-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Dellicour
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. .,Rega Institute for Medical Research, Clinical and Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, University of Leuven, Minderbroedersstaat 10, 3000, Leuven, Belgium.
| | - Rebecca Rose
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
44
|
Perales C, Moreno E, Domingo E. Clonality and intracellular polyploidy in virus evolution and pathogenesis. Proc Natl Acad Sci U S A 2015; 112:8887-92. [PMID: 26195777 PMCID: PMC4517279 DOI: 10.1073/pnas.1501715112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the present article we examine clonality in virus evolution. Most viruses retain an active recombination machinery as a potential means to initiate new levels of genetic exploration that go beyond those attainable solely by point mutations. However, despite abundant recombination that may be linked to molecular events essential for genome replication, herein we provide evidence that generation of recombinants with altered biological properties is not essential for the completion of the replication cycles of viruses, and that viral lineages (near-clades) can be defined. We distinguish mechanistically active but inconsequential recombination from evolutionarily relevant recombination, illustrated by episodes in the field and during experimental evolution. In the field, recombination has been at the origin of new viral pathogens, and has conferred fitness advantages to some viruses once the parental viruses have attained a sufficient degree of diversification by point mutations. In the laboratory, recombination mediated a salient genome segmentation of foot-and-mouth disease virus, an important animal pathogen whose genome in nature has always been characterized as unsegmented. We propose a model of continuous mutation and recombination, with punctuated, biologically relevant recombination events for the survival of viruses, both as disease agents and as promoters of cellular evolution. Thus, clonality is the standard evolutionary mode for viruses because recombination is largely inconsequential, since the decisive events for virus replication and survival are not dependent on the exchange of genetic material and formation of recombinant (mosaic) genomes.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Elena Moreno
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biologia Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| |
Collapse
|
45
|
Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O'Neill SL, Ooi EE, Ritchie SA, Ryan PA, Scott TW, Simmons CP, Weaver SC. Assessing the epidemiological effect of wolbachia for dengue control. THE LANCET. INFECTIOUS DISEASES 2015; 15:862-6. [PMID: 26051887 DOI: 10.1016/s1473-3099(15)00091-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 01/21/2015] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies mainly on vector control; however, the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium wolbachia to control mosquito populations was proposed 50 years ago, only in the past decade has its use as a potential agent of dengue control gained substantial interest. Here, we review evidence that supports a practical approach for dengue reduction through field release of wolbachia-infected mosquitoes and discuss the additional studies that have to be done before the strategy can be validated and implemented. A crucial next step is to assess the efficacy of wolbachia in reducing dengue virus transmission. We argue that a cluster randomised trial is at this time premature because choice of wolbachia strain for release and deployment strategies are still being optimised. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy through various complementary methods including a prospective cohort study, a geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multipronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster randomised trial.
Collapse
Affiliation(s)
- Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur - CNRS URA 3012, Paris, France.
| | - Neil M Ferguson
- MRC Centre for Outbreak Analysis and Modelling, School of Public Health, Imperial College London, London, UK
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Scott L O'Neill
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Eng E Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Scott A Ritchie
- School of Public Health and Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, QLD, Australia
| | - Peter A Ryan
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Thomas W Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Nossal Institute of Global Health, University of Melbourne, Carlton, VIC, Australia
| | - Scott C Weaver
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
46
|
Abstract
Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders.
Collapse
Affiliation(s)
- Pang Junxiong
- Communicable Disease Center, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, IIDE, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | | |
Collapse
|
47
|
Louis VR, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, Tozan Y, Dambach P. Modeling tools for dengue risk mapping - a systematic review. Int J Health Geogr 2014; 13:50. [PMID: 25487167 PMCID: PMC4273492 DOI: 10.1186/1476-072x-13-50] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/30/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction The global spread and the increased frequency and magnitude of epidemic dengue in the last 50 years underscore the urgent need for effective tools for surveillance, prevention, and control. This review aims at providing a systematic overview of what predictors are critical and which spatial and spatio-temporal modeling approaches are useful in generating risk maps for dengue. Methods A systematic search was undertaken, using the PubMed, Web of Science, WHOLIS, Centers for Disease Control and Prevention (CDC) and OvidSP databases for published citations, without language or time restrictions. A manual search of the titles and abstracts was carried out using predefined criteria, notably the inclusion of dengue cases. Data were extracted for pre-identified variables, including the type of predictors and the type of modeling approach used for risk mapping. Results A wide variety of both predictors and modeling approaches was used to create dengue risk maps. No specific patterns could be identified in the combination of predictors or models across studies. The most important and commonly used predictors for the category of demographic and socio-economic variables were age, gender, education, housing conditions and level of income. Among environmental variables, precipitation and air temperature were often significant predictors. Remote sensing provided a source of varied land cover data that could act as a proxy for other predictor categories. Descriptive maps showing dengue case hotspots were useful for identifying high-risk areas. Predictive maps based on more complex methodology facilitated advanced data analysis and visualization, but their applicability in public health contexts remains to be established. Conclusions The majority of available dengue risk maps was descriptive and based on retrospective data. Availability of resources, feasibility of acquisition, quality of data, alongside available technical expertise, determines the accuracy of dengue risk maps and their applicability to the field of public health. A large number of unknowns, including effective entomological predictors, genetic diversity of circulating viruses, population serological profile, and human mobility, continue to pose challenges and to limit the ability to produce accurate and effective risk maps, and fail to support the development of early warning systems. Electronic supplementary material The online version of this article (doi:10.1186/1476-072X-13-50) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valérie R Louis
- Institute of Public Health, Heidelberg University Medical School, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Huang YJS, Higgs S, Horne KM, Vanlandingham DL. Flavivirus-mosquito interactions. Viruses 2014; 6:4703-30. [PMID: 25421894 PMCID: PMC4246245 DOI: 10.3390/v6114703] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022] Open
Abstract
The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Kate McElroy Horne
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA.
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
50
|
Amaya-Larios IY, Martínez-Vega RA, Mayer SV, Galeana-Hernández M, Comas-García A, Sepúlveda-Salinas KJ, Falcón-Lezama JA, Vasilakis N, Ramos-Castañeda J. Seroprevalence of neutralizing antibodies against dengue virus in two localities in the state of Morelos, Mexico. Am J Trop Med Hyg 2014; 91:1057-65. [PMID: 25294613 DOI: 10.4269/ajtmh.14-0145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Humoral immune response against dengue virus (DENV) is an important component in dengue-endemic transmission. We conducted a cross-sectional nested cohort study to determine the seroprevalence and frequency of neutralizing antibodies against DENV serotypes in two endemic localities in the state of Morelos, Mexico. The cohort participants (N = 1,196) were screened to determine previous exposure to DENV. Overall seroprevalence was 76.6% (95% confidence interval [95% CI] = 73.6-79.2), and prevalence of neutralizing antibodies in the 5- to 9-year-old group was 82.5% (95% CI = 67.2-92.7), 45% (95% CI = 29.3-61.5), and 65% (95% CI = 48.3-79.4) for DENV-1, DENV-2, and DENV-3, respectively. For participants older than 10 years, the observed seroprevalence was above 60% for each serotype, except DENV-4 in the 10- to 25-year-old group (42.9%); 81% of humoral responses were multitypic. The outcomes of our study contribute to understanding the immune component of dengue transmission and provide focal information for the evaluation of vaccine candidates under development.
Collapse
Affiliation(s)
- Irma Y Amaya-Larios
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Ruth Aralí Martínez-Vega
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Sandra V Mayer
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Marisol Galeana-Hernández
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Andreu Comas-García
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Karla J Sepúlveda-Salinas
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Jorge A Falcón-Lezama
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| | - José Ramos-Castañeda
- Centro de Investigaci?n Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico; Organizacion Latinoamericana para el Fomento de la Investigacion en Salud, Bucaramanga, Stder, Colombia; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|