1
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025; 32:793-801. [PMID: 39794451 PMCID: PMC12089313 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
2
|
Laevens GCS, Dolson WC, Drapeau MM, Telhig S, Ruffell SE, Rose DM, Glick BR, Stegelmeier AA. The Good, the Bad, and the Fungus: Insights into the Relationship Between Plants, Fungi, and Oomycetes in Hydroponics. BIOLOGY 2024; 13:1014. [PMID: 39765681 PMCID: PMC11673877 DOI: 10.3390/biology13121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems. The symptomatology and mechanisms of pathogenesis for Botrytis, Colletotrichum, Fulvia, Fusarium, Phytophthora, Pythium, and Sclerotinia are explored for phytopathogenic fungi that target floral organs, leaves, roots, and vasculature of economically important hydroponic crops. Additionally, this review thoroughly explores the use of plant growth-promoting fungi (PGPF) to combat phytopathogens and increase hydroponic crop productivity; details of PGP strategies and mechanisms are discussed. The benefits of Aspergillus, Penicillium, Taloromyces, and Trichoderma to hydroponics systems are explored in detail. The culmination of these areas of research serves to improve the current understanding of the role of beneficial and pathogenic fungi, specifically in the hydroponic microbiome.
Collapse
Affiliation(s)
- Grace C. S. Laevens
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - William C. Dolson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Michelle M. Drapeau
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Soufiane Telhig
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Sarah E. Ruffell
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | - Danielle M. Rose
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada; (S.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (W.C.D.); (M.M.D.)
| | | |
Collapse
|
3
|
Li L, Du C. Fungal Apoptosis-Related Proteins. Microorganisms 2024; 12:2289. [PMID: 39597678 PMCID: PMC11596484 DOI: 10.3390/microorganisms12112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in the development and homeostasis maintenance of multicellular organisms. Apoptosis is a form of PCD that prevents pathological development by eliminating damaged or useless cells. Despite the complexity of fungal apoptosis mechanisms being similar to those of plants and metazoans, fungal apoptosis lacks the core regulatory elements of animal apoptosis. Apoptosis-like PCD in fungi can be triggered by a variety of internal and external factors, participating in biological processes such as growth, development, and stress response. Although the core regulatory elements are not fully understood, apoptosis-inducing factor and metacaspase have been found to be involved. This article summarizes various proteins closely related to fungal apoptosis, such as apoptosis-inducing factor, metacaspase, and inhibitors of apoptosis proteins, as well as their structures and functions. This research provides new strategies and ideas for the development of natural drugs targeting fungal apoptosis and the control of fungal diseases.
Collapse
Affiliation(s)
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
4
|
Wei J, Zhou Q, Zhang J, Wu M, Li G, Yang L. Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana. BMC Biol 2024; 22:239. [PMID: 39428503 PMCID: PMC11492575 DOI: 10.1186/s12915-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Botrytis cinerea is a broad-host-range pathogen causing gray mold disease and significant yield losses of numerous crops. However, the mechanisms underlying its rapid invasion and efficient killing of plant cells remain unclear. RESULTS In this study, we elucidated the dynamics of B. cinerea infection in Arabidopsis thaliana by live cell imaging and dual RNA sequencing. We found extensive transcriptional reprogramming events in both the pathogen and the host, which involved metabolic pathways, signaling cascades, and transcriptional regulation. For the pathogen, we identified 591 candidate effector proteins (CEPs) and comprehensively analyzed their co-expression, sequence similarity, and structural conservation. The results revealed temporal co-regulation patterns of these CEPs, indicating coordinated deployment of effectors during B. cinerea infection. Through functional screening of 48 selected CEPs in Nicotiana benthamiana, we identified 11 cell death-inducing proteins (CDIPs) in B. cinerea. CONCLUSIONS The findings provide important insights into the transcriptional dynamics and effector biology driving B. cinerea pathogenesis. The rapid infection of this pathogen involves the temporal co-regulation of CEPs and the prominent role of CDIPs in host cell death. This work highlights significant changes in gene expression associated with gray mold disease, underscoring the importance of a diverse repertoire of effectors crucial for successful infection.
Collapse
Affiliation(s)
- Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
6
|
Rahman MU, Liu X, Wang X, Fan B. Grapevine gray mold disease: infection, defense and management. HORTICULTURE RESEARCH 2024; 11:uhae182. [PMID: 39247883 PMCID: PMC11374537 DOI: 10.1093/hr/uhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Grapevine (Vitis vinifera L.,) is among the world's leading fruit crops. The production of grapes is severely affected by many diseases including gray mold, caused by the necrotrophic fungus Botrytis cinerea. Although all Vitis species can be hosts for B. cinerea, V. vinifera are particularly susceptible. Accordingly, this disease poses a significant threat to the grape industry and causes substantial economic losses. Development of resistant V. vinifera cultivars has progressed from incidental selection by farmers, to targeted selection through the use of statistics and experimental design, to the employment of genetic and genomic data. Emerging technologies such as marker-assisted selection and genetic engineering have facilitated the development of cultivars that possess resistance to B. cinerea. A promising method involves using the CRISPR/Cas9 system to induce targeted mutagenesis and develop genetically modified non-transgenic crops. Hence, scientists are now engaged in the active pursuit of identifying genes associated with susceptibility and resistance. This review focuses on the known mechanisms of interaction between the B. cinerea pathogen and its grapevine host. It also explores innate immune systems that have evolved in V. vinifera, with the objective of facilitating the rapid development of resistant grapevine cultivars.
Collapse
Affiliation(s)
- Mati Ur Rahman
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xia Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100 Yangling, Xianyang, Shaanxi, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Department of Forest Protection, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210073, China
| |
Collapse
|
7
|
Yang S, Sun J, Xue A, Li G, Sun C, Hou J, Qin QM, Zhang M. Novel Botrytis cinerea Zn(II) 2Cys 6 Transcription Factor BcFtg1 Enhances the Virulence of the Gray Mold Fungus by Promoting Organic Acid Secretion and Carbon Source Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18824-18839. [PMID: 39140189 DOI: 10.1021/acs.jafc.4c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The Zn(II)2Cys6 zinc cluster protein family comprises a subclass of zinc-finger proteins that serve as transcriptional regulators involved in a diverse array of fugal biological processes. However, the roles and mechanisms of the Zn(II)2Cys6 transcription factors in mediating Botrytis cinerea, a necrotrophic fungus that causes gray mold in over 1000 plant species, development and virulence remain obscure. Here, we demonstrate that a novel B. cinerea pathogenicity-associated factor BcFTG1 (fungal transcription factor containing the GAL4 domain), identified from a virulence-attenuated mutant M20162 from a B. cinerea T-DNA insertion mutant library, plays an important role in oxalic acid (OA) secretion, carbon source absorption and cell wall integrity. Loss of BcFTG1 compromises the ability of the pathogen to secrete OA, absorb carbon sources, maintain cell wall integrity, and promote virulence. Our findings provide novel insights into fungal factors mediating the pathogenesis of the gray mold fungus via regulation of OA secretion, carbon source utilization and cell wall integrity.
Collapse
Affiliation(s)
- Song Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiao Sun
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong University, Datong, Shanxi 037009, China
| | - Aoran Xue
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Guihua Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Chenhao Sun
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Hou
- Engineering Research Centre of Forestry Biotechnology of Jilin Province in Beihua University, Jilin 132013, China
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
9
|
Zhang X, Zhang Z, Chen T, Chen Y, Li B, Tian S. Characterization of two SGNH family cell death-inducing proteins from the horticulturally important fungal pathogen Botrytis cinerea based on the optimized prokaryotic expression system. MOLECULAR HORTICULTURE 2024; 4:9. [PMID: 38449027 PMCID: PMC10919021 DOI: 10.1186/s43897-024-00086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Wu J, Xin R, Jiang Y, Jin H, Liu H, Zhang H, Jiang D, Fu Y, Xie J, Cheng J, Lin Y. Botrytis cinerea type II inhibitor of apoptosis BcBIR1 enhances the biocontrol capacity of Coniothyrium minitans. Microb Biotechnol 2024; 17:e14402. [PMID: 38393322 PMCID: PMC10886433 DOI: 10.1111/1751-7915.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
Apoptosis-like programmed cell death is associated with fungal development, ageing, pathogenicity and stress responses. Here, to explore the potential of Botrytis cinerea type II inhibitor of apoptosis (IAP) BcBIR1 in elevating the biocontrol efficacy of Coniothyrium minitans, the BcBIR1 gene was heterologously expressed in C. minitans. Results indicated that the strains expressing BcBIR1 had higher rates of conidiation, mycelial growth and biomass growth than the wild-type strain. Moreover, BcBIR1 was found to inhibit apoptosis, indicating its role as an IAP in C. minitans. Under various abiotic stresses, the growth rates of BcBIR1-expressing strains were significantly higher than that of the wild-type strain. Moreover, the conidial survival rate of the BcBIR1-expressing strains treated with ultraviolet irradiation was enhanced. In antifungal activity assay, the culture filtrates of BcBIR1-expressing strains displayed a stronger inhibitory effect on B. cinerea and Sclerotinia sclerotiorum than the wild-type strain. The study also found that BcBIR1 expression increased the mycoparasitism against the sclerotia, but not the hyphae of S. sclerotiorum. Taken together, these results suggest that BcBIR1 enhances vegetative growth, conidiation, anti-apoptosis activity, abiotic stress resistance, antifungal activity and mycoparasitism in C. minitans. As an IAP, BcBIR1 may improve the control capacity of C. minitans against S. sclerotiorum.
Collapse
Affiliation(s)
- Jianing Wu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ruolong Xin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yachan Jiang
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huanan Jin
- Key Laboratory of Elemene Class Anti‐cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institute, Health Science CenterHangzhou Normal UniversityHangzhouZhejiangChina
| | - Hao Liu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hongxiang Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
11
|
Felemban A, Moreno JC, Mi J, Ali S, Sham A, AbuQamar SF, Al-Babili S. The apocarotenoid β-ionone regulates the transcriptome of Arabidopsis thaliana and increases its resistance against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:541-560. [PMID: 37932864 DOI: 10.1111/tpj.16510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as β-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid β-ionone (β-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with β-I followed by inoculation with B.c. confirmed the effect of β-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE β-CYCLASE, which contains elevated levels of endogenous β-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled β-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.
Collapse
Affiliation(s)
- Abrar Felemban
- The Bioactives Laboratory, Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Juan C Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jianing Mi
- The Bioactives Laboratory, Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Shawkat Ali
- Kentville Research and Development Center, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
12
|
Singh R, Caseys C, Kliebenstein DJ. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2024; 25:e13404. [PMID: 38037862 PMCID: PMC10788480 DOI: 10.1111/mpp.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | - Celine Caseys
- Department of Plant ScienceUniversity of CaliforniaDavisCaliforniaUSA
| | | |
Collapse
|
13
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. mSphere 2023; 8:e0030523. [PMID: 37823656 PMCID: PMC10871163 DOI: 10.1128/msphere.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk for IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with chronic granulomatous disease (CGD). However, treatments for Aspergillus infections remain limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization classified A. fumigatus as a critical priority fungal pathogen. Our cell death research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
Affiliation(s)
- Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Mariano A. Aufiero
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Tobias M. Hohl
- Louis V Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Hospital, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Fei YC, Cheng Q, Zhang H, Han C, Wang X, Li YF, Li SQ, Zhao XH. Maleic acid and malonic acid reduced the pathogenicity of Sclerotinia sclerotiorum by inhibiting mycelial growth, sclerotia formation and virulence factors. STRESS BIOLOGY 2023; 3:45. [PMID: 37955738 PMCID: PMC10643788 DOI: 10.1007/s44154-023-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell structure of sclerotia, leading to sheet-like electron-thin regions. On a molecular level, maleic acid reduced oxalic acid secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol agent.
Collapse
Affiliation(s)
- Yu-Chen Fei
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Han
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan-Feng Li
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shi-Qian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China.
| | - Xiao-Hu Zhao
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Ji D, Liu W, Cui X, Liu K, Liu Y, Huang X, Li B, Qin G, Chen T, Tian S. A receptor-like kinase SlFERL mediates immune responses of tomato to Botrytis cinerea by recognizing BcPG1 and fine-tuning MAPK signaling. THE NEW PHYTOLOGIST 2023; 240:1189-1201. [PMID: 37596704 DOI: 10.1111/nph.19210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
FERONIA (FER) is a receptor-like kinase showing versatile functions during plant growth, development, and responses to environmental stimuli. However, its functions during the interaction between fruit and necrotrophic fungal pathogens are still unclear. Combining reverse genetic approaches, physiological assays, co-immunoprecipitation, protein phosphorylation identification, and site-directed mutagenesis, we reported a tomato FER homolog SlFERL (Solanum lycopersicum FERONIA Like) involved in the immune responses to Botrytis cinerea invasion. The results indicated that SlFERL extracellular domain recognized and interacted with the secreted virulence protein BcPG1 from B. cinerea, further revealed that SlFERL triggered downstream signaling by phosphorylating SlMAP3K18 at Thr45, Ser49, Ser76, and Ser135. Moreover, we verified that SlMAP2K2 and SlMAP2K4 synergistically contributed to immune response of tomato to B. cinerea, in which SlFERL-SlMAP3K18 module substantially modulated protein level and/or kinase activity of SlMAP2K2/SlMAP2K4. These findings reveal a new pattern-triggered immune pathway, indicating that SlFERL participates in the immune responses to B. cinerea invasion via recognizing BcPG1 and fine-tuning MAPK signaling.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuhan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xinhua Huang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
16
|
Lin CH, Liu FW, Pan YC, Chen CY. Lilium Gray Mold Suppression Conferred by the Host Antimicrobial Protein LsGRP1 Involves Main Pathogen-Targeted Manipulation of the Nonantimicrobial Region LsGRP1 N. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12688-12699. [PMID: 37594906 DOI: 10.1021/acs.jafc.3c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Antimicrobial protein LsGRP1 protects Lilium from gray mold mainly caused by the destructive pathogen Botrytis elliptica; however, its nonantimicrobial region LsGRP1N conversely promotes spore germination of this fungus. By assaying the effects of LsGRP1N, LsGRP1, and the combination of LsGRP1N and the antimicrobial region LsGRP1C on fungal spore germination, hyphal growth, and Lilium gray mold development, LsGRP1N was found to improve the LsGRP1C sensitivity of B. elliptica and disease suppression by LsGRP1C. B. elliptica cell vitality assays indicated that LsGRP1N pretreatment uniquely enhanced the lethal efficiency of LsGRP1C compared to the control peptides. In addition, LsGRP1N-treated B. elliptica was demonstrated to lower infection-related gene expression and increase host-defense-eliciting activity, as indicated by reverse transcription quantitative polymerase chain reaction and histochemical-staining-based callose detection results, respectively. Therefore, LsGRP1N showed a novel mode of action for antimicrobial proteins by manipulating the main pathogen, which facilitated the development of target-specific and dormant microbe-eradicating antimicrobial agents.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Molecular Plant Pathology Laboratory, Department of Plant Pathology and Microbiology, National Taiwan University; No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Fang-Wei Liu
- Molecular Plant Pathology Laboratory, Department of Plant Pathology and Microbiology, National Taiwan University; No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ying-Chieh Pan
- Molecular Plant Pathology Laboratory, Department of Plant Pathology and Microbiology, National Taiwan University; No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chao-Ying Chen
- Molecular Plant Pathology Laboratory, Department of Plant Pathology and Microbiology, National Taiwan University; No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Krishnan P, Caseys C, Soltis N, Zhang W, Burow M, Kliebenstein DJ. Polygenic pathogen networks influence transcriptional plasticity in the Arabidopsis-Botrytis pathosystem. Genetics 2023; 224:iyad099. [PMID: 37216906 PMCID: PMC10789313 DOI: 10.1093/genetics/iyad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens' genetic variation and both organisms' transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host.
Collapse
Affiliation(s)
- Parvathy Krishnan
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Celine Caseys
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Nik Soltis
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Wei Zhang
- Department of Botany & Plant Sciences, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Meike Burow
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| |
Collapse
|
18
|
James MR, Aufiero MA, Vesely EM, Dhingra S, Liu KW, Hohl TM, Cramer RA. Aspergillus fumigatus cytochrome c impacts conidial survival during sterilizing immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544103. [PMID: 37333187 PMCID: PMC10274773 DOI: 10.1101/2023.06.07.544103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening infection caused by species in the ubiquitous fungal genus Aspergillus . While leukocyte-generated reactive oxygen species (ROS) are critical for the clearance of fungal conidia from the lung and resistance to IPA, the processes that govern ROS-dependent fungal cell death remain poorly defined. Using a flow cytometric approach that monitors two independent cell death markers, an endogenous histone H2A:mRFP nuclear integrity reporter and Sytox Blue cell impermeable (live/dead) stain, we observed that loss of A. fumigatus cytochrome c ( cycA ) results in reduced susceptibility to cell death from hydrogen peroxide (H 2 O 2 ) treatment. Consistent with these observations in vitro , loss of cycA confers resistance to both NADPH-oxidase -dependent and -independent killing by host leukocytes. Fungal ROS resistance is partly mediated in part by Bir1, a homolog to survivin in humans, as Bir1 overexpression results in decreased ROS-induced conidial cell death and reduced killing by innate immune cells in vivo . We further report that overexpression of the Bir1 N-terminal BIR domain in A. fumigatus conidia results in altered expression of metabolic genes that functionally converge on mitochondrial function and cytochrome c ( cycA ) activity. Together, these studies demonstrate that cycA in A. fumigatus contributes to cell death responses that are induced by exogenous H 2 O 2 and by host leukocytes. Importance Aspergillus fumigatus can cause a life-threatening infection known as invasive pulmonary aspergillosis (IPA), which is marked by fungus-attributable mortality rates of 20%-30%. Individuals at risk of IPA harbor genetic mutations or incur pharmacologic defects that impair myeloid cell numbers and/or function, exemplified by bone marrow transplant recipients, patients that receive corticosteroid therapy, or patients with Chronic Granulomatous Disease (CGD). However, treatments for Aspergillus infections remains limited, and resistance to the few existing drug classes is emerging. Recently, the World Health Organization (WHO) classified A. fumigatus as a critical priority fungal pathogen. Our research identifies an important aspect of fungal biology that impacts susceptibility to leukocyte killing. Furthering our understanding of mechanisms that mediate the outcome of fungal-leukocyte interactions will increase our understanding of both the underlying fungal biology governing cell death and innate immune evasion strategies utilized during mammalian infection pathogenesis. Consequently, our studies are a critical step toward leveraging these mechanisms for novel therapeutic advances.
Collapse
|
19
|
Abstract
Chen, Zhang et al. introduce the necrotrophic fungal plant pathogen Botrytis cinerea more commonly known as gray mold.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Zhu W, Dong H, Xu R, You J, Yan DZ, Xiong C, Wu J, Bi K. Botrytis cinerea BcCDI1 protein triggers both plant cell death and immune response. FRONTIERS IN PLANT SCIENCE 2023; 14:1136463. [PMID: 37180384 PMCID: PMC10167277 DOI: 10.3389/fpls.2023.1136463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Cell death-inducing proteins (CDIPs) play important roles in the infection of Botrytis cinerea, a broad host-range necrotrophic phytopathogen. Here, we show that the secreted protein BcCDI1 (Cell Death Inducing 1) can cause necrosis in tobacco leaves and at the same time elicit plant defense. The transcription of Bccdi1 was induced at the infection stage. Deletion or overexpression of Bccdi1 resulted in no notable change in disease lesion on bean, tobacco, and Arabidopsis leaves, indicating that Bccdi1 has no effect on the final outcome of B. cinerea infection. Furthermore, the plant receptor-like kinases BAK1 and SOBIR1 are required to transduce the cell death-promoting signal induced by BcCDI1. These findings suggest that BcCDI1 is possibly recognized by plant receptors and then induces plant cell death.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huange Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ran Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jingmao You
- Key Laboratory of Biology and Cultivation of Chinese Herbal Medicines, Ministry of Agriculture and Rural Affairs, Enshi, China
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Da-zhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chao Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jing Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Kai Bi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
21
|
Olea AF, Rubio J, Sedan C, Carvajal D, Nuñez M, Espinoza L, Llovera L, Nuñez G, Taborga L, Carrasco H. Antifungal Activity of 2-Allylphenol Derivatives on the Botrytis cinerea Strain: Assessment of Possible Action Mechanism. Int J Mol Sci 2023; 24:ijms24076530. [PMID: 37047503 PMCID: PMC10095406 DOI: 10.3390/ijms24076530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes serious damage to the agricultural industry by infecting various important crops. 2-allylphenol has been used in China as a fungicide for more than a decade, and it has been shown that is a respiration inhibitor. A series of derivatives of 2-allylphenol were synthesized and their activity against B. cinerea was evaluated by measuring mycelial growth inhibition. Results indicate that small changes in the chemical structure or the addition of substituent groups in the aromatic ring induce important variations in activity. For example, changing the hydroxyl group by methoxy or acetyl groups produces dramatic increases in mycelial growth inhibition, i.e., the IC50 value of 2-allylphenol decreases from 68 to 2 and 1 μg mL−1. In addition, it was found that the most active derivatives induce the inhibition of Bcaox expression in the early stages of B. cinerea conidia germination. This gene is associated with the activation of the alternative oxidase enzyme (AOX), which allows fungus respiration to continue in the presence of respiratory inhibitors. Thus, it seems that 2-allylphenol derivatives can inhibit the normal and alternative respiratory pathway of B. cinerea. Therefore, we believe that these compounds are a very attractive platform for the development of antifungal agents against B. cinerea.
Collapse
|
22
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Yang D, Shi H, Zhang K, Liu X, Ma L. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea. Int J Food Microbiol 2023; 388:110089. [PMID: 36682298 DOI: 10.1016/j.ijfoodmicro.2023.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Botrytis cinerea is a phytopathogenic fungus that causes gray mold, a major postharvest disease of fruits and vegetables. Chemical fungicides remain the main solution to control Botrytis disease, but concerns have raised about their safety to environment and human health, and there is an increasing need for development of more effective and less toxic treatments. In this study the divalent cation chelating agent ethylenediaminetetraacetic acid (EDTA) exhibited marked antifungal activity against B. cinerea, including inhibition of spore germination, mycelial growth, infection cushion formation, stimulation of cell death, and impairment of fungal virulence. These adverse effects of EDTA could be reversed by the addition of calcium ion, implying that metal ion chelation is involved in the fungicidal mechanism. Bean leaf and tomato fruit protection assay indicated that EDTA treatment led to a significant reduction of infection by B. cinerea. Furthermore, the antifungal activity of EDTA was significantly enhanced when used in combination with fenhexamid. These findings suggest that EDTA could be a promising tool to control B. cinerea, and application of EDTA may reduce the use of conventional chemical fungicides.
Collapse
Affiliation(s)
- Danting Yang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Haojie Shi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Ke Zhang
- Yunnan Tobacco Quality Inspection & Supervision Station, Kunming 650106, PR China
| | - Xunyue Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China
| | - Liang Ma
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, PR China.
| |
Collapse
|
24
|
Bi K, Liang Y, Mengiste T, Sharon A. Killing softly: a roadmap of Botrytis cinerea pathogenicity. TRENDS IN PLANT SCIENCE 2023; 28:211-222. [PMID: 36184487 DOI: 10.1016/j.tplants.2022.08.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Botrytis cinerea, a widespread plant pathogen with a necrotrophic lifestyle, causes gray mold disease in many crops. Massive secretion of enzymes and toxins was long considered to be the main driver of infection, but recent studies have uncovered a rich toolbox for B. cinerea pathogenicity. The emerging picture is of a multilayered infection process governed by the exchange of factors that collectively contribute to disease development. No plant shows complete resistance against B. cinerea, but pattern-triggered plant immune responses have the potential to significantly reduce disease progression, opening new possibilities for producing B. cinerea-tolerant plants. We examine current B. cinerea infection models, highlight knowledge gaps, and suggest directions for future studies.
Collapse
Affiliation(s)
- Kai Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Yong Liang
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
25
|
Botrytis cinerea Transcription Factor BcXyr1 Regulates (Hemi-)Cellulase Production and Fungal Virulence. mSystems 2022; 7:e0104222. [PMID: 36468854 PMCID: PMC9765177 DOI: 10.1128/msystems.01042-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.
Collapse
|
26
|
Combier M, Evangelisti E, Piron MC, Schornack S, Mestre P. Candidate effector proteins from the oomycetes Plasmopara viticola and Phytophthora parasitica share similar predicted structures and induce cell death in Nicotiana species. PLoS One 2022; 17:e0278778. [PMID: 36459530 PMCID: PMC9718384 DOI: 10.1371/journal.pone.0278778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Effector proteins secreted by plant pathogens are essential for infection. Cytoplasmic RXLR effectors from oomycetes are characterized by the presence of RXLR and EER motifs that are frequently linked to WY- and/or LWY-domains, folds that are exclusive to this effector family. A related family of secreted candidate effector proteins, carrying WY-domains and the EER motif but lacking the canonical RXLR motif, has recently been described in oomycetes and is mainly found in downy mildew pathogens. Plasmopara viticola is an obligate biotrophic oomycete causing grapevine downy mildew. Here we describe a conserved Pl. viticola secreted candidate non-RXLR effector protein with cell death-inducing activity in Nicotiana species. A similar RXLR effector candidate from the broad host range oomycete pathogen Phytophthora parasitica also induces cell death in Nicotiana. Through comparative tertiary structure modelling, we reveal that both proteins are predicted to carry WY- and LWY-domains. Our work supports the presence of LWY-domains in non-RXLR effectors and suggests that effector candidates with similar domain architecture may exert similar activities.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | | | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, UMR-A 1131, Université de Strasbourg, INRAE, Colmar, France
- * E-mail:
| |
Collapse
|
27
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
28
|
Lerer V, Shlezinger N. Inseparable companions: Fungal viruses as regulators of fungal fitness and host adaptation. Front Cell Infect Microbiol 2022; 12:1020608. [PMID: 36310864 PMCID: PMC9606465 DOI: 10.3389/fcimb.2022.1020608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 08/01/2023] Open
|
29
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
31
|
Xu Y, Wang Y, Wang L, Liang W, Yang Q. Sodium Valproate Is Effective Against Botrytis cinerea Infection of Tomato by Enhancing Histone H3 Acetylation-Directed Gene Transcription and Triggering Tomato Fruit Immune Response. PHYTOPATHOLOGY 2022; 112:1264-1272. [PMID: 34982575 DOI: 10.1094/phyto-11-21-0483-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Botrytis cinerea causes gray mold resulting in enormous financial loss. Fungicide resistance of B. cinerea has become a serious issue in food safety and agricultural environmental protection. Sodium valproate (SV) has been used in clinical trials; thus, it is an excellent candidate for fungicide development, considering its safety. However, the antifungal activity remains unclear. SV was effective against B. cinerea by enhancing acetylation of histone H3, including H3K9ac, H3K14ac, and H3K56ac. A transcriptomics analysis revealed that the expression of 1,557 genes changed significantly in response to SV. A pathway enrichment analysis identified 16 significant GO terms, in which molecular functions were mainly involved. In addition, the expression levels of 13 genes involved in B. cinerea virulence and five genes involved in tomato immune response were altered by the SV treatment. These results indicate that SV inhibits B. cinerea by enhancing acetylation of histone H3 and modifying gene transcription. Thus, SV is an effective, safe, potential antifungal agent for control of both pre- and postharvest losses caused by B. cinerea.
Collapse
Affiliation(s)
- Yang Xu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yameng Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Lulu Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
32
|
Nguyen NH, Trotel-Aziz P, Clément C, Jeandet P, Baillieul F, Aziz A. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. PLANTA 2022; 255:116. [PMID: 35511374 DOI: 10.1007/s00425-022-03907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This review provides an overview on the role of camalexin in plant immunity taking into account various plant-pathogen and beneficial microbe interactions, regulation mechanisms and the contribution in basal and induced plant resistance. In a hostile environment, plants evolve complex and sophisticated defense mechanisms to counteract invading pathogens and herbivores. Several lines of evidence support the assumption that secondary metabolites like phytoalexins which are synthesized de novo, play an important role in plant defenses and contribute to pathogens' resistance in a wide variety of plant species. Phytoalexins are synthesized and accumulated in plants upon pathogen challenge, root colonization by beneficial microbes, following treatment with chemical elicitors or in response to abiotic stresses. Their protective properties against pathogens have been reported in various plant species as well as their contribution to human health. Phytoalexins are synthesized through activation of particular sets of genes encoding specific pathways. Camalexin (3'-thiazol-2'-yl-indole) is the primary phytoalexin produced by Arabidopsis thaliana after microbial infection or abiotic elicitation and an iconic representative of the indole phytoalexin family. The synthesis of camalexin is an integral part of cruciferous plant defense mechanisms. Although the pathway leading to camalexin has been largely elucidated, the regulatory networks that control the induction of its biosynthetic steps by pathogens with different lifestyles or by beneficial microbes remain mostly unknown. This review thus presents current knowledge regarding camalexin biosynthesis induction during plant-pathogen and beneficial microbe interactions as well as in response to microbial compounds and provides an overview on its regulation and interplay with signaling pathways. The contribution of camalexin to basal and induced plant resistance and its detoxification by some pathogens to overcome host resistance are also discussed.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC INRAE 1488, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Cedex 02, Reims, France.
| |
Collapse
|
33
|
Wang C, Jia C, Zhang M, Yang S, Qin J, Yang Y. A Lesion Microenvironment-Responsive Fungicide Nanoplatform for Crop Disease Prevention and Control. Adv Healthc Mater 2022; 11:e2102617. [PMID: 34964308 DOI: 10.1002/adhm.202102617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Controlled fungicide delivery in response to the specific microenvironment produced by fungal pathogens is an advisable strategy to improve the efficacy of fungicides. Herein, the authors construct a smart fungicide nanoplatform, using mesoporous silica nanoparticles (MSNs) as nanocarriers loaded with eugenol (EU) and Ag+ coordinated polydopamine (Ag+ -PDA) as a coating to form Ag+ -PDA@MSNs-EU NPs for Botrytis cinerea (B. cinerea) control. As a botanical fungicide, EU offers an eco-friendly alternative to synthetic fungicides and can upregulate several defense-related genes in the tomato plant. The Ag+ -PDA coating can lock the EU inside the nanocarriers and respond to the oxalic acid produced by B. cinerea to corelease the loaded EU and Ag+ . The results demonstrate that Ag+ -PDA@MSNs-EU NPs can effectively inhibit the mycelial growth of B. cinerea on detached and potted tomato leaves. The construction of such a smart fungicide nanoplatform provides new guidance to design controlled fungicides release systems, which can respond to the microenvironment associated with plant pathogen to realize fungus control.
Collapse
Affiliation(s)
- Chao‐Yi Wang
- College of Plant Science Jilin University Changchun 130012 P. R. China
- College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chengguo Jia
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Ming‐Zhe Zhang
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Song Yang
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Jian‐Chun Qin
- College of Plant Science Jilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
34
|
Kemppainen M, Pardo A. Nucleus-directed fluorescent reporter system for promoter studies in the ectomycorrhizal fungus Laccaria bicolor. J Microbiol Methods 2021; 190:106341. [PMID: 34610385 DOI: 10.1016/j.mimet.2021.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
Currently ectomycorrhizal research suffers from a lack of molecular tools specifically adapted to study gene expression in fungal symbionts. Considering that, we designed pReNuK, a cloning vector for transcriptional promoter studies in the ectomycorrhizal basidiomycete Laccaria bicolor. The pReNuK vector offers the use of a nuclear localizing and chromatin incorporating histone H2B-mCherry fluorescent reporter protein and it is specifically optimized for efficient transgene expression in Laccaria. Moreover, pReNuK is designed to work in concert with Agrobacterium-mediated transformation under hygromycin B resistance selection. The functionality of the pReNuK reporter system was tested with the constitutive Laccaria glyceraldehyde 3-phosphate dehydrogenase gene promoter and further validated with the nitrogen source regulated nitrate reductase gene promoter. The expression of the nucleus-directed H2B-mCherry reporter is highly stable in time. Moreover, the transformation of Laccaria with pReNuK and the expression of the reporter do not have negative effects on the growth of the fungus. The pReNuK offers a novel tool for studying in vivo gene expression regulation in Laccaria, the leading fungal model for ectomycorrhizal research.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina.
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, National University of Quilmes and CONICET, Bernal, Province of Buenos Aires, Argentina
| |
Collapse
|
35
|
Sun C, Zhu C, Tang Y, Ren D, Cai Y, Zhou G, Wang Y, Xu L, Zhu P. Inhibition of Botrytis cinerea and control of gray mold on table grapes by calcium propionate. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
The gray mold fungus Botrytis cinerea (B. cinerea) infects a wide range of crops before and after harvest, causing huge losses worldwide. Inhibition mechanisms of B. cinerea in vitro and in plants by calcium propionate (CP), generally recognized as a safe substance, are described in this study.
Materials and methods
Wild-type and transgenic mutant strains of B. cinerea were used in the study to evaluate the effects of CP on fungal growth and development in vitro. Plant materials including tomato leaves and table grapes were tested for controlling efficiency of CP against gray mold deterioration in vivo.
Results
Mycelial growth of B. cinerea was inhibited by CP in a dose-dependent manner with occasional disruption of hyphal tips, causing cellular collapse and efflux of cell contents. Staining with fluorescein diacetate and propidium iodide indicated that CP decreased fungal cell viability. Inhibition efficiency of CP against B. cinerea was enhanced by reducing pH. In contrast, the vel1 mutant, which exhibited deficiency in acid production, was more resistant to CP, suggesting that inhibition of B. cinerea by CP is enhanced by the acidification ability of the fungus itself. Additionally, CP inhibited infection cushion development by germlings of B. cinerea. Infection assays with tomato leaves and table grapes showed that CP inhibited decay development in both host tissues. Moreover, application of CP on grapes 3 days prior to harvest could contribute to management of deterioration caused by spontaneous fungal diseases during storage.
Conclusion
CP can suppress hyphal growth, inhibit infection cushion development, and reduce the virulence of B. cinerea. CP is thus promising for practical management of gray mold in fruit crops and merits further evaluation.
Collapse
|
36
|
Zhang ZQ, Chen T, Li BQ, Qin GZ, Tian SP. Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect. MOLECULAR HORTICULTURE 2021; 1:2. [PMID: 37789422 PMCID: PMC10509826 DOI: 10.1186/s43897-021-00004-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 10/05/2023]
Abstract
The disease caused by pathogenic fungi is the main cause of postharvest loss of fresh fruits. The formulation of disease control strategies greatly depends on the understanding of pathogenic mechanism of fungal pathogens and control strategy. In recent years, based on the application of various combinatorial research methods, some pathogenic genes of important postharvest fungal pathogens in fruit have been revealed, and their functions and molecular regulatory networks of virulence have been explored. These progresses not only provide a new perspective for understanding the molecular basis and regulation mechanism of pathogenicity of postharvest pathogenic fungi, but also are beneficial to giving theoretical guidance for the creation of new technologies of postharvest disease control. Here, we synthesized these recent advances and illustrated conceptual frameworks, and identified several issues on the focus of future studies.
Collapse
Affiliation(s)
- Zhan-Quan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo-Qiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guo-Zheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shi-Ping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W, Masrati G, Sharon A. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat Commun 2021; 12:2166. [PMID: 33846308 PMCID: PMC8042016 DOI: 10.1038/s41467-021-22436-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Kai Bi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Loredana Scalschi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, Castellón, Spain
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Renana Fried
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Belén Sanz
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Javier Arroyo
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Wenjun Zhu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Gal Masrati
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
38
|
You Y, van Kan JA. Bitter and sweet make tomato hard to (b)eat. THE NEW PHYTOLOGIST 2021; 230:90-100. [PMID: 33220068 PMCID: PMC8126962 DOI: 10.1111/nph.17104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
The glycoalkaloid saponin α-tomatine is a tomato-specific secondary metabolite that accumulates to millimolar levels in vegetative tissues and has antimicrobial and antinutritional activity that kills microbial pathogens and deters herbivorous insects. We describe recent insights into the biosynthetic pathway of α-tomatine synthesis and its regulation. We discuss the mode of action of α-tomatine by physically interacting with sterols, thereby disrupting membranes, and how tomato protects itself from its toxic action. Tomato pathogenic microbes can enzymatically hydrolyze, and thereby inactivate, α-tomatine using either of three distinct types of glycosyl hydrolases. We also describe findings that extend well beyond the simple concept of plants producing toxins and pathogens inactivating them. There are reports that toxicity of α-tomatine is modulated by external pH, that α-tomatine can trigger programmed cell death in fungi, that cellular localization matters for the impact of α-tomatine on invading microbes, and that α-tomatine breakdown products generated by microbial hydrolytic enzymes can modulate plant immune responses. Finally, we address a number of outstanding questions that deserve attention in the future.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| | - Jan A.L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| |
Collapse
|
39
|
Choquer M, Rascle C, Gonçalves IR, de Vallée A, Ribot C, Loisel E, Smilevski P, Ferria J, Savadogo M, Souibgui E, Gagey MJ, Dupuy JW, Rollins JA, Marcato R, Noûs C, Bruel C, Poussereau N. The infection cushion of Botrytis cinerea: a fungal 'weapon' of plant-biomass destruction. Environ Microbiol 2021; 23:2293-2314. [PMID: 33538395 DOI: 10.1111/1462-2920.15416] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays. 1231 upregulated genes and 79 up-accumulated proteins were identified. The data support the secretion of effectors by IC: phytotoxins, ROS, proteases, cutinases, plant cell wall-degrading enzymes and plant cell death-inducing proteins. Parallel upregulation of sugar transport and sugar catabolism-encoding genes would indicate a role of IC in nutrition. The data also reveal a substantial remodelling of the IC cell wall and suggest a role for melanin and chitosan in IC function. Lastly, mutagenesis of two upregulated genes in IC identified secreted fasciclin-like proteins as actors in the pathogenesis of B. cinerea. These results support the role of IC in plant penetration and also introduce other unexpected functions for this fungal organ, in colonization, necrotrophy and nutrition of the pathogen.
Collapse
Affiliation(s)
- Mathias Choquer
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Christine Rascle
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Isabelle R Gonçalves
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Amélie de Vallée
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Cécile Ribot
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Elise Loisel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Pavlé Smilevski
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jordan Ferria
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Mahamadi Savadogo
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Eytham Souibgui
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Marie-Josèphe Gagey
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Riccardo Marcato
- Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France.,Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, Università degli Studi di Padova, Legnaro, Italy
| | - Camille Noûs
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France
| | - Christophe Bruel
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon 1, CNRS, INSA-Lyon, Microbiologie, Adaptation et Pathogénie, UMR 5240 MAP, 10 Rue Raphaël Dubois, Villeurbanne, F-69622, France.,Bayer SAS, Crop Science Division, Laboratoire Mixte, 14 Impasse Pierre Baizet, Lyon, F-69263, France
| |
Collapse
|
40
|
Steentjes MBF, Tonn S, Coolman H, Langebeeke S, Scholten OE, van Kan JAL. Visualization of Three Sclerotiniaceae Species Pathogenic on Onion Reveals Distinct Biology and Infection Strategies. Int J Mol Sci 2021; 22:ijms22041865. [PMID: 33668507 PMCID: PMC7918164 DOI: 10.3390/ijms22041865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/02/2022] Open
Abstract
Botrytis squamosa, Botrytis aclada, and Sclerotium cepivorum are three fungal species of the family Sclerotiniaceae that are pathogenic on onion. Despite their close relatedness, these fungi cause very distinct diseases, respectively called leaf blight, neck rot, and white rot, which pose serious threats to onion cultivation. The infection biology of neck rot and white rot in particular is poorly understood. In this study, we used GFP-expressing transformants of all three fungi to visualize the early phases of infection. B. squamosa entered onion leaves by growing either through stomata or into anticlinal walls of onion epidermal cells. B. aclada, known to cause post-harvest rot and spoilage of onion bulbs, did not penetrate the leaf surface but instead formed superficial colonies which produced new conidia. S. cepivorum entered onion roots via infection cushions and appressorium-like structures. In the non-host tomato, S. cepivorum also produced appressorium-like structures and infection cushions, but upon prolonged contact with the non-host the infection structures died. With this study, we have gained understanding in the infection biology and strategy of each of these onion pathogens. Moreover, by comparing the infection mechanisms we were able to increase insight into how these closely related fungi can cause such different diseases.
Collapse
Affiliation(s)
- Maikel B. F. Steentjes
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (M.B.F.S.); (S.T.); (H.C.); (S.L.)
| | - Sebastian Tonn
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (M.B.F.S.); (S.T.); (H.C.); (S.L.)
| | - Hilde Coolman
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (M.B.F.S.); (S.T.); (H.C.); (S.L.)
| | - Sander Langebeeke
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (M.B.F.S.); (S.T.); (H.C.); (S.L.)
| | - Olga E. Scholten
- Plant Breeding, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; (M.B.F.S.); (S.T.); (H.C.); (S.L.)
- Correspondence:
| |
Collapse
|
41
|
Chen L, Ma Y, Peng M, Chen W, Xia H, Zhao J, Zhang Y, Fan Z, Xing X, Li H. Analysis of Apoptosis-Related Genes Reveals that Apoptosis Functions in Conidiation and Pathogenesis of Fusarium pseudograminearum. mSphere 2021; 6:e01140-20. [PMID: 33408234 PMCID: PMC7845595 DOI: 10.1128/msphere.01140-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Apoptosis, a type of programmed cell death, plays crucial roles in various physiological processes, from development to adaptive responses. Key features of apoptosis have been verified in various fungal microbes but not yet in Fusarium species. Here, we identified 19 apoptosis-related genes in Fusarium pseudograminearum using a genome-wide survey. Expression profile analysis revealed that several apoptosis-related genes were significantly increased during conidiation and infection stages. Among these is FpBIR1, with two BIR (baculovirus inhibitor-of-apoptosis protein repeat) domains at the N-terminal end of the protein, a homolog of Saccharomyces cerevisiae BIR1, which is a unique apoptosis inhibitor. FpNUC1 is the ortholog of S. cerevisiae NUC1, which triggers AIF1- or YCA1-independent apoptosis. The functions of these two proteins were assessed by creating Δfpbir1 and Δfpnuc1 mutants via targeted gene deletion. The Δfpbir1 mutant had more cells with nuclear fragmentation and exhibited reduced conidiation, conidial formation, and infectivity. Correspondingly, the Δfpnuc1 mutant contained multiple nuclei, produced thicker and more branched hyphae, was reduced in conidiation, and exhibited faster conidial formation and higher infection rates. Taken together, our results indicate that the apoptosis-related genes FpBIR1 and FpNUC1 function in conidiation, conidial germination, and infection by F. pseudograminearumIMPORTANCE The plant-pathogenic fungus F. pseudograminearum is the causal agent of Fusarium crown rot (FCR) in wheat and barley, resulting in substantial yield losses worldwide. Particularly, in the Huanghuai wheat-growing region of China, F. pseudograminearum was reported as the dominant Fusarium species in FCR infections. Apoptosis is an evolutionarily conserved mechanism in eukaryotes, playing crucial roles in development and cell responses to biotic and abiotic stresses. However, few reports on apoptosis in plant fungal pathogens have been published. In this study, we identified 19 conserved apoptosis-related genes in F. pseudograminearum, several of which were significantly increased during conidiation and infection stages. Potential apoptosis functions were assessed by deletion of the putative apoptosis inhibitor gene FpBIR1 and apoptosis trigger gene FpNUC1 in F. pseudograminearum The FpBIR1 deletion mutant exhibited defects in conidial germination and pathogenicity, whereas the FpNUC1 deletion mutant experienced faster conidial formation and higher infection rates. Apoptosis appears to negatively regulate the conidial germination and pathogenicity of F. pseudograminearum To our knowledge, this study is the first report of apoptosis contributing to infection-related morphogenesis and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Linlin Chen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuming Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Huiqing Xia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yake Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoping Xing
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
42
|
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X, Zhou JM. An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host Microbe 2020; 27:601-613.e7. [PMID: 32272078 DOI: 10.1016/j.chom.2020.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zhang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Chulei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaoguang Lei
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Oren-Young L, Llorens E, Bi K, Zhang M, Sharon A. Botrytis cinerea methyl isocitrate lyase mediates oxidative stress tolerance and programmed cell death by modulating cellular succinate levels. Fungal Genet Biol 2020; 146:103484. [PMID: 33220429 DOI: 10.1016/j.fgb.2020.103484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Fungi lack the entire animal core apoptotic machinery. Nevertheless, regulated cell death with apoptotic markers occurs in multicellular as well as in unicellular fungi and is essential for proper fungal development and stress adaptation. The discrepancy between appearance of an apoptotic-like regulated cell death (RCD) in the absence of core apoptotic machinery is further complicated by the fact that heterologous expression of animal apoptotic genes in fungi affects fungal RCD. Here we describe the role of BcMcl, a methyl isocitrate lyase from the plant pathogenic fungus Botrytis cinerea, in succinate metabolism, and the connection of succinate with stress responses and cell death. Over expression of bcmcl resulted in elevated tolerance to oxidative stress and reduced levels of RCD, which were associated with accumulation of elevated levels of succinate. Deletion of bcmcl had almost no effect on fungal development or stress sensitivity, and succinate levels were unchanged in the deletion strain. Gene expression experiments showed co-regulation of bcmcl and bcicl (isocitrate lyase); expression of the bcicl gene was enhanced in bcmcl deletion and suppressed in bcmcl over expression strains. External addition of succinate reproduced the phenotypes of the bcmcl over expression strains, including developmental defects, reduced virulence, and improved oxidative stress tolerance. Collectively, our results implicate mitochondria metabolic pathways, and in particular succinate metabolism, in regulation of fungal stress tolerance, and highlight the role of this onco-metabolite as potential mediator of fungal RCD.
Collapse
Affiliation(s)
- Liat Oren-Young
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eugenio Llorens
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kai Bi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhe Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
44
|
Macioszek VK, Gapińska M, Zmienko A, Sobczak M, Skoczowski A, Oliwa J, Kononowicz AK. Complexity of Brassica oleracea- Alternaria brassicicola Susceptible Interaction Reveals Downregulation of Photosynthesis at Ultrastructural, Transcriptional, and Physiological Levels. Cells 2020; 9:E2329. [PMID: 33092216 PMCID: PMC7593931 DOI: 10.3390/cells9102329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Black spot disease, caused by Alternaria brassicicola in Brassica species, is one of the most devastating diseases all over the world, especially since there is no known fully resistant Brassica cultivar. In this study, the visualization of black spot disease development on Brassica oleracea var. capitata f. alba (white cabbage) leaves and subsequent ultrastructural, molecular and physiological investigations were conducted. Inter- and intracellular hyphae growth within leaf tissues led to the loss of host cell integrity and various levels of organelle disintegration. Severe symptoms of chloroplast damage included the degeneration of chloroplast envelope and grana, and the loss of electron denseness by stroma at the advanced stage of infection. Transcriptional profiling of infected leaves revealed that photosynthesis was the most negatively regulated biological process. However, in infected leaves, chlorophyll and carotenoid content did not decrease until 48 hpi, and several chlorophyll a fluorescence parameters, such as photosystem II quantum yield (Fv/Fm), non-photochemical quenching (NPQ), or plant vitality parameter (Rdf) decreased significantly at 24 and 48 hpi compared to control leaves. Our results indicate that the initial stages of interaction between B. oleracea and A. brassicicola are not uniform within an inoculation site and show a complexity of host responses and fungal attempts to overcome host cell defense mechanisms. The downregulation of photosynthesis at the early stage of this susceptible interaction suggests that it may be a part of a host defense strategy, or, alternatively, that chloroplasts are targets for the unknown virulence factor(s) of A. brassicicola. However, the observed decrease of photosynthetic efficiency at the later stages of infection is a result of the fungus-induced necrotic lesion expansion.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopy Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Agnieszka Zmienko
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), 02-787 Warsaw, Poland;
| | - Andrzej Skoczowski
- Institute of Biology, Pedagogical University in Krakow, 30-084 Krakow, Poland;
| | - Jakub Oliwa
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland;
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
45
|
Lin C, Pan Y, Ye N, Shih Y, Liu F, Chen C. LsGRP1, a class II glycine-rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. MOLECULAR PLANT PATHOLOGY 2020; 21:1149-1166. [PMID: 32662583 PMCID: PMC7411634 DOI: 10.1111/mpp.12968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 05/08/2023]
Abstract
Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1C ) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1C -dependent manner was demonstrated by leaf infiltration with LsGRP1C -containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.
Collapse
Affiliation(s)
- Chia‐Hua Lin
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Ying‐Chieh Pan
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Nai‐Hua Ye
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Ting Shih
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Fan‐Wei Liu
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| | - Chao‐Ying Chen
- Department of Plant Pathology and MicrobiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
46
|
Zhao X, Song L, Jiang L, Zhu Y, Gao Q, Wang D, Xie J, Lv M, Liu P, Li M. The integration of transcriptomic and transgenic analyses reveals the involvement of the SA response pathway in the defense of chrysanthemum against the necrotrophic fungus Alternaria sp. HORTICULTURE RESEARCH 2020; 7:80. [PMID: 32528692 PMCID: PMC7261770 DOI: 10.1038/s41438-020-0297-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 05/12/2023]
Abstract
Chrysanthemum morifolium cv. 'Huaihuang' has ornamental, edible, medicinal, and tea product uses. However, its field growth, yield, and quality are negatively affected by black spot disease caused by Alternaria sp. (Strain: HQJH10092301; GenBank accession number: KF688111). In this study, we transcriptionally and transgenically characterized a new cultivar, 'Huaiju 2#' (Henan Traditional Chinese Medicine Plant Cultivar identification number: 2016002), which was bred from 'Huaihuang' and shows resistance to Alternaria sp. Numerous 'Huaiju 2#' plants were inoculated with Alternaria sp. for three or five days. Metabolic analysis showed increases in both salicylic acid (SA) and jasmonic acid (JA) in infected plants compared to the control. Protein activity analysis also revealed a significant increase in defense enzyme activities in infected plants. RNA-Seq of plants infected for 3 or 5 days produced a total of 58.6 GB of clean reads. Among these reads, 16,550 and 13,559 differentially expressed genes (DEGs) were identified in Cm_3 dpi (sample from 3 days post-inoculation labeled as Cm_3 dpi) and Cm_5 dpi (sample from 5 days post-inoculation labeled as Cm_5 dpi), respectively, compared with their controls (Cm_0 d: a mixture samples from 0 d (before inoculation) and those treated with sterile distilled water at 3 dpi and 5 dpi). Gene annotation and cluster analysis of the DEGs revealed a variety of defense responses to Alternaria sp. infection, which were characterized by increases in resistance (R) proteins and the reactive oxygen species (ROS), Ca2+, mitogen-activated protein kinase (MAPK), and JA signaling pathways. In particular, SA signaling was highly responsive to Alternaria sp. infection. The qPCR analysis of 12 DEG candidates supported their differential expression characterized by using the RNA-Seq data. One candidate was CmNPR1 (nonexpressor of pathogenesis-related gene 1), an important positive regulator of SA in systemic acquired resistance (SAR). Overexpression of CmNPR1 in 'Huaiju 2#' increased the resistance of transgenic plants to black spot. These findings indicate that the SA response pathway is likely involved in the defense of 'Huaiju 2#' against Alternaria sp. pathogens.
Collapse
Affiliation(s)
- Xiting Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| | - Lingyu Song
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Liwei Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Yuting Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Qinghui Gao
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007 China
| | - Dandan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Jing Xie
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Meng Lv
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Ping Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
| | - Mingjun Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007 China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province, Xinxiang, 453007 China
| |
Collapse
|
47
|
Singh J, Yadav AN. Natural Products as Fungicide and Their Role in Crop Protection. NATURAL BIOACTIVE PRODUCTS IN SUSTAINABLE AGRICULTURE 2020. [PMCID: PMC7212785 DOI: 10.1007/978-981-15-3024-1_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Seeking solutions from nature for solving one and all problems is the age-old practice for mankind, and natural products are proved to be the most effective one for keeping up the balance of development as well as the “healthy, wealthy, and well” condition of mother nature. Fungal pathogens are proved to be a common and popular contaminant of agroecosystem that approximately causes 70–80% of total microbial crop loss. To meet the proper global increasing need of food products as a result of population explosion, managing agricultural system in an eco-friendly and profitable manner is the prime target; thus the word “sustainable agriculture” plays it part, and this package is highly effective when coupled with nature-derived fungicidal products that can minimize the event of fungal infections in agrarian ecosystem. Present study enlists the most common and effective natural products that might be of plant or microbial origin, their mode of action, day-by-day development of phytopathogenic resistance against the prevailing fungicides, and also their role in maintenance of sustainability of agricultural practices with special emphasis on their acceptance over the synthetic or chemical one. A large number of bioactive compounds ranging from direct plant (both cryptogams algae and moss and phanerogams)-derived natural extracts, essential oil of aromatic plants, and low-molecular-weight antimicrobial compounds known as phytoalexins to secondary metabolites that are both volatile and nonvolatile organic compounds of microbes (fungal and actinobacterial members) residing inside the host tissue, called endophyte, are widely used as agricultural bioweapons. The rhizospheric partners of plant, mycorrhizae, are also a prime agent of this chemical warfare and protect their green partners from fungal invaders and emphasize the concept of “sustainable agriculture.”
Collapse
Affiliation(s)
- Joginder Singh
- grid.449005.cDepartment of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | - Ajar Nath Yadav
- grid.448698.f0000 0004 0462 8006Department of Biotechnology, Eternal University, Sirmour, Himachal Pradesh India
| |
Collapse
|
48
|
Farh MEA, Kim YJ, Abbai R, Singh P, Jung KH, Kim YJ, Yang DC. Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation. J Ginseng Res 2020; 44:332-340. [PMID: 32148416 PMCID: PMC7031752 DOI: 10.1016/j.jgr.2019.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The valuable medicinal plant Panax ginseng has high pharmaceutical efficacy because it produces ginsenosides. However, its yields decline because of a root-rot disease caused by Ilyonectria mors-panacis. Because species within Ilyonectria showed variable aggressiveness by altering ginsenoside concentrations in inoculated plants, we investigated how such infections might regulate the biosynthesis of ginsenosides and their related signaling molecules. METHODS Two-year-old ginseng seedlings were treated with I. mors-panacis and I. robusta. Roots from infected and pathogen-free plants were harvested at 4 and 16 days after inoculation. We then examined levels or/and expression of genes of ginsenosides, salicylic acid (SA), jasmonic acid (JA), and reactive oxygen species (ROS). We also checked the susceptibility of those pathogens to ROS. RESULTS Ginsenoside biosynthesis was significantly suppressed and increased in response to infection by I. mors-panacis and I. robusta, respectively. Regulation of JA was significantly higher in I. robusta-infected roots, while levels of SA and ROS were significantly higher in I. mors-panacis-infected roots. Catalase activity was significantly higher in I. robusta-infected roots followed in order by mock roots and those infected by I. mors-panacis. Moreover, I. mors-panacis was resistant to ROS compared with I. robusta. CONCLUSION Infection by the weakly aggressive I. robusta led to the upregulation of ginsenoside production and biosynthesis, probably because only a low level of ROS was induced. In contrast, the more aggressive I. mors-panacis suppressed ginsenoside biosynthesis, probably because of higher ROS levels and subsequent induction of programmed cell death pathways. Furthermore, I. mors-panacis may have increased its virulence by resisting the cytotoxicity of ROS.
Collapse
Affiliation(s)
- Mohamed El-Agamy Farh
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Ragavendran Abbai
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Priyanka Singh
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
49
|
Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum. BMC Genomics 2020; 21:179. [PMID: 32093656 PMCID: PMC7041293 DOI: 10.1186/s12864-020-6596-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Background The filamentous fungus Fusarium graminearum causes devastating crop diseases and produces harmful mycotoxins worldwide. Understanding the complex F. graminearum transcriptional regulatory networks (TRNs) is vital for effective disease management. Reconstructing F. graminearum dynamic TRNs, an NP (non-deterministic polynomial) -hard problem, remains unsolved using commonly adopted reductionist or co-expression based approaches. Multi-omic data such as fungal genomic, transcriptomic data and phenomic data are vital to but so far have been largely isolated and untapped for unraveling phenotype-specific TRNs. Results Here for the first time, we harnessed these resources to infer global TRNs for F. graminearum using a Bayesian network based algorithm called “Module Networks”. The inferred TRNs contain 49 regulatory modules that show condition-specific gene regulation. Through a thorough validation based on prior biological knowledge including functional annotations and TF binding site enrichment, our network prediction displayed high accuracy and concordance with existing knowledge. One regulatory module was partially validated using network perturbations caused by Tri6 and Tri10 gene disruptions, as well as using Tri6 Chip-seq data. We then developed a novel computational method to calculate the associations between modules and phenotypes, and identified major module groups regulating different phenotypes. As a result, we identified TRN subnetworks responsible for F. graminearum virulence, sexual reproduction and mycotoxin production, pinpointing phenotype-associated modules and key regulators. Finally, we found a clear compartmentalization of TRN modules in core and lineage-specific genomic regions in F. graminearum, reflecting the evolution of the TRNs in fungal speciation. Conclusions This system-level reconstruction of filamentous fungal TRNs provides novel insights into the intricate networks of gene regulation that underlie key processes in F. graminearum pathobiology and offers promise for the development of improved disease control strategies.
Collapse
|
50
|
Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen Ilyonectria robusta. Sci Rep 2020; 10:1586. [PMID: 32005849 PMCID: PMC6994667 DOI: 10.1038/s41598-020-58342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ilyonectria robusta causes rusty root rot, the most devastating chronic disease of ginseng. Here, we for the first time report the high-quality genome of the I. robusta strain CD-56. Time-course (36 h, 72 h, and 144 h) dual RNA-Seq analysis of the infection process was performed, and many genes, including candidate effectors, were found to be associated with the progression and success of infection. The gene expression profile of CD-56 showed a trend of initial inhibition and then gradually returned to a profile similar to that of the control. Analyses of the gene expression patterns and functions of pathogenicity-related genes, especially candidate effector genes, indicated that the stress response changed to an adaptive response during the infection process. For ginseng, gene expression patterns were highly related to physiological conditions. Specifically, the results showed that ginseng defenses were activated by CD-56 infection and persisted for at least 144 h thereafter but that the mechanisms invoked were not effective in preventing CD-56 growth. Moreover, CD-56 did not appear to fully suppress plant defenses, even in late stages after infection. Our results provide new insight into the chronic pathogenesis of CD-56 and the comprehensive and complex inducible defense responses of ginseng root to I. robusta infection.
Collapse
|