1
|
Kim S, Radford CE, Xu D, Zhong J, Do J, Pham DM, Travisano KA, Filsinger Interrante MV, Bruun TUJ, Rezek V, Wilder B, Palomares M, Seaman MS, Kitchen SG, Bloom JD, Kim PS. A broad antibody with enhanced HIV-1 neutralization via bispecific antibody-mediated prepositioning. Nat Commun 2025; 16:4617. [PMID: 40383778 PMCID: PMC12086220 DOI: 10.1038/s41467-025-60035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
Antibodies targeting the highly conserved prehairpin intermediate (PHI) of class I viral membrane-fusion proteins are generally weakly neutralizing and are not considered viable therapeutic agents. We previously demonstrated that antibodies targeting the gp41 N-heptad repeat (NHR), which is transiently exposed in the HIV-1 PHI, exhibit enhanced broad neutralization in cells expressing the Fc receptor, FcγRI. To enhance neutralization in cells lacking FcγRI, we here develop a bispecific antibody (bsAb) by fusing an NHR-targeting antibody to an antibody against CD4, the HIV-1 receptor on T cells. The bsAb provides a 5000-fold neutralization enhancement and shows unprecedented neutralization breadth compared to existing broadly neutralizing antibodies. Importantly, the bsAb reduces viral load in HIV-1-infected humanized male mice, and viral envelope sequencing under bsAb pressure revealed an NHR mutation that potentially impairs viral fitness. These findings validate the NHR as a potential HIV-1 therapeutic target, setting the stage for a new class of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianing Zhong
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Dominic M Pham
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Katie A Travisano
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Bailey Wilder
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martina Palomares
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Kamvuma K, Hamooya BM, Munsaka S, Masenga SK, Kirabo A. Mechanisms and Cardiorenal Complications of Chronic Anemia in People with HIV. Viruses 2024; 16:542. [PMID: 38675885 PMCID: PMC11053456 DOI: 10.3390/v16040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic anemia is more prevalent in people living with HIV (PLWH) compared to the general population. The mechanisms that drive chronic anemia in HIV are multifaceted and include functional impairment of hematopoietic stem cells, dysregulation of erythropoietin production, and persistent immune activation. Chronic inflammation from HIV infection adversely affects erythropoiesis, erythrocyte lifespan, and erythropoietin response, leading to a heightened risk of co-infections such as tuberculosis, persistent severe anemia, and increased mortality. Additionally, chronic anemia exacerbates the progression of HIV-associated nephrotoxicity and contributes to cardiovascular risk through immune activation and inflammation. This review highlights the cardinal role of chronic inflammation as a link connecting persistent anemia and cardiovascular complications in PLWH, emphasizing the need for a universal understanding of these interconnected pathways for targeted interventions.
Collapse
Affiliation(s)
- Kingsley Kamvuma
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (K.K.); (B.M.H.)
| | - Benson M. Hamooya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (K.K.); (B.M.H.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O Box 50110, Zambia;
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (K.K.); (B.M.H.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Annet Kirabo
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Chitena L, Masisi K, Masisi K, Kwape TE, Gaobotse G. Application of Stem Cell Therapy during the treatment of HIV/AIDS and Duchenne Muscular Dystrophy. Curr Stem Cell Res Ther 2021; 17:633-647. [PMID: 35135463 DOI: 10.2174/1574888x16666210810104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Treating diseases such as Muscular dystrophy (MD) and HIV/AIDS poses several challenges to the rapidly evolving field of regenerative medicine. Previously, stem cell therapy has been said to affect the clinical courses of HIV/AIDS and MD, but, in practice, eradication or control of these diseases was not achievable. The introduction of gene editing into stem cell therapy has stimulated HIV/AIDS and MD cell therapy research studies substantially. Here, we review current methods of treating HIV/AIDS and MD using stem cell therapy. This review also details the use of different types of cells and methods in cell therapy and the modeling of new cell-based therapies to treat Duchenne muscular dystrophy. We speculate that the effective use stem cell therapy in conjunction with other treatment therapies such as steroids and rehabilitation could improve livelihood.
Collapse
Affiliation(s)
- Lorraine Chitena
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Keletso Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| |
Collapse
|
8
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Zhen A, Carrillo MA, Mu W, Rezek V, Martin H, Hamid P, Chen ISY, Yang OO, Zack JA, Kitchen SG. Robust CAR-T memory formation and function via hematopoietic stem cell delivery. PLoS Pathog 2021; 17:e1009404. [PMID: 33793675 PMCID: PMC8016106 DOI: 10.1371/journal.ppat.1009404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study. Engineering T cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to control HIV infection through a genetic vaccination strategy. Here we report a novel CAR-based approach targeting HIV infection using the genetic modification of blood forming hematopoietic stem cells (HSCs). This novel CAR approach uses a modified HIV receptor molecule (the primary HIV receptor CD4) as well as anti-HIV agents to modify HSCs to allow them to develop into cells that are protected from HIV infection and target HIV infected cells for the life of the individual. We found this latest generation of CARs successfully modified and allowed in vivo engraftment that resulted in the development of effective anti-HIV CAR T cells with robust memory formation and viral control. Our study highlights the identification of a next-generation CAR molecule that protected cells from infection, targeted and reduced HIV burdens, and serves as an ideal developmental candidate for further clinical studies.
Collapse
Affiliation(s)
- Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jerome A. Zack
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mu W, Carrillo MA, Kitchen SG. Engineering CAR T Cells to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:410. [PMID: 32903563 PMCID: PMC7438537 DOI: 10.3389/fcimb.2020.00410] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the “kick and kill” approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir. A robust immune response to reactivated HIV expressing cells is critical for this strategy to work. A current focus to enhance anti-HIV immunity is through the use of chimeric antigen receptors (CARs). Currently, HIV-specific CARs are being applied to peripheral T cells, NK cells, and stem cells to boost recognition and killing of HIV infected cells. In this review, we summarize current developments in engineering HIV directed CAR-expressing cells to facilitate HIV elimination. We also summarize current LRAs that enhance the “kick” strategy and how new generation and combinations of LRAs with HIV specific CAR T cell therapies could provide an optimal strategy to target the viral reservoir and achieve HIV clearance from the body.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayra A Carrillo
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Zhang PF, Xie D, Li Q. Chimeric antigen receptor T-cell therapy beyond cancer: current practice and future prospects. Immunotherapy 2020; 12:1021-1034. [PMID: 32727249 DOI: 10.2217/imt-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor T (CAR-T) cells has achieved remarkable efficacy in the treatment of hematological malignancies, which has inspired researchers to expand the application of CAR-T-cell therapy to other medical conditions. Here, we review the current understanding and development of CAR-T-cell therapy for infectious diseases, autoimmune diseases and allotransplantation. The limitations and challenges of CAR-T-cell therapy in the treatment of these diseases and potential solutions to overcome these shortcomings are also discussed. With the development of novel designs of CARs and preclinical/clinical investigations, CAR-T-cell therapy is expected to be a potential cure option in a wide array of disease settings in the future.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Dan Xie
- Prenatal Diagnosis Center, Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China, 610041.,Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, Chengdu, China, 610041
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| |
Collapse
|
12
|
Stripecke R, Münz C, Schuringa JJ, Bissig K, Soper B, Meeham T, Yao L, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb‐Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med 2020; 12:e8662. [PMID: 32578942 PMCID: PMC7338801 DOI: 10.15252/emmm.201708662] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mice xenotransplanted with human cells and/or expressing human gene products (also known as "humanized mice") recapitulate the human evolutionary specialization and diversity of genotypic and phenotypic traits. These models can provide a relevant in vivo context for understanding of human-specific physiology and pathologies. Humanized mice have advanced toward mainstream preclinical models and are now at the forefront of biomedical research. Here, we considered innovations and challenges regarding the reconstitution of human immunity and human tissues, modeling of human infections and cancer, and the use of humanized mice for testing drugs or regenerative therapy products. As the number of publications exploring different facets of humanized mouse models has steadily increased in past years, it is becoming evident that standardized reporting is needed in the field. Therefore, an international community-driven resource called "Minimal Information for Standardization of Humanized Mice" (MISHUM) has been created for the purpose of enhancing rigor and reproducibility of studies in the field. Within MISHUM, we propose comprehensive guidelines for reporting critical information generated using humanized mice.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF)Hannover RegionGermany
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Jan Jacob Schuringa
- Department of HematologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | | | | | | | - Michael Brehm
- University of Massachusetts Medical SchoolWorcesterMAUSA
| | | | - Anja Kathrin Wege
- Department of Gynecology and ObstetricsUniversity Cancer Center RegensburgRegensburgGermany
| | | | | | | | - Scott Kitchen
- University of California, Los AngelesLos AngelesCAUSA
| | | | | | | | - Amar Deep Sharma
- Regenerative Immune Therapies AppliedHannover Medical SchoolHannoverGermany
| | - Andreas Trumpp
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
| | - Livio Trusolino
- Department of OncologyUniversity of Torino Medical SchoolTurinItaly
- Candiolo Cancer Institute FPO IRCCSCandioloItaly
| | | | | |
Collapse
|
13
|
Elsaesser HJ, Mohtashami M, Osokine I, Snell LM, Cunningham CR, Boukhaled GM, McGavern DB, Zúñiga-Pflücker JC, Brooks DG. Chronic virus infection drives CD8 T cell-mediated thymic destruction and impaired negative selection. Proc Natl Acad Sci U S A 2020; 117:5420-5429. [PMID: 32094187 PMCID: PMC7071912 DOI: 10.1073/pnas.1913776117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic infection provokes alterations in inflammatory and suppressive pathways that potentially affect the function and integrity of multiple tissues, impacting both ongoing immune control and restorative immune therapies. Here we demonstrate that chronic lymphocytic choriomeningitis virus infection rapidly triggers severe thymic depletion, mediated by CD8 T cell-intrinsic type I interferon (IFN) and signal transducer and activator of transcription 2 (Stat2) signaling. Occurring temporal to T cell exhaustion, thymic cellularity reconstituted despite ongoing viral replication, with a rapid secondary thymic depletion following immune restoration by anti-programmed death-ligand 1 (PDL1) blockade. Therapeutic hematopoietic stem cell transplant (HSCT) during chronic infection generated new antiviral CD8 T cells, despite sustained virus replication in the thymus, indicating an impairment in negative selection. Consequently, low amounts of high-affinity self-reactive T cells also escaped the thymus following HSCT during chronic infection. Thus, by altering the stringency and partially impairing negative selection, the host generates new virus-specific T cells to replenish the fight against the chronic infection, but also has the potentially dangerous effect of enabling the escape of self-reactive T cells.
Collapse
Affiliation(s)
- Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ivan Osokine
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Cameron R Cunningham
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Giselle M Boukhaled
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Juan Carlos Zúñiga-Pflücker
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2M9, Canada;
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
14
|
Radtke S, Humbert O, Kiem HP. Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 2019; 174:113692. [PMID: 31705854 DOI: 10.1016/j.bcp.2019.113692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Gene therapy has become an important treatment option for a variety of hematological diseases. The biggest advances have been made with CAR T cells and many of those studies are now FDA approved as a routine treatment for some hematologic malignancies. Hematopoietic stem cell (HSC) gene therapy is not far behind with treatment approvals granted for beta-hemoglobinopathies and adenosine deaminase severe combined immune deficiency (ADA-SCID), and additional approbations currently being sought. With the current pace of research, the significant investment of biotech companies, and the continuously growing toolbox of viral as well as non-viral gene delivery methods, the development of new ex vivo and in vivo gene therapy approaches is at an all-time high. Research in the field of gene therapy has been ongoing for more than 4 decades with big success stories as well as devastating drawbacks along the way. In particular, the damaging effect of uncontrolled viral vector integration observed in the initial gene therapy applications in the 90s led to a more comprehensive upfront safety assessment of treatment strategies. Since the late 90s, an important read-out to comprehensively assess the quality and safety of cell products has come forward with the mouse xenograft model. Here, we review the use of mouse models across the different stages of basic, pre-clinical and translational research towards the clinical application of HSC-mediated gene therapy and editing approaches.
Collapse
Affiliation(s)
- Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Abstract
Chimeric antigen receptors (CARs) have shown remarkable ability to re-direct T cells to target CD19-expressing tumours, resulting in remission rates of up to 90% in individuals with paediatric acute lymphoblastic lymphoma. Lessons learned from these clinical trials of adoptive T cell therapy for cancer, as well as investments made in manufacturing T cells at commercial scale, have inspired researchers to develop CARs for additional applications. Here, we explore the challenges and opportunities of using this technology to target infectious diseases such as with HIV and undesired immune responses such as autoimmunity and transplant rejection. Despite substantial obstacles, the potential of CAR T cells to enable cures for a wide array of disease settings could be transformational for the medical field.
Collapse
|
16
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
17
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Mol Ther 2019; 27:960-973. [PMID: 30962161 DOI: 10.1016/j.ymthe.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer Kim
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
19
|
Puig-Saus C, Parisi G, Garcia-Diaz A, Krystofinski PE, Sandoval S, Zhang R, Champhekar AS, McCabe J, Cheung-Lau GC, Truong NA, Vega-Crespo A, Komenan MDS, Pang J, Macabali MH, Saco JD, Goodwin JL, Bolon B, Seet CS, Montel-Hagen A, Crooks GM, Hollis RP, Campo-Fernandez B, Bischof D, Cornetta K, Gschweng EH, Adelson C, Nguyen A, Yang L, Witte ON, Baltimore D, Comin-Anduix B, Kohn DB, Wang X, Cabrera P, Kaplan-Lefko PJ, Berent-Maoz B, Ribas A. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clin Cancer Res 2018; 25:1000-1011. [PMID: 30409823 DOI: 10.1158/1078-0432.ccr-18-0963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/21/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471.
Collapse
Affiliation(s)
- Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Paige E Krystofinski
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Salemiz Sandoval
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Ruixue Zhang
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Ameya S Champhekar
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - James McCabe
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Gardenia C Cheung-Lau
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Nhat A Truong
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Marie Desiles S Komenan
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Jia Pang
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Mignonette H Macabali
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Justin D Saco
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Jeffrey L Goodwin
- Division of Laboratory Animal Medicine (DLAM), Department of Medicine, DGSOM, UCLA, Los Angeles, California
| | | | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California
| | - Amelie Montel-Hagen
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California
| | - Gay M Crooks
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Daniela Bischof
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University Vector Production Facility, Indianapolis, Indiana
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University Vector Production Facility, Indianapolis, Indiana
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Celia Adelson
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California
| | - Alexander Nguyen
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Lili Yang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Owen N Witte
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - David Baltimore
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Begonya Comin-Anduix
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California.,Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, DGSOM, University of California, Los Angeles, California
| | - Xiaoyan Wang
- Statistics Core, Department of Medicine, UCLA, Los Angeles, California
| | - Paula Cabrera
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Paula J Kaplan-Lefko
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California
| |
Collapse
|
20
|
Snell LM, MacLeod BL, Law JC, Osokine I, Elsaesser HJ, Hezaveh K, Dickson RJ, Gavin MA, Guidos CJ, McGaha TL, Brooks DG. CD8 + T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity. Immunity 2018; 49:678-694.e5. [PMID: 30314757 DOI: 10.1016/j.immuni.2018.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/13/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
CD8+ T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8+ T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1+ cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4+ T cell help for its functional generation. Chronic viral infection similarly redirected de novo differentiation of tumor-specific CD8+ T cells, ultimately preventing cancer control. Thus, targeting these T cell stimulatory pathways could enable strategies to control chronic infection, tumors, and enhance immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Laura M Snell
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Bethany L MacLeod
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Jaclyn C Law
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Ivan Osokine
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Russell J Dickson
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada
| | - Marc A Gavin
- Translational Research Program, Benaroya Research Institute, Seattle, WA, 98101 USA
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4 Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - David G Brooks
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2M9 Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8 Canada.
| |
Collapse
|
21
|
A comparative study of cartilage engineered constructs in immunocompromised, humanized and immunocompetent mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Carrillo MA, Zhen A, Kitchen SG. The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer. Front Immunol 2018; 9:746. [PMID: 29755454 PMCID: PMC5932400 DOI: 10.3389/fimmu.2018.00746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are current efforts to discover novel therapeutic strategies for the treatment or cure of these diseases. Humanized mouse models provide the investigative tool to study the interaction between HIV or cancer and the human immune system in vivo. These humanized models consist of immunodeficient mice transplanted with human cells, tissues, or hematopoietic stem cells that result in reconstitution with a nearly full human immune system. In this review, we discuss preclinical studies evaluating therapeutic approaches in stem cell-based gene therapy and T cell-based immunotherapies for HIV and cancer using a humanized mouse model and some recent advances in using checkpoint inhibitors to improve antiviral or antitumor responses.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Zhen A, Peterson CW, Carrillo MA, Reddy SS, Youn CS, Lam BB, Chang NY, Martin HA, Rick JW, Kim J, Neel NC, Rezek VK, Kamata M, Chen ISY, Zack JA, Kiem HP, Kitchen SG. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog 2017; 13:e1006753. [PMID: 29284044 PMCID: PMC5746250 DOI: 10.1371/journal.ppat.1006753] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs) are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR) to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV) infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART) treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model. Hematopoietic Stem/Progenitor Cell (HSPC) based gene therapy can be used to treat many infectious and genetic diseases. Here, we used an HSPC-based approach to redirect and enhance host immunity against HIV-1. We engineered HSPCs to carry chimeric antigen receptor (CAR) genes that detect and destroy HIV-infected cells. CAR therapy has shown huge potential in the treatment of cancer, but has only been applied in peripheral blood T-cells. HSPC-based CAR therapy has several benefits over T cell gene therapy, as it allows for normal T cell development, selection, and persistence of the engineered cells for the lifetime of the patient. We used a CAR molecule that hijacks the essential interaction between the virus and the cell surface molecule CD4 to redirect HSPC-derived T-cells against infected cells. We observed >2 years of stable production of CAR-expressing cells without any adverse events, and wide distribution of these cells in lymphoid tissues and gastrointestinal tract, which are major anatomic sites for HIV replication and persistence in suppressed patients. Most importantly, HSPC-derived CAR T-cells functionally responded to infected cells. This study demonstrates for the first time the safety and feasibility of HSPC based therapy utilizing an HIV-specific CAR for suppressed HIV infection.
Collapse
Affiliation(s)
- Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Departments of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mayra A. Carrillo
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sowmya Somashekar Reddy
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Cindy S. Youn
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Brianna B. Lam
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nelson Y. Chang
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Heather A. Martin
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jonathan W. Rick
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jennifer Kim
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nick C. Neel
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Valerie K. Rezek
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Masakazu Kamata
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Jerome A. Zack
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Departments of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Scott G. Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Khamaikawin W, Shimizu S, Kamata M, Cortado R, Jung Y, Lam J, Wen J, Kim P, Xie Y, Kim S, Arokium H, Presson AP, Chen ISY, An DS. Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 9:23-32. [PMID: 29322065 PMCID: PMC5751878 DOI: 10.1016/j.omtm.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
Abstract
Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting.
Collapse
Affiliation(s)
- Wannisa Khamaikawin
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Saki Shimizu
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ruth Cortado
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Yujin Jung
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Jennifer Lam
- School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Patrick Kim
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Yiming Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Sanggu Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Hubert Arokium
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Angela P Presson
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Epidemiology, University of Utah, Salt Lake City, UT 84132, USA
| | - Irvin S Y Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | - Dong Sung An
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.,School of Nursing, University of California, Los Angeles, Los Angeles, CA 90095, USA.,UCLA AIDS Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
26
|
Mehta V, Chandramohan D, Agarwal S. Genetic Modulation Therapy Through Stem Cell Transplantation for Human Immunodeficiency Virus 1 Infection. Cureus 2017; 9:e1093. [PMID: 28413739 PMCID: PMC5391252 DOI: 10.7759/cureus.1093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Highly active anti-retroviral treatment has changed the dimensions of the outcomes for patients suffering from human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS). However, HIV infection is still an ailment which is spreading throughout the world extensively. Given the confinements of the present restorative methodologies and the non-availability of any strategic vaccination against HIV, there is a squeezing need to build a therapeutic treatment. Viral tropism for HIV includes CD4+ cells, macrophages, and microglial cells, and it is through binding with co-receptors C-C chemokine receptor type 5 (CCR5) and C-X-C chemokine receptor type 4 (CXCR4). While these cell types are present in all individuals, there are rare cases that stayed uninfected even after getting exposed to an overwhelming load of HIV. Research revealed a homozygous 32-base pair deletion (Δ32/Δ32) in CCR5. After careful consideration, a hypothesis was proposed a few years back that a cure for HIV disease is possible, through hematopoietic stem cells transplantation from a donor homozygous for the CCR5-Δ32 deletion. Hematopoietic stem cell (HSC) based quality treatment may serve as a promising tool as these perpetual, self-renewing progenitor cells could be modified to oppose HIV infection. If done properly, the changed HSCs would offer the permanent creation of genetically modified cells that are resistant to HIV infection and/or have improved hostility to viral action which will eventually clear the contaminated cells. The purpose of this review is to concentrate on two facets of HSC genetic treatment for potentially life-threatening HIV infection: building HIV-resistant cells and designing cells that can target HIV disease. These two strategic approaches can be the frontline of a quality treatment plan against HIV infection and, as an individual treatment or a combination thereof, has been proposed to possibly destroy HIV altogether.
Collapse
Affiliation(s)
- Varshil Mehta
- Department of Cardiology, Mount Sinai Hospital, New York, USA
| | - Divya Chandramohan
- Department of Internal Medicine, SRM Medical College, Kancheepuram, Tamil Nadu, India
| | - Shivika Agarwal
- Department of Forensic Medicine, ESIC Medical College, Faridabad, India
| |
Collapse
|
27
|
Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, Carrillo M, Martin H, Kasparian S, Syed P, Rice N, Brooks DG, Kitchen SG. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest 2016; 127:260-268. [PMID: 27941243 DOI: 10.1172/jci89488] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Chronic immune activation, immunosuppression, and T cell exhaustion are hallmarks of HIV infection, yet the mechanisms driving these processes are unclear. Chronic activation can be a driving force in immune exhaustion, and type I interferons (IFN-I) are emerging as critical components underlying ongoing activation in HIV infection. Here, we have tested the effect of blocking IFN-I signaling on T cell responses and virus replication in a murine model of chronic HIV infection. Using HIV-infected humanized mice, we demonstrated that in vivo blockade of IFN-I signaling during chronic HIV infection diminished HIV-driven immune activation, decreased T cell exhaustion marker expression, restored HIV-specific CD8 T cell function, and led to decreased viral replication. Antiretroviral therapy (ART) in combination with IFN-I blockade accelerated viral suppression, further decreased viral loads, and reduced the persistently infected HIV reservoir compared with ART treatment alone. Our data suggest that blocking IFN-I signaling in conjunction with ART treatment can restore immune function and may reduce viral reservoirs during chronic HIV infection, providing validation for IFN-I blockade as a potential therapy for HIV infection.
Collapse
|
28
|
Kitchen SG, Zack JA. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors. AIDS Patient Care STDS 2016; 30:556-561. [PMID: 27905838 DOI: 10.1089/apc.2016.0239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.
Collapse
Affiliation(s)
- Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, and UCLA Center for AIDS Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jerome A. Zack
- Division of Hematology/Oncology, Department of Medicine, and UCLA Center for AIDS Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
29
|
Ibeh BO, Furuta Y, Habu JB, Ogbadu L. Humanized mouse as an appropriate model for accelerated global HIV research and vaccine development: current trend. Immunopharmacol Immunotoxicol 2016; 38:395-407. [PMID: 27604679 DOI: 10.1080/08923973.2016.1233980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humanized mouse models currently have seen improved development and have received wide applications. Its usefulness is observed in cell and tissue transplant involving basic and applied human disease research. In this article, the development of a new generation of humanized mice was discussed as well as their relevant application in HIV disease. Furthermore, current techniques employed to overcome the initial limitations of mouse model were reviewed. Highly immunodeficient mice which support cell and tissue differentiation and do not reject xenografts are indispensable for generating additional appropriate models useful in disease study, this phenomenom deserves emphases, scientific highlight and a definitive research focus. Since the early 2000s, a series of immunodeficient mice appropriate for generating humanized mice has been successively developed by introducing the IL-2Rγnull gene (e.g. NOD/SCID/γcnull and Rag2nullγcnull mice) through various genomic approaches. These mice were generated by genetically introducing human cytokine genes into NOD/SCID/γcnull and Rag2nullγcnull mouse backgrounds. The application of these techniques serves as a quick and appropriate mechanistic model for basic and therapeutic investigations of known and emerging infections.
Collapse
Affiliation(s)
- Bartholomew Okechukwu Ibeh
- a Immunovirology and Vaccine Development Laboratory, Medical Biotechnology Department , National Biotechnology Development Agency , Abuja , Nigeria
| | - Yasuhide Furuta
- b RIKEN CDB CLST (Center for Life Science Technologies) , Kobe , Japan
| | - Josiah Bitrus Habu
- c Bioresources Development Center Odi, Bayelsa , National Biotechnology Development Agency , Abuja , Nigeria
| | - Lucy Ogbadu
- d National Biotechnology Development Agency , Abuja , Nigeria
| |
Collapse
|
30
|
Deeks SG, Lewin SR, Ross AL, Ananworanich J, Benkirane M, Cannon P, Chomont N, Douek D, Lifson JD, Lo YR, Kuritzkes D, Margolis D, Mellors J, Persaud D, Tucker JD, Barre-Sinoussi F, Alter G, Auerbach J, Autran B, Barouch DH, Behrens G, Cavazzana M, Chen Z, Cohen ÉA, Corbelli GM, Eholié S, Eyal N, Fidler S, Garcia L, Grossman C, Henderson G, Henrich TJ, Jefferys R, Kiem HP, McCune J, Moodley K, Newman PA, Nijhuis M, Nsubuga MS, Ott M, Palmer S, Richman D, Saez-Cirion A, Sharp M, Siliciano J, Silvestri G, Singh J, Spire B, Taylor J, Tolstrup M, Valente S, van Lunzen J, Walensky R, Wilson I, Zack J. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 2016; 22:839-50. [PMID: 27400264 PMCID: PMC5322797 DOI: 10.1038/nm.4108] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy.
Collapse
Affiliation(s)
- Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Anna Laura Ross
- International and Scientific Relations Office, ANRS, Paris, France
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Monsef Benkirane
- Molecular Virology Lab, Institute of Human Genetics, CNRS UPR 1142, Université de Montpellier, Montpellier, France
| | - Paula Cannon
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nicolas Chomont
- CRCHUM and Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montréal, Quebec, Canada
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Ying-Ru Lo
- World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | | | - David Margolis
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - John Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Persaud
- Johns Hopkins University School of Medicine &Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph D Tucker
- University of North Carolina-Project China, Guangzhou, China
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Judith Auerbach
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, CIMI-Paris, France
- Inserm U1135, CIMI-Paris, Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Georg Behrens
- Clinic for Immunology and Rhematology, Hannover Medical School, Hanover, Germany
| | - Marina Cavazzana
- Centre d'Investigation Clinique en biothérapie, Hôpital Necker-Enfants Malades, Paris, France
| | - Zhiwei Chen
- AIDS Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Éric A Cohen
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | | | - Serge Eholié
- Programme PAC-CI, Centre Hospitalier Universitaire de Treichville, Abidjan, Côte d'Ivoire
| | - Nir Eyal
- Harvard T. H. Chan School of Public Health, Department of Global Health and Population, Boston, Massachusetts, USA
| | - Sarah Fidler
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Cynthia Grossman
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Gail Henderson
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Timothy J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Brigham &Women's Hospital, Boston, Massachusetts, USA
| | | | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joseph McCune
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Keymanthri Moodley
- Centre for Medical Ethics and Law, Department of Medicine, Stellenbosch University, Western Cape, South Africa
| | - Peter A Newman
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Melanie Ott
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Sarah Palmer
- Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Douglas Richman
- Virginia San Diego Healthcare System and University of California, San Diego, San Diego, California, USA
| | | | - Matthew Sharp
- Independent HIV Education and Advocacy Consultant, San Francisco, California, USA
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Silvestri
- Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
| | - Jerome Singh
- Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Jeffrey Taylor
- CARE Collaboratory Community Advisory Board, Palm Springs, California, USA
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susana Valente
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | | | - Rochelle Walensky
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ira Wilson
- Department of Health Services, Policy &Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Jerome Zack
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
31
|
Zhen A, Rezek V, Youn C, Rick J, Lam B, Chang N, Zack J, Kamata M, Kitchen S. Stem-cell Based Engineered Immunity Against HIV Infection in the Humanized Mouse Model. J Vis Exp 2016. [PMID: 27404517 DOI: 10.3791/54048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the rapid development of stem cell-based gene therapies against HIV, there is pressing requirement for an animal model to study the hematopoietic differentiation and immune function of the genetically modified cells. The humanized Bone-marrow/Liver/Thymus (BLT) mouse model allows for full reconstitution of a human immune system in the periphery, which includes T cells, B cells, NK cells and monocytes. The human thymic implant also allows for thymic selection of T cells in autologous thymic tissue. In addition to the study of HIV infection, the model stands as a powerful tool to study differentiation, development and functionality of cells derived from hematopoietic stem cells (HSCs). Here we outline the construction of humanized non-obese diabetic (NOD)-severe combined immunodeficient (SCID)-common gamma chain knockout (cγ(-/-))-Bone-marrow/Liver/Thymus (NSG-BLT) mice with HSCs transduced with CD4 chimeric antigen receptor (CD4CAR) lentivirus vector. We show that the CD4CAR HSCs can successfully differentiate into multiple lineages and have anti-HIV activity. The goal of the study is to demonstrate the use of NSG-BLT mouse model as an in vivo model for engineered immunity against HIV. It is worth noting that, because lentivirus and human tissue is used, experiments and surgeries should be performed in a Class II biosafety cabinet in a Biosafety Level 2 (BSL2) with special precautions (BSL2+) facility.
Collapse
Affiliation(s)
- Anjie Zhen
- David Geffen School of Medicine, University of California, Los Angeles;
| | - Valerie Rezek
- David Geffen School of Medicine, University of California, Los Angeles
| | - Cindy Youn
- David Geffen School of Medicine, University of California, Los Angeles
| | - Jonathan Rick
- David Geffen School of Medicine, University of California, Los Angeles
| | - Brianna Lam
- David Geffen School of Medicine, University of California, Los Angeles
| | - Nelson Chang
- David Geffen School of Medicine, University of California, Los Angeles
| | - Jerome Zack
- David Geffen School of Medicine, University of California, Los Angeles
| | - Masakazu Kamata
- David Geffen School of Medicine, University of California, Los Angeles
| | - Scott Kitchen
- David Geffen School of Medicine, University of California, Los Angeles;
| |
Collapse
|
32
|
Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors. Mol Ther 2016; 24:1913-1925. [PMID: 27401039 PMCID: PMC5154472 DOI: 10.1038/mt.2016.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
Persistence of human immunodeficiency virus (HIV) in a latent state in long-lived CD4+ T-cells is a major barrier to eradication. Latency-reversing agents that induce direct or immune-mediated cell death upon reactivation of HIV are a possible solution. However, clearance of reactivated cells may require immunotherapeutic agents that are fine-tuned to detect viral antigens when expressed at low levels. We tested the antiviral efficacy of immune-mobilizing monoclonal T-cell receptors against viruses (ImmTAVs), bispecific molecules that redirect CD8+ T-cells to kill HIV-infected CD4+ T-cells. T-cell receptors specific for an immunodominant Gag epitope, SL9, and its escape variants were engineered to achieve supraphysiological affinity and fused to a humanised CD3-specific single chain antibody fragment. Ex vivo polyclonal CD8+ T-cells were efficiently redirected by immune-mobilising monoclonal T-cell receptors against viruses to eliminate CD4+ T-cells from human histocompatibility leukocyte antigen (HLA)-A*0201-positive antiretroviral therapy-treated patients after reactivation of inducible HIV in vitro. The efficiency of infected cell elimination correlated with HIV Gag expression. Immune-mobilising monoclonal T-cell receptors against viruses have potential as a therapy to facilitate clearance of reactivated HIV reservoir cells.
Collapse
|
33
|
Korpusik A, Kolev M. Single injection of CD8+ T lymphocytes derived from hematopoietic stem cells - Mathematical and numerical insights. Biosystems 2016; 144:46-54. [PMID: 27095371 DOI: 10.1016/j.biosystems.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/01/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Recently, hematopoietic stem cell (HSC) based therapy is being discussed as a possible treatment for HIV infection. The main advantage of this approach is that it limits the immune impairing effect of infection by introducing an independent influx of antigen-specific cytotoxic T lymphocytes (CTL). In this paper, we present a mathematical approach to predict the dynamics of HSC based therapy. We use a modification of a basic mathematical model for virus induced impairment of help to study how virus - immune system dynamics can be influenced by a single injection of CD8+ T lymphocytes derived from hematopoietic stem cells. Our mathematical and numerical results indicate that a single, large enough dose of genetically derived CTL may lead to restoration of the cellular immune response and result in long-term control of infection.
Collapse
Affiliation(s)
- Adam Korpusik
- Faculty of Technical Sciences, University of Warmia and Mazury, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland.
| | - Mikhail Kolev
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland.
| |
Collapse
|
34
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
35
|
Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, Casares S, Garcia JV, Hasenkrug KJ, Kashanchi F, Kitchen SG, Klein F, Kumar P, Luster AD, Poluektova LY, Rao M, Sanders-Beer BE, Shultz LD, Zack JA. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary. AIDS Res Hum Retroviruses 2016; 32:109-19. [PMID: 26670361 DOI: 10.1089/aid.2015.0258] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Atef Allam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Joel N. Blankson
- Department of Medicine, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Sofia Casares
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Fatah Kashanchi
- School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
| | - Scott G. Kitchen
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| | - Florian Klein
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Priti Kumar
- School of Medicine, Infectious Diseases/Internal Medicine, Yale University, New Haven, Connecticut
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Brigitte E. Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Jerome A. Zack
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
36
|
Abstract
HIV persistence in patients undergoing antiretroviral therapy is a major impediment to the cure of HIV/AIDS. The molecular and cellular mechanisms underlying HIV persistence in vivo have not been fully elucidated. This lack of basic knowledge has hindered progress in this area. The in vivo analysis of HIV persistence and the implementation of curative strategies would benefit from animal models that accurately recapitulate key aspects of the human condition. This Review summarizes the contribution that humanized mouse models of HIV infection have made to the field of HIV cure research. Even though these models have been shown to be highly informative in many specific areas, their great potential to serve as excellent platforms for discovery in HIV pathogenesis and treatment has yet to be fully developed.
Collapse
|
37
|
Cunningham CR, Champhekar A, Tullius MV, Dillon BJ, Zhen A, de la Fuente JR, Herskovitz J, Elsaesser H, Snell LM, Wilson EB, de la Torre JC, Kitchen SG, Horwitz MA, Bensinger SJ, Smale ST, Brooks DG. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence. PLoS Pathog 2016; 12:e1005356. [PMID: 26808628 PMCID: PMC4726812 DOI: 10.1371/journal.ppat.1005356] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. Persistent virus infections induce host derived immunosuppressive factors that attenuate the immune response and prevent control of infection. Although the mechanisms of T cell exhaustion are being defined, we know surprisingly little about the underlying mechanisms that induce the immunosuppressive state and the origin and functional programming of the cells that deliver these signals to the T cells. We recently demonstrated that type I interferon (IFN-I) signaling was responsible for many of the immune dysfunctions associated with persistent virus infection and in particular the induced expression of the suppressive factors IL-10 and PDL1 by dendritic cells (DCs). Yet, mechanistically how IFN-I signaling specifically generates and programs cells to become immunosuppressive is still unknown. Herein, we define the underlying mechanisms of IFN-I mediated immunosuppression and establish that the induction of factors and the generation of the DCs that express them are separable events integrally reliant on additional inflammatory factors. Further, we demonstrate a similar derivation of the suppressive DCs that emerge in other diseases associated with prolonged inflammation and immunosuppression, specifically in HIV infection, Mycobacterium tuberculosis, and cancer, indicating a conserved origin of immunosuppression and suggesting that targeting the pathways that underlie expression of immunosuppressive cells and factors could be beneficial to treat multiple chronic diseases.
Collapse
Affiliation(s)
- Cameron R. Cunningham
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael V. Tullius
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Barbara Jane Dillon
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anjie Zhen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin Rafael de la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jonathan Herskovitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Heidi Elsaesser
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Laura M. Snell
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Elizabeth B. Wilson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Scott G. Kitchen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephen T. Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Brooks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Mancini N, Marrone L, Clementi N, Sautto GA, Clementi M, Burioni R. Adoptive T-cell therapy in the treatment of viral and opportunistic fungal infections. Future Microbiol 2016; 10:665-82. [PMID: 25865200 DOI: 10.2217/fmb.14.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections and opportunistic fungal pathogens represent a major menace for immunocompromised patients. Despite the availability of antifungal and antiviral drugs, mortality in these patients remains high, underlining the need of novel therapeutic options based on completely different strategies. This review describes the potential of several T-cell-based therapeutic approaches in the prophylaxis and treatment of infectious diseases with a particular focus on persistent viral infections and opportunistic fungal infections, as these mostly affect immunocompromised patients.
Collapse
Affiliation(s)
- Nicasio Mancini
- Laboratorio di Microbiologia e Virologia, Università 'Vita-Salute' San Raffaele, DIBIT2, via Olgettina 58, 20132, Milan, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Towards an HIV cure based on targeted killing of infected cells: different approaches against acute versus chronic infection. Curr Opin HIV AIDS 2016; 10:207-13. [PMID: 25710815 DOI: 10.1097/coh.0000000000000151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Current regimens of combination antiretroviral therapy (cART) offer effective control of HIV infection, with maintenance of immune health and near-normal life expectancy. What will it take to progress beyond the status quo, whereby infectious virus can be eradicated (a 'sterilizing cure') or fully controlled without the need for ongoing cART (a 'functional cure')? RECENT FINDINGS On the basis of therapeutic advances in the cancer field, we propose that targeted cytotoxic therapy to kill HIV-infected cells represents a logical complement to cART for achieving an HIV cure. This concept is based on the fact that cART effectively blocks replication of the virus, but does not eliminate cells that are already infected; targeted cytotoxic therapy would contribute precisely this missing component. We suggest that different modalities are suited for curing primary acute versus established chronic infection. For acute infection, relatively short-acting potent agents such as recombinant immunotoxins might prove sufficient for HIV eradication, whereas for chronic infection, a long-lasting (lifelong?) modality is required to maintain full virus control, as might be achieved with genetically modified autologous T cells. SUMMARY We present perspectives for complementing cART with targeted cytotoxic therapy, whereby HIV infection is either eradicated or fully controlled, thereby eliminating the need for lifelong cART.
Collapse
|
40
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
41
|
Kim SG, Lowe EL, Dixit D, Youn CS, Kim IJ, Jung JB, Rovner R, Zack JA, Vatakis DN. Cocaine-mediated impact on HIV infection in humanized BLT mice. Sci Rep 2015; 5:10010. [PMID: 26084721 PMCID: PMC4471720 DOI: 10.1038/srep10010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
Cocaine abuse has been shown to have broad-ranging effects on human immunity. With regards to HIV infection, in vitro studies have shown that cocaine enhances infection of stimulated lymphocytes. Moreover, cohort studies in the pre- and post-HAART era have linked stimulant abuse with increased HIV pathogenesis. The latter data, however, have been undermined by a series of confounding factors underscoring the importance of controlled in vivo models to fully assess the impact of cocaine use and abuse on HIV infection and pathogenesis. Here, we have infected humanized mice with HIV-1 following acute cocaine exposure to assess the impact on infection. Stimulant exposure resulted in increased inflammatory cytokine expression, accelerated HIV infection, while blunting effector function of cytotoxic T lymphocytes. These data demonstrate cocaine’s multifactorial impact on HIV infection that extends beyond high-risk behavior.
Collapse
Affiliation(s)
- Sohn G Kim
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Emily L Lowe
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Dhaval Dixit
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Cindy Seyeon Youn
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Irene J Kim
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - James B Jung
- Department of Microbiology, Immunology and Molecular Genetics
| | - Robert Rovner
- Department of Molecular, Cell and Developmental Biology
| | - Jerome A Zack
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 [3] Department of Microbiology, Immunology and Molecular Genetics
| | - Dimitrios N Vatakis
- 1] Department of Medicine, Division of Hematology-Oncology [2] UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| |
Collapse
|
42
|
Dey R, Pillai B. Cell-based gene therapy against HIV. Gene Ther 2015; 22:851-5. [PMID: 26079406 DOI: 10.1038/gt.2015.58] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/18/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
The ability to integrate inside the host genome lays a strong foundation for HIV to play hide and seek with the host's immune surveillance mechanisms. Present anti-viral therapies, although successful in suppressing the virus to a certain level, fail to wipe it out completely. However, recent approaches in modifying stem cells and enabling them to give rise to potent/resistant T-cells against HIV holds immense hope for eradication of the virus from the host. In this review, we will briefly discuss previous landmark studies on engineering stem cells or T-cells that have been explored for therapeutic efficacy against HIV. We will also analyze potential benefits and pitfalls of some studies done recently and will share our opinion on emerging trends.
Collapse
Affiliation(s)
- R Dey
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - B Pillai
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
43
|
Karpel ME, Boutwell CL, Allen TM. BLT humanized mice as a small animal model of HIV infection. Curr Opin Virol 2015; 13:75-80. [PMID: 26083316 DOI: 10.1016/j.coviro.2015.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022]
Abstract
Humanized mice are valuable models for the research and development of vaccine strategies and therapeutic interventions to control or eradicate HIV. The BLT humanized mouse model is particularly promising because the combination of transplantation of human fetal pluripotent hematopoietic stem cells with surgical engraftment of human fetal thymic tissue results in improved T cell reconstitution, maturation, and selection. To date, the BLT humanized mouse model has been used to study many aspects of HIV infection including prevention, mucosal transmission, HIV-specific innate and adaptive immunity, viral latency, and novel antiretroviral and immune-based therapies for suppression and reservoir eradication. Here we describe recent advances and applications of the BLT humanized mouse model of HIV infection and discuss opportunities to further improve this valuable small animal model.
Collapse
Affiliation(s)
- Marshall E Karpel
- Ragon Institute of MGH, MIT and Harvard, Cambridge , MA, United States
| | | | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge , MA, United States.
| |
Collapse
|
44
|
HIV-specific Immunity Derived From Chimeric Antigen Receptor-engineered Stem Cells. Mol Ther 2015; 23:1358-1367. [PMID: 26050990 DOI: 10.1038/mt.2015.102] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/25/2015] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities.
Collapse
|
45
|
Kamata M, Kim PY, Ng HL, Ringpis GEE, Kranz E, Chan J, O'Connor S, Yang OO, Chen ISY. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation. Biochem Biophys Res Commun 2015; 463:216-21. [PMID: 25998390 DOI: 10.1016/j.bbrc.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance.
Collapse
Affiliation(s)
- Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Patrick Y Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hwee L Ng
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gene-Errol E Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joshua Chan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sean O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Otto O Yang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA; AIDS Healthcare Foundation, Los Angeles, CA, USA
| | - Irvin S Y Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA
| |
Collapse
|
46
|
Jiang ZM, Luo W, Wen Q, Liu SD, Hao PP, Zhou CY, Zhou MQ, Ma L. Development of genetically engineered iNKT cells expressing TCRs specific for the M. tuberculosis 38-kDa antigen. J Transl Med 2015; 13:141. [PMID: 25943357 PMCID: PMC4428004 DOI: 10.1186/s12967-015-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction The invariant natural killer T (iNKT) cell has been shown to play a central role in early stages immune responses against Mycobacterium tuberculosis (Mtb) infection, which become nonresponsive (anergic) and fails to control the growth of Mtb in patients with active tuberculosis. Enhancement of iNKT cell responses to Mtb antigens can help to resist infection. Study design and methods In the present study, an Mtb 38-kDa antigen-specific T cell receptor (TCR) was isolated from human CD8+ T cells stimulated by 38-kDa antigen in vitro, and then transduced into primary iNKT cells by retrovirus vector. Results The TCR gene-modified iNKT cells are endowed with new features to behave as a conventional MHC class I restricted CD8+ T lymphocyte by displaying specific antigen recognition and anti-Mtb antigen activity in vitro. At the same time, the engineered iNKT cells retaining its original capacity to be stimulated proliferation by non-protein antigens α-Gal-Cer. Conclusions This work is the first attempt to engineer iNKT cells by exogenous TCR genes and demonstrated that iNKT cell, as well as CD4+ and CD8+ T cells, can be genetically engineered to confer them a defined and alternative specificity, which provides new insights into TCR gene therapy for tuberculosis patients, especially those infected with drug-resistant Mtb.
Collapse
Affiliation(s)
- Zhen-Min Jiang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Luo
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Su-Dong Liu
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Pei-Pei Hao
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming-Qian Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice. J Virol 2015; 89:6761-72. [PMID: 25903342 DOI: 10.1128/jvi.00277-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Gene-engineered CD34(+) hematopoietic stem and progenitor cells (HSPCs) can be used to generate an HIV-1-resistant immune system. However, a certain threshold of transduced HSPCs might be required for transplantation into mice for creating an HIV-resistant immune system. In this study, we combined CCR5 knockdown by a highly efficient microRNA (miRNA) lentivector with pretransplantation selection of transduced HSPCs to obtain a rather pure population of gene engineered CD34(+) cells. Low-level transduction of HSPCs and subsequent sorting by flow cytometry yielded >70% transduced cells. Mice transplanted with these cells showed functional and persistent resistance to a CCR5-tropic HIV strain: viral load was significantly decreased over months, and human CD4(+) T cells were preserved. In one mouse, viral mutations, resulting presumably in a CXCR4-tropic strain, overcame HIV resistance. Our results suggest that HSPC-based CCR5 knockdown may lead to efficient control of HIV in vivo. We overcame a major limitation of previous HIV gene therapy in humanized mice in which only a proportion of the cells in chimeric mice in vivo are anti-HIV engineered. Our strategy underlines the promising future of gene engineering HIV-resistant CD34(+) cells that produce a constant supply of HIV-resistant progeny. IMPORTANCE Major issues in experimental long-term in vivo HIV gene therapy have been (i) low efficacy of cell transduction at the time of transplantation and (ii) transduction resulting in multiple copies of heterologous DNA in target cells. In this study, we demonstrated the efficacy of a transplantation approach with a selection step for transduced cells that allows transplantation of an enriched population of HSPCs expressing a single (low) copy of a CCR5 miRNA. Efficient maintenance of CD4(+) T cells and a low viral titer resulted only when at least 70% of the HIV target cells were genetically modified. These findings imply that clinical protocols of HIV gene therapy require a selective enrichment of genetically targeted cells because positive selection of modified cells is likely to be insufficient below this threshold. This selection approach may be beneficial not only for HIV patients but also for other patients requiring transplantation of genetically modified cells.
Collapse
|
48
|
Focosi D, Maggi F, Ceccherini-Nelli L, Pistello M. Cell therapies for treatment of human immunodeficiency virus infection. Rev Med Virol 2015; 25:156-74. [PMID: 25727480 DOI: 10.1002/rmv.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
After the serendipitous discovery of HIV eradication in the "Berlin patient", interest has grown in curing HIV infection by replacing the patient's replication-competent blood cells with infection-resistant ones. At the same time, induced pluripotent stem cell technologies and genetic engineering have boosted cell therapy transfer into the clinic. Currently available cell therapy approaches to attempt to cure HIV infection include the following: (1) Transplantation of autologous or allogeneic cells spontaneously resistant or edited to resist HIV infection; (2) Transplantation of autologous T-lymphocytes spontaneously targeting or redirected against HIV; and (3) Transplantation of autologous cells engineered to work as anti-HIV antibody factories. We review here the preliminary results and potential for future applications of these approaches.
Collapse
Affiliation(s)
- Daniele Focosi
- Retrovirus Center and Virology Section, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
49
|
Ni Z, Knorr DA, Bendzick L, Allred J, Kaufman DS. Expression of chimeric receptor CD4ζ by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells 2015; 32:1021-31. [PMID: 24307574 DOI: 10.1002/stem.1611] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022]
Abstract
Cell-based immunotherapy has been gaining interest as an improved means to treat human immunodeficiency virus (HIV)/AIDS. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) could become a potential resource. Our previous studies have shown hESC and iPSC-derived natural killer (NK) cells can inhibit HIV-infected targets in vitro. Here, we advance those studies by expressing a HIV chimeric receptor combining the extracellular portion of CD4 to the CD3ζ intracellular signaling chain. We hypothesized that expression of this CD4ζ receptor would more efficiently direct hESC- and iPSC-derived NK cells to target HIV-infected cells. In vitro studies showed the CD4ζ expressing hESC- and iPSC-NK cells inhibited HIV replication in CD4+ T-cells more efficiently than their unmodified counterparts. We then evaluated CD4ζ expressing hESC (CD4ζ-hESC)- and iPSC-NK cells in vivo anti-HIV activity using a humanized mouse model. We demonstrated significant suppression of HIV replication in mice treated with both CD4ζ-modified and -unmodified hESC-/iPSC-NK cells compared with control mice. However, we did not observe significantly increased efficacy of CD4ζ expression in suppression of HIV infection. These studies indicate that hESC/iPSC-based immunotherapy can be used as a unique resource to target HIV/AIDS.
Collapse
Affiliation(s)
- Zhenya Ni
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
50
|
Marsden MD, Zack JA. Studies of retroviral infection in humanized mice. Virology 2015; 479-480:297-309. [PMID: 25680625 DOI: 10.1016/j.virol.2015.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/02/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Many important aspects of human retroviral infections cannot be fully evaluated using only in vitro systems or unmodified animal models. An alternative approach involves the use of humanized mice, which consist of immunodeficient mice that have been transplanted with human cells and/or tissues. Certain humanized mouse models can support robust infection with human retroviruses including different strains of human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV). These models have provided wide-ranging insights into retroviral biology, including detailed information on primary infection, in vivo replication and pathogenesis, latent/persistent reservoir formation, and novel therapeutic interventions. Here we describe the humanized mouse models that are most commonly utilized to study retroviral infections, and outline some of the important discoveries that these models have produced during several decades of intensive research.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|