1
|
Kannan D, Wang E, Deeks SG, Lewin SR, Chakraborty AK. Mechanism for evolution of diverse autologous antibodies upon broadly neutralizing antibody therapy of people with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641732. [PMID: 40161612 PMCID: PMC11952291 DOI: 10.1101/2025.03.05.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antiretroviral therapy (ART) inhibits Human Immunodeficiency Virus (HIV) replication to maintain undetectable viral loads in people living with HIV, but does not result in a cure. Due to the significant challenges of lifelong ART for many, there is strong interest in therapeutic strategies that result in cure. Recent clinical trials have shown that administration of broadly neutralizing antibodies (bnAbs) when there is some viremia can lead to ART-free viral control in some people; however, the underlying mechanisms are unclear. Our computational modeling shows that bnAbs administered in the presence of some viremia promote the evolution of autologous antibodies (aAbs) that target diverse epitopes of HIV spike proteins. This "net" of polyclonal aAbs could confer control since evasion of this response would require developing mutations in multiple epitopes. Our results provide a common mechanistic framework underlying recent clinical observations upon bnAb/ART therapy, and they should also motivate and inform new trials.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Arup K. Chakraborty
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Wang H, Cheng C, Dal Santo JL, Shen CH, Bylund T, Henry AR, Howe CA, Hwang J, Morano NC, Morris DJ, Pletnev S, Roark RS, Zhou T, Hansen BT, Hoyt FH, Johnston TS, Wang S, Zhang B, Ambrozak DR, Becker JE, Bender MF, Changela A, Chaudhary R, Corcoran M, Corrigan AR, Foulds KE, Guo Y, Lee M, Li Y, Lin BC, Liu T, Louder MK, Mandolesi M, Mason RD, McKee K, Nair V, O'Dell S, Olia AS, Ou L, Pegu A, Raju N, Rawi R, Roberts-Torres J, Sarfo EK, Sastry M, Schaub AJ, Schmidt SD, Schramm CA, Schwartz CL, Smith SC, Stephens T, Stuckey J, Teng IT, Todd JP, Tsybovsky Y, Van Wazer DJ, Wang S, Doria-Rose NA, Fischer ER, Georgiev IS, Karlsson Hedestam GB, Sheng Z, Woodward RA, Douek DC, Koup RA, Pierson TC, Shapiro L, Shaw GM, Mascola JR, Kwong PD. Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques. Cell 2024; 187:7214-7231.e23. [PMID: 39471811 PMCID: PMC11645223 DOI: 10.1016/j.cell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID50] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%-60% (50% inhibitory concentration [IC50] < 50 μg/mL) and total lineage-concentrations estimates of 50-200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
Collapse
Affiliation(s)
- Hua Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Dal Santo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin A Howe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juyun Hwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel J Morris
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan S Roark
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Forrest H Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nair
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindi L Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Modex Therapeutics Inc., Natick, MA 01760, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
3
|
Parthasarathy D, Pothula KR, Ratnapriya S, Cervera Benet H, Parsons R, Huang X, Sammour S, Janowska K, Harris M, Sodroski J, Acharya P, Herschhorn A. Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted/founder sensitivity to broadly neutralizing antibodies. Nat Commun 2024; 15:7334. [PMID: 39187497 PMCID: PMC11347675 DOI: 10.1038/s41467-024-51656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
HIV-1 envelope glycoproteins (Envs) of most primary HIV-1 strains exist in closed conformation and infrequently sample open states, limiting access to internal epitopes. Thus, immunogen design aims to mimic the closed Env conformation as preferred target for eliciting broadly neutralizing antibodies (bnAbs). Here we identify incompletely closed Env conformations of 6 out of 13 transmitted/founder (T/F) strains that are sensitive to antibodies that recognize internal epitopes typically exposed on open Envs. A 3.6 Å cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) reveals protomer motion that increased sampling of states with incompletely closed trimer apex. We reconstruct de novo the post-transmission evolutionary pathway of a second T/F. Evolved viruses exhibit increased Env resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show that the ultra-broad N6 bnAb efficiently recognizes different Env conformations and exhibits improved antiviral breadth against VRC01-resistant Envs isolated during the first-in-humans antibody-mediated-prevention trial.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Héctor Cervera Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ruth Parsons
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
5
|
Whitehill GD, Joy J, Marino FE, Krause R, Mallick S, Courtney H, Park K, Carey J, Hoh R, Hartig H, Pae V, Sarvadhavabhatla S, Donaire S, Deeks SG, Lynch RM, Lee SA, Bar KJ. Autologous neutralizing antibody responses after antiretroviral therapy in acute and early HIV-1. J Clin Invest 2024; 134:e176673. [PMID: 38652564 PMCID: PMC11142743 DOI: 10.1172/jci176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDEarly antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODSWe characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60-128 days after acquisition).RESULTSPlasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSIONResults indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATIONClinicalTrials.gov NCT02656511.FUNDINGNIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.
Collapse
Affiliation(s)
| | - Jaimy Joy
- Department of Medicine, Division of Infectious Disease, and
| | | | - Ryan Krause
- Department of Medicine, Division of Infectious Disease, and
| | | | | | - Kyewon Park
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Carey
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Heather Hartig
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Vivian Pae
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sannidhi Sarvadhavabhatla
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sophia Donaire
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Katharine J. Bar
- Department of Medicine, Division of Infectious Disease, and
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Altman PX, Parren M, Sang H, Ozorowski G, Lee WH, Smider VV, Wilson IA, Ward AB, Mwangi W, Burton DR, Sok D. HIV envelope trimers and gp120 as immunogens to induce broadly neutralizing antibodies in cows. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585065. [PMID: 38585787 PMCID: PMC10996456 DOI: 10.1101/2024.03.20.585065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.
Collapse
Affiliation(s)
- Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas 66506, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
| | - Ian A. Wilson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas 66506, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
- Lead contact
| |
Collapse
|
7
|
Basu S, Gohain N, Kim J, Trinh HV, Choe M, Joyce MG, Rao M. Determination of Binding Affinity of Antibodies to HIV-1 Recombinant Envelope Glycoproteins, Pseudoviruses, Infectious Molecular Clones, and Cell-Expressed Trimeric gp160 Using Microscale Thermophoresis. Cells 2023; 13:33. [PMID: 38201237 PMCID: PMC10778174 DOI: 10.3390/cells13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Developing a preventative vaccine for HIV-1 has been a global priority. The elicitation of broadly neutralizing antibodies (bNAbs) against a broad range of HIV-1 envelopes (Envs) from various strains appears to be a critical requirement for an efficacious HIV-1 vaccine. To understand their ability to neutralize HIV-1, it is important to characterize the binding characteristics of bNAbs. Our work is the first to utilize microscale thermophoresis (MST), a rapid, economical, and flexible in-solution temperature gradient method to quantitatively determine the binding affinities of bNAbs and non-neutralizing monoclonal antibodies (mAbs) to HIV-1 recombinant envelope monomer and trimer proteins of different subtypes, pseudoviruses (PVs), infectious molecular clones (IMCs), and cells expressing the trimer. Our results demonstrate that the binding affinities were subtype-dependent. The bNAbs exhibited a higher affinity to IMCs compared to PVs and recombinant proteins. The bNAbs and mAbs bound with high affinity to native-like gp160 trimers expressed on the surface of CEM cells compared to soluble recombinant proteins. Interesting differences were seen with V2-specific mAbs. Although they recognize linear epitopes, one of the antibodies also bound to the Envs on PVs, IMCs, and a recombinant trimer protein, suggesting that the epitope was not occluded. The identification of epitopes on the envelope surface that can bind to high affinity mAbs could be useful for designing HIV-1 vaccines and for down-selecting vaccine candidates that can induce high affinity antibodies to the HIV-1 envelope in their native conformation.
Collapse
Affiliation(s)
- Shraddha Basu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Neelakshi Gohain
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jiae Kim
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Hung V. Trinh
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Misook Choe
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (S.B.); (N.G.); (J.K.); (H.V.T.); (M.C.); (M.G.J.)
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
8
|
Sanchez-Merino V, Martin-Serrano M, Beltran M, Lazaro-Martin B, Cervantes E, Oltra M, Sainz T, Garcia F, Navarro ML, Yuste E. The Association of HIV-1 Neutralization in Aviremic Children and Adults with Time to ART Initiation and CD4+/CD8+ Ratios. Vaccines (Basel) 2023; 12:8. [PMID: 38276667 PMCID: PMC10820134 DOI: 10.3390/vaccines12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Broadly neutralizing antibodies (bnAbs) bind and neutralize diverse HIV isolates and demonstrate protective effects in primate models and humans against specific isolates. To develop an effective HIV vaccine, it is widely believed that inducing these antibodies is crucial. However, the high somatic hypermutation in bnAbs and the limited affinity of HIV Env proteins for bnAb germline precursors suggest that extended antigen exposure is necessary for their production. Consequently, HIV vaccine research is exploring complex sequential vaccination strategies to guide the immune response through maturation stages. In this context, the exploration of the factors linked to the generation of these antibodies across diverse age groups becomes critical. In this study, we assessed the anti-HIV-1 neutralization potency and breadth in 108 aviremic adults and 109 aviremic children under 15 years of age who were receiving ART. We used a previously described minipanel of recombinant viruses and investigated the factors associated with neutralization in these individuals. We identified individuals in both groups who were capable of neutralizing viruses from three different subtypes, with greater cross-neutralization observed in the adult group (49.0% vs. 9.2%). In both groups, we observed an inverse association between neutralization breadth and the CD4+/CD8+ ratio, as well as a direct association with the time to ART initiation. However, we found no association with time post-infection, cumulative ART duration, or CD8+ cell levels. The present study demonstrates that children receiving antiretroviral therapy generate broadly neutralizing responses to HIV-1, albeit with lower magnitude compared to adults. We also observed that neutralization breadth is associated with CD4+/CD8+ levels and time to treatment initiation in both children and adults living with HIV-1. Our interpretation of these results is that a delay in ART initiation could have prolonged the antigenic stimulation associated with viral replication and thus facilitate the capacity to elicit long-lasting broadly neutralizing responses. These results corroborate prior findings that show that HIV-1-neutralizing responses can persist for years, even at low antigen levels, implying an HIV-1 vaccine may induce lasting neutralizing antibody response.
Collapse
Affiliation(s)
- Victor Sanchez-Merino
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Faculty of Health Sciences, Alfonso X el Sabio University, 28691 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Miguel Martin-Serrano
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuela Beltran
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| | - Beatriz Lazaro-Martin
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Cervantes
- Sección de Infectología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - Manuel Oltra
- Sección de Patologia Infecciosa Infantil, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Talia Sainz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Department of Pediatrics, Infectious and Tropical Diseases, La Paz Research Institute (IdiPAZ), La Paz University Hospital, 28046 Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Maria Luisa Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Eloisa Yuste
- National Microbiology Center, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.M.-S.); (M.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; (T.S.); (M.L.N.)
| |
Collapse
|
9
|
Parthasarathy D, Pothula KR, Dam KMA, Ratnapriya S, Benet HC, Parsons R, Huang X, Sammour S, Janowska K, Harris M, Sacco S, Sodroski J, Bridges MD, Hubbell WL, Acharya P, Herschhorn A. Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted / founder sensitivity to broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557082. [PMID: 37745449 PMCID: PMC10515946 DOI: 10.1101/2023.09.13.557082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
HIV-1 envelope glycoproteins (Envs) mediate viral entry and are the sole target of neutralizing antibodies. Envs of most primary HIV-1 strains exist in a closed conformation and occasionally sample more open states. Thus, current knowledge guides immunogen design to mimic the closed Env conformation as the preferred target for eliciting broadly neutralizing antibodies (bnAbs) to block HIV-1 entry. Here we show that Env-preferred conformations of 6 out of 13 (46%) transmitted/founder (T/F) strains tested are incompletely closed. As a result, entry of these T/Fs into target cells is sensitive to antibodies that recognize internal epitopes exposed on open Env conformations. A cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) at 3.6 Å resolution exhibits an asymmetric configuration of Env protomers with increased sampling of states with incompletely closed trimer apex. Double electron-electron resonance spectroscopy provided further evidence for enriched occupancy of more open Env conformations. Consistent with conformational flexibility, 1059 Envs were associated with resistance to most bnAbs that exhibit reduced potency against functional Env intermediates. To follow the fate of incompletely closed Env in patients, we reconstructed de novo the post-transmission evolutionary pathway of a second T/F Env (CH040), which is sensitive to the V3-targeting antibody 19b and highly resistant to most bnAbs. Evolved viruses exhibited increased resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show a correlation between efficient neutralization of multiple Env conformations and increased antiviral breadth of CD4-binding site (CD4bs) bnAbs. In particular, N6 bnAb, which uniquely recognizes different Env conformations, efficiently neutralizes 50% of the HIV-1 strains that were resistant to VRC01 and transmitted during the first-in-humans antibody-mediated prevention trial (HVTN 704). VRC01-resistant Envs are incompletely closed based on their sensitivity to cold and on partial sensitivity to antibodies targeting internal, typically occluded, epitopes. Most VRC01-resistant Envs retain the VRC01 epitope according to VRC01 binding to their gp120 subunit at concentrations that have no significant effect on virus entry, and they exhibit cross resistance to other CD4bs bnAbs that poorly recognize functional Env intermediates. Our findings refine current knowledge of Env conformational states and provide guidance for developing new strategies for bnAb immunotherapy and Env-based immunogen design.
Collapse
Affiliation(s)
- Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Karunakar Reddy Pothula
- Duke Human Vaccine Institute, Durham, NC, USA
- These authors contributed equally: Durgadevi Parthasarathy and Karunakar Reddy Pothula
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Héctor Cervera Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Xiao Huang
- Duke Human Vaccine Institute, Durham, NC, USA
| | | | | | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Samuel Sacco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Michael D. Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Wayne L. Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, and Department of Biochemistry, Duke University, Durham, NC, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program; The College of Veterinary Medicine Graduate Program; and the Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Molinos-Albert LM, Baquero E, Bouvin-Pley M, Lorin V, Charre C, Planchais C, Dimitrov JD, Monceaux V, Vos M, Hocqueloux L, Berger JL, Seaman MS, Braibant M, Avettand-Fenoël V, Sáez-Cirión A, Mouquet H. Anti-V1/V3-glycan broadly HIV-1 neutralizing antibodies in a post-treatment controller. Cell Host Microbe 2023; 31:1275-1287.e8. [PMID: 37433296 DOI: 10.1016/j.chom.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) can decrease viremia but are usually unable to counteract autologous viruses escaping the antibody pressure. Nonetheless, bNAbs may contribute to natural HIV-1 control in individuals off antiretroviral therapy (ART). Here, we describe a bNAb B cell lineage elicited in a post-treatment controller (PTC) that exhibits broad seroneutralization and show that a representative antibody from this lineage, EPTC112, targets a quaternary epitope in the glycan-V3 loop supersite of the HIV-1 envelope glycoprotein. The cryo-EM structure of EPTC112 complexed with soluble BG505 SOSIP.664 envelope trimers revealed interactions with N301- and N156-branched N-glycans and the 324GDIR327 V3 loop motif. Although the sole contemporaneous virus circulating in this PTC was resistant to EPTC112, it was potently neutralized by autologous plasma IgG antibodies. Our findings illuminate how cross-neutralizing antibodies can alter the HIV-1 infection course in PTCs and may control viremia off-ART, supporting their role in functional HIV-1 cure strategies.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | | | - Valérie Lorin
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Caroline Charre
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Valérie Monceaux
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire d'Orléans La Source, Orléans 45067, France
| | - Jean-Luc Berger
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Reims University Hospital, Reims 51100, France
| | | | | | - Véronique Avettand-Fenoël
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Asier Sáez-Cirión
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France.
| |
Collapse
|
11
|
Bauer A, Lindemuth E, Marino FE, Krause R, Joy J, Docken SS, Mallick S, McCormick K, Holt C, Georgiev I, Felber B, Keele BF, Veazey R, Davenport MP, Li H, Shaw GM, Bar KJ. Adaptation of a transmitted/founder simian-human immunodeficiency virus for enhanced replication in rhesus macaques. PLoS Pathog 2023; 19:e1011059. [PMID: 37399208 PMCID: PMC10348547 DOI: 10.1371/journal.ppat.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/14/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Collapse
Affiliation(s)
- Anya Bauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francesco Elia Marino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan Krause
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimy Joy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Suvadip Mallick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin McCormick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Clinton Holt
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ivelin Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Barbara Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald Veazey
- Department of Pathology and Laboratory Medicine, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Esmaeilzadeh E, Etemad B, Lavine CL, Garneau L, Li Y, Regan J, Wong C, Sharaf R, Connick E, Volberding P, Sagar M, Seaman MS, Li JZ. Autologous neutralizing antibodies increase with early antiretroviral therapy and shape HIV rebound after treatment interruption. Sci Transl Med 2023; 15:eabq4490. [PMID: 37163616 PMCID: PMC10576978 DOI: 10.1126/scitranslmed.abq4490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Early initiation of antiretroviral therapy (ART) alters viral rebound kinetics after analytic treatment interruption (ATI) and may play a role in promoting HIV-1 remission. Autologous neutralizing antibodies (aNAbs) represent a key adaptive immune response in people living with HIV-1. We aimed to investigate the role of aNAbs in shaping post-ATI HIV-1 rebound variants. We performed single-genome amplification of HIV-1 env from pre-ART and post-ATI plasma samples of 12 individuals who initiated ART early after infection. aNAb activity was quantified using pseudoviruses derived from the most common plasma variant, and the serum dilution that inhibited 50% of viral infections was determined. aNAb responses matured while participants were on suppressive ART, because on-ART plasma and purified immunoglobulin G (IgG) demonstrated improved neutralizing activity against pre-ART HIV-1 strains when compared with pre-ART plasma or purified IgG. Post-ATI aNAb responses exerted selective pressure on the rebounding viruses, because the post-ATI HIV-1 strains were more resistant to post-ATI plasma neutralization compared with the pre-ART virus. Several pre-ATI features distinguished post-treatment controllers from noncontrollers, including an infecting HIV-1 sequence that was more similar to consensus HIV-1 subtype B, more restricted proviral diversity, and a stronger aNAb response. Post-treatment control was also associated with the evolution of distinct N-glycosylation profiles in the HIV-1 envelope. In summary, aNAb responses appeared to mature after early initiation of ART and applied selective pressure on rebounding viruses. The combination of aNAb activity with select HIV-1 sequence and reservoir features identified individuals with a greater chance of post-treatment control.
Collapse
Affiliation(s)
| | - Behzad Etemad
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lauren Garneau
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yijia Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - James Regan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Colline Wong
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radwa Sharaf
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Paul Volberding
- University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manish Sagar
- Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
| | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Laumaea A, Marchitto L, Ding S, Beaudoin-Bussières G, Prévost J, Gasser R, Chatterjee D, Gendron-Lepage G, Medjahed H, Chen HC, Smith AB, Ding H, Kappes JC, Hahn BH, Kirchhoff F, Richard J, Duerr R, Finzi A. Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Rep 2023; 42:111983. [PMID: 36640355 PMCID: PMC9941794 DOI: 10.1016/j.celrep.2022.111983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.
Collapse
Affiliation(s)
- Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
14
|
Abstract
Genetically-characterizing full-length HIV-1 RNA is critical for identifying genetically-intact genomes and for comparing these RNA genomes to proviral DNA. We have developed a method for sequencing plasma-derived RNA using long-range sequencing (PRLS assay; ∼8.3 kb from gag to the 3′ end or ∼5 kb from integrase to the 3′ end). We employed the gag-3′ PRLS assay to sequence HIV-1 RNA genomes from ART-naive participants during acute/early infection (n = 6) or chronic infection (n = 2). On average, only 65% of plasma-derived genomes were genetically-intact. Defects were found in all genomic regions but were concentrated in env and pol. We compared these genomes to near-full-length proviral sequences from paired peripheral blood mononuclear cell (PBMC) samples for the acute/early group and found that near-identical (>99.98% identical) sequences were identified only during acute infection. For three participants who initiated therapy during acute infection, we used the int-3′ PRLS assay to sequence plasma-derived genomes from an analytical treatment interruption and identified 100% identical genomes between pretherapy and rebound time points. The PRLS assay provides a new level of sensitivity for understanding the genetic composition of plasma-derived HIV-1 RNA from viremic individuals either pretherapy or after treatment interruption, which will be invaluable in assessing possible HIV-1 curative strategies. IMPORTANCE We developed novel plasma-derived RNA using long-range sequencing assays (PRLS assay; 8.3 kb, gag-3′, and 5.0 kb, int-3′). Employing the gag-3′ PRLS assay, we found that 26% to 51% of plasma-derived genomes are genetically-defective, largely as a result of frameshift mutations and deletions. These genetic defects were concentrated in the env region compared to gag and pol, likely a reflection of viral immune escape in env during untreated HIV-1 infection. Employing the int-3′ PRLS assay, we found that analytical treatment interruption (ATI) plasma-derived sequences were identical and genetically-intact. Several sequences from the ATI plasma samples were identical to viral sequences from pretherapy plasma and PBMC samples, indicating that HIV-1 reservoirs established prior to therapy contribute to viral rebound during an ATI. Therefore, near-full-length sequencing of HIV-1 particles is required to gain an accurate picture of the genetic landscape of plasma HIV-1 virions in studies of HIV-1 replication and persistence.
Collapse
|
15
|
Griffith SA, McCoy LE. To bnAb or Not to bnAb: Defining Broadly Neutralising Antibodies Against HIV-1. Front Immunol 2021; 12:708227. [PMID: 34737737 PMCID: PMC8560739 DOI: 10.3389/fimmu.2021.708227] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Since their discovery, antibodies capable of broad neutralisation have been at the forefront of HIV-1 research and are of particular interest due to in vivo passive transfer studies demonstrating their potential to provide protection. Currently an exact definition of what is required for a monoclonal antibody to be classed as a broadly neutralising antibody (bnAb) has not yet been established. This has led to hundreds of antibodies with varying neutralisation breadth being studied and has given insight into antibody maturation pathways and epitopes targeted. However, even with this knowledge, immunisation studies and vaccination trials to date have had limited success in eliciting antibodies with neutralisation breadth. For this reason there is a growing need to identify factors specifically associated with bnAb development, yet to do this a set of criteria is necessary to distinguish bnAbs from non-bnAbs. This review aims to define what it means to be a HIV-1 bnAb by comparing neutralisation breadth, genetic features and epitopes of bnAbs, and in the process highlights the challenges of comparing the array of antibodies that have been isolated over the years.
Collapse
Affiliation(s)
- Sarah A Griffith
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Laura E McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
16
|
Mielke D, Bandawe G, Zheng J, Jones J, Abrahams MR, Bekker V, Ochsenbauer C, Garrett N, Abdool Karim S, Moore PL, Morris L, Montefiori D, Anthony C, Ferrari G, Williamson C. ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathog 2021; 17:e1010046. [PMID: 34788337 PMCID: PMC8598021 DOI: 10.1371/journal.ppat.1010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.
Collapse
Affiliation(s)
- Dieter Mielke
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Gama Bandawe
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Malawi University of Science and Technology, Thyolo, Malawi
| | - Jie Zheng
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Jennifer Jones
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Valerie Bekker
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Christina Ochsenbauer
- University of Alabama at Birmingham, Department of Medicine, Birmingham, Alabama, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Penny L. Moore
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- University of Witswaterstrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Colin Anthony
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine and Division of Medical Virology, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
17
|
Hu W, He M, Wang X, Sun Q, Kuang M. Specific CD8 + TCR Repertoire Recognizing Conserved Antigens of SARS-CoV-2 in Unexposed Population: A Prerequisite for Broad-Spectrum CD8 + T Cell Immunity. Vaccines (Basel) 2021; 9:1093. [PMID: 34696201 PMCID: PMC8541101 DOI: 10.3390/vaccines9101093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed variants escaping neutralization antibody immunity established against the original virus. An understanding of broad-spectrum adaptive immunity, including CD8+ T cell immunity to wide range of epitopes, could help translational efforts to improve coronavirus disease 2019 (COVID-19) prevention and therapy. However, there have been few direct studies in which such immunity exists in a population. METHODS We selected SARS-CoV-2-conserved structural peptides that are not prone to mutation as antigens for broad-spectrum CD8+ T cell immunity. Peripheral blood mononuclear cells (PBMCs) from unexposed healthy donors were stimulated with these peptides in vitro and CD8+ T cell-specific response was monitored. The conserved peptide-specific CD8+ T cells were sorted for T cell receptor (TCR) repertoire sequencing. The presence of specific complementary determining region 3 (CDR3) clones was analyzed in a healthy cohort. RESULTS For each structural protein, including S, E, M, N, the conserved peptides could potentially provide the largest number of major histocompatibility complex-I (MHC-I) epitopes in the Oriental and Caucasian populations. For conserved peptides from spike (S), envelope (E), membrane (M), nucleocapsid (N) proteins, we found that there were no cross-reactive memory T cells in the unexposed individuals. Instead, their T cells contain naïve TCR repertoire recognizing these conserved peptides. Using TCR sequencing and CDR3 clustering for the conserved peptides specific T cells, we found that the recovered patients had a higher proportion of TCR repertoire similar with that of specific CD8+ T cells in unexposed individuals. Meanwhile, CDR3 clones of the above T cells were widely present in the healthy population. CONCLUSIONS This study provides evidence of broad-spectrum SARS-CoV-2 specific CD8+ TCR repertoire in unexposed healthy population, which is implicated in the development and implementation of broad-spectrum vaccines against COVID-19.
Collapse
Affiliation(s)
- Wei Hu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Xiaoning Wang
- National Clinical Research Center for Geriatrics Diseases, Chinese PLA General Hospital, Beijing 100853, China;
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China;
- Research Unit of Cell Death Mechanism, 2020RU009, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ming Kuang
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
18
|
Wilson A, Shakhtour L, Ward A, Ren Y, Recarey M, Stevenson E, Korom M, Kovacs C, Benko E, Jones RB, Lynch RM. Characterizing the Relationship Between Neutralization Sensitivity and env Gene Diversity During ART Suppression. Front Immunol 2021; 12:710327. [PMID: 34603284 PMCID: PMC8479156 DOI: 10.3389/fimmu.2021.710327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
Although antiretroviral therapy (ART) successfully suppresses HIV-1 replication, ART-treated individuals must maintain therapy to avoid rebound from an integrated viral reservoir. Strategies to limit or clear this reservoir are urgently needed. Individuals infected for longer periods prior to ART appear to harbor more genetically diverse virus, but the roles of duration of infection and viral diversity in the humoral immune response remain to be studied. We aim to clarify a role, if any, for autologous and heterologous antibodies in multi-pronged approaches to clearing infection. To that end, we have characterized the breadths and potencies of antibody responses in individuals with varying durations of infection and HIV-1 envelope (env) gene diversity as well as the sensitivity of their inducible virus reservoir to broadly neutralizing antibodies (bNAbs). Plasma was collected from 8 well-characterized HIV-1+ males on ART with varied durations of active infection. HIV envs from reservoir-derived outgrowth viruses were amplified and single genome sequenced in order to measure genetic diversity in each participant. IgG from plasma was analyzed for binding titers against gp41 and gp120 proteins, and for neutralizing titers against a global HIV-1 reference panel as well as autologous outgrowth viruses. The sensitivity to bNAbs of these same autologous viruses was measured. Overall, we observed that greater env diversity was associated with higher neutralizing titers against the global panel and also increased resistance to certain bNAbs. Despite the presence of robust anti-HIV-1 antibody titers, we did not observe potent neutralization against autologous viruses. In fact, 3 of 8 participants harbored viruses that were completely resistant to the highest tested concentration of autologous IgG. That this lack of neutralization was observed regardless of ART duration or viral diversity suggests that the inducible reservoir harbors 'escaped' viruses (that co-evolved with autologous antibody responses), rather than proviruses archived from earlier in infection. Finally, we observed that viruses resistant to autologous neutralization remained sensitive to bNAbs, especially CD4bs and MPER bNAbs. Overall, our data suggest that the inducible reservoir is relatively resistant to autologous antibodies and that individuals with limited virus variation in the env gene, such as those who start ART early in infection, are more likely to be sensitive to bNAb treatment.
Collapse
Affiliation(s)
- Andrew Wilson
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Leyn Shakhtour
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Adam Ward
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
- PhD Program in Epidemiology, The George Washington University Milken Institute School of Public Health, Washington, DC, United States
| | - Yanqin Ren
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Melina Recarey
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Eva Stevenson
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Maria Korom
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Colin Kovacs
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - Erika Benko
- Department of Internal Medicine, Maple Leaf Medical Clinic, Toronto, ON, Canada
| | - R. Brad Jones
- Jones Lab, Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, United States
| | - Rebecca M. Lynch
- Lynch Lab, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
19
|
Jacob RA, Edgar CR, Prévost J, Trothen SM, Lurie A, Mumby MJ, Galbraith A, Kirchhoff F, Haeryfar SMM, Finzi A, Dikeakos JD. The HIV-1 accessory protein Nef increases surface expression of the checkpoint receptor Tim-3 in infected CD4 + T cells. J Biol Chem 2021; 297:101042. [PMID: 34358561 PMCID: PMC8390549 DOI: 10.1016/j.jbc.2021.101042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef's dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.
Collapse
Affiliation(s)
- Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alexa Galbraith
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, UIm, Germany
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
20
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
21
|
Kumar S, Lin X, Ngo T, Shapero B, Sou C, Allen JD, Copps J, Zhang L, Ozorowski G, He L, Crispin M, Ward AB, Wilson IA, Zhu J. Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles. mBio 2021; 12:e0042921. [PMID: 34156262 PMCID: PMC8262854 DOI: 10.1128/mbio.00429-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers. Three mouse NAbs potently neutralized BG505.T332N by recognizing a glycan epitope centered in the C3/V4 region on BG505 Env, as revealed by electron microscopy (EM), X-ray crystallography, and epitope mapping. A set of rabbit NAbs was isolated from rabbits immunized with a soluble trimer and a 24-meric ferritin NP presenting 8 trimers. Neutralization assays against BG505.T332N variants confirmed that potent rabbit NAbs targeted previously described glycan holes on BG505 Env and accounted for a significant portion of the autologous NAb response in both the trimer and ferritin NP groups. Last, we examined NAb responses that were induced by non-BG505 Env immunogens. We determined a 3.4-Å-resolution crystal structure for the clade C transmitted/founder (T/F) Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend in gp41. This clade C Env, in a soluble trimer form and in a multivalent form with 8 trimers attached to ferritin NP, and the gp41-stabilized clade A Q482-d12 Env trimer elicited distinct NAb responses in rabbits, with notable differences in neutralization breadth. Although eliciting a broad NAb response remains a major challenge, our study provides valuable information on an HIV-1 vaccine design strategy that combines gp41 stabilization and NP display. IMPORTANCE Self-assembling protein nanoparticles (NPs) presenting BG505 envelope (Env) trimers can elicit tier 2 HIV-1-neutralizing antibody (NAb) responses more effectively than soluble trimers. In the present study, monoclonal NAbs were isolated from previously immunized mice and rabbits for structural and functional analyses, which revealed that potent mouse NAbs recognize the C3/V4 region and small NP-elicited rabbit NAbs primarily target known glycan holes on BG505 Env. This study validates the gp41 stabilization strategy for HIV-1 Env vaccine design and highlights the challenge in eliciting a broad NAb response.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
22
|
Yandrapally S, Mohareer K, Arekuti G, Vadankula GR, Banerjee S. HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Crit Rev Microbiol 2021; 47:499-516. [PMID: 33900141 DOI: 10.1080/1040841x.2021.1902941] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of cell-surface receptors and co-receptors is a crucial molecular event towards the establishment of HIV infection. HIV exists as several variants that differentially recognize the principal co-receptors, CCR5 and CXCR4, in different cell types, known as HIV co-receptor-tropism. The relative levels of these variants dynamically adjust to the changing host selection pressures to infect a vast repertoire of cells in a stage-specific manner. HIV infection sets in through immune cells such as dendritic cells, macrophages, and T-lymphocytes in the acute stage, while a wide range of other cells, including astrocytes, glial cells, B-lymphocytes, and epithelial cells, are infected during chronic stages. A change in tropism occurs during the transition from acute to a chronic phase, termed as co-receptor switching marked by a change in disease severity. The cellular and molecular events leading to co-receptor switching are poorly understood. This review aims to collate our present understanding of the dynamics of HIV co-receptor-tropism vis-à-vis host and viral factors, highlighting the cellular and molecular events involved therein. We present the possible correlations between virus entry, cell tropism, and co-receptor switching, speculating its consequences on disease progression, and proposing new scientific pursuits to help in an in-depth understanding of HIV biology.
Collapse
Affiliation(s)
| | | | - Geethika Arekuti
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
23
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
24
|
Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. J Virol 2021; 95:JVI.01369-20. [PMID: 33148792 DOI: 10.1128/jvi.01369-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is transported through the secretory pathway to the infected cell surface and onto virion particles. In the Golgi, the gp160 Env precursor is modified by complex sugars and proteolytically cleaved to produce the mature functional Env trimer, which resists antibody neutralization. We observed mostly uncleaved gp160 and smaller amounts of cleaved gp120 and gp41 Envs on the surface of HIV-1-infected or Env-expressing cells; however, cleaved Envs were relatively enriched in virions and virus-like particles (VLPs). This relative enrichment of cleaved Env in VLPs was observed for wild-type Envs, for Envs lacking the cytoplasmic tail, and for CD4-independent, conformationally flexible Envs. On the cell surface, we identified three distinct populations of Envs: (i) the cleaved Env was transported through the Golgi, was modified by complex glycans, formed trimers that cross-linked efficiently, and was recognized by broadly neutralizing antibodies; (ii) a small fraction of Env modified by complex carbohydrates escaped cleavage in the Golgi; and (iii) the larger population of uncleaved Env lacked complex carbohydrates, cross-linked into diverse oligomeric forms, and was recognized by poorly neutralizing antibodies. This last group of more "open" Env oligomers reached the cell surface in the presence of brefeldin A, apparently bypassing the Golgi apparatus. Relative to Envs transported through the Golgi, these uncleaved Envs were counterselected for virion incorporation. By employing two pathways for Env transport to the surface of infected cells, HIV-1 can misdirect host antibody responses toward conformationally flexible, uncleaved Env without compromising virus infectivity.IMPORTANCE The envelope glycoprotein (Env) trimers on the surface of human immunodeficiency virus type 1 (HIV-1) mediate the entry of the virus into host cells and serve as targets for neutralizing antibodies. The cleaved, functional Env is incorporated into virus particles from the surface of the infected cell. We found that an uncleaved form of Env is transported to the cell surface by an unconventional route, but this nonfunctional Env is mostly excluded from the virus. Thus, only one of the pathways by which Env is transported to the surface of infected cells results in efficient incorporation into virus particles, potentially allowing the uncleaved Env to act as a decoy to the host immune system without compromising virus infectivity.
Collapse
|
25
|
Gondim MVP, Sherrill-Mix S, Bibollet-Ruche F, Russell RM, Trimboli S, Smith AG, Li Y, Liu W, Avitto AN, DeVoto JC, Connell J, Fenton-May AE, Pellegrino P, Williams I, Papasavvas E, Lorenzi JCC, Salantes DB, Mampe F, Monroy MA, Cohen YZ, Heath S, Saag MS, Montaner LJ, Collman RG, Siliciano JM, Siliciano RF, Plenderleith LJ, Sharp PM, Caskey M, Nussenzweig MC, Shaw GM, Borrow P, Bar KJ, Hahn BH. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci Transl Med 2021; 13:eabd8179. [PMID: 33441429 PMCID: PMC7923595 DOI: 10.1126/scitranslmed.abd8179] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.
Collapse
Affiliation(s)
- Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexa N Avitto
- Gene Therapy Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia C DeVoto
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pierre Pellegrino
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | - Ian Williams
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | | | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Felicity Mampe
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Alexandra Monroy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sonya Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael S Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Beretta M, Migraine J, Moreau A, Essat A, Goujard C, Chaix ML, Drouin A, Bouvin-Pley M, Meyer L, Barin F, Braibant M. Common evolutionary features of the envelope glycoprotein of HIV-1 in patients belonging to a transmission chain. Sci Rep 2020; 10:16744. [PMID: 33028961 PMCID: PMC7541522 DOI: 10.1038/s41598-020-73975-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
The diversity of the HIV-1 envelope glycoproteins (Env) is largely a consequence of the pressure exerted by the adaptive immune response to infection. While it was generally assumed that the neutralizing antibody (NAb) response depended mainly on the infected individual, the concept that virus-related factors could be important in inducing this response has recently emerged. Here, we analyzed the influence of the infecting viral strain in shaping NAb responses in four HIV-1 infected subjects belonging to a transmission chain. We also explored the impact of NAb responses on the functional evolution of the viral quasispecies. The four patients developed a strong autologous neutralizing antibody response that drove viral escape and coincided with a parallel evolution of their infecting quasispecies towards increasing infectious properties, increasing susceptibility to T20 and increasing resistance to both CD4 analogs and V3 loop-directed NAbs. This evolution was associated with identical Env sequence changes at several positions in the V3 loop, the fusion peptide and the HR2 domain of gp41. The common evolutionary pattern of Env in different hosts suggests that the capacity of a given Env to adapt to changing environments may be restricted by functional constraints that limit its evolutionary landscape.
Collapse
Affiliation(s)
- Maxime Beretta
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Julie Migraine
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Alain Moreau
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Asma Essat
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France
| | - Cécile Goujard
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Marie-Laure Chaix
- Université de Paris, Inserm U944, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Aurélie Drouin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | | | - Laurence Meyer
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Francis Barin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,CHRU de Tours, CNR VIH, Tours, France
| | - Martine Braibant
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
29
|
A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathog 2020; 16:e1008171. [PMID: 32492061 PMCID: PMC7295245 DOI: 10.1371/journal.ppat.1008171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/15/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in most cases were have previously been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41 (including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity although not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies.
Collapse
|
30
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Abstract
Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- New Mexico Consortium, Los Alamos, New Mexico 87545, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA;
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, Massachusetts 02114, USA
| |
Collapse
|
32
|
Prévost J, Edgar CR, Richard J, Trothen SM, Jacob RA, Mumby MJ, Pickering S, Dubé M, Kaufmann DE, Kirchhoff F, Neil SJD, Finzi A, Dikeakos JD. HIV-1 Vpu Downregulates Tim-3 from the Surface of Infected CD4 + T Cells. J Virol 2020; 94:e01999-19. [PMID: 31941771 PMCID: PMC7081912 DOI: 10.1128/jvi.01999-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/12/2020] [Indexed: 01/26/2023] Open
Abstract
Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
33
|
Martinez DR, Tu JJ, Kumar A, Mangold JF, Mangan RJ, Goswami R, Giorgi EE, Chen J, Mengual M, Douglas AO, Heimsath H, Saunders KO, Nicely NI, Eudailey J, Hernandez G, Morgan-Asiedu PK, Wiehe K, Haynes BF, Moody MA, LaBranche C, Montefiori DC, Gao F, Permar SR. Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. mBio 2020; 11:e00176-20. [PMID: 32156815 PMCID: PMC7064758 DOI: 10.1128/mbio.00176-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Each year, >180,000 infants become infected via mother-to-child transmission (MTCT) of HIV despite the availability of effective maternal antiretroviral treatments, underlining the need for a maternal HIV vaccine. We characterized 224 maternal HIV envelope (Env)-specific IgG monoclonal antibodies (MAbs) from seven nontransmitting and transmitting HIV-infected U.S. and Malawian mothers and examined their neutralization activities against nontransmitted autologous circulating viruses and infant-transmitted founder (infant-T/F) viruses. Only a small subset of maternal viruses, 3 of 72 (4%), were weakly neutralized by maternal linear V3 epitope-specific IgG MAbs, whereas 6 out of 6 (100%) infant-T/F viruses were neutralization resistant to these V3-specific IgG MAbs. We also show that maternal-plasma broadly neutralizing antibody (bNAb) responses targeting the V3 glycan supersite in a transmitting woman may have selected for an N332 V3 glycan neutralization-resistant infant-T/F virus. These data have important implications for bNAb-eliciting vaccines and passively administered bNAbs in the setting of MTCT.IMPORTANCE Efforts to eliminate MTCT of HIV with antiretroviral therapy (ART) have met little success, with >180,000 infant infections each year worldwide. It is therefore likely that additional immunologic strategies that can synergize with ART will be required to eliminate MTCT of HIV. To this end, understanding the role of maternal HIV Env-specific IgG antibodies in the setting of MTCT is crucial. In this study, we found that maternal-plasma broadly neutralizing antibody (bNAb) responses can select for T/F viruses that initiate infection in infants. We propose that clinical trials testing the efficacy of single bNAb specificities should not include HIV-infected pregnant women, as a single bNAb might select for neutralization-resistant infant-T/F viruses.
Collapse
Affiliation(s)
- David R Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | | | - Riley J Mangan
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Ria Goswami
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Juilin Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Michael Mengual
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Holly Heimsath
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | - Kevin Wiehe
- Duke Human Vaccine Institute, Durham, North Carolina, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Durham, North Carolina, USA
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
34
|
In vitro replicative fitness of early Transmitted founder HIV-1 variants and sensitivity to Interferon alpha. Sci Rep 2020; 10:2747. [PMID: 32066770 PMCID: PMC7026412 DOI: 10.1038/s41598-020-59596-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
Type I interferons, particularly interferon-alpha (IFN-α), play a vital role in the host's anti-viral defenses by interfering with viral replication. However, the virus rapidly evolves to exploit the IFN-α response for its replication, spread, and pathogenic function. In this study, we attempted to determine IFN-α susceptibility and productivity of infectious transmitted/founder (TF) (n = 8) and non-transmitted (NT) viruses (n = 8) derived from HIV-1 infected infants. Independent experiments were carried out to determine IFN-α resistance, replication fitness, and viral productivity in CD4+ T cells over a short period. In vitro studies showed that TF viruses were resistant to IFN-α during the very near moment of transmission, but in the subsequent time points, they became susceptible to IFN-α. We did not observe much difference in replicative fitness of the TF viruses in cultures treated with and without IFN-α, but the difference was significant in the case of NT viruses obtained from the same individual. Despite increased susceptibility to IFN-α, NT viruses produced more viral particles than TF viruses. Similar results were also obtained in cultures treated with maraviroc (MVC). The study identified unique characteristics of TF viruses thus prompting further investigation into virus-host interaction occurring during the early stages of HIV infection.
Collapse
|
35
|
Hertoghs N, Nijmeijer BM, van Teijlingen NH, Fenton-May AE, Kaptein TM, van Hamme JL, Kappes JC, Kootstra NA, Hahn BH, Borrow P, Ribeiro CMS, Geijtenbeek TBH. Sexually transmitted founder HIV-1 viruses are relatively resistant to Langerhans cell-mediated restriction. PLoS One 2019; 14:e0226651. [PMID: 31856198 PMCID: PMC6922402 DOI: 10.1371/journal.pone.0226651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022] Open
Abstract
A single HIV-1 variant establishes infection of the host after sexual contact. Identifying the phenotypic characteristics of these Transmitted Founder (T/F) viruses is important to understand the restriction mechanisms during transmission. Langerhans cells (LCs) are the mucosal dendritic cell subset that has been shown to have a protective role in HIV-1 transmission. Immature LCs efficiently capture and degrade HIV-1 via langerin-mediated restriction. Here we have investigated the capacity of T/F HIV-1 strains to infect mucosal Langerhans cells (LCs). Notably, most T/F variants efficiently infected immature LCs derived from skin and vaginal tissue in contrast to chronic HIV-1 laboratory strains. Next we screened a panel of T/F viruses and their matched 6-month consensus sequence viruses. Interestingly most T/F variants infected immature LCs whereas donor-matched 6-month consensus sequence viruses had lost the ability to infect LCs. However, we also identified 6-month consensus sequence viruses that had retained an ability to infect LCs similar to that of the donor-matched T/F virus. Moreover, some T/F viruses and 6-month consensus sequence viruses were unable to infect immature LCs. Further analyses indicated that T/F viruses are less sensitive to langerin-mediated restriction. These data suggest that T/F HIV-1 variants have the ability to infect immature LCs, which will facilitate transmission.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Bernadien M. Nijmeijer
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Nienke H. van Teijlingen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - John L. van Hamme
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
36
|
Ding S, Grenier MC, Tolbert WD, Vézina D, Sherburn R, Richard J, Prévost J, Chapleau JP, Gendron-Lepage G, Medjahed H, Abrams C, Sodroski J, Pazgier M, Smith AB, Finzi A. A New Family of Small-Molecule CD4-Mimetic Compounds Contacts Highly Conserved Aspartic Acid 368 of HIV-1 gp120 and Mediates Antibody-Dependent Cellular Cytotoxicity. J Virol 2019; 93:e01325-19. [PMID: 31554684 PMCID: PMC6880173 DOI: 10.1128/jvi.01325-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer mediates virus entry into cells. The "closed" conformation of Env is resistant to nonneutralizing antibodies (nnAbs). These antibodies mostly recognize occluded epitopes that can be exposed upon binding of CD4 or small-molecule CD4 mimetics (CD4mc). Here, we describe a new family of small molecules that expose Env to nnAbs and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC). These compounds have a limited capacity to inhibit virus infection directly but are able to sensitize viral particles to neutralization by otherwise nonneutralizing antibodies. Structural analysis shows that some analogs of this family of CD4mc engage the gp120 Phe43 cavity by contacting the highly conserved D368 residue, making them attractive scaffolds for drug development.IMPORTANCE HIV-1 has evolved multiple strategies to avoid humoral responses. One efficient mechanism is to keep its envelope glycoprotein (Env) in its "closed" conformation. Here, we report on a new family of small molecules that are able to "open up" Env, thus exposing vulnerable epitopes. This new family of molecules binds in the Phe43 cavity and contacts the highly conserved D368 residue. The structural and biological attributes of molecules of this family make them good candidates for drug development.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Melissa C Grenier
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rebekah Sherburn
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Wang C, Liu D, Zuo T, Hora B, Cai F, Ding H, Kappes J, Ochsenbauer C, Kong W, Yu X, Bhattacharya T, Perelson AS, Gao F. Accumulated mutations by 6 months of infection collectively render transmitted/founder HIV-1 significantly less fit. J Infect 2019; 80:210-218. [PMID: 31812703 DOI: 10.1016/j.jinf.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Viral fitness plays an important role in HIV-1 evolution, transmission and pathogenesis. However, how mutations accumulated during early infection affect viral fitness has not been well studied. METHODS Paired infectious molecular clones (IMCs) for transmitted/founder (T/F) and 6-month (6-mo) viruses post infection were generated from 10 infected individuals to investigate the impact of accumulated mutations on viral fitness by comparing 6-mo viruses to their cognate T/F viruses. RESULTS All ten 6-mo viruses were less fit than their cognate T/F viruses. Moreover, the fitness losses of the 6-mo viruses correlated with the decrease in viral loads from the peak of viremia. CONCLUSION These results show that the mutations accumulated during half a year post infection collectively reduce viral fitness and thereby contribute to lowering viral loads.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Donglai Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA; Division of the Second in Vitro Diagnostic, National Institute for Food and Drug Control, Beijing 100050, China
| | - Tao Zuo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, Jilin, China; Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Rep 2019; 25:893-908.e7. [PMID: 30355496 PMCID: PMC6426304 DOI: 10.1016/j.celrep.2018.09.087] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Densely arranged N-linked glycans shield the HIV-1 envelope (Env) trimer from antibody recognition. Strain-specific breaches in this shield (glycan holes) can be targets of vaccine-induced neutralizing antibodies that lack breadth. To understand the interplay between glycan holes and neutralization breadth in HIV-1 infection, we developed a sequence-and structure-based approach to identify glycan holes for individual Env sequences that are shielded in most M-group viruses. Applying this approach to 12 longitudinally followed individuals, we found that transmitted viruses with more intact glycan shields correlated with development of greater neutralization breadth. Within 2 years, glycan acquisition filled most glycan holes present at transmission, indicating escape from hole-targeting neutralizing antibodies. Glycan hole filling generally preceded the time to first detectable breadth, although time intervals varied across hosts. Thus, completely glycan-shielded viruses were associated with accelerated neutralization breadth development, suggesting that Env immunogens with intact glycan shields may be preferred components of AIDS vaccines. Wagh et al. show that transmitted viruses with more intact glycan shields are correlated with development of neutralization breadth in HIV-1-infected individuals. This is consistent with previous findings that glycan holes in Env immunogens are targeted by strain-specific neutralizing responses, and suggests that immunogens with intact glycan Shields may be advantageous.
Collapse
|
39
|
Abstract
DESIGN This was an exploratory, single-arm clinical trial that tested the immune enhancement effects of 24-weeks of Toll-like receptor 9 (TLR9) agonist (MGN1703; Lefitolimod; 60 mg × 2 weekly) therapy. METHODS We enrolled HIV-1-infected individuals on suppressive combination antiretroviral therapy. Safety was assessed throughout the study. The primary outcome was reduction in total CD4 T-cell viral DNA levels. Secondary outcomes included safety, detailed immunological and virological analyses, and time to viral rebound (viral load > 5000 copies/ml) after randomization into an analytical treatment interruption (ATI). RESULTS A total of 12 individuals completed the treatment phase and nine completed the ATI. Adverse events were limited and consistent with previous reports for MGN1703. Although the dosing regimen led to potent T-cell activation and increased HIV-1-specific T-cell responses, there were no cohort-wide changes in persistent virus (total CD4 T cells viral DNA; P = 0.34). No difference in time to rebound was observed between the ATI arms (log rank P = 0.25). One of nine ATI participants, despite harboring a large replication-competent reservoir, controlled viremia for 150 days via both HIV-1-specific cellular and antibody-mediated immune responses. CONCLUSION A period of 24 weeks of MGN1703 treatment was safe and improved innate as well as HIV-1-specific adaptive immunity in HIV-1+ individuals. These findings support the incorporation of TLR9 agonism into combination HIV-1 cure strategies. TRIAL NAME AND REGISTRATION TLR9 Enhancement of antiviral immunity in chronic HIV-1 infection: a phase 1B/2A trial; ClinicalTrials.gov NCT02443935.
Collapse
|
40
|
Bons E, Regoes RR. Virus dynamics and phyloanatomy: Merging population dynamic and phylogenetic approaches. Immunol Rev 2019; 285:134-146. [PMID: 30129202 DOI: 10.1111/imr.12688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In evolutionary biology and epidemiology, phylodynamic methods are widely used to infer population biological characteristics, such as the rates of replication, death, migration, or, in the epidemiological context, pathogen spread. More recently, these methods have been used to elucidate the dynamics of viruses within their hosts. Especially the application of phylogeographic approaches has the potential to shed light on anatomical colonization pathways and the exchange of viruses between distinct anatomical compartments. We and others have termed this phyloanatomy. Here, we review the promise and challenges of phyloanatomy, and compare them to more classical virus dynamics and population genetic approaches. We argue that the extremely strong selection pressures that exist within the host may represent the main obstacle to reliable phyloanatomic analysis.
Collapse
Affiliation(s)
- Eva Bons
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Prévost J, Pickering S, Mumby MJ, Medjahed H, Gendron-Lepage G, Delgado GG, Dirk BS, Dikeakos JD, Stürzel CM, Sauter D, Kirchhoff F, Bibollet-Ruche F, Hahn BH, Dubé M, Kaufmann DE, Neil SJD, Finzi A, Richard J. Upregulation of BST-2 by Type I Interferons Reduces the Capacity of Vpu To Protect HIV-1-Infected Cells from NK Cell Responses. mBio 2019; 10:e01113-19. [PMID: 31213558 PMCID: PMC6581860 DOI: 10.1128/mbio.01113-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023] Open
Abstract
The HIV-1 accessory protein Vpu enhances viral release by counteracting the restriction factor BST-2. Furthermore, Vpu promotes NK cell evasion by downmodulating cell surface NTB-A and PVR, known ligands of the NK cell receptors NTB-A and DNAM-1, respectively. While it has been established that Vpu's transmembrane domain (TMD) is required for the interaction and intracellular sequestration of BST-2, NTB-A, and PVR, it remains unclear how Vpu manages to target these proteins simultaneously. In this study, we show that upon upregulation, BST-2 is preferentially downregulated by Vpu over its other TMD substrates. We found that type I interferon (IFN)-mediated BST-2 upregulation greatly impairs the ability of Vpu to downregulate NTB-A and PVR. Our results suggest that occupation of Vpu by BST-2 affects its ability to downregulate other TMD substrates. Accordingly, knockdown of BST-2 increases Vpu's potency to downmodulate NTB-A and PVR in the presence of type I IFN treatment. Moreover, we show that expression of human BST-2, but not that of the macaque orthologue, decreases Vpu's capacity to downregulate NTB-A. Importantly, we show that type I IFNs efficiently sensitize HIV-1-infected cells to NTB-A- and DNAM-1-mediated direct and antibody-dependent NK cell responses. Altogether, our results reveal that type I IFNs decrease Vpu's polyfunctionality, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses.IMPORTANCE The restriction factor BST-2 and the NK cell ligands NTB-A and PVR are among a growing list of membrane proteins found to be downregulated by HIV-1 Vpu. BST-2 antagonism enhances viral release, while NTB-A and PVR downmodulation contributes to NK cell evasion. However, it remains unclear how Vpu can target multiple cellular factors simultaneously. Here we provide evidence that under physiological conditions, BST-2 is preferentially targeted by Vpu over NTB-A and PVR. Specifically, we show that type I IFNs decrease Vpu's polyfunctionality by upregulating BST-2, thus reducing its capacity to protect HIV-1-infected cells from NK cell responses. This indicates that there is a hierarchy of Vpu substrates upon IFN treatment, revealing that for the virus, targeting BST-2 as part of its resistance to IFN takes precedence over evading NK cell responses. This reveals a potential weakness in HIV-1's immunoevasion mechanisms that may be exploited therapeutically to harness NK cell responses against HIV-1.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
42
|
CD4- and Time-Dependent Susceptibility of HIV-1-Infected Cells to Antibody-Dependent Cellular Cytotoxicity. J Virol 2019; 93:JVI.01901-18. [PMID: 30842324 DOI: 10.1128/jvi.01901-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/24/2019] [Indexed: 12/24/2022] Open
Abstract
HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) antibodies within HIV-1-positive (HIV-1+) individuals predominantly target CD4-induced (CD4i) epitopes on HIV-1 envelope glycoprotein (Env). These CD4i epitopes are usually concealed on the surface of infected cells due to CD4 downregulation by the HIV-1 accessory proteins Nef and Vpu. We hypothesized that early-stage infected cells in the process of downregulating CD4 could be more susceptible to ADCC than late-stage infected cells that have fully downregulated CD4. There was significantly higher binding of antibodies within plasma from HIV-1-infected individuals to early-stage infected cells expressing intermediate levels of CD4 (CD4-intermediate cells) than in late-stage infected cells expressing low levels of CD4 (CD4-low cells). However, we noted that HIV-1-uninfected bystander cells and HIV-1-infected cells, at various stages of downregulating CD4, were all susceptible to NK cell-mediated ADCC. Importantly, we observed that the cytolysis of bystander cells and early infected cells in this culture system was driven by sensitization of target cells by inoculum-derived HIV-1 Env or virions. This phenomenon provided Env to target cells prior to de novo Env expression, resulting in artifactual ADCC measurements. Future studies should take into consideration the inherent caveats of in vitro infection systems and develop improved models to address the potential role for ADCC against cells with nascent HIV-1 infection.IMPORTANCE An increasing body of evidence suggests that ADCC contributes to protection against HIV-1 acquisition and slower HIV-1 disease progression. Targeting cells early during the infection cycle would be most effective in limiting virus production and spread. We hypothesized that there could be a time-dependent susceptibility of HIV-1-infected cells to ADCC in regard to CD4 expression. We observed NK cell-mediated ADCC of HIV-1-infected cells at multiple stages of CD4 downregulation. Importantly, ADCC of early infected cells appeared to be driven by a previously unappreciated problem of soluble Env and virions from the viral inoculum sensitizing uninfected cells to ADCC prior to de novo Env expression. These results have implications for studies examining ADCC against cells with nascent HIV-1 infection.
Collapse
|
43
|
Abstract
Effective vaccination is based on three critical aspects of the B-cell response towards infectious agents: (i) that B-cells can generate specific antibodies towards a vast molecular diversity of antigens; proteins, sugars, DNA and lipids. There seems to be no limit to the ability to raise antibodies to everything. (ii) once stimulated, B-cells can perfect their antibodies through affinity maturation to complement every nook and cranny of the epitope and (iii) that the pathogen remains genetically stable and does not change to any great extent. Thus, antibodies produced against the vaccine and subsequent boosts recognize the viral virulent field isolates in future encounters and effectively knock them out. However, some vaccine targets, such as flu virus and HIV, are extremely genetically dynamic. The rapid genetic drift of these viruses renders them moving targets which assist in their ability to evade immune surveillance. Here we postulate that in the case of hyper-variable pathogens the B-cell response actually might be “too good”. We propose that restricting B-cell activities may prove effective in counteracting the genetic diversity of variant viruses such as flu and HIV. We suggest two levels of “B-cell restriction”: (i) to focus the B-cell response exclusively towards neutralizing epitopes by creating epitope-based immunogens; (ii) to restrict affinity maturation of B-cells to prevent the production of overly optimized exquisitely specific antibodies. Together, these “B-cell restrictions” provide a new modality for vaccine design.
Collapse
Affiliation(s)
- Jonathan M Gershoni
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Ramat Aviv , Tel Aviv , Israel
| |
Collapse
|
44
|
Moore PL. The Neutralizing Antibody Response to the HIV-1 Env Protein. Curr HIV Res 2019; 16:21-28. [PMID: 29173180 DOI: 10.2174/1570162x15666171124122044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND A vaccine able to elicit broadly neutralizing antibodies capable of blocking infection by global viruses has not been achieved, and remains a key public health challenge. OBJECTIVE During infection, a robust strain-specific neutralizing response develops in most people, but only a subset of infected people develop broadly neutralizing antibodies. Understanding how and why these broadly neutralizing antibodies develop has been a focus of the HIV-1 vaccine field for many years, and has generated extraordinary insights into the neutralizing response to HIV-1 infection. RESULTS This review describes the features, targets and developmental pathways of early strainspecific antibodies and later broadly neutralizing antibodies, and explores the reasons such broad antibodies are not more commonly elicited during infection. CONCLUSION The insights from these studies have been harnessed for the development of pioneering new vaccine approaches that seek to drive B cell maturation towards breadth. Overall, this review describes how findings from infected donors have impacted on active and passive immunization approaches that seek to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
45
|
Alsahafi N, Bakouche N, Kazemi M, Richard J, Ding S, Bhattacharyya S, Das D, Anand SP, Prévost J, Tolbert WD, Lu H, Medjahed H, Gendron-Lepage G, Ortega Delgado GG, Kirk S, Melillo B, Mothes W, Sodroski J, Smith AB, Kaufmann DE, Wu X, Pazgier M, Rouiller I, Finzi A, Munro JB. An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host Microbe 2019; 25:578-587.e5. [PMID: 30974085 PMCID: PMC6592637 DOI: 10.1016/j.chom.2019.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
The HIV-1 envelope glycoprotein (Env) (gp120-gp41)3 is the target for neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC). HIV-1 Env is flexible, sampling different conformational states. Before engaging CD4, Env adopts a closed conformation (State 1) that is largely antibody resistant. CD4 binding induces an intermediate state (State 2), followed by an open conformation (State 3) that is susceptible to engagement by antibodies that recognize otherwise occluded epitopes. We investigate conformational changes in Env that induce ADCC in the presence of a small-molecule CD4-mimetic compound (CD4mc). We uncover an asymmetric Env conformation (State 2A) recognized by antibodies targeting the conserved gp120 inner domain and mediating ADCC. Sera from HIV+ individuals contain these antibodies, which can stabilize Env State 2A in combination with CD4mc. Additionally, triggering State 2A on HIV-infected primary CD4+ T cells exposes epitopes that induce ADCC. Strategies that induce this Env conformation may represent approaches to fight HIV-1 infection.
Collapse
Affiliation(s)
- Nirmin Alsahafi
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Nordine Bakouche
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohsen Kazemi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Sudipta Bhattacharyya
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Durba Das
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - William D Tolbert
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | | | | | | | - Sharon Kirk
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bruno Melillo
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Isabelle Rouiller
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Molecular Identification of Transmitted/Founder Hepatitis C Viruses and Their Progeny by Single Genome Sequencing. Methods Mol Biol 2019; 1911:139-155. [PMID: 30593623 DOI: 10.1007/978-1-4939-8976-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic hepatitis C virus (HCV) infection exists as a complex mixture of genetically distinct viruses, commonly referred to as a "quasispecies." Quasispecies complexity can vary substantially during the course of natural infection as a consequence of viral population "bottlenecking." This occurs at the time of transmission from one individual to the next and during the course of chronic infection of an individual when adaptive immune responses eliminate certain viruses but allow others to escape and expand. Antiviral treatment with drugs that fail to eradicate virus can also lead to virus population bottlenecks and emergence of drug-resistant variants. Single genome sequencing (SGS) combined with mathematical modeling and phylogenetic inference is a recently described approach for characterizing the HCV quasispecies in unprecedented detail, allowing for the first time the retention of genetic linkage across genes and near full-length genomes and precise identification of transmitted/founder (T/F) genomes. Here, we describe the methodological approach to SGS and show how this strategy allows for the precise and unambiguous molecular identification of transmitted viruses as well as those that repopulate the body after drug or immune-mediated selective sweeps. This is an enabling experimental strategy that allows for a precise genetic, biologic, and antigenic characterization of HCV viruses that are responsible for transmission and persistence. Such an approach can be particularly valuable to future HCV vaccine design efforts, as it has been for human immunodeficiency virus type 1 (HIV-1).
Collapse
|
47
|
Ji Y, Han X, Tian W, Gao Y, Jin S, Zhang L, Shang H. V4 region of the HIV-1 envelope gene mediates immune escape and may not promote the development of broadly neutralizing antibodies. Vaccine 2018; 36:7700-7707. [PMID: 30389191 DOI: 10.1016/j.vaccine.2018.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
Abstract
To date, inducing the production of broadly neutralizing antibodies (bnAbs) against HIV-1 in humans has been unsuccessful. Several studies have explored the coevolution of HIV-1 and neutralizing antibodies (nAbs), but little is known about what affects the lack of bnAbs after long-term infection. A better understanding of the coevolution of the virus and nAbs in cases involving no bnAb production will help in the design of an effective HIV-1 vaccine. An individual with acute CRF01_AE HIV-1 infection who lacked bnAbs at just over 2 years post-infection (p.i.) was identified from a cohort of HIV negative men who have sex with men. The coevolution of the viral envelope gene and nAbs was studied over 741 days p.i. Strain-specific antibodies (ss-Abs) to the transmitted/founder (T/F) virus developed within 54 days p.i., but plasma collected at subsequent time points could not neutralize synchronous viruses until 557 days p.i., when the plasma acquired low-level synchronous but not heterologous neutralizing activity. The V4 region of envelope gene mutated firstly and continually evolve up to 2 years p.i. Multiple variations in the V4 region, including substitutions, deletions and glycosylation mutations, were driven by ss-Abs and mediated immune escape partially by impacting the binding of nAbs to the virus. The remarkable variations in the V4 region mediated immune escape from ss-Abs and contributed to the affinity maturation of ss-Abs against the T/F virus but may not promote the development of bnAbs. Thus, the V4 region might not be a good target for an HIV-1 vaccine.
Collapse
Affiliation(s)
- Yangtao Ji
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
| | - Wen Tian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
| | - Yang Gao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China
| | - Su Jin
- Comprehensive AIDS Research Center, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084,China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084,China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China.
| |
Collapse
|
48
|
Bons E, Bertels F, Regoes RR. Estimating the mutational fitness effects distribution during early HIV infection. Virus Evol 2018; 4:vey029. [PMID: 30310682 PMCID: PMC6172364 DOI: 10.1093/ve/vey029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The evolution of HIV during acute infection is often considered a neutral process. Recent analysis of sequencing data from this stage of infection, however, showed high levels of shared mutations between independent viral populations. This suggests that selection might play a role in the early stages of HIV infection. We adapted an existing model for random evolution during acute HIV-infection to include selection. Simulations of this model were used to fit a global mutational fitness effects distribution to previously published sequencing data of the env gene of individuals with acute HIV infection. Measures of sharing between viral populations were used as summary statistics to compare the data to the simulations. We confirm that evolution during acute infection is significantly different from neutral. The distribution of mutational fitness effects is best fit by a distribution with a low, but significant fraction of beneficial mutations and a high fraction of deleterious mutations. While most mutations are neutral or deleterious in this model, about 5% of mutations are beneficial. These beneficial mutations will, on average, result in a small but significant increase in fitness. When assuming no epistasis, this indicates that, at the moment of transmission, HIV is near, but not on the fitness peak for early infection.
Collapse
Affiliation(s)
- Eva Bons
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| | - Frederic Bertels
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland.,Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Germany
| | - Roland R Regoes
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| |
Collapse
|
49
|
Subtle differences in selective pressures applied on the envelope gene of HIV-1 in pregnant versus non-pregnant women. INFECTION GENETICS AND EVOLUTION 2018; 62:141-150. [PMID: 29678797 DOI: 10.1016/j.meegid.2018.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Pregnancy is associated with modulations of maternal immunity that contribute to foeto-maternal tolerance. To understand whether and how these alterations impact antiviral immunity, a detailed cross-sectional analysis of selective pressures exerted on HIV-1 envelope amino-acid sequences was performed in a group of pregnant (n = 32) and non-pregnant (n = 44) HIV-infected women in absence of treatment with antiretroviral therapy (ART). Independent of HIV-1 subtype, p-distance, dN and dS were all strongly correlated with one another but were not significantly different in pregnant as compared to non-pregnant patients. Differential levels of selective pressure applied on different Env subdomains displayed similar yet non-identical patterns between the two groups, with pressure applied on C1 being significantly lower in constant regions C1 and C2 than in V1, V2, V3 and C3. To draw a general picture of the selection applied on the envelope and compensate for inter-individual variations, we performed a binomial test on selection frequency data pooled from pregnant and non-pregnant women. This analysis uncovered 42 positions, present in both groups, exhibiting statistically-significant frequency of selection that invariably mapped to the surface of the Env protein, with the great majority located within epitopes recognized by Env-specific antibodies or sites associated with the development of cross-reactive neutralizing activity. The median frequency of occurrence of positive selection per site was significantly lower in pregnant versus non-pregnant women. Furthermore, examination of the distribution of positively selected sites using a hypergeometric test revealed that only 2 positions (D137 and S142) significantly differed between the 2 groups. Taken together, these result indicate that pregnancy is associated with subtle yet distinctive changes in selective pressures exerted on the HIV-1 Env protein that are compatible with transient modulations of maternal immunity.
Collapse
|
50
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|