1
|
Wang H, Zhu W, Li Y, Sun M. Neutralizing antibody landscape of the non-polio Enteroviruses and future strategy. Front Immunol 2025; 15:1524356. [PMID: 39877351 PMCID: PMC11772190 DOI: 10.3389/fimmu.2024.1524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
The non-polio Enteroviruses (NPEVs), consist of enteroviruses, coxsackieviruses, echoviruses, and rhinoviruses, are causative agents for a wide variety of diseases, ranging from common cold to encephalitis and acute flaccid paralysis (AFP). In recent years, several NPEVs have become serious public health threats, include EV-A71, which has caused epidemics of hand-foot-and-mouth disease (HMFD) in Southeast Asia, and EV-D68, which caused outbreaks of severe respiratory disease in children worldwide. Infections with these viruses are associated with neurological diseases like aseptic meningitis and AFP. Currently, apart from inactivated EV-A71 vaccines that were developed in China, no effective measures are available to prevent or treat NPEV infections. Antibody-mediated immunity is crucial for preventing and limiting viral infections, and potent neutralizing antibodies could serve as potential therapeutic agents. In this review, we describe recent progress in the NPEVs neutralization antibodies, summarizing the characteristics, breadth, and potency against NPEVs, such as EV-A71, CVA16, EV-D68, and echovirus. We focus on not only through the study of viral epitopes but also through the understanding of virus-antibody interactions. Also, we decipher the role of antibodies in the attachment of the virus to receptors, internalization, and uncoating process, providing insight into virus neutralization mechanisms. Moreover, bi-specific antibodies or multivalent antibodies with better potency are also discussed. Therefore, an in-depth understanding of structures of enterovirus and mechanisms of antibody neutralization should be useful for future strategies in guiding the design of a rational antiviral agent against NPEVs infections.
Collapse
Affiliation(s)
- Hongye Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ya Li
- Department of Laboratory Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
2
|
Tee HK, Crouzet S, Muliyil A, Mathez G, Cagno V, Dal Peraro M, Antanasijevic A, Clément S, Tapparel C. Virus adaptation to heparan sulfate comes with capsid stability tradeoff. eLife 2024; 13:e98441. [PMID: 39714930 PMCID: PMC11717363 DOI: 10.7554/elife.98441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Simon Crouzet
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Arunima Muliyil
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Matteo Dal Peraro
- Interschool Institute of Bioengineering (SV), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aleksandar Antanasijevic
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Zhang W, Li Q, Yi D, Zheng R, Liu G, Liu Q, Guo S, Zhao J, Wang J, Ma L, Ding J, Zhou R, Ren Y, Sun T, Zhang A, Li X, Zhang Y, Cen S. Novel virulence determinants in VP1 regulate the assembly of enterovirus-A71. J Virol 2024; 98:e0165524. [PMID: 39535185 PMCID: PMC11650969 DOI: 10.1128/jvi.01655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Enterovirus-A71 (EV-A71) is the second most common causative agent after coxsackievirus A16 of hand, foot, and mouth disease. The capsids of EV-A71 consist of 60 copies of each of the four viral structural proteins (VP1-VP4). VP1 is highly exposed and surface accessible, playing a central role in virus particle assembly, attachment, and entry. To gain insight into the role of highly conserved residues at positions 75, 78, and 88 in the capsid protein VP1 in these processes, an alanine-scanning analysis was performed using an infectious cDNA clone of EV-A71. Our study revealed that the substitutions of VP1-T75A, VP1-T78A, and VP1-G88A could affect the assembly of the virus capsid proteins, resulting in the production of abnormal virions with reduced infectivity. Specifically, the substitution of VP1-T75A affected the maturation cleavage of the VP0 precursor, leading to deficiencies in binding to receptor scavenger receptor class B2 (SCARB2), viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, a significant reduction in virion-associated genomic RNA was observed, suggesting that more noninfectious empty particles were produced during viral assembly. Interestingly, the VP1-T75A variant showed weak replication in cell cultures but demonstrated increased virulence in BALB/c neonatal mice, which might be due to the difference in viral receptors among mammalian species. Taken together, our data revealed the important role of the highly conserved residues T75, T78, and G88 in VP1 protein in the infectivity of EV-A71. Characterizing these novel determinants of EV-A71 virulence would contribute to rationally developing effective treatments and broadly protective vaccine candidates. IMPORTANCE EV-A71 causes hand, foot, and mouth disease in children. In this study, we discovered three highly conserved residues at positions 75, 78, and 88 of the capsid protein VP1 as the potential virulence determinants of EV-A71, which can influence viral replication by regulating the assembly of EV-A71. Mechanistic studies revealed that VP1-T75A could affect the maturation cleavage of the VP0 precursor, resulting in deficiencies in binding to the receptor SCARB2, viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, more noninfectious empty particles were produced during viral assembly. The discovery of these novel determinants of EV-A71 virulence will promote the study of the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Guihua Liu
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Saisai Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongcheng Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Lulla V, Sridhar A. Understanding neurotropic enteric viruses: routes of infection and mechanisms of attenuation. Cell Mol Life Sci 2024; 81:413. [PMID: 39365457 PMCID: PMC11452578 DOI: 10.1007/s00018-024-05450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Zhang X, Yin Z, Zhang J, Guo H, Li J, Nie X, Wang S, Zhang L. Enterovirus 71 Activates Plasmacytoid Dendritic Cell-Dependent PSGL-1 Binding Independent of Productive Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1782-1790. [PMID: 38629901 PMCID: PMC11102030 DOI: 10.4049/jimmunol.2300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/20/2024] [Indexed: 05/20/2024]
Abstract
Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.
Collapse
Affiliation(s)
- Xuyuan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhao Yin
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Jialong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Nie
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shouli Wang
- Department of Cardiology, Strategic Support Force Characteristic Medical Center, The Chinese People’s Liberation Army, Beijing, China
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, Perera D, Sam IC, Chan YF. Substitution of Coxsackievirus A16 VP1 BC and EF Loop Altered the Protective Immune Responses in Chimera Enterovirus A71. Vaccines (Basel) 2023; 11:1363. [PMID: 37631931 PMCID: PMC10458053 DOI: 10.3390/vaccines11081363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
Collapse
Affiliation(s)
- Xiu Hui Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Wei Lim Chong
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kartini Jasni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Saiful Qushairi Suarni
- Comparative Medicine and Technology Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia;
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (X.H.T.); (I.-C.S.)
| |
Collapse
|
7
|
Weng KF, Tee HK, Tseligka ED, Cagno V, Mathez G, Rosset S, Nagamine CM, Sarnow P, Kirkegaard K, Tapparel C. Variant enterovirus A71 found in immune-suppressed patient binds to heparan sulfate and exhibits neurotropism in B-cell-depleted mice. Cell Rep 2023; 42:112389. [PMID: 37058406 PMCID: PMC10590055 DOI: 10.1016/j.celrep.2023.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease outbreaks with neurological complications and deaths. We previously isolated an EV-A71 variant in the stool, cerebrospinal fluid, and blood of an immunocompromised patient who had a leucine-to-arginine substitution on the VP1 capsid protein, resulting in increased heparin sulfate binding. We show here that this mutation increases the virus's pathogenicity in orally infected mice with depleted B cells, which mimics the patient's immune status, and increases susceptibility to neutralizing antibodies. However, a double mutant with even greater heparin sulfate affinity is not pathogenic, suggesting that increased heparin sulfate affinity may trap virions in peripheral tissues and reduce neurovirulence. This research sheds light on the increased pathogenicity of variant with heparin sulfate (HS)-binding ability in individuals with decreased B cell immunity.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Kang Tee
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Gregory Mathez
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Stéphane Rosset
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
8
|
Koh JX, Masomian M, Anasir MI, Ong SK, Poh CL. Insights into In Vitro Adaptation of EV71 and Analysis of Reduced Virulence by In Silico Predictions. Vaccines (Basel) 2023; 11:vaccines11030629. [PMID: 36992213 DOI: 10.3390/vaccines11030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant.
Collapse
Affiliation(s)
- Jia Xuen Koh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Malihe Masomian
- Research and Development Department, Pure Biologics SA, Duńska 11, 54-427 Wroclaw, Poland
| | - Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| |
Collapse
|
9
|
Ji W, Sun T, Li D, Chen S, Yang H, Jin Y, Duan G. TBK1 and IRF3 are potential therapeutic targets in Enterovirus A71-associated diseases. PLoS Negl Trop Dis 2023; 17:e0011001. [PMID: 36626364 PMCID: PMC9831319 DOI: 10.1371/journal.pntd.0011001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is an important causative agent of hand-foot-and-mouth disease (HFMD) associated with enormous healthcare and socioeconomic burden. Although a range of studies about EV-A71 pathogenesis have been well described, the underlying molecular mechanism in terms of innate immune response is still not fully understood, especially the roles of TANK-binding kinase 1 (TBK1) and interferon-regulatory factor 3 (IRF3). METHODOLOGY/PRINCIPAL FINDINGS Here, we applied TBK1 inhibitor and IRF3 agonist, for the first time, to evaluate the antiviral activities of TBK1 and IRF3 in vivo. We found that, through regulating EV-A71-induced type I interferon (IFN) response, IRF3 agonist effectively alleviated EV-A71-induced illness, while TBK1 inhibitor aggravated disease progression. In addition, EV-A71 replication was suppressed in EVA-71-infected mice administrated with IRF3 agonist. On the other hand, more severe pathological alterations of neuronal degeneration, muscle fiber breaks, fractured or fused alveolar walls, and diffuse congestion occurred in EVA-71-infected mice treated with TBK1 inhibitor administration. Furthermore, we determined the concentrations of interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1β, monocyte chemotactic protein-1 (MCP-1), and IL-10 in both lungs and brains of mice and found that TBK1 inhibitor promoted EV-A71-induced inflammatory response, while IRF3 agonist alleviated it, which was consistent with clinical manifestations and pathological alterations. CONCLUSIONS Collectively, our findings suggest that TBK1 and IRF3 are potential therapeutic targets in EV-A71-induced illness.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Sridhar A, Depla JA, Mulder LA, Karelehto E, Brouwer L, Kruiswijk L, Vieira de Sá R, Meijer A, Evers MM, van Kuppeveld FJM, Pajkrt D, Wolthers KC. Enterovirus D68 Infection in Human Primary Airway and Brain Organoids: No Additional Role for Heparan Sulfate Binding for Neurotropism. Microbiol Spectr 2022; 10:e0169422. [PMID: 36154279 PMCID: PMC9603061 DOI: 10.1128/spectrum.01694-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that can cause outbreaks of acute flaccid paralysis (AFP), a polio-like disease. Before 2010, EV-D68 was a rare pathogen associated with mild respiratory symptoms, but the recent EV-D68 related increase in severe respiratory illness and outbreaks of AFP is not yet understood. An explanation for the rise in severe disease is that it may be due to changes in the viral genome resulting in neurotropism. In this regard, in addition to sialic acid, binding to heparan sulfate proteoglycans (HSPGs) has been identified as a feature for viral entry of some EV-D68 strains in cell lines. Studies in human primary organotypic cultures that recapitulate human physiology will address the relevance of these HSPG-binding mutations for EV-D68 infection in vivo. Therefore, in this work, we studied the replication and neurotropism of previously determined sialic acid-dependent and HSPG-dependent strains using primary human airway epithelial (HAE) cultures and induced human pluripotent stem cell (iPSC)-derived brain organoids. All three strains (B2/2042, B2/947, and A1/1348) used in this study infected HAE cultures and human brain organoids (shown for the first time). Receptor-blocking experiments in both cultures confirm that B2/2042 infection is solely dependent on sialic acid, while B2/947 and A1/1348 (HSPG to a lesser extent) binds to sialic acid and HSPG for cell entry. Our data suggest that HSPG-binding can be used by EV-D68 for entry in human physiological models but offers no advantage for EV-D68 infection of brain cells. IMPORTANCE Recent outbreaks of enterovirus D68, a nonpolio enterovirus, is associated with a serious neurological condition in young children, acute flaccid myelitis (AFM). As there is no antiviral treatment or vaccine available for EV-D68 it is important to better understand how EV-D68 causes AFM and why only recent outbreaks are associated with AFM. We investigated if a change in receptor usage of EV-D68 increases the virulence of EV-D68 in the airway or the central nervous system and thus could explain the increase in AFM cases. We studied this using physiologically relevant human airway epithelium and cerebral organoid cultures that are physiologically relevant human models. Our data suggest that heparan sulfate proteoglycans can be used by EV-D68 as an additional entry receptor in human physiological models but offers no advantage for EV-D68 infection of brain cells, and our data show the potential of these 46 innovative models for virology.
Collapse
Affiliation(s)
- Adithya Sridhar
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Josse A. Depla
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
- uniQure Biopharma B.V., Amsterdam, The Netherlands
| | - Lance A. Mulder
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Eveliina Karelehto
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Lieke Brouwer
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Leonie Kruiswijk
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| | | | - Adam Meijer
- National Institute for Public Health and Environment, Centre for Infectious Diseases Research and Laboratory Surveillance, Bilthoven, The Netherlands
| | | | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dasja Pajkrt
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital Department of Pediatric Infectious Diseases, Amsterdam, The Netherlands
| | - Katja C. Wolthers
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Department of Medical Microbiology, OrganoVIR Labs, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Chang X, Lin Q, Zhang Q, Hu J, Tursun G, Deng Y, Guo C, Wang X. Molecular Analysis of Caprine Enterovirus Circulating in China during 2016–2021: Evolutionary Significance. Viruses 2022; 14:v14051051. [PMID: 35632794 PMCID: PMC9143109 DOI: 10.3390/v14051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Here, we report the characterization of 13 novel caprine/ovine enterovirus strains isolated from different regions in China during 2016–2021. Immunoperoxidase monolayer assay showed that these viral strains shared strong cross-reaction with the previously reported caprine enterovirus CEV-JL14. Alignment analysis of the complete nucleotide sequences revealed 79.2%–87.8% and 75.0%–76.7% sequence identity of these novel caprine enterovirus strains to CEV-JL14 and TB4-OEV, respectively. Phylogenetic analyses clustered these novel strains to EV-G based on the amino acid sequences of P1 and 2C+3CD. Moreover, phylogenetic analysis of these caprine enterovirus strains identified three new EV-G types using VP1 sequences. These results demonstrate the genetic variations and the evolution of caprine enterovirus.
Collapse
|
12
|
Guo D, Yu X, Wang D, Li Z, Zhou Y, Xu G, Yuan B, Qin Y, Chen M. SLC35B2 Acts in a Dual Role in the Host Sulfation Required for EV71 Infection. J Virol 2022; 96:e0204221. [PMID: 35420441 PMCID: PMC9093107 DOI: 10.1128/jvi.02042-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
As an important neurotropic enterovirus, enterovirus 71 (EV71) is occasionally associated with severe neurological diseases and high mortality rates in infants and young children. Understanding the interaction between host factors and EV71 will play a vital role in developing antivirals and optimizing vaccines. Here, we performed a genome-wide CRISPR-Cas9 knockout screen and revealed that scavenger receptor class B member 2 (SCARB2), solute carrier family 35 member B2 (SLC35B2), and beta-1,3-glucuronyltransferase 3 (B3GAT3) are essential in facilitating EV71 replication. Subsequently, the exploration of molecular mechanisms suggested that the knockout of SLC35B2 or B3GAT3, not SCARB2, led to a remarkable decrease in the binding of EV71 to cells and internalization into cells. Furthermore, we found that the infection efficiency for EV71 was positively correlated with the level of host cell sulfation, not simply with the amount of heparan sulfate, suggesting that an unidentified sulfated protein(s) must contribute to EV71 infection. In support of this idea, we screened possible sulfated proteins among the proteinous receptors for EV71 and confirmed that SCARB2 could uniquely interact with both tyrosyl protein sulfotransferases in humans. We then performed mass spectrometric analysis of SCARB2, identifying five sites with tyrosine sulfation. The function verification test indicated that there were more than five tyrosine-sulfated sites on SCARB2. Finally, we constructed a model for EV71 entry in which both heparan sulfate and SCARB2 are regulated by SLC35B2 and act cooperatively to support viral binding, internalization, and uncoating. Taken together, this is the first time that we performed the pooled CRISPR-Cas9 genetic screening to investigate the interplay of host cells and EV71. Furthermore, we found that a novel host factor, SLC35B2, played a dual role in regulating the overall sulfation comprising heparan sulfate sulfation and protein tyrosine sulfation, which are critical for EV71 entry. IMPORTANCE As the most important nonpolio neurotropic enterovirus lacking specific treatments, EV71 can transmit to the central nervous system, leading to severe and fatal neurological complications in infants and young children. The identification of new factors that facilitate or inhibit EV71 replication is crucial to uncover the mechanisms of viral infection and pathogenesis. To date, only a few host factors involved in EV71 infection have been characterized. Herein, we conducted a genome-wide CRISPR-Cas9 functional knockout (GeCKO) screen for the first time to study EV71 in HeLa cells. The screening results are presented as a ranked list of candidates, including 518 hits in the positive selection that facilitate EV71 replication and 1,044 hits in the negative selection that may be essential for cell growth and survival or for suppressing EV71 infection. We subsequently concentrated on the top three hits in the positive selection: SCARB2, SLC35B2, and B3GAT3. The knockout of any of these three genes confers strong resistance against EV71 infection. We confirmed that EV71 infection is codependent on two receptors, heparan sulfate and SCARB2. We also identified a host entry factor, SLC35B2, indirectly facilitating EV71 infection through regulation of the host cell sulfation, and determined a novel posttranslational modification, protein tyrosine sulfation existing in SCARB2. This study revealed that EV71 infectivity exhibits a significant positive correlation with the level of cellular sulfation regulated by SLC35B2. Due to the sulfation pathway being required for many distinct viruses, including but not limited to EV71 and respiratory syncytial virus (RSV), which were tested in this study, SLC35B2 represents a target of broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dan Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guodong Xu
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Bing Yuan
- Wuhan Canvest Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Machado RS, Gomes-Neto F, Aguiar-Oliveira ML, Burlandy FM, Tavares FN, da Silva EE, Sousa IP. Analysis of Coxsackievirus B5 Infections in the Central Nervous System in Brazil: Insights into Molecular Epidemiology and Genetic Diversity. Viruses 2022; 14:v14050899. [PMID: 35632640 PMCID: PMC9146130 DOI: 10.3390/v14050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is one of the most prevalent enteroviruses types in humans and causes annual epidemics worldwide. In the present study, we explored viral genetic diversity, molecular and epidemiological aspects of CVB5 obtained from cerebrospinal fluid and stool samples of patients with aseptic meningitis or acute flaccid paralysis, information that is still scarce in Brazil. From 2005 to 2018, 57 isolates of CVB5 were identified in the scope of the Brazilian Poliomyelitis Surveillance Program. Phylogenetic analyses of VP1 sequences revealed the circulation of two CVB5 genogroups, with genogroup B circulating until 2017, further replaced by genogroup A. Network analysis based on deduced amino acid sequences showed important substitutions in residues known to play critical roles in viral host tropism, cell entry, and viral antigenicity. Amino acid substitutions were investigated by the Protein Variation Effect Analyzer (PROVEAN) tool, which revealed two deleterious substitutions: T130N and T130A. To the best of our knowledge, this is the first report to use in silico approaches to determine the putative impact of amino acid substitutions on the CVB5 capsid structure. This work provides valuable information on CVB5 diversity associated with central nervous system (CNS) infections, highlighting the importance of evaluating the biological impact of certain amino acids substitutions associated with epidemiological and structural analyses.
Collapse
Affiliation(s)
- Raiana S. Machado
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Francisco Gomes-Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Maria L. Aguiar-Oliveira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Fernanda M. Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Fernando N. Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas/Serviço de Vigilância Saúde/Ministério de SaúdeS, Ananindeua 67030-000, Brazil;
| | - Edson E. da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
| | - Ivanildo P. Sousa
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.S.M.); (F.M.B.); (E.E.d.S.)
- Correspondence: ; Tel.: +55-21-2562-1781
| |
Collapse
|
14
|
Hietanen E, Koivu MKA, Susi P. Cytolytic Properties and Genome Analysis of Rigvir ® Oncolytic Virotherapy Virus and Other Echovirus 7 Isolates. Viruses 2022; 14:525. [PMID: 35336934 PMCID: PMC8949920 DOI: 10.3390/v14030525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Rigvir® is a cell-adapted, oncolytic virotherapy enterovirus, which derives from an echovirus 7 (E7) isolate. While it is claimed that Rigvir® causes cytolytic infection in several cancer cell lines, there is little molecular evidence for its oncolytic and oncotropic potential. Previously, we genome-sequenced Rigvir® and five echovirus 7 isolates, and those sequences are further analyzed in this paper. A phylogenetic analysis of the full-length data suggested that Rigvir® was most distant from the other E7 isolates used in this study, placing Rigvir® in its own clade at the root of the phylogeny. Rigvir® contained nine unique mutations in the viral capsid proteins VP1-VP4 across the whole data set, with a structural analysis showing six of the mutations concerning residues with surface exposure on the cytoplasmic side of the viral capsid. One of these mutations, E/Q/N162G, was located in the region that forms the contact interface between decay-accelerating factor (DAF) and E7. Rigvir® and five other isolates were also subjected to cell infectivity assays performed on eight different cell lines. The used cell lines contained both cancer and non-cancer cell lines for observing Rigvir®'s claimed properties of being both oncolytic and oncotropic. Infectivity assays showed that Rigvir® had no discernable difference in the viruses' oncolytic effect when compared to the Wallace prototype or the four other E7 isolates. Rigvir® was also seen infecting non-cancer cell lines, bringing its claimed effect of being oncotropic into question. Thus, we conclude that Rigvir®'s claim of being an effective treatment against multiple different cancers is not warranted under the evidence presented here. Bioinformatic analyses do not reveal a clear mechanism that could elucidate Rigvir®'s function at a molecular level, and cell infectivity tests do not show a discernable difference in either the oncolytic or oncotropic effect between Rigvir® and other clinical E7 isolates used in the study.
Collapse
Affiliation(s)
- Eero Hietanen
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Marika K. A. Koivu
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku, 20520 Turku, Finland
| | - Petri Susi
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
| |
Collapse
|
15
|
Adaptation and Virulence of Enterovirus-A71. Viruses 2021; 13:v13081661. [PMID: 34452525 PMCID: PMC8402912 DOI: 10.3390/v13081661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Outbreaks of hand, foot, and mouth disease caused by enterovirus-A71 (EV-A71) can result in many deaths, due to central nervous system complications. Outbreaks with many fatalities have occurred sporadically in the Asia-Pacific region and have become a serious public health concern. It is hypothesized that virulent mutations in the EV-A71 genome cause these occasional outbreaks. Analysis of EV-A71 neurovirulence determinants is important, but there are no virulence determinants that are widely accepted among researchers. This is because most studies have been done in artificially infected mouse models and because EV-A71 mutates very quickly to adapt to the artificial host environment. Although EV-A71 uses multiple receptors for infection, it is clear that adaptation-related mutations alter the binding specificity of the receptors and allow the virus to adopt the best entry route for each environment. Such mutations have confused interpretations of virulence in animal models. This article will discuss how environment-adapted mutations in EV-A71 occur, how they affect virulence, and how such mutations can be avoided. We also discuss future perspectives for EV-A71 virulence research.
Collapse
|
16
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
17
|
Functional Insights into Silymarin as an Antiviral Agent against Enterovirus A71 (EV-A71). Int J Mol Sci 2021; 22:ijms22168757. [PMID: 34445463 PMCID: PMC8395941 DOI: 10.3390/ijms22168757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.
Collapse
|
18
|
Chang CS, Liao CC, Liou AT, Chou YC, Yu YY, Lin CY, Lin JS, Suen CS, Hwang MJ, Shih C. Novel Naturally Occurring Mutations of Enterovirus 71 Associated With Disease Severity. Front Microbiol 2021; 11:610568. [PMID: 33519765 PMCID: PMC7838335 DOI: 10.3389/fmicb.2020.610568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Infection with the re-emerging enterovirus 71 (EV-A71) is associated with a wide range of disease severity, including herpangina, encephalitis, and cardiopulmonary failure. At present, there is no FDA-approved therapeutics for EV-A71. Early diagnosis for the high-risk children is the key to successful patient care. We examined viral genome sequences at the 5′ untranslated region (UTR) and the capsid protein VP1 from 36 mild and 27 severe cases. We identified five EV-A71 mutations associated with severe diseases, including (1) the 5′ UTR mutations C580U, A707G, C709U; (2) a VP1 alanine-to-threonine mutation at position 280 (280T), and (3) a VP1 glutamic acid-to-(non-glutamic acid) at position 145 [145(non-E)]. SCARB2 is a known entry receptor for EV-A71. Based on a recent cryoEM structure of the EV-A71-SCARB2 binding complex, VP1-280T is near the binding interface between the VP1-VP2 complex and its entry receptor SCARB2. A de novo created hydrogen bonding between the mutant VP1-280T and the VP2-139T, could help strengthen a web-like interaction structure of the VP1-VP2 complex. A stabilized loop turn of VP2, once in contact with SCARB2, can enhance interaction with the host SCARB2 receptor for viral entry. Our findings here could facilitate early detection of severe cases infected with EV-A71 in clinical medicine. In addition, it opens up the opportunity of functional studies via infectious cDNA cloning, site-directed mutagenesis, and animal models in the future.
Collapse
Affiliation(s)
- Chih-Shin Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - An-Ting Liou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chun Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Yen Yu
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Yung Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Jen-Shiou Lin
- Section of Clinical Virology and Molecular Diagnosis, Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Zhang G, Hu B, Huo Y, Lu J, Guo J, Deng M, Li P, Wang W, Li L, Meng S, Wang Z, Shen S. Amino acid substitutions in VP2, VP1, and 2C attenuate a Coxsackievirus A16 in mice. Microb Pathog 2020; 150:104603. [PMID: 33271234 DOI: 10.1016/j.micpath.2020.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/21/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022]
Abstract
Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot and mouth disease (HFMD), a common acute infectious disease affecting infants and young children. Severe symptoms of the central nervous system may develop and even lead to death. Here, a plaque-purified CVA16 strain, L731-P1 (P1), was serially passaged in Vero cells for six times and passage 6 (P6) stock became highly attenuated in newborn mice. Genomic sequencing of the P1 and P6 revealed seven nucleotide substitutions at positions 1434 (C to U), 2744 (A to G), 2747 (A to G), 3161 (G to A), 3182 (A to G), 4968 (C to U), and 6064 (C to U). Six of these substitutions resulted in amino acid changes at VP2-T161 M, VP1-N102D, VP1-T103A, VP1-E241K, VP1-T248A, and 2C-S297F, respectively. P1-based infectious cDNA was generated to further investigate these virulent determinants. Independent reverse transcription-polymerase chain reaction (RT-PCR) amplifications for mutant constructions and plaque-purification of the P6 for isolation of variants were performed to determine dominant mutations and strains more related to attenuation. The virulent P1, attenuated P6, as well as a plaque purified strain (PP) and other four recombinant mutants, were inoculated into one-day-old BALB/c mice and the 50% lethal dose of each strain was determined. Comparison of virulence among these strains indicated that amino acid changes of VP1-N102D, VP1-E241K and 2C-S297F might be associated more closely with a high level attenuation of CVA16-L731-P6 than other mutations. Identification of novel residues associated with virulence may contribute to understanding of molecular basis of virulence of CVA16 and other enteroviruses.
Collapse
Affiliation(s)
- Gaobo Zhang
- Wuhan Huaxia University of Technology, Wuhan, 430223, China.
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430000, China
| | - Yuqi Huo
- The Sixth People' s Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jia Lu
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Jing Guo
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Mi Deng
- Worldwide Safety and Regulatory Pfizer, Inc., Wuhan, 430000, China
| | - Pengfei Li
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Weishan Wang
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Li Li
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Shengli Meng
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China
| | - Zejun Wang
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China.
| | - Shuo Shen
- Laboratory of Viral Vaccine Research, Wuhan Institute of Biological Products (WIBP) Co. Ltd., Wuhan, 430207, China.
| |
Collapse
|
20
|
A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses 2020; 12:v12080883. [PMID: 32823486 PMCID: PMC7472116 DOI: 10.3390/v12080883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of human hand, foot, and mouth disease (hHFMD) and has evolved to use various cellular receptors for infection. However, the relationship between receptor preference and EV71 virulence has not been fully revealed. By using reverse genetics, we identified that a single E98K mutation in VP1 is responsible for rapid viral replication in vitro. The E98K mutation enhanced binding of EV71-GZCII to cells in a heparan sulfate (HS)-dependent manner, and it attenuated the virulence of EV71-GZCII in BALB/c mice, indicating that the HS-binding property is negatively associated with viral virulence. HS is widely expressed in vascular endothelial cells in different mouse tissues, and weak colocalization of HS with scavenger receptor B2 (SCARB2) was detected. The cGZCII-98K virus bound more efficiently to mouse tissue homogenates, and the cGZCII-98K virus titers in mouse tissues and blood were much lower than the cGZCII virus titers. Together, these findings suggest that the enhanced adsorption of the cGZCII-98K virus, which likely occurs through HS, is unable to support the efficient replication of EV71 in vivo. Our study confirmed the role of HS-binding sites in EV71 infection and highlighted the importance of the HS receptor in EV71 pathogenesis.
Collapse
|
21
|
Zhou Y, Van Tan L, Luo K, Liao Q, Wang L, Qiu Q, Zou G, Liu P, Anh NT, Hong NTT, He M, Wei X, Yu S, Lam TTY, Cui J, van Doorn HR, Yu H. Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virol Sin 2020; 36:61-74. [PMID: 32725479 PMCID: PMC7385209 DOI: 10.1007/s12250-020-00266-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
Enteroviruses (EVs) species A are a major public health issue in the Asia–Pacific region and cause frequent epidemics of hand, foot and mouth disease (HFMD) in China. Mild infections are common in children; however, HFMD can also cause severe illness that affects the central nervous system. To molecularly characterize EVs, a prospective HFMD virological surveillance program was performed in China between 2013 and 2016. Throat swabs, rectal swabs and stool samples were collected from suspected HFMD patients at participating hospitals. EVs were detected using generic real-time and nested reverse transcription-polymerase chain reactions (RT-PCRs). Then, the complete VP1 regions of enterovirus A71 (EV-A71), coxsackievirus A16 (CVA16) and CVA6 were sequenced to analyze amino acid changes and construct a viral molecular phylogeny. Of the 2836 enrolled HFMD patients, 2,517 (89%) were EV positive. The most frequently detected EVs were CVA16 (32.5%, 819), CVA6 (31.2%, 785), and EV-A71 (20.4%, 514). The subgenogroups CVA16_B1b, CVA6_D3a and EV-A71_C4a were predominant in China and recombination was not observed in the VP1 region. Sequence analysis revealed amino acid variations at the 30, 29 and 44 positions in the VP1 region of EV-A71, CVA16 and CVA6 (compared to the respective prototype strains BrCr, G10 and Gdula), respectively. Furthermore, in 21 of 24 (87.5%) identified EV-A71 samples, a known amino acid substitution (D31N) that may enhance neurovirulence was detected. Our study provides insights about the genetic characteristics of common HFMD-associated EVs. However, the emergence and virulence of the described mutations require further investigation.
Collapse
Affiliation(s)
- Yonghong Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Qiaohong Liao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Lili Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Qi Qiu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gang Zou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Liu
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | - Min He
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Xiaoman Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuanbao Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research & State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
22
|
Mandary MB, Masomian M, Ong SK, Poh CL. Characterization of Plaque Variants and the Involvement of Quasi-Species in a Population of EV-A71. Viruses 2020; 12:E651. [PMID: 32560288 PMCID: PMC7354493 DOI: 10.3390/v12060651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
Collapse
Affiliation(s)
- Madiiha Bibi Mandary
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Malihe Masomian
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| | - Seng-Kai Ong
- Department of Biological Science, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia; (M.B.M.); (M.M.)
| |
Collapse
|
23
|
Chen C, Xia Y, Zhu S, Xu F, Sun Y, Lu H, Gao M, Yang Z, Mao Z, Ge Q, Miao Z, Zhu H, Yao P. Muscle destruction caused by coxsackievirus A10 in gerbils: Construction of a novel animal model for antiviral evaluation. Virus Res 2020; 286:198067. [PMID: 32553610 DOI: 10.1016/j.virusres.2020.198067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
The morbidity and mortality of coxsackievirus A10 (CVA10)-associated hand, foot, and mouth disease (HFMD) have been increasing in recent years, while few studies on the vaccine and animal model of CVA10 have been reported. Here, we first established a CVA10-infected gerbil model and employed it to evaluate the immunoprotective effect of an inactivated CVA10 vaccine. The results showed that gerbils up to the age of 14 days were fully susceptible to CVA10, and all died within five days post-infection by intraperitoneal inoculation. Lethargy, wasting, hind-limb paralysis, and even death could be observed in the CVA10-infected gerbils. Pathological examination suggested that CVA10 has a strong tropism toward muscle tissue, and muscle bundle fracture and muscular fibers necrosis were observed in the limb muscles. Additionally, active immunization results showed that gerbils immunized with the inactivated CVA10 vaccine were 100 % protected from lethal CVA10 challenge. The antisera from vaccinated gerbils also showed high neutralizing titers against CVA10. Based on these results, the CVA10-infected gerbil model was a suitable tool for analyzing the pathogenesis of CVA10 and assessing the protective efficacy of CVA10 candidate vaccines.
Collapse
Affiliation(s)
- Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuirong Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yisheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hangjing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Zhangnv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zian Mao
- Zhejiang Pukang Biotechnology Co., LTD., Hangzhou, China
| | - Qiong Ge
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ziping Miao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - HanPing Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Pingping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
24
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathog 2020; 16:e1008428. [PMID: 32187235 PMCID: PMC7105141 DOI: 10.1371/journal.ppat.1008428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/30/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease (HFMD). However, this infection is sometimes associated with severe neurological complications. Identification of neurovirulence determinants is important to understand the pathogenesis of EV71. One of the problems in evaluating EV71 virulence is that its genome sequence changes rapidly during replication in cultured cells. The factors that induce rapid mutations in the EV71 genome in cultured cells are unclear. Here, we illustrate the population dynamics during adaptation to RD-A cells using EV71 strains isolated from HFMD patients. We identified a reproducible amino acid substitution from glutamic acid (E) to glycine (G) or glutamine (Q) in residue 145 of the VP1 protein (VP1-145) after adaptation to RD-A cells, which was associated with attenuation in human scavenger receptor B2 transgenic (hSCARB2 tg) mice. Because previous reports demonstrated that VP1-145G and Q mutants efficiently infect cultured cells by binding to heparan sulfate (HS), we hypothesized that HS expressed on the cell surface is a major factor for this selection. Supporting this hypothesis, selection of the VP1-145 mutant was prevented by depletion of HS and overexpression of hSCARB2 in RD-A cells. In addition, this mutation promotes the acquisition of secondary amino acid substitutions at various positions of the EV71 capsid to increase its fitness in cultured cells. These results indicate that attachment receptors, especially HS, are important factors for selection of VP1-145 mutants and subsequent capsid mutations. Moreover, we offer an efficient method for isolation and propagation of EV71 virulent strains with minimal selection pressure for attenuation. Viruses must overcome various setbacks in a variety of tissues and cells during transmission from the initial replication site to the final target site. To achieve this, RNA viruses employ a strategy to adapt to different environments by creating a diverse viral population using low-fidelity RNA-dependent RNA polymerases. On the other hand, when the viruses are propagated in clonal cell cultures, in vitro adaptation occurs. The viruses may acquire new properties or lose some properties they had in vivo. In vitro adaptation is often associated with attenuation. Therefore, the selection pressures imposed on viruses replicating in vitro and in vivo are quite different. It is unclear how this environmental difference affects viral populations. Clinical isolates of EV71 replicate in cultured cells poorly. However, after a few passages, the viruses adapt to this condition and replicate efficiently. In this study, we demonstrate that attachment receptor usage is a major selection pressure for in vitro adaptation of EV71 by analyzing the population dynamics of cell culture-adapted viruses. This mechanism appears to be a major mode of attenuation.
Collapse
|
26
|
Genetic characterization of VP1 of coxsackieviruses A2, A4, and A10 associated with hand, foot, and mouth disease in Vietnam in 2012-2017: endemic circulation and emergence of new HFMD-causing lineages. Arch Virol 2020; 165:823-834. [PMID: 32008121 DOI: 10.1007/s00705-020-04536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
While conducting sentinel surveillance of hand, foot, and mouth disease (HFMD) in Vietnam, we found a sudden increase in the prevalence of coxsackievirus A10 (CV-A10) in 2016 and CV-A2 and CV-A4 in 2017, the emergence of which has been reported recently to be associated with various clinical manifestations in other countries. However, there have been only a limited number of molecular studies on those serotypes, with none being conducted in Vietnam. Therefore, we sequenced the entire VP1 genes of CV-A10, CV-A4, and CV-A2 strains associated with HFMD in Vietnam between 2012 and 2017. Phylogenetic analysis revealed a trend of endemic circulation of Vietnamese CV-A10, CV-A4, and CV-A2 strains and the emergence of thus-far undescribed HFMD-causing lineages of CV-A4 and CV-A2. The Vietnamese CV-A10 strains belonged to a genotype comprising isolates from patients with HFMD from several other countries; however, most of the Vietnamese strains were grouped into a local lineage. Recently, emerging CV-A4 strains in Vietnam were grouped into a unique lineage within a genotype comprising strains isolated from patients with acute flaccid paralysis from various countries. New substitutions were detected in the putative BC and HI loops in the Vietnamese CV-A4 strains. Except for one strain, Vietnamese CV-A2 isolates were grouped into a unique lineage of a genotype that includes strains from various countries that are associated with other clinical manifestations. Enhanced surveillance is required to monitor their spread and to specify their roles as etiological agents of HFMD or "HFMD-like" diseases, especially for CV-A4 and CV-A2. Further studies including whole-genome sequencing should be conducted to fully understand the evolutionary changes occurring in these newly emerging strains.
Collapse
|
27
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
28
|
Grozdanov P, Joffret ML, Stoyanova A, Polston P, Achouri E, Nikolova I, Delpeyroux F, Galabov AS. Genome analysis of coxsackievirus B1 isolates during the consecutive alternating administration course of triple antiviral combination in newborn mice. Antivir Chem Chemother 2020; 28:2040206620906061. [PMID: 32041425 PMCID: PMC7013111 DOI: 10.1177/2040206620906061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Background We developed a new approach for the treatment of enterovirus infections, the consecutive alternating administration (CAA) of a combination of enterovirus inhibitors. On the model of coxsackievirus B1 (CVB1) in mice, two phenomena were observed: absence of drug resistance and increased susceptibility to the antivirals. This study aims to clarify the genetic basis of these phenomena. Methods Brain samples from CVB1-infected mice subjected to a CAA course with the combination pleconaril/MDL-860/oxoglaucine were used for viral RNA extraction and next generation sequencing. In parallel, samples from monotherapeutic courses of the three substances included in the combination were studied. Whole genome sequence analysis was carried out on all samples. Results Samples of pleconaril monotherapy showed mutations in 5′untranslated region, VP3, 2C, 3C and 2A regions of viral RNA, translated in amino acid substitution of the 2A protein. The MDL-860 course induced changes in CVB1 RNA in the VP3 and 2C regions. The oxoglaucine monotherapy samples showed RNA mutation and amino acid substitution in the VP1 region and nucleotide substitution in the 3D region. In the specimens taken from mice subjected to the CAA course with pleconaril/MDL-860/oxoglaucine, the following RNA mutations were established: 5′ untranslated region, 2A, and 2B, and amino acids substitutions in VP3 and 2A, which differ from those mentioned above. These changes could be the reason for the prevention of drug resistance development and also to be considered as the basis for the phenomenon of increased drug susceptibility. Conclusions The results reveal that the high anti-enteroviral efficacy of the CAA course is substantiated by the appearance of specific changes in the viral genome.
Collapse
Affiliation(s)
- Petar Grozdanov
- Department of Virology, The Stephan Angeloff Institute of
Microbiology, Sofia, Bulgaria
| | | | - Adelina Stoyanova
- Department of Virology, The Stephan Angeloff Institute of
Microbiology, Sofia, Bulgaria
| | - Patsy Polston
- Department of Virology, Institut Pasteur, Paris, France
| | - Emna Achouri
- Department of Virology, Institut Pasteur, Paris, France
- Department of Computational Biology, Institut Pasteur, Paris,
France
| | - Ivanka Nikolova
- Department of Virology, The Stephan Angeloff Institute of
Microbiology, Sofia, Bulgaria
| | | | - Angel S Galabov
- Department of Virology, The Stephan Angeloff Institute of
Microbiology, Sofia, Bulgaria
| |
Collapse
|
29
|
Wang CR. Pathogenesis of hand-foot-mouth disease caused by enterovirus 71. Shijie Huaren Xiaohua Zazhi 2019; 27:1465-1472. [DOI: 10.11569/wcjd.v27.i24.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand-foot-mouth disease (HFMD) is a global infectious disease. The infected population is mainly infants and young children. Enterovirus 71 (EV71) is the main pathogen. In addition to HFMD, EV71 infection can also affect the nervous system and other organs, resulting in aseptic meningitis, brainstem encephalitis, and poliomyelitis-like paralysis, causing serious harm to children's health. At present, the pathogenesis of HFMD caused by EV71 is still unclear, and there is no effective treatment. In this paper, we discuss the factors influencing EV71 infection from the aspects of virus gene recombination and spontaneous mutation, host genes, and receptor sites, review the pathogenesis of HFMD caused by EV71 based on the study findings from animal infection models, and explore the main problems in the study of pathogenesis of this condition, in order to provide reference for the prevention and treatment of HFMD and for the development of new drugs or effective vaccines for EV71 infection.
Collapse
Affiliation(s)
- Chun-Rong Wang
- Institute for Viral Disease Detection, Jinan Center for Disease Control and Prevention, Jinan 250021, Shandong Province, China
| |
Collapse
|
30
|
Yang D, Wang X, Gao H, Chen B, Si C, Wang S. Downregulation of miR-155-5p facilitates enterovirus 71 replication through suppression of type I IFN response by targeting FOXO3/IRF7 pathway. Cell Cycle 2019; 19:179-192. [PMID: 31856677 DOI: 10.1080/15384101.2019.1704512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV71), the major cause of hand-foot-and-mouth disease (HFMD), has evolved diverse strategies to counter the type I interferon (IFN-I) response during infection. Recently, microRNAs have regulatory roles in host innate immune responses to viral infections; however, whether EV71 escapes the IFN-I antiviral response through regulation of miRNAs remains unclear. Using a microarray assay, microRNA-155-5p (miR-155-5p) was found to be significantly up-regulated in serum from patients with EV71 infection and the increased expression of miR-155-5p was further confirmed in vivo and in vitro in response to EV71 infection. miR-155-5p overexpression suppressed EV71 titers and VP1 protein level, while miR-155-5p inhibition had an opposite result. Moreover, we found that miR-155-5p overexpression enhanced EV71 triggered IFN I production and the expressions of IFN-stimulated genes (ISGs), while inhibition of miR-155-5p suppressed these processes. Furthermore, bioinformatics analysis and luciferase reporter assay demonstrated that miR-155-5p directly targeted forkhead box protein O3 (FOXO3) and negatively regulated FOXO3/IRF7 axis, an important regulatory pathway for type I IFN production during EV71 infection. Inhibition of FOXO3 reversed the effects of miR-155-5p inhibitor on EV71 replication and the type I IFN production. Importantly, in EV71 infection mice, agomir-155-5p injection resulted in a significant reduction of viral VP1 protein expressions in brain and lung tissues, increased IFN-α/β production and increased mice survival rate. In contrast, antagomir-155-5p enhanced EV71 induced these effects. Collectively, our study indicates that weaken miR-155-5p facilitates EV71 replication through suppression of type I IFN response by FOXO3/IRF7 pathway, thereby suggesting a novel strategy for developing effective antiviral therapy.
Collapse
Affiliation(s)
- Daokun Yang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Xinwei Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Haili Gao
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baoxin Chen
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Changyun Si
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shasha Wang
- Department of Infectious Disease III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
31
|
Electrostatic interactions at the five-fold axis alter heparin-binding phenotype and drive enterovirus A71 virulence in mice. PLoS Pathog 2019; 15:e1007863. [PMID: 31730673 PMCID: PMC6881073 DOI: 10.1371/journal.ppat.1007863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/27/2019] [Accepted: 09/26/2019] [Indexed: 01/08/2023] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71. Enterovirus A71 (EV-A71) is the primary cause of hand, foot and mouth disease, and it can also infect the central nervous system and cause fatal outbreaks in young children. EV-A71 pathogenesis remains elusive. In this study, we demonstrated that EV-A71 variants with strong affinity to heparan sulfate (heparin) have a growth advantage in cell culture, but are disadvantaged in vivo. When inoculated into one-day old mice, strong heparin-binding virus variants are more likely to be adsorbed to peripheral tissues, resulting in impaired ability to disseminate, and are cleared from the bloodstream rapidly. The lower viremia level resulted in no neuroinvasion. In contrast, weak heparin-binding variants show greater levels of viremia, dissemination and subsequent neurovirulence in mice. We also provide evidence that the EV-A71 heparin-binding pattern is mediated by electrostatic surface charges on the virus capsid surface. In mice, EV-A71 undergoes adaptive mutation to acquire greater negative surface charges, thus generating new virulent variants with weak heparin-binding ability which allows greater viral spread. Our study underlines the importance of electrostatic surface charges in shaping EV-A71 virulence.
Collapse
|
32
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
33
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
34
|
Wang M, Li J, Yao MX, Zhang YW, Hu T, Carr MJ, Duchêne S, Zhang XC, Zhang ZJ, Zhou H, Tong YG, Ding SJ, Wang XJ, Shi WF. Genome Analysis of Coxsackievirus A4 Isolates From Hand, Foot, and Mouth Disease Cases in Shandong, China. Front Microbiol 2019; 10:1001. [PMID: 31134033 PMCID: PMC6513881 DOI: 10.3389/fmicb.2019.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Coxsackievirus A4 (CVA4) is one of the most prevalent pathogens associated with hand, foot and mouth disease (HFMD), an acute febrile illness in children, and is also associated with acute localized exanthema, myocarditis, hepatitis and pancreatitis. Despite this, limited CVA4 genome sequences are currently available. Herein, complete genome sequences from CVA4 strains (n = 21), isolated from patients with HFMD in Shandong province, China between 2014 and 2016, were determined and phylogenetically characterized. Phylogenetic analysis of the VP1 gene from a larger CVA4 collection (n = 175) showed that CVA4 has evolved into four separable genotypes: A, B, C, and D; and genotype D could be further classified in to two sub-genotypes: D1 and D2. Each of the 21 newly described genomes derived from isolates that segregated with sub-genotype D2. The CVA4 genomes displayed significant intra-genotypic genetic diversity with frequent synonymous substitutions occurring at the third codon positions, particularly within the P2 region. However, VP1 was relatively stable and therefore represents a potential target for molecular diagnostics assays and also for the rational design of vaccine epitopes. The substitution rate of VP1 was estimated to be 5.12 × 10-3 substitutions/site/year, indicative of ongoing CVA4 evolution. Mutations at amino acid residue 169 in VP1 gene may be responsible for differing virulence of CVA4 strains. Bayesian skyline plot analysis showed that the population size of CVA4 has experienced several dynamic fluctuations since 1948. In summary, we describe the phylogenetic and molecular characterization of 21 complete genomes from CVA4 isolates which greatly enriches the known genomic diversity of CVA4 and underscores the need for further surveillance of CVA4 in China.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Ming-Xiao Yao
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xing-Cheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Zhen-Jie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| | - Yi-Gang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xian-Jun Wang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Institute for Viral Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Wei-Feng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Taishan Medical College, Tai'an, China
| |
Collapse
|
35
|
Rasti M, Khanbabaei H, Teimoori A. An update on enterovirus 71 infection and interferon type I response. Rev Med Virol 2019; 29:e2016. [PMID: 30378208 PMCID: PMC7169063 DOI: 10.1002/rmv.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Enteroviruses are members of Pichornaviridae family consisting of human enterovirus group A, B, C, and D as well as nonhuman enteroviruses. Hand, foot, and mouth disease (HFMD) is a serious disease which is usually seen in the Asia-Pacific region in children. Enterovirus 71 and coxsackievirus A16 are two important viruses responsible for HFMD which are members of group A enterovirus. IFN α and β are two cytokines, which have a major activity in the innate immune system against viral infections. Most of the viruses have some weapons against these cytokines. EV71 has two main proteases called 2A and 3C, which are important for polyprotein processing and virus maturation. Several studies have indicated that they have a significant effect on different cellular pathways such as interferon production and signaling pathway. The aim of this study was to investigate the latest findings about the interaction of 2A and 3C protease of EV71 and IFN production/signaling pathway and their inhibitory effects on this pathway.
Collapse
Affiliation(s)
- Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hashem Khanbabaei
- Medical Physics Department, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Teimoori
- Department of Virology, Faculty of MedicineHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
36
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
37
|
Chang YK, Chen KH, Chen KT. Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development. Rev Inst Med Trop Sao Paulo 2018; 60:e70. [PMID: 30427405 PMCID: PMC6223252 DOI: 10.1590/s1678-9946201860070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/09/2018] [Indexed: 01/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) infections are one of the main etiological agents of hand, foot and mouth disease (HFMD) and herpangina worldwide. EV-A71 infection is a life-threatening communicable disease and there is an urgent global need for the development of vaccines for its prevention and control. The morbidity rate of EV-A71 infection differs between countries. The pathogen’s genetic lineages are undergoing rapid evolutionary changes. An association between the occurrence of EV-A71 infection and the circulation of different genetic strains of EV-A71 virus has been identified around the world. In this review, we present and discuss the molecular epidemiology and pathogenesis of the human disease caused by EV-A71 infection, as well as current prospects for the development of an EV-A71 vaccine.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Chi-Mei Medical Center, Liouying Campus, Department of Radiology, Tainan, Taiwan
| | - Kou-Huang Chen
- Sanming University, School of Mechanical & Electronic Engineering, Sanming, Fujian Province, China
| | - Kow-Tong Chen
- Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Department of Occupational Medicine, Tainan, Taiwan.,National Cheng Kung University, College of Medicine, Department of Public Health, Tainan, Taiwan
| |
Collapse
|
38
|
Contemporary Circulating Enterovirus D68 Strains Have Acquired the Capacity for Viral Entry and Replication in Human Neuronal Cells. mBio 2018; 9:mBio.01954-18. [PMID: 30327438 PMCID: PMC6191546 DOI: 10.1128/mbio.01954-18] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the EV-D68 outbreak during the summer of 2014, evidence of a causal link to a type of limb paralysis (AFM) has been mounting. In this article, we describe a neuronal cell culture model (SH-SY5Y cells) in which a subset of contemporary 2014 outbreak strains of EV-D68 show infectivity in neuronal cells, or neurotropism. We confirmed the difference in neurotropism in vitro using primary human neuron cell cultures and in vivo with a mouse paralysis model. Using the SH-SY5Y cell model, we determined that a barrier to viral entry is at least partly responsible for neurotropism. SH-SY5Y cells may be useful in determining if specific EV-D68 genetic determinants are associated with neuropathogenesis, and replication in this cell line could be used as rapid screening tool for identification of neurotropic EV-D68 strains. This may assist with better understanding of pathogenesis and epidemiology and with the development of potential therapies. Enterovirus D68 (EV-D68) has historically been associated with respiratory illnesses. However, in the summers of 2014 and 2016, EV-D68 outbreaks coincided with a spike in polio-like acute flaccid myelitis/paralysis (AFM/AFP) cases. This raised concerns that EV-D68 could be the causative agent of AFM during these recent outbreaks. To assess the potential neurotropism of EV-D68, we utilized the neuroblastoma-derived neuronal cell line SH-SY5Y as a cell culture model to determine if differential infection is observed for different EV-D68 strains. In contrast to HeLa and A549 cells, which support viral infection of all EV-D68 strains tested, SH-SY5Y cells only supported infection by a subset of contemporary EV-D68 strains, including isolates from the 2014 outbreak. Viral replication and infectivity in SH-SY5Y were assessed using multiple assays: virus production, cytopathic effects, cellular ATP release, and VP1 capsid protein production. Similar differential neurotropism was also observed in differentiated SH-SY5Y cells, primary human neuron cultures, and a mouse paralysis model. Using the SH-SY5Y cell culture model, we determined that barriers to viral binding and entry were at least partly responsible for the differential infectivity phenotype. Transfection of genomic RNA into SH-SY5Y generated virions for all EV-D68 isolates, but only a single round of replication was observed from strains that could not directly infect SH-SY5Y. In addition to supporting virus replication and other functional studies, this cell culture model may help identify the signatures of virulence to confirm epidemiological associations between EV-D68 strains and AFM and allow for the rapid identification and characterization of emerging neurotropic strains.
Collapse
|
39
|
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, Meylan P, Huang S, Constant S, Tapparel C. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog 2018; 14:e1007190. [PMID: 30075025 PMCID: PMC6093697 DOI: 10.1371/journal.ppat.1007190] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.
Collapse
Affiliation(s)
- Eirini D. Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Komla Sobo
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HES-SO/University of Applied Sciences, Geneva, Western Switzerland
| | - Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Fabien Abdul
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Pascal Meylan
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
40
|
van der Sanden SMG, Sachs N, Koekkoek SM, Koen G, Pajkrt D, Clevers H, Wolthers KC. Enterovirus 71 infection of human airway organoids reveals VP1-145 as a viral infectivity determinant. Emerg Microbes Infect 2018; 7:84. [PMID: 29743570 PMCID: PMC5943241 DOI: 10.1038/s41426-018-0077-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/25/2018] [Accepted: 03/17/2018] [Indexed: 11/10/2022]
Abstract
Human enteroviruses frequently cause severe diseases in children. Human enteroviruses are transmitted via the fecal-oral route and respiratory droplets, and primary replication occurs in the gastro-intestinal and respiratory tracts; however, how enteroviruses infect these sites is largely unknown. Human intestinal organoids have recently proven to be valuable tools for studying enterovirus-host interactions in the intestinal tract. In this study, we demonstrated the susceptibility of a newly developed human airway organoid model for enterovirus 71 (EV71) infection. We showed for the first time in a human physiological model that EV71 replication kinetics are strain-dependent. A glutamine at position 145 of the VP1 capsid protein was identified as a key determinant of infectivity, and residues VP1-98K and VP1-104D were identified as potential infectivity markers. The results from this study provide new insights into EV71 infectivity in the human airway epithelia and demonstrate the value of organoid technology for virus research.
Collapse
Affiliation(s)
| | - Norman Sachs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht and Cancer Genomics Netherlands, 3584 CT, Utrecht, The Netherlands
| | - Sylvie M Koekkoek
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht and Cancer Genomics Netherlands, 3584 CT, Utrecht, The Netherlands
| | - Katja C Wolthers
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH. Mutations in VP1 and 5'-UTR affect enterovirus 71 virulence. Sci Rep 2018; 8:6688. [PMID: 29703921 PMCID: PMC5923339 DOI: 10.1038/s41598-018-25091-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
Enterovirus 71 (EV71) is a major cause of hand, foot and mouth disease (HFMD). The current EV71 propagating in Vero (EV-V) or sub-passaged in RD (EV-R) cells was used as a pathogen. Interestingly, EV-R exhibited differential virulence; challenging human scavenger receptor class B2-expressing (hSCARB2-Tg) mice with EV71 revealed that EV-V was more virulent than EV-R: 100% of mice that received lethal amounts of EV-V died, while all the mice that received EV-R survived. Severe pathogenesis correlated with viral burdens and proinflammatory cytokine levels were observed in EV-V-challenged mice, but controversy in EV-R-challenged mice. Consensus sequence analysis revealed EV-R rapidly acquired complete mutations at E145G and S241L and partial mutations at V146I of VP1, and acquired a T to C substitution at nucleotide 494 of the 5'-UTR. EV-R exhibited higher binding affinity for another EV71 receptor, human P-selectin glycoprotein ligand-1 (hPSGL-1), than EV-V. Both EV71s exhibited no significant difference in binding to hSCARB2. The molecular modelling indicate that these mutations might influence EV71 engagement with PSGL-1 and in vivo virulence.
Collapse
Affiliation(s)
- Ching-Kun Chang
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chin Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Kuen-Jin Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Nai-Hsiang Chung
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yi-Ju Lu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Shu-Ling Yu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Yen-Hung Chow
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, 350, Taiwan.
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
42
|
Fibronectin Facilitates Enterovirus 71 Infection by Mediating Viral Entry. J Virol 2018; 92:JVI.02251-17. [PMID: 29467312 DOI: 10.1128/jvi.02251-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
Abstract
Fibronectin (FN) is a high-molecular-weight extracellular matrix protein that contains the RGDS motif, which is required to bind to integrins. Synthetic RGDS peptides have been reported to compete with FN to bind to the cell surface and inhibit the function of FN. Here, we identified that synthetic RGDS peptides significantly inhibit human enterovirus 71 (EV71) infection in cell cultures. In addition, mice treated with RGDS peptides and infected with EV71 had a significantly higher survival rate and a lower viral load than the control group. Because RGDS peptides affect the function of FN, we questioned whether FN may play a role in virus infection. Our study indicates that overexpression of FN enhanced EV71 infection. In contrast, knockout of FN significantly reduced viral yield and decreased the viral binding to host cells. Furthermore, EV71 entry, rather than intracellular viral replication, was blocked by FN inhibitor pretreatment. Next, we found that FN could interact with the EV71 capsid protein VP1, and further truncated-mutation assays indicated that the D2 domain of FN could interact with the N-terminal fragment of VP1. Taken together, our results demonstrate that the host factor FN binds to EV71 particles and facilitates EV71 entry, providing a potential therapy target for EV71 infection.IMPORTANCE Hand, foot, and mouth disease outbreaks have occurred frequently in recent years, sometimes causing severe neurological complications and even death in infants and young children worldwide. Unfortunately, no effective antiviral drugs are available for human enterovirus 71 (EV71), one of the viruses that cause hand, foot, and mouth disease. The infection process and the host factors involved remain unknown, although several receptors have been identified. In this study, we found that the host factor fibronectin (FN) facilitated EV71 replication by interacting with EV71 particles and further mediated their entry. The RGDS peptide, an FN inhibitor, significantly inhibited EV71 replication in both RD cells and mice. In conclusion, our research identified a new host factor involved in EV71 infection, providing a new potential antiviral target for EV71 treatment.
Collapse
|
43
|
Royston L, Essaidi-Laziosi M, Pérez-Rodríguez FJ, Piuz I, Geiser J, Krause KH, Huang S, Constant S, Kaiser L, Garcin D, Tapparel C. Viral chimeras decrypt the role of enterovirus capsid proteins in viral tropism, acid sensitivity and optimal growth temperature. PLoS Pathog 2018; 14:e1006962. [PMID: 29630666 PMCID: PMC5908207 DOI: 10.1371/journal.ppat.1006962] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/19/2018] [Accepted: 03/08/2018] [Indexed: 11/19/2022] Open
Abstract
Despite their genetic similarities, enteric and respiratory enteroviruses (EVs) have highly heterogeneous biophysical properties and cause a vast diversity of human pathologies. In vitro differences include acid sensitivity, optimal growth temperature and tissue tropism, which reflect a preferential in vivo replication in the respiratory or gastrointestinal tract and are thus key determinants of EV virulence. To investigate the underlying cause of these differences, we generated chimeras at the capsid-level between EV-D68 (a respiratory EV) and EV-D94 (an enteric EV). Although some chimeras were nonfunctional, EV-D94 with both the capsid and 2A protease or the capsid only of EV-D68 were both viable. Using this latter construct, we performed several functional assays, which indicated that capsid proteins determine acid sensitivity and tropism in cell lines and in respiratory, intestinal and neural tissues. Additionally, capsid genes were shown to also participate in determining the optimal growth temperature, since EV-D94 temperature adaptation relied on single mutations in VP1, while constructs with EV-D68 capsid could not adapt to higher temperatures. Finally, we demonstrate that EV-D68 maintains residual binding-capacity after acid-treatment despite a loss of infectivity. In contrast, non-structural rather than capsid proteins modulate the innate immune response in tissues. These unique biophysical insights expose another layer in the phenotypic diversity of one of world's most prevalent pathogens and could aid target selection for vaccine or antiviral development.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Manel Essaidi-Laziosi
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Francisco J. Pérez-Rodríguez
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Isabelle Piuz
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Johan Geiser
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Karl-Heinz Krause
- University of Geneva Faculty of Medicine, Department of Pathology and Immunology, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Song Huang
- Epithelix Sàrl, 18 Chemin des Aulx, Geneva, Switzerland
| | | | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, Geneva 14, Switzerland
| | - Dominique Garcin
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, Department of Microbiology and Molecular Medicine, 1 Rue Michel-Servet, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, Mao L. Enterovirus A71 Proteins: Structure and Function. Front Microbiol 2018; 9:286. [PMID: 29515559 PMCID: PMC5826392 DOI: 10.3389/fmicb.2018.00286] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
Enterovirus A71 (EV-A71) infection has grown to become a serious threat to global public health. It is one of the major causes of hand, foot, and mouth disease (HFMD) in infants and young children. EV-A71 can also infect the central nervous system (CNS) and induce diverse neurological complications, such as brainstem encephalitis, aseptic meningitis, and acute flaccid paralysis, or even death. Viral proteins play a crucial role in EV-A71 infection. Many recent studies have discussed the structure and function of EV-A71 proteins, and the findings reported will definitely aid the development of vaccines and therapeutic approaches. This article reviews the progress in the research on the structure and function of EV-A71 proteins. Available literature can provide a basis for studying the pathogenesis of EV-A71 infection in detail.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Danyang People's Hospital, Jiangsu, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Jing Wu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinran Zou
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Li C, Qiao Q, Hao SB, Dong Z, Zhao L, Ji J, Wang ZY, Wen HL. Nonstructural protein 2A modulates replication and virulence of enterovirus 71. Virus Res 2017; 244:262-269. [PMID: 29175108 DOI: 10.1016/j.virusres.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
Enterovirus 71 (EV71) can cause hand, foot, and mouth disease in children, and severe infections can induce neurological complications and even death. However, the pathogenesis of EV71 remains unknown. The 2A proteinase (2Apro) of EV71 plays an important role in segmenting the precursor polyprotein during viral replication, inhibiting host protein synthesis, and evading innate immunity. This study was to determine the function of EV71 2Apro in replication and virulence. A chimeric strain (SDLY 107-2A-1) was recombined by replacing 2Apro of a severe strain (SDLY107) with that of a mild strain (SDLY1) based on an infectious cDNA clone. The replication kinetics of the chimeric strain in vitro and in vivo were determined by qRT-PCR, which showed that the chimeric strain replicated slower and generated less viral RNA than the severe strain. The pathological change and viral load of chimeric strain infected mice were intermediate between severe strain infected mice and mild strain infected mice. Cellular cytotoxicity assays revealed that 2Apro was associated with the neurotoxicity of EV71. Histopathological and immunohistochemical assays detected tissue pathological damage in the lungs, muscles, brain, and intestinal tissues. Together, these results suggest that 2Apro modulates replication and virulence of EV71. This provides a theoretical basis for virulence determination of EV71.
Collapse
Affiliation(s)
- Chun Li
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China
| | - Qiao Qiao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Shu-Bin Hao
- Shandong Medical Equipment Quality Supervision and Inspection Center, Key Laboratories of Biological Evaluation, Jinan, Shandong Province, China
| | - Zhen Dong
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China
| | - Li Zhao
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China
| | - Jing Ji
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China
| | - Zhi-Yu Wang
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China
| | - Hong-Ling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012 Shandong Province, China.
| |
Collapse
|
46
|
A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans. J Virol 2017; 91:JVI.01062-17. [PMID: 28931688 DOI: 10.1128/jvi.01062-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 (VP1-31G) in viral particles disseminated into the integumentary and central nervous systems. In vitro viral growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D conferred enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to the central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this reemerging viral pathogen.IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand, foot, and mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31 helps viruses break through the bottleneck and invade the central nervous system. This substitution is also advantageous for replication in neuronal cells in vitro Considering that fatal cases contain enhanced glycine substitution at VP1-31, we suggest that the increased prevalence of VP1-31G may alter viral tropism and aid central nervous system invasion. Our findings provide new insights into a dynamic mutant spectral switch active during acute viral infection with emerging viral pathogens.
Collapse
|
47
|
A highly conserved amino acid in VP1 regulates maturation of enterovirus 71. PLoS Pathog 2017; 13:e1006625. [PMID: 28938017 PMCID: PMC5634653 DOI: 10.1371/journal.ppat.1006625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/10/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot and mouth disease (HFMD) in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107) in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S) into an intermediate or A-particle (135S), a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.
Collapse
|
48
|
Benschop KSM, Rahamat-Langendoen JC, van der Avoort HGAM, Claas ECJ, Pas SD, Schuurman R, Verweij JJ, Wolthers KC, Niesters HGM, Koopmans MPG. VIRO-TypeNed, systematic molecular surveillance of enteroviruses in the Netherlands between 2010 and 2014. ACTA ACUST UNITED AC 2017; 21:30352. [PMID: 27719752 PMCID: PMC5069426 DOI: 10.2807/1560-7917.es.2016.21.39.30352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/23/2016] [Indexed: 12/29/2022]
Abstract
VIRO-TypeNed is a collaborative molecular surveillance platform facilitated through a web-based database. Genetic data in combination with epidemiological, clinical and patient data are shared between clinical and public health laboratories, as part of the surveillance underpinning poliovirus eradication. We analysed the combination of data submitted from 2010 to 2014 to understand circulation patterns of non-polio enteroviruses (NPEV) of public health relevance. Two epidemiological patterns were observed based on VIRO-TypeNed data and classical surveillance data dating back to 1996: (i) endemic cyclic, characterised by predictable upsurges/outbreaks every two to four years, and (ii) epidemic, where rare virus types caused upsurges/outbreaks. Genetic analysis suggests continuous temporal displacement of virus lineages due to the accumulation of (silent) genetic changes. Non-synonymous changes in the antigenic B/C loop suggest antigenic diversification, which may affect population susceptibility. Infections were frequently detected at an age under three months and at an older, parenting age (25–49 years) pointing to a distinct role of immunity in the circulation patterns. Upsurges were detected in the summer and winter which can promote increased transmissibility underlying new (cyclic) upsurges and requires close monitoring. The combination of data provide a better understanding of NPEV circulation required to control and curtail upsurges and outbreaks.
Collapse
Affiliation(s)
- Kimberley S M Benschop
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schuffenecker I, Mirand A, Josset L, Henquell C, Hecquet D, Pilorgé L, Petitjean-Lecherbonnier J, Manoha C, Legoff J, Deback C, Pillet S, Lepiller Q, Mansuy JM, Marque-Juillet S, Antona D, Peigue-Lafeuille H, Lina B. Epidemiological and clinical characteristics of patients infected with enterovirus D68, France, July to December 2014. ACTA ACUST UNITED AC 2017; 21:30226. [PMID: 27195770 DOI: 10.2807/1560-7917.es.2016.21.19.30226] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022]
Abstract
In 2014, the United States (US) experienced a nationwide outbreak of enterovirus D68 (EV-D68) infection with 1,152 cases reported mainly in hospitalised children with severe asthma or bronchiolitis. Following the US alert, 11 laboratories of the French enterovirus (EV) surveillance network participated in an EV-D68 survey. A total of 6,229 respiratory samples, collected from 1 July to 31 December 2014, were screened for EV-D68 resulting in 212 EV-D68-positive samples. These 212 samples corresponded to 200 EV-D68 cases. The overall EV-D68 positivity rates among respiratory samples were of 5% (184/3,645) and 1.1% (28/2,584) in hospitalised children and adults respectively. The maximum weekly EV-D68 positivity rates were of 16.1% for children (n = 24/149; week 43) and 2.6% for adults (n = 3/115; week 42). Of 173 children with EV-D68 infection alone, the main symptoms were asthma (n = 83; 48.0%) and bronchiolitis (n = 37; 21.4%). One child developed acute flaccid paralysis (AFP) following EV-D68-associated pneumonia. Although there was no significant increase in severe respiratory tract infections reported to the French public health authorities, 10.7% (19/177) of the EV-D68 infected children and 14.3% (3/21) of the EV-D68 infected adults were hospitalised in intensive care units. Phylogenetic analysis of the viral protein 1 (VP1) sequences of 179 EV-D68 cases, revealed that 117 sequences (65.4%), including that of the case of AFP, belonged to the B2 variant of clade B viruses. Continuous surveillance of EV-D68 infections is warranted and could benefit from existing influenza-like illness and EV surveillance networks.
Collapse
Affiliation(s)
- Isabelle Schuffenecker
- Centre National de Référence des Enterovirus et Parechovirus, Laboratoire de Virologie, Hospices Civils de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cordey S, Schibler M, L'Huillier AG, Wagner N, Gonçalves AR, Ambrosioni J, Asner S, Turin L, Posfay-Barbe KM, Kaiser L. Comparative analysis of viral shedding in pediatric and adult subjects with central nervous system-associated enterovirus infections from 2013 to 2015 in Switzerland. J Clin Virol 2017; 89:22-29. [PMID: 28214758 DOI: 10.1016/j.jcv.2017.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several enterovirus (EV) genotypes can result in aseptic meningitis, but their routes of access to the central nervous system remain to be elucidated and may differ between the pediatric and adult populations. OBJECTIVE To assess the pattern of viral shedding in pediatric and adult subjects with acute EV meningitis and to generate EV surveillance data for Switzerland. STUDY DESIGN All pediatric and adult subjects admitted to the University Hospitals of Geneva with a diagnosis of EV meningitis between 2013 and 2015 were enrolled. A quantitative EV real-time reverse transcriptase (rRT)-PCR was performed on the cerebrospinal fluid (CSF), blood, stool, urine and respiratory specimens to assess viral shedding and provide a comparative analysis of pediatric and adult populations. EV genotyping was systematically performed. RESULTS EV positivity rates differed significantly between pediatric and adult subjects; 62.5% of pediatric cases (no adult case) were EV-positive in stool and blood for subjects for whom these samples were all collected. Similarly, the EV viral load in blood was significantly higher in pediatric subjects. Blood C-reactive protein levels were lower and the number of leucocytes/mm3 in the CSF were higher in non-viremic than in viremic pediatric subjects, respectively. A greater diversity of EV genotypes was observed in pediatric cases, with a predominance of echovirus 30 in children ≥3 years old and adults. CONCLUSION In contrast to adults, EV-disseminated infections are predominant in pediatric subjects and show different patterns of EV viral shedding. This observation may be useful for clinicians and contribute to modify current practices of patient care.
Collapse
Affiliation(s)
- S Cordey
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | - M Schibler
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - A G L'Huillier
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - N Wagner
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - A R Gonçalves
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - J Ambrosioni
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 149 Carrer del Rosselló, 08036 Barcelona, Spain
| | - S Asner
- Pediatric Infectious Diseases and Vaccinology Unit, Department of Pediatrics, University Hospital Center, 46 Rue du Bugnon, 1011 Lausanne, Switzerland; Service of Infectious Diseases, Department of Internal Medicine, University Hospital Center, 46 Rue du Bugnon, 1011 Lausanne, Switzerland
| | - L Turin
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - K M Posfay-Barbe
- University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Pediatric Infectious Diseases Unit, Division of General Pediatrics, Department of Pediatrics, University Hospitals of Geneva, 6 Rue Willy-Donzé, 1211 Geneva 14, Switzerland
| | - L Kaiser
- Laboratory of Virology, Infectious Diseases Service, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14, Switzerland; University of Geneva Medical School, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|