1
|
Mathad JS, Alexander M, Bhosale R, Naik S, Cranmer LM, Kulkarni V, Busch S, Chalem A, Gitlin E, Lei J, Liu A, Liu J, Liu Y, Shivakoti R, Gupta A, Burd I. HIV-related Differences in Placental Immunology: Data From the PRACHITi Cohort in Pune, India. Open Forum Infect Dis 2025; 12:ofaf047. [PMID: 40046890 PMCID: PMC11879550 DOI: 10.1093/ofid/ofaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
Background Maternal HIV infection can affect placental immunology and expression of the neonatal crystallizable fragment receptor (FcRn), which allows transplacental antibody transfer. This study delineated differences in placental FcRn and T-cell expression by HIV status, with or without viral suppression. Methods This observational cohort study in Pune, India, followed pregnant women with and without HIV through 1 year postpartum; 42 had placenta collected, stratified by HIV status. FcRn expression was analyzed by Western blot (normalized by GADPH) and compared using ImageJ. Placental CD4/CD8 abundance was assessed by immunofluorescent counting per high powered field. Results The median gestational age at delivery was 38.3 weeks (interquartile range [IQR] 37.5-39.1). Of 18 women living with HIV, all were on combined antiretroviral therapy with a median CD4 of 455 cells/mm3 (IQR 281-640) at entry and 429 cells/mm3 (IQR 317-686) at delivery. Ten had undetectable virus (≤40 copies/mL); of those with detectable virus, the median viral load was 151 copies/mL (IQR 118.15-539 334). Relative placental FcRn expression was lower in women living with HIV compared to without (median 0.54 vs 0.84, P = .01) and not associated with CD4 or viral load. Women with HIV had significantly higher abundance of placental CD8+ T cells, regardless of viral suppression, compared to women without. Conclusions Maternal HIV, even with viral suppression, is associated with lower placental FcRn expression and increased placental CD8+ T cells. These results suggest that dysregulation may not be completely reversed by antiretroviral therapy and could contribute to poorer infant outcomes, even in the absence of mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Jyoti S Mathad
- Weill Cornell Medicine, Center for Global Health, Department of Medicine, New York, New York, USA
| | - Mallika Alexander
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | - Ramesh Bhosale
- Department of Obstetrics and Gynecology, BJ Government Medical College, Pune, India
| | - Shilpa Naik
- Department of Obstetrics and Gynecology, BJ Government Medical College, Pune, India
| | | | - Vandana Kulkarni
- Center for Infectious Diseases in India, Johns Hopkins India, Pune, India
| | - Sydney Busch
- Department of Paediatrics, Emory University, Atlanta, Georgia, USA
| | - Andrea Chalem
- University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Emily Gitlin
- Weill Cornell Medicine, Center for Global Health, Department of Medicine, New York, New York, USA
| | - Jun Lei
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anguo Liu
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jin Liu
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Liu
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rupak Shivakoti
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Amita Gupta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Irina Burd
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Wiśniewski J, Więcek K, Ali H, Pyrc K, Kula-Păcurar A, Wagner M, Chen HC. Distinguishable topology of the task-evoked functional genome networks in HIV-1 reservoirs. iScience 2024; 27:111222. [PMID: 39559761 PMCID: PMC11570469 DOI: 10.1016/j.isci.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
HIV-1 reservoirs display a heterogeneous nature, lodging both intact and defective proviruses. To deepen our understanding of such heterogeneous HIV-1 reservoirs and their functional implications, we integrated basic concepts of graph theory to characterize the composition of HIV-1 reservoirs. Our analysis revealed noticeable topological properties in networks, featuring immunologic signatures enriched by genes harboring intact and defective proviruses, when comparing antiretroviral therapy (ART)-treated HIV-1-infected individuals and elite controllers. The key variable, the rich factor, played a pivotal role in classifying distinct topological properties in networks. The host gene expression strengthened the accuracy of classification between elite controllers and ART-treated patients. Markov chain modeling for the simulation of different graph networks demonstrated the presence of an intrinsic barrier between elite controllers and non-elite controllers. Overall, our work provides a prime example of leveraging genomic approaches alongside mathematical tools to unravel the complexities of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Janusz Wiśniewski
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Kamil Więcek
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Haider Ali
- Molecular Virology Group, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
| | - Anna Kula-Păcurar
- Molecular Virology Group, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str, 30-387 Kraków, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Heng-Chang Chen
- Quantitative Virology Research Group, Population Diagnostics Center, Łukasiewicz Research Network – PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| |
Collapse
|
3
|
Zhao T, Jing Y, Li Y, Huang Y, Lu Y, Chen Y. Delving deeper into the mechanisms fundamental to HIV-associated immunopathology using single-cell sequencing techniques: A scoping review of current literature. Heliyon 2024; 10:e35856. [PMID: 39224354 PMCID: PMC11366914 DOI: 10.1016/j.heliyon.2024.e35856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection has evolved into an established global pandemic over the past four decades; however, despite massive research investment globally, the precise underlying mechanisms which are fundamental to HIV-related pathogenesis remain unclear. Single cell ribonucleic acid (RNA) sequencing methods are increasingly being used for the identification of specific cell-type transcriptional changes in HIV infection. In this scoping review, we have considered information extracted from fourteen published HIV-associated single-cell RNA sequencing-related studies, hoping to throw light on the underlying mechanisms of HIV infection and pathogenesis, and to explore potential candidate biomarkers for HIV disease progression and antiviral treatment. Generally, HIV positive individuals tend to manifest disturbances of frequency of multiple cellular types, and specifically exhibit diminished levels of CD4+ T-cells and enriched numbers of CD8+ T-cells. Cell-specific transcriptional changes tend to be linked to cell permissiveness, hyperacute or acute HIV infection, viremia, and cell productivity. The transcriptomes of CD4+ T-cell and CD8+ T-cell subpopulations are also observed to change in HIV-positive diabetic individuals, spontaneous HIV controllers, individuals with high levels of HIV viremia, and those in an acute phase of HIV infection. The transcriptional changes seen in B cells, natural killer (NK) cells, and myeloid dendritic cells (mDCs) of HIV-infected individuals demonstrate that the humoral immune response, antiviral response, and immune response regulation, respectively, are all altered following HIV infection. Antiretroviral therapy (ART) plays a crucial role in achieving immune reconstitution, in improving immunological disruption, and in mitigating immune system imbalances in HIV-infected individuals, while not fully restoring inherent cellular transcription to levels seen in HIV-negative individuals. The preceding observations not only illustrate compelling advances in the understanding of HIV-associated immunopathogenesis, but also identify specific cell-type transcriptional changes that may serve as potential biomarkers for HIV disease monitoring and therapeutic targeting.
Collapse
Affiliation(s)
| | | | - Yao Li
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yinqiu Huang
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yanqiu Lu
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yaokai Chen
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, 400036, China
| |
Collapse
|
4
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Zhang L, Zhang A, Zhu X, Tian X, Guo J, He Q, Zhu L, Yuan S, Zhao C, Zhang X, Xu J. CD160 Signaling Is Essential for CD8+ T Cell Memory Formation via Upregulation of 4-1BB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1367-1375. [PMID: 37695685 DOI: 10.4049/jimmunol.2200792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
A better understanding of the regulatory mechanisms governing the development of memory CD8+ T cells could provide instructive insights into vaccination strategies and T cell-based immunotherapies. In this article, we showed that CD160 surface protein is required for CD8+ T cell memory formation. In the response to acute lymphocytic choriomeningitis virus infection in a mouse model, CD160 ablation resulted in the failure of the development of all three memory CD8+ T cell subsets (central, effective, and tissue-resident memory), concomitant with a skewed differentiation into short-lived effector T cells. Such memory-related defect was manifested by a diminished protection from viral rechallenge. Mechanistically, CD160 deficiency led to downregulation of 4-1BB in activated CD8+ T cells, which contributes to the impaired cell survival and decreased respiratory capacity. The nexus between CD160 and 4-1BB was substantiated by the observation that ectopic introduction of 4-1BB was able to largely complement the loss of CD160 in memory CD8+ T cell development. Collectively, our studies discovered that CD160, once thought to be a coinhibitor of T cell signaling, is an essential promoter of memory CD8+ T cell development via activation of the costimulatory molecule 4-1BB.
Collapse
Affiliation(s)
- Linxia Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xinyu Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinmei Tian
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiaohan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qian He
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Clinical Science & Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Cameron CM, Richardson B, Golden JB, Phoon YP, Tamilselvan B, Pfannenstiel L, Thapaliya S, Roversi G, Gao XH, Zagore LL, Cameron MJ, Gastman BR. A transcriptional evaluation of the melanoma and squamous cell carcinoma TIL compartment reveals an unexpected spectrum of exhausted and functional T cells. Front Oncol 2023; 13:1200387. [PMID: 38023136 PMCID: PMC10643547 DOI: 10.3389/fonc.2023.1200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Significant heterogeneity exists within the tumor-infiltrating CD8 T cell population, and exhausted T cells harbor a subpopulation that may be replicating and may retain signatures of activation, with potential functional consequences in tumor progression. Dysfunctional immunity in the tumor microenvironment is associated with poor cancer outcomes, making exploration of these exhausted T cell subpopulations critical to the improvement of therapeutic approaches. Methods To investigate mechanisms associated with terminally exhausted T cells, we sorted and performed transcriptional profiling of CD8+ tumor-infiltrating lymphocytes (TILs) co-expressing the exhaustion markers PD-1 and TIM-3 from large-volume melanoma tumors. We additionally performed immunologic phenotyping and functional validation, including at the single-cell level, to identify potential mechanisms that underlie their dysfunctional phenotype. Results We identified novel dysregulated pathways in CD8+PD-1+TIM-3+ cells that have not been well studied in TILs; these include bile acid and peroxisome pathway-related metabolism and mammalian target of rapamycin (mTOR) signaling pathways, which are highly correlated with immune checkpoint receptor expression. Discussion Based on bioinformatic integration of immunophenotypic data and network analysis, we propose unexpected targets for therapies to rescue the immune response to tumors in melanoma.
Collapse
Affiliation(s)
- Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Brian Richardson
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jackelyn B. Golden
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Yee Peng Phoon
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Banumathi Tamilselvan
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Lukas Pfannenstiel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Samjhana Thapaliya
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Gustavo Roversi
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Xing-Huang Gao
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Leah L. Zagore
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Brian R. Gastman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Zhang X, Wang X, Qin L, Lu X, Liu Z, Li Z, Yuan L, Wang R, Jin J, Ma Z, Wu H, Zhang Y, Zhang T, Su B. Changing roles of CD3 + CD8 low T cells in combating HIV-1 infection. Chin Med J (Engl) 2023; 136:433-445. [PMID: 36580634 PMCID: PMC10106209 DOI: 10.1097/cm9.0000000000002458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cluster of differentiation 8 (CD8 T) cells play critical roles in eradicating human immunodeficiency virus (HIV)-1 infection, but little is known about the effects of T cells expressing CD8 at low levels (CD8 low ) or high levels (CD8 high ) on HIV-1 replication inhibition after HIV-1 invasion into individual. METHODS Nineteen patients who had been acutely infected with HIV-1 (AHI) and 20 patients with chronic infection (CHI) for ≥2 years were enrolled in this study to investigate the dynamics of the quantity, activation, and immune responses of CD3 + CD8 low T cells and their counterpart CD3 + CD8 high T cells at different stages of HIV-1 infection. RESULTS Compared with healthy donors, CD3 + CD8 low T cells expanded in HIV-1-infected individuals at different stages of infection. As HIV-1 infection progressed, CD3 + CD8 low T cells gradually decreased. Simultaneously, CD3 + CD8 high T cells was significantly reduced in the first month of AHI and then increased gradually as HIV-1 infection progressed. The classical activation of CD3 + CD8 low T cells was highest in the first month of AHI and then reduced as HIV-1 infection progressed and entered the chronic stage. Meanwhile, activated CD38 - HLA-DR + CD8 low T cells did not increase in the first month of AHI, and the number of these cells was inversely associated with viral load ( r = -0.664, P = 0.004) but positively associated with the CD4 T-cell count ( r = 0.586, P = 0.014). Increased programmed cell death protein 1 (PD-1) abundance on CD3 + CD8 low T cells was observed from the 1st month of AHI but did not continue to be enhanced, while a significant T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) abundance increase was observed in the 12th month of infection. Furthermore, increased PD-1 and TIGIT abundance on CD3 + CD8 low T cells was associated with a low CD4 T-cell count (PD-1: r = -0.456, P = 0.043; TIGIT: r = -0.488, P = 0.029) in CHI. Nonetheless, the nonincrease in PD-1 expression on classically activated CD3 + CD8 low T cells was inversely associated with HIV-1 viremia in the first month of AHI ( r = -0.578, P = 0.015). Notably, in the first month of AHI, few CD3 + CD8 low T cells, but comparable amounts of CD3 + CD8 high T cells, responded to Gag peptides. Then, weaker HIV-1-specific T-cell responses were induced in CD3 + CD8 low T cells than CD3 + CD8 high T cells at the 3rd and 12th months of AHI and in CHI. CONCLUSIONS Our findings suggest that CD3 + CD8 low T cells play an anti-HIV role in the first month of infection due to their abundance but induce a weak HIV-1-specific immune response. Subsequently, CD3 + CD8 low T-cell number decreased gradually as infection persisted, and their anti-HIV functions were inferior to those of CD3 + CD8 high T cells.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ling Qin
- Research Center for Biomedical Resources, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhiying Liu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lin Yuan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyan Jin
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhenglai Ma
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yonghong Zhang
- Research Center for Biomedical Resources, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Sun W, Gao C, Hartana CA, Osborn MR, Einkauf KB, Lian X, Bone B, Bonheur N, Chun TW, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Nature 2023; 614:309-317. [PMID: 36599977 PMCID: PMC9908552 DOI: 10.1038/s41586-022-05538-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) reservoir cells persist lifelong despite antiretroviral treatment1,2 but may be vulnerable to host immune responses that could be exploited in strategies to cure HIV-1. Here we used a single-cell, next-generation sequencing approach for the direct ex vivo phenotypic profiling of individual HIV-1-infected memory CD4+ T cells from peripheral blood and lymph nodes of people living with HIV-1 and receiving antiretroviral treatment for approximately 10 years. We demonstrate that in peripheral blood, cells harbouring genome-intact proviruses and large clones of virally infected cells frequently express ensemble signatures of surface markers conferring increased resistance to immune-mediated killing by cytotoxic T and natural killer cells, paired with elevated levels of expression of immune checkpoint markers likely to limit proviral gene transcription; this phenotypic profile might reduce HIV-1 reservoir cell exposure to and killing by cellular host immune responses. Viral reservoir cells harbouring intact HIV-1 from lymph nodes exhibited a phenotypic signature primarily characterized by upregulation of surface markers promoting cell survival, including CD44, CD28, CD127 and the IL-21 receptor. Together, these results suggest compartmentalized phenotypic signatures of immune selection in HIV-1 reservoir cells, implying that only small subsets of infected cells with optimal adaptation to their anatomical immune microenvironment are able to survive during long-term antiretroviral treatment. The identification of phenotypic markers distinguishing viral reservoir cells may inform future approaches for strategies to cure and eradicate HIV-1.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Kevin B Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin Bone
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Tae-Wook Chun
- National Institute of Allergies and Infectious Diseases, Bethesda, MD, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Oumeslakht L, Aziz AI, Bensussan A, Ben Mkaddem S. CD160 receptor in CLL: Current state and future avenues. Front Immunol 2022; 13:1028013. [PMID: 36420268 PMCID: PMC9676924 DOI: 10.3389/fimmu.2022.1028013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 08/01/2023] Open
Abstract
CD160 is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein expressed on cytotoxic natural killer (NK) cells and T-cell subsets. It plays a crucial role in the activation of NK-cell cytotoxicity and cytokine production. It also modulates the immune system and is involved in some pathologies, such as cancer. CD160 is abnormally expressed in B-cell chronic lymphocytic leukemia (CLL) but not expressed in normal B lymphocytes. Its expression in CLL enhances tumor cell proliferation and resistance to apoptosis. CD160 is also a potential prognostic marker for the detection of minimal residual disease (MRD) in CLL, which is important for the clinical management of CLL, the prevention of disease relapse, and the achievement of complete remission. In this review, we present an overview of CD160 and its involvement in the pathophysiology of CLL. We also discuss its use as a prognostic marker for the assessment of MRD in CLL.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Abdel-ilah Aziz
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Armand Bensussan
- INSERM U976, Université de Paris, Hôpital Saint Louis, Paris, France
- Institut Jean Godinot, Centre de Lutte Contre le Cancer, Reims, France
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
11
|
Battin C, Leitner J, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Olive D, Steinberger P. BTLA inhibition has a dominant role in the cis-complex of BTLA and HVEM. Front Immunol 2022; 13:956694. [PMID: 36081508 PMCID: PMC9446882 DOI: 10.3389/fimmu.2022.956694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068; Centre National de la Recherche Scientifique (CNRS), UMR7258; Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Active PD-L1 incorporation within HIV virions functionally impairs T follicular helper cells. PLoS Pathog 2022; 18:e1010673. [PMID: 35788752 PMCID: PMC9286290 DOI: 10.1371/journal.ppat.1010673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection. During HIV infection, the development of effective BnAbs remains a rare phenomenon, occurring in only 15–20% of HIV-infected individuals after years of infection. Although multiple mechanisms may be involved, recent studies have suggested that functional impairment of Tfh cells, through immune checkpoint (IC)/IC-Ligand (IC-L) interactions, may lead to a decrease in B-cell help leading to low BnAbs production. Our laboratory recently showed that PD-L1 was predominantly expressed on lymph node (LN) migratory dendritic cells located predominantly in extra-follicular areas, implying that the source of IC-L contributing to Tfh-cell functional impairment may be independent of cellular expression of IC-L. These observations prompted us to investigate the potential contribution of IC-L incorporated within HIV virion envelope to Tfh-cell functional impairment. We subsequently demonstrated that PD-L1 was incorporated into a large fraction of HIV virions in the plasma of viremic HIV-infected individuals. Interestingly, PD-L1 remains active when incorporated into HIV virions envelope and could impaired Tfh-cell proliferation, resulting in decreased IgG1 production by B cells in vitro. These findings demonstrate an unsuspected mechanism contributing to the regulation of Tfh-cell function, which may contribute to the low production of BnAbs by B cells during HIV infection.
Collapse
|
13
|
T-cell evasion and invasion during HIV-1 infection: The role of HIV-1 Tat protein. Cell Immunol 2022; 377:104554. [DOI: 10.1016/j.cellimm.2022.104554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
|
14
|
Chaudhary O, Trotta D, Wang K, Wang X, Chu X, Bradley C, Okulicz J, Maves RC, Kronmann K, Schofield CM, Blaylock JM, Deng Y, Schalper KA, Kaech SM, Agan B, Ganesan A, Emu B. Patients with HIV-associated cancers have evidence of increased T cell dysfunction and exhaustion prior to cancer diagnosis. J Immunother Cancer 2022; 10:jitc-2022-004564. [PMID: 35470232 PMCID: PMC9039380 DOI: 10.1136/jitc-2022-004564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND People living with HIV (PLWH) have increased risk of developing cancers after controlling traditional risk factors and viral suppression. This study explores whether T cells can serve as a marker of risk for cancer among HIV-infected virally suppressed patients. METHODS A nested case control study design was pursued with 17 cancer cases and 73 controls (PLWH without cancer)ouidentified among the US Military HIV Natural History Study cohort, and were matched for CD4 + count, duration of HIV infection, and viral suppression. Cells were obtained from PLWH on an average of 12 months prior to clinical cancer diagnosis. Expression of inhibitory receptors (PD-1, CD160, CD244, Lag-3, and TIGIT), and transcription factors (T-bet, Eomesodermin, TCF-1, and (TOX) was measured on CD8 +T cells from that early time point. RESULTS We found that cases have increased expression of PD-1 +CD160+CD244+ ('triple positive') on total and effector CD8 + compared with controls (p=0.02). Furthermore, CD8 +T cells that were both PD-1 +CD160+CD244+ and T-betdimEomeshi were significantly elevated in cases at time point before cancer detection, compared with controls without cancer (p=0.008). This was driven by the finding that transcriptional factor profile of cells was altered in cancers compared with controls. Triple-positive cells were noted to retain the ability for cytotoxicity and cytokine secretion mediated by expression of CD160 and PD-1, respectively. However, triple-positive cells demonstrated high expression of TOX-1, a transcription factor associated with T cell exhaustion. CONCLUSION In conclusion, we have found a subset of dysfunctional CD8 +T cells, PD-1 +CD160+CD244+T-betdimEomeshi, that is elevated 12 months before cancer diagnosis, suggesting that peripheral T cell alterations may serve as a biomarker of increased cancer risk among PLWH.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Internal Medicine; Infectious Disease, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diane Trotta
- Flow Cytometry Facility, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kaicheng Wang
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Xun Wang
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Xiuping Chu
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Chip Bradley
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Jason Okulicz
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Ryan C Maves
- Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Karl Kronmann
- Internal Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | - Christina M Schofield
- Internal Medicine; Infectious Diseases, Madigan Army Medical Center, Tacoma, Washington, USA
| | - Jason M Blaylock
- Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Yanhong Deng
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Kurt A Schalper
- Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Kaech
- Departments of Immunobiology, Salk Institute, La Jolla, California, USA
| | - Brian Agan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine; Infectious Diseases and Critical Care, Naval Medical Center San Diego, San Diego, California, USA
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Bethesda, Maryland, USA,Internal Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brinda Emu
- Internal Medicine; Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA,Internal Medicine; Infectious Diseases, VA Connecticut Healthcare System - West Haven Campus, West Haven, Connecticut, USA
| |
Collapse
|
15
|
Diethelm P, Schmitz I, Iten I, Kisielow J, Matsushita M, Kopf M. LCMV induced down-regulation of HVEM on anti-viral T cells is critical for an efficient effector response. Eur J Immunol 2022; 52:924-935. [PMID: 35344223 PMCID: PMC9321772 DOI: 10.1002/eji.202048569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
T‐cell responses against tumors and pathogens are critically shaped by cosignaling molecules providing a second signal. Interaction of herpes virus entry mediator (HVEM, CD270, TNFRSF14) with multiple ligands has been proposed to promote or inhibit T‐cell responses and inflammation, dependent on the context. In this study, we show that absence of HVEM did neither affect generation of effector nor maintenance of memory antiviral T cells and accordingly viral clearance upon acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, due to potent HVEM downregulation during infection. Notably, overexpression of HVEM on virus‐specific CD8+ T cells resulted in a reduction of effector cells, whereas numbers of memory cells were increased. Overall, this study indicates that downregulation of HVEM driven by LCMV infection ensures an efficient acute response at the price of impaired formation of T‐cell memory.
Collapse
Affiliation(s)
- Patrizia Diethelm
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Iwana Schmitz
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Irina Iten
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jan Kisielow
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Mai Matsushita
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Manfred Kopf
- Molecular Biomedicine, Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
16
|
Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection. Viruses 2022; 14:v14030581. [PMID: 35336991 PMCID: PMC8955100 DOI: 10.3390/v14030581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
During HIV/SIV infection, the upregulation of immune checkpoint (IC) markers, programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte-activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain-3 (Tim-3), CD160, 2B4 (CD244), and V-domain Ig suppressor of T cell activation (VISTA), can lead to chronic T cell exhaustion. These ICs play predominant roles in regulating the progression of HIV/SIV infection by mediating T cell responses as well as enriching latent viral reservoirs. It has been demonstrated that enhanced expression of ICs on CD4+ and CD8+ T cells could inhibit cell proliferation and cytokine production. Overexpression of ICs on CD4+ T cells could also format and prolong HIV/SIV persistence. IC blockers have shown promising clinical results in HIV therapy, implying that targeting ICs may optimize antiretroviral therapy in the context of HIV suppression. Here, we systematically review the expression profile, biological regulation, and therapeutic efficacy of targeted immune checkpoints in HIV/SIV infection.
Collapse
|
17
|
Cheng J, Myers TG, Levinger C, Kumar P, Kumar J, Goshu BA, Bosque A, Catalfamo M. IL-27 induces IFN/STAT1-dependent genes and enhances function of TIGIT + HIVGag-specific T cells. iScience 2022; 25:103588. [PMID: 35005538 PMCID: PMC8717455 DOI: 10.1016/j.isci.2021.103588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-specific T cells have diminished effector function and fail to control/eliminate the virus. IL-27, a member of the IL-6/IL-12 cytokine superfamily has been shown to inhibit HIV replication. However, whether or not IL-27 can enhance HIV-specific T cell function is largely unknown. In the present manuscript, we investigated the role of IL-27 signaling in human T cells by evaluating the global transcriptional changes related to the function of HIV-specific T cells. We found that T cells from people living with HIV (PLWH), expressed higher levels of STAT1 leading to enhanced STAT1 activation upon IL-27 stimulation. Observed IL-27 induced transcriptional changes were associated with IFN/STAT1-dependent pathways in CD4 and CD8 T cells. Importantly, IL-27 dependent modulation of T-bet expression promoted IFNγ secretion by TIGIT+HIVGag-specific T cells. This new immunomodulatory effect of IL-27 on HIV-specific T cell function suggests its potential therapeutic use in cure strategies.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Princy Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jai Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Bruktawit A. Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, 3970 Reservoir Road, N.W, New Research Building, Room EG19A, Washington, DC 20057, USA
| |
Collapse
|
18
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
19
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
20
|
Piotrowska M, Spodzieja M, Kuncewicz K, Rodziewicz-Motowidło S, Orlikowska M. CD160 protein as a new therapeutic target in a battle against autoimmune, infectious and lifestyle diseases. Analysis of the structure, interactions and functions. Eur J Med Chem 2021; 224:113694. [PMID: 34273660 DOI: 10.1016/j.ejmech.2021.113694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sylwia Rodziewicz-Motowidło
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
21
|
Okoye I, Xu L, Oyegbami O, Shahbaz S, Pink D, Gao P, Sun X, Elahi S. Plasma Extracellular Vesicles Enhance HIV-1 Infection of Activated CD4 + T Cells and Promote the Activation of Latently Infected J-Lat10.6 Cells via miR-139-5p Transfer. Front Immunol 2021; 12:697604. [PMID: 34249000 PMCID: PMC8264662 DOI: 10.3389/fimmu.2021.697604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
HIV latency is a challenge to the success of antiretroviral therapy (ART). Hence patients may benefit from interventions that efficiently reactivate the latent virus to be eliminated by ARTs. Here we show that plasma extracellular vesicles (pEVs) can enhance HIV infection of activated CD4+ T cells and reactivate the virus in latently infected J-Lat 10.6 cells. Evaluation of the extravesicular miRNA cargo by a PCR array revealed that pEVs from HIV patients express miR-139-5p. Furthermore, we found that increased levels of miR-139-5p in J-Lat 10.6 cells incubated with pEVs corresponded with reduced expression of the transcription factor, FOXO1. pEV treatment also corresponded with increased miR-139-5p expression in stimulated PD1+ Jurkat cells, but with concomitant upregulation of FOXO1, Fos, Jun, PD-1 and PD-L1. However, J-Lat 10.6 cells incubated with miR-139-5p inhibitor-transfected pEVs from HIV ART-naïve and on-ART patients expressed reduced levels of miR-139-5p than cells treated with pEVs from healthy controls (HC). Collectively, our results indicate that pEV miR-139-5p belongs to a network of miRNAs that can promote cell activation, including latent HIV-infected cells by regulating the expression of FOXO1 and the PD1/PD-L1 promoters, Fos and Jun.
Collapse
Affiliation(s)
- Isobel Okoye
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lai Xu
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Olaide Oyegbami
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Desmond Pink
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Priscilla Gao
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Xuejun Sun
- Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, Faculty of Medicine and Dentistry, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Martin GE, Sen DR, Pace M, Robinson N, Meyerowitz J, Adland E, Thornhill JP, Jones M, Ogbe A, Parolini L, Olejniczak N, Zacharopoulou P, Brown H, Willberg CB, Nwokolo N, Fox J, Fidler S, Haining WN, Frater J. Epigenetic Features of HIV-Induced T-Cell Exhaustion Persist Despite Early Antiretroviral Therapy. Front Immunol 2021; 12:647688. [PMID: 34149690 PMCID: PMC8213372 DOI: 10.3389/fimmu.2021.647688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
T cell dysfunction occurs early following HIV infection, impacting the emergence of non-AIDS morbidities and limiting curative efforts. ART initiated during primary HIV infection (PHI) can reverse this dysfunction, but the extent of recovery is unknown. We studied 66 HIV-infected individuals treated from early PHI with up to three years of ART. Compared with HIV-uninfected controls, CD4 and CD8 T cells from early HIV infection were characterised by T cell activation and increased expression of the immune checkpoint receptors (ICRs) PD1, Tim-3 and TIGIT. Three years of ART lead to partial – but not complete – normalisation of ICR expression, the dynamics of which varied for individual ICRs. For HIV-specific cells, epigenetic profiling of tetramer-sorted CD8 T cells revealed that epigenetic features of exhaustion typically seen in chronic HIV infection were already present early in PHI, and that ART initiation during PHI resulted in only a partial shift of the epigenome to one with more favourable memory characteristics. These findings suggest that although ART initiation during PHI results in significant immune reconstitution, there may be only partial resolution of HIV-related phenotypic and epigenetic changes.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Debattama R Sen
- Department of Immunology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Panagiota Zacharopoulou
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' National Health Service (NHS) Trust, London, United Kingdom.,King's College National Institute of Health Research (NIHR) Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College NIHR Biomedical Research Centre, London, United Kingdom
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Discovery Oncology and Immunology, Merck Research Laboratories, Boston, MA, United States
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
23
|
Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, Larratt LM, Hnatiuk M, Fagarasanu A, Brandwein J, Peters AC, Elahi S. Expanded antigen-experienced CD160 +CD8 +effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J Immunother Cancer 2021; 9:jitc-2020-002189. [PMID: 33931471 PMCID: PMC8098955 DOI: 10.1136/jitc-2020-002189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background T cell exhaustion compromises antitumor immunity, and a sustained elevation of co-inhibitory receptors is a hallmark of T cell exhaustion in solid tumors. Similarly, upregulation of co-inhibitory receptors has been reported in T cells in hematological cancers such as chronic lymphocytic leukemia (CLL). However, the role of CD160, a glycosylphosphatidylinositol-anchored protein, as one of these co-inhibitory receptors has been contradictory in T cell function. Therefore, we decided to elucidate how CD160 expression and/or co-expression with other co-inhibitory receptors influence T cell effector functions in patients with CLL. Methods We studied 56 patients with CLL and 25 age-matched and sex-matched healthy controls in this study. The expression of different co-inhibitory receptors was analyzed in T cells obtained from the peripheral blood or the bone marrow. Also, we quantified the properties of extracellular vesicles (EVs) in the plasma of patients with CLL versus healthy controls. Finally, we measured 29 different cytokines, chemokines or other biomarkers in the plasma specimens of patients with CLL and healthy controls. Results We found that CD160 was the most upregulated co-inhibitory receptor in patients with CLL. Its expression was associated with an exhausted T cell phenotype. CD160+CD8+ T cells were highly antigen-experienced/effector T cells, while CD160+CD4+ T cells were more heterogeneous. In particular, we identified EVs as a source of CD160 in the plasma of patients with CLL that can be taken up by T cells. Moreover, we observed a dominantly proinflammatory cytokine profile in the plasma of patients with CLL. In particular, interleukin-16 (IL-16) was highly elevated and correlated with the advanced clinical stage (Rai). Furthermore, we observed that the incubation of T cells with IL-16 results in the upregulation of CD160. Conclusions Our study provides a novel insight into the influence of CD160 expression/co-expression with other co-inhibitory receptors in T cell effector functions in patients with CLL. Besides, IL-16-mediated upregulation of CD160 expression in T cells highlights the importance of IL-16/CD160 as potential immunotherapy targets in patients with CLL. Therefore, our findings propose a significant role for CD160 in T cell exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Olaide Oyegbami
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amelie Fontaine
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nanette Cox-Kennett
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loree M Larratt
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Hnatiuk
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei Fagarasanu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Brandwein
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthea C Peters
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada .,Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Rutishauser RL, Deguit CDT, Hiatt J, Blaeschke F, Roth TL, Wang L, Raymond KA, Starke CE, Mudd JC, Chen W, Smullin C, Matus-Nicodemos R, Hoh R, Krone M, Hecht FM, Pilcher CD, Martin JN, Koup RA, Douek DC, Brenchley JM, Sékaly RP, Pillai SK, Marson A, Deeks SG, McCune JM, Hunt PW. TCF-1 regulates HIV-specific CD8+ T cell expansion capacity. JCI Insight 2021; 6:136648. [PMID: 33351785 PMCID: PMC7934879 DOI: 10.1172/jci.insight.136648] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Although many HIV cure strategies seek to expand HIV-specific CD8+ T cells to control the virus, all are likely to fail if cellular exhaustion is not prevented. A loss in stem-like memory properties (i.e., the ability to proliferate and generate secondary effector cells) is a key feature of exhaustion; little is known, however, about how these properties are regulated in human virus-specific CD8+ T cells. We found that virus-specific CD8+ T cells from humans and nonhuman primates naturally controlling HIV/SIV infection express more of the transcription factor TCF-1 than noncontrollers. HIV-specific CD8+ T cell TCF-1 expression correlated with memory marker expression and expansion capacity and declined with antigenic stimulation. CRISPR-Cas9 editing of TCF-1 in human primary T cells demonstrated a direct role in regulating expansion capacity. Collectively, these data suggest that TCF-1 contributes to the regulation of the stem-like memory property of secondary expansion capacity of HIV-specific CD8+ T cells, and they provide a rationale for exploring the enhancement of this pathway in T cell-based therapeutic strategies for HIV.
Collapse
Affiliation(s)
| | - Christian Deo T. Deguit
- Department of Medicine, UCSF, San Francisco, California, USA
- Institute of Human Genetics, University of the Philippines-National Institutes of Health, Manila, Philippines
| | - Joseph Hiatt
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Franziska Blaeschke
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Theodore L. Roth
- Department of Microbiology and Immunology
- Medical Scientist Training Program
- Biomedical Sciences Graduate Program, and
| | - Lynn Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kyle A. Raymond
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | | | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases and
| | - Wenxuan Chen
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Carolyn Smullin
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Rodrigo Matus-Nicodemos
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca Hoh
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases , NIH, Bethesda, Maryland, USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Satish K. Pillai
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, California, USA
| | - Alexander Marson
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology
- Diabetes Center, UCSF, San Francisco, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- UCSF Hellen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Peter W. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Wang S, Zhang Q, Hui H, Agrawal K, Karris MAY, Rana TM. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerg Microbes Infect 2020; 9:2333-2347. [PMID: 32954948 PMCID: PMC7646563 DOI: 10.1080/22221751.2020.1826361] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Chronic infection with human immunodeficiency virus (HIV) can cause progressive loss of immune cell function, or exhaustion, which impairs control of virus replication. However, little is known about the development and maintenance, as well as heterogeneity of immune cell exhaustion. Here, we investigated the effects of HIV infection on immune cell exhaustion at the transcriptomic level by analyzing single-cell RNA sequencing of peripheral blood mononuclear cells from four healthy subjects (37,847 cells) and six HIV-infected donors (28,610 cells). We identified nine immune cell clusters and eight T cell subclusters, and three of these (exhausted CD4+ and CD8+ T cells and interferon-responsive CD8+ T cells) were detected only in samples from HIV-infected donors. An inhibitory receptor KLRG1 was identified in a HIV-1 specific exhausted CD8+ T cell population expressing KLRG1, TIGIT, and T-betdimEomeshi markers. Ex-vivo antibody blockade of KLRG1 restored the function of HIV-specific exhausted CD8+ T cells demonstrating the contribution of KLRG1+ population to T cell exhaustion and providing an immunotherapy target to treat HIV chronic infection. These data provide a comprehensive analysis of gene signatures associated with immune cell exhaustion during HIV infection, which could be useful in understanding exhaustion mechanisms and developing new cure therapies.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| | - Qiong Zhang
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| | - Hui Hui
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- Department of Biology, Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Kriti Agrawal
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- Department of Biology, Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Maile Ann Young Karris
- Department of Medicine, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, USA
| | - Tariq M. Rana
- Department of Pediatrics, Division of Genetics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA
- UCSD Center for AIDS Research, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Goshu BA, Chen H, Moussa M, Cheng J, Catalfamo M. Combination rhIL-15 and Anti-PD-L1 (Avelumab) Enhances HIVGag-Specific CD8 T-Cell Function. J Infect Dis 2020; 222:1540-1549. [PMID: 32433762 PMCID: PMC7529035 DOI: 10.1093/infdis/jiaa269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1-/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.
Collapse
Affiliation(s)
- Bruktawit A Goshu
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
27
|
Chen P, Chen H, Moussa M, Cheng J, Li T, Qin J, Lifson JD, Sneller MC, Krymskaya L, Godin S, Lane HC, Catalfamo M. Recombinant Human Interleukin-15 and Anti-PD-L1 Combination Therapy Expands a CXCR3+PD1-/low CD8 T-Cell Subset in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Infect Dis 2020; 221:523-533. [PMID: 31562760 DOI: 10.1093/infdis/jiz485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The PD1/PD-L1 pathway contributes to the pathogenesis of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, and blockade of this pathway may have potential to restore immune function and promote viral control or elimination. In this study, we combined a checkpoint inhibitor anti-PD-L1 (Avelumab) and recombinant human interleukin-15 (rhIL-15) in SIV-infected rhesus macaques (RM). METHODS The rhIL-15 was administered as continuous infusion in 2 cycles of 10 days in the context of weekly administration of anti-PD-L1 (Avelumab) in SIV-infected RM receiving combination antiretroviral therapy (cART). Safety, immunological parameters, and viral loads were monitored during the study. RESULTS Administration of rhIL-15/anti-PD-L1 was safe and well tolerated. Treatment resulted in transient increases in proliferating (Ki67+) natural killer and CD8 T cells. In addition, treatment expanded a CXCR3+PD1-/low CD8 T-cell subset with the ability to secrete cytokines. Despite these effects, no changes in plasma viremia were observed after cART interruption. CONCLUSIONS Expansion of the CXCR3+PD1-/low CD8 T-cell subset with functional capacity and potential to traffic to sites of viral reservoirs in SIV-infected rhesus macaques had no demonstrable effect on plasma viremia after cART interruption.
Collapse
Affiliation(s)
- Ping Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA.,CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jing Qin
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael C Sneller
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Krymskaya
- Clinical Support Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, Maryland, USA
| | - H Clifford Lane
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| |
Collapse
|
28
|
Zhang L, Zhang A, Xu J, Qiu C, Zhu L, Qiu C, Fu W, Wang Y, Ye L, Fu YX, Zhao C, Zhang X, Xu J. CD160 Plays a Protective Role During Chronic Infection by Enhancing Both Functionalities and Proliferative Capacity of CD8+ T Cells. Front Immunol 2020; 11:2188. [PMID: 33072082 PMCID: PMC7533580 DOI: 10.3389/fimmu.2020.02188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
The understanding of protective immunity during HIV infection remains elusive. Here we showed that CD160 defines a polyfunctional and proliferative CD8+ T cell subset with a protective role during chronic HIV-1 infection. CD160+ CD8+ T cells derived from HIV+ patients correlated with slow progressions both in a cross-sectional study and in a 60-month longitudinal cohort, displaying enhanced cytotoxicity and proliferative capacity in response to HIV Gag stimulation; triggering CD160 promoted their functionalities through MEK-ERK and PI3K-AKT pathways. These observations were corroborated by studying chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. The genetic ablation of CD160 severely impaired LCMV-specific CD8+ T cell functionalities and thereby resulted in loss of virus control. Interestingly, transcriptional profiling showed multiple costimulatory and survival pathways likely to be involved in CD160+ T cell development. Our data demonstrated that CD160 acts as a costimulatory molecule positively regulating CD8+ T cells during chronic viral infections, thus representing a potential target for immune intervention.
Collapse
Affiliation(s)
- Linxia Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Wang
- Department of AIDS/STD, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lilin Ye
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yang-xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
30
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Leth S, Jensen-Fangel S. Programmed cell death protein 1 (PD-1) in infection. APMIS 2020; 128:177-187. [PMID: 32304591 DOI: 10.1111/apm.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Exhausted and dysfunctional T cells triggered by infection and cancer render the immune system unable to eliminate these pathogens. Pharmacologic blockade of the surface receptors that inhibit T-cell function has shown remarkable success in patients with various malignancies. In this Review, we discuss the emerging evidence of inhibiting checkpoint pathways as a potential role in controlling or clearing infectious diseases. Though interesting tendencies, much work is still needed in order to develop safe strategies that can be translated into clinically relevant outcomes in patients with infections.
Collapse
Affiliation(s)
- Steffen Leth
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev 2020; 292:149-163. [PMID: 31883174 PMCID: PMC7003858 DOI: 10.1111/imr.12823] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
The T‐cell response is central in the adaptive immune‐mediated elimination of pathogen‐infected and/or cancer cells. This activated T‐cell response can inflict an overwhelming degree of damage to the targeted cells, which in most instances leads to the control and elimination of foreign invaders. However, in conditions of chronic infection, persistent exposure of T cells to high levels of antigen results in a severe T‐cell dysfunctional state called exhaustion. T‐cell exhaustion leads to a suboptimal immune‐mediated control of multiple viral infections including the human immunodeficiency virus (HIV). In this review, we will discuss the role of T‐cell exhaustion in HIV disease progression, the long‐term defect of T‐cell function even in aviremic patients on antiretroviral therapy (ART), the role of exhaustion‐specific markers in maintaining a reservoir of latently infected cells, and exploiting these markers in HIV cure strategies.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Patricia Jacquier
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Riddhima Banga
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Why and where an HIV cure is needed and how it might be achieved. Nature 2019; 576:397-405. [PMID: 31853080 DOI: 10.1038/s41586-019-1841-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Despite considerable global investment, only 60% of people who live with HIV currently receive antiretroviral therapy. The sustainability of current programmes remains unknown and key incidence rates are declining only modestly. Given the complexities and expenses associated with lifelong medication, developing an effective curative intervention is now a global priority. Here we review why and where a cure is needed, and how it might be achieved. We argue for expanding these efforts from resource-rich regions to sub-Saharan Africa and elsewhere: for any intervention to have an effect, region-specific biological, therapeutic and implementation issues must be addressed.
Collapse
|
34
|
Hakim MS, Rahmadika N, Jariah ROA. Expressions of inhibitory checkpoint molecules in acute and chronic HBV and HCV infections: Implications for therapeutic monitoring and personalized therapy. Rev Med Virol 2019; 30:e2094. [DOI: 10.1002/rmv.2094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah Mada Yogyakarta Indonesia
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of MedicineUniversitas Padjadjaran Bandung Indonesia
| | - Rizka O. A. Jariah
- Department of Health Science, Faculty of Vocational StudiesUniversitas Airlangga Surabaya Indonesia
| |
Collapse
|
35
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
36
|
Qin K, Boppana S, Du VY, Carlson JM, Yue L, Dilernia DA, Hunter E, Mailliard RB, Mallal SA, Bansal A, Goepfert PA. CD8 T cells targeting adapted epitopes in chronic HIV infection promote dendritic cell maturation and CD4 T cell trans-infection. PLoS Pathog 2019; 15:e1007970. [PMID: 31398241 PMCID: PMC6703693 DOI: 10.1371/journal.ppat.1007970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/21/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
HIV-1 frequently escapes from CD8 T cell responses via HLA-I restricted adaptation, leading to the accumulation of adapted epitopes (AE). We previously demonstrated that AE compromise CD8 T cell responses during acute infection and are associated with poor clinical outcomes. Here, we examined the impact of AE on CD8 T cell responses and their biological relevance in chronic HIV infection (CHI). In contrast to acute infection, the majority of AE are immunogenic in CHI. Longitudinal analyses from acute to CHI showed an increased frequency and magnitude of AE-specific IFNγ responses compared to NAE-specific ones. These AE-specific CD8 T cells also were more cytotoxic to CD4 T cells. In addition, AE-specific CD8 T cells expressed lower levels of PD1 and CD57, as well as higher levels of CD28, suggesting a more activated and less exhausted phenotype. During CHI, viral sequencing identified AE-encoding strains as the dominant quasispecies. Despite increased CD4 T cell cytotoxicity, CD8 T cells responding to AE promoted dendritic cell (DC) maturation and CD4 T cell trans-infection perhaps explaining why AE are predominant in CHI. Taken together, our data suggests that the emergence of AE-specific CD8 T cell responses in CHI confers a selective advantage to the virus by promoting DC-mediated CD4 T cell trans-infection. HIV-1 infection remains a critical public health threat across the world. Over the past two decades, CD8 T cells have been clearly shown to exert immune pressure on HIV and drive viral adaptation. Previously, our group reported that such HLA-I associated adaptations can predict clinical outcomes and are beneficial to HIV-1 as CD8 T cells are unable to recognize epitopes with adaptation in acute HIV infection. However, it is still unclear how HIV-1 adaptation impacts CD8 T cells during chronic HIV infection. In this study, we observed an enhancement of CD8 T cell responses targeting adapted epitopes in chronic infection. Although these responses were cytotoxic, they also exhibited a “helper” effect by promoting viral infection of CD4 T cells via interaction with dendritic cells. This phenomenon may contribute to the persistence of adapted viruses. In summary, these findings present a novel mechanism of CD8 T cell driven HIV-1 adaptation.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sushma Boppana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor Y. Du
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Dario A. Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon A. Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (AB); (PAG)
| |
Collapse
|
37
|
CD160 serves as a negative regulator of NKT cells in acute hepatic injury. Nat Commun 2019; 10:3258. [PMID: 31332204 PMCID: PMC6646315 DOI: 10.1038/s41467-019-10320-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 04/28/2019] [Indexed: 12/18/2022] Open
Abstract
CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160-/- mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160-/- mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160-/- mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160-/- mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activation.
Collapse
|
38
|
Romani S, Stafford K, Nelson A, Bagchi S, Kottilil S, Poonia B. Peripheral PD-1 + T Cells Co-expressing Inhibitory Receptors Predict SVR With Ultra Short Duration DAA Therapy in HCV Infection. Front Immunol 2019; 10:1470. [PMID: 31316516 PMCID: PMC6610534 DOI: 10.3389/fimmu.2019.01470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Direct acting antiviral (DAA) regimens of 12 weeks result in HCV clearance in vast majority of patients across genotypes. We previously demonstrated an ultra-short regimen of 4 weeks DAA cleared HCV in a subset of patients. Here, we hypothesized that individual level of antiviral immunity differentially influenced viral clearance and investigated biomarkers of a successful response. Cohorts of HCV patients treated for 4 weeks with DAA therapy who either achieved sustained virologic response (SVR) or relapsed were compared at baseline and at end of therapy (EOT) for immune cell phenotypes and HCV specific immunity. Higher levels of PD-1+ CD8+ and CD4+ T lymphocytes co-expressing inhibitory receptors (IR) were present at baseline and at EOT in HCV patients who eventually achieved SVR compared with those who relpased. HCV specific CD8+ T cells were predominantly contained within these IR expressing PD-1+ subsets. Patients in the SVR group had significantly higher CD8+ T cell degranulation in response to HCV peptides at baseline and higher levels of cytokine producing T cells at EOT time-point, relative to those who relapsed. In ex vivo cultures, PD-1+CD160+ CD8+ T cells had higher HCV specific degranulation and PD-1+2B4+ CD8+ T cells had higher cytokine expression (IFNγ+TNFα+ or IFNγ+CD107a+) compared with single or no IR expressing subsets, indicating higher virus specific functional capacity of these subsets. Receiver operating characteristics curve (ROC) for baseline circulating frequencies of PD-1+CD160+, PD-1+Tim-3+ CD8+ T cells and PD-1+CD160+, PD-1+Blimp-1+, PD-1-CTLA4+ CD4+ T cells respectively, had associated C-statistics of 0.8214 and 0.9451 for discriminatin of patients who successfully cleared HCV with 4 weeks treatment. Thus, PD-1+ virus-specific CD8+ T cell subsets with cytotoxic capacity are present in a subset of chronic HCV infected individuals that associate with ability to achieve SVR, indicating role of immunity in DAA mediated viral clearance with short duration therapy.
Collapse
Affiliation(s)
- Sara Romani
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kristen Stafford
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Amy Nelson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shashwatee Bagchi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bhawna Poonia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
T-cell and B-cell perturbations identify distinct differences in HIV-2 compared with HIV-1-induced immunodeficiency. AIDS 2019; 33:1131-1141. [PMID: 30845070 DOI: 10.1097/qad.0000000000002184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND For unknown reasons, HIV-2 is less pathogenic than HIV-1, and HIV-2-induced immunodeficiency may be different from that caused by HIV-1. Previous immunological studies have hinted at possible shifts in both T-cell and B-cell subsets, which we aimed to characterize further. METHODS From an HIV clinic in Guinea-Bissau, 63 HIV-2, 83 HIV-1, and 26 HIV-negative participants were included. All HIV-infected participants were ART-naive. The following cell subsets were analysed by flow cytometry; T cells (maturation and activation), regulatory T cells, and B cells (maturation and activation). RESULTS After standardizing for sex, age, and CD4 T-cell count HIV-2 had 0.938 log10 copies/ml lower HIV RNA levels than the HIV-1-infected patients. Whereas T-cell maturation and regulatory T-cell profiles were similar between patients, HIV-2-infected patients had higher proportions of CD8CD28 and lower proportions of CD8PD-1+ T cells than HIV-1-infected patients. This finding was independent of HIV RNA levels. HIV-2 was also associated with a more preserved proportion of naive B cells. CONCLUSION HIV-2 is characterized by lower viral load, and lower T-cell activation, which may account for the slower disease progression.
Collapse
|
40
|
Norton TD, Zhen A, Tada T, Kim J, Kitchen S, Landau NR. Lentiviral Vector-Based Dendritic Cell Vaccine Suppresses HIV Replication in Humanized Mice. Mol Ther 2019; 27:960-973. [PMID: 30962161 DOI: 10.1016/j.ymthe.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, NYU Langone Medical Center, New York, NY 10016, USA
| | - Jennifer Kim
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Department of Medicine, Division of Hematology and Oncology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Nathaniel R Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
41
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
42
|
A structural model of the immune checkpoint CD160-HVEM complex derived from HDX-mass spectrometry and molecular modeling. Oncotarget 2019; 10:536-550. [PMID: 30728903 PMCID: PMC6355189 DOI: 10.18632/oncotarget.26570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
CD160 is a T cell coinhibitory molecule that interacts with the herpes virus entry mediator (HVEM) on antigen-presenting cells to provide an inhibitory signal to T cells. To date, the structure of CD160 and its complex with HVEM are unknown. Here, we have identified the fragments of CD160 interacting with HVEM using ELISA tests, hydrogen/deuterium studies, affinity chromatography and mass spectrometry (MS). By combining hydrogen/deuterium exchange and mass spectrometry (HDX-MS) we obtained key information about the tertiary structure of CD160, predicting the 3D structure of the CD160–HVEM complex. Our results provide insights into the molecular architecture of this complex, serving as a useful basis for designing inhibitors for future immunotherapies.
Collapse
|
43
|
Belkina AC, Starchenko A, Drake KA, Proctor EA, Pihl RMF, Olson A, Lauffenburger DA, Lin N, Snyder-Cappione JE. Multivariate Computational Analysis of Gamma Delta T Cell Inhibitory Receptor Signatures Reveals the Divergence of Healthy and ART-Suppressed HIV+ Aging. Front Immunol 2018; 9:2783. [PMID: 30568654 PMCID: PMC6290897 DOI: 10.3389/fimmu.2018.02783] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Even with effective viral control, HIV-infected individuals are at a higher risk for morbidities associated with older age than the general population, and these serious non-AIDS events (SNAEs) track with plasma inflammatory and coagulation markers. The cell subsets driving inflammation in aviremic HIV infection are not yet elucidated. Also, whether ART-suppressed HIV infection causes premature induction of the inflammatory events found in uninfected elderly or if a novel inflammatory network ensues when HIV and older age co-exist is unclear. In this study we measured combinational expression of five inhibitory receptors (IRs) on seven immune cell subsets and 16 plasma markers from peripheral blood mononuclear cells (PBMC) and plasma samples, respectively, from a HIV and Aging cohort comprised of ART-suppressed HIV-infected and uninfected controls stratified by age (≤35 or ≥50 years old). For data analysis, multiple multivariate computational algorithms [cluster identification, characterization, and regression (CITRUS), partial least squares regression (PLSR), and partial least squares-discriminant analysis (PLS-DA)] were used to determine if immune parameter disparities can distinguish the subject groups and to investigate if there is a cross-impact of aviremic HIV and age on immune signatures. IR expression on gamma delta (γδ) T cells exclusively separated HIV+ subjects from controls in CITRUS analyses and secretion of inflammatory cytokines and cytotoxic mediators from γδ T cells tracked with TIGIT expression among HIV+ subjects. Also, plasma markers predicted the percentages of TIGIT+ γδ T cells in subjects with and without HIV in PSLR models, and a PLS-DA model of γδ T cell IR signatures and plasma markers significantly stratified all four of the subject groups (uninfected younger, uninfected older, HIV+ younger, and HIV+ older). These data implicate γδ T cells as an inflammatory driver in ART-suppressed HIV infection and provide evidence of distinct “inflamm-aging” processes with and without ART-suppressed HIV infection.
Collapse
Affiliation(s)
- Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Elizabeth A Proctor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Riley M F Pihl
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States
| | - Alex Olson
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nina Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
44
|
Yasuma-Mitobe K, Matsuoka M. The Roles of Coinhibitory Receptors in Pathogenesis of Human Retroviral Infections. Front Immunol 2018; 9:2755. [PMID: 30538707 PMCID: PMC6277675 DOI: 10.3389/fimmu.2018.02755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Costimulatory and coinhibitory receptors play a key role in regulating immune responses to infection and cancer. Coinhibitory receptors include programmed cell death 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and ITIM domain (TIGIT), which suppress immune responses. Coinhibitory receptors are highly expressed on exhausted virus-specific T cells, indicating that viruses evade host immune responses through enhanced expression of these molecules. Human retroviruses, human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), infect T cells, macrophages and dendritic cells. Therefore, one needs to consider the effects of coinhibitory receptors on both uninfected effector T cells and infected target cells. Coinhibitory receptors are implicated not only in the suppression of immune responses to viruses by inhibition of effector T cells, but also in the persistence of infected cells in vivo. Here we review recent studies on coinhibitory receptors and their roles in retroviral infections such as HIV and HTLV-1.
Collapse
Affiliation(s)
- Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
45
|
Muscate F, Stetter N, Schramm C, Schulze Zur Wiesch J, Bosurgi L, Jacobs T. HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage. Front Immunol 2018; 9:2611. [PMID: 30483269 PMCID: PMC6243049 DOI: 10.3389/fimmu.2018.02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160-/- mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.
Collapse
Affiliation(s)
- Franziska Muscate
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Nadine Stetter
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lidia Bosurgi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
46
|
Zhao M, De Crignis E, Rokx C, Verbon A, van Gelder T, Mahmoudi T, Katsikis PD, Mueller YM. T cell toxicity of HIV latency reversing agents. Pharmacol Res 2018; 139:524-534. [PMID: 30366100 DOI: 10.1016/j.phrs.2018.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/07/2023]
Abstract
Combination antiretroviral therapy reduces morbidity and mortality in HIV infected patients. However, the cure of HIV infection is hindered by the persistence of the latent HIV reservoir. Latency reversing agents (LRAs) are developed to target the HIV latently infected cells for HIV reactivation. In addition to reversal of HIV latency, the eradication of HIV latently infected cells will require effector HIV-specific CD8+ T cells. Therefore it is imperative we understand how LRAs affect immune cells. We have performed a comparative in depth analysis of the cytotoxicity of several compounds belonging to four LRA classes on T cells, B cells, and NK cells. In addition, the effect of these LRAs on activation and inhibitory receptor expression of CD8+ T cells was examined. We show that the HDAC inhibitors romidepsin and panobinostat are highly cytotoxic for CD4+ and CD8+ T cells, whereas the PKC agonists bryostatin and prostratin and BET inhibitors JQ1 and OXT-015 were less cytotoxic. The BAF inhibitors CAPE and pyrimethamine exhibit no cytotoxicity. Drug-specific cytotoxicity on CD8+ T cells was comparable between healthy controls and cART-treated HIV-infected patients. Bryostatin and both BET inhibitors downregulated the expression of CD279 on CD8+ T cells without affecting their activation. Our comparison of LRAs identified differences in cytotoxicity between LRA classes and members within a class and suggests that some LRAs such as bryostatin and BET inhibitors may also downregulate inhibitory receptors on activated HIV-specific CD8+ T cells. These findings may guide the use of LRAs that have the capacity to preserve or restore CD8+ T cell immunity.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Elisa De Crignis
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Pan E, Feng F, Li P, Yang Q, Ma X, Wu C, Zhao J, Yan H, Chen R, Chen L, Sun C. Immune Protection of SIV Challenge by PD-1 Blockade During Vaccination in Rhesus Monkeys. Front Immunol 2018; 9:2415. [PMID: 30405615 PMCID: PMC6206945 DOI: 10.3389/fimmu.2018.02415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Though immune correlates for protection are still under investigation, potent cytotoxic T lymphocyte responses are desirable for an ideal HIV-1 vaccine. PD-1 blockade enhances SIV-specific CD8+ T cells. However, little information has been reported about how it affects the immunogenicity and protection of prophylactic SIV vaccines in nonhuman primates. Here, we show that PD-1 blockade during vaccination substantially improved protective efficacy in SIV challenged macaques. The PD-1 pathway was blocked using a monoclonal antibody specific to human PD-1. Administration of this antibody effectively augmented and sustained vaccine-induced SIV-specific T cell responses for more than 42 weeks after first immunization in rhesus monkeys, as compared with SIV vaccination only. Importantly, after intrarectally repeated low-dosage challenge with highly pathogenic SIVmac239, monkeys with PD-1 blockade during vaccination achieved full protection against incremental viral doses of up to 50,000 TICD50. These findings highlight the importance of PD-1 blockade during vaccination for the development of HIV vaccines.
Collapse
Affiliation(s)
- Enxiang Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengling Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiuchang Ma
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunxiu Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | | | - Rulei Chen
- Genor Biopharma Co. Ltd., Shanghai, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,The Guangzhou 8th People's Hospital & The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caijun Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
48
|
Pitoiset F, Cassard L, El Soufi K, Boselli L, Grivel J, Roux A, Klatzmann D, Chaput N, Rosenzwajg M. Deep phenotyping of immune cell populations by optimized and standardized flow cytometry analyses. Cytometry A 2018; 93:793-802. [DOI: 10.1002/cyto.a.23570] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Fabien Pitoiset
- Sorbonne Universités; UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3); F-75005 Paris France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B); Hôpital Pitié-Salpêtrière, AP-HP; F-75651 Paris France
| | - Lydie Cassard
- Laboratory of Immunomonitoring in Oncology; Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23; Villejuif F-94805 France
| | - Karim El Soufi
- Sorbonne Universités; UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3); F-75005 Paris France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B); Hôpital Pitié-Salpêtrière, AP-HP; F-75651 Paris France
| | - Lisa Boselli
- Laboratory of Immunomonitoring in Oncology; Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23; Villejuif F-94805 France
| | - Jonathan Grivel
- Laboratory of Immunomonitoring in Oncology; Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23; Villejuif F-94805 France
| | - Alexandra Roux
- Sorbonne Universités; UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3); F-75005 Paris France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B); Hôpital Pitié-Salpêtrière, AP-HP; F-75651 Paris France
| | - David Klatzmann
- Sorbonne Universités; UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3); F-75005 Paris France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B); Hôpital Pitié-Salpêtrière, AP-HP; F-75651 Paris France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology; Gustave Roussy Cancer Campus, CNRS-UMS 3655 and INSERM-US23; Villejuif F-94805 France
- Faculty of Pharmacy, University Paris-Sud; Chatenay-Malabry F-92296 France
| | - Michelle Rosenzwajg
- Sorbonne Universités; UPMC Univ Paris 06, INSERM, UMR S 959, Immunology-Immunopathology- Immunotherapy (I3); F-75005 Paris France
- Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B); Hôpital Pitié-Salpêtrière, AP-HP; F-75651 Paris France
| |
Collapse
|
49
|
De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol 2018; 9:1909. [PMID: 30233564 PMCID: PMC6127213 DOI: 10.3389/fimmu.2018.01909] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Antibodies that block T cell inhibition via the immune checkpoints CTLA-4 and PD-1 have revolutionized cancer therapy during the last 15 years. T cells express additional inhibitory surface receptors that are considered to have potential as targets in cancer immunotherapy. Antibodies against LAG-3 and TIM-3 are currently clinically tested to evaluate their effectiveness in patients suffering from advanced solid tumors or hematologic malignancies. In addition, blockade of the inhibitory BTLA receptors on human T cells may have potential to unleash T cells to effectively combat cancer cells. Much research on these immune checkpoints has focused on mouse models. The analysis of animals that lack individual inhibitory receptors has shed some light on the role of these molecules in regulating T cells, but also immune responses in general. There are current intensive efforts to gauge the efficacy of antibodies targeting these molecules called immune checkpoint inhibitors alone or in different combinations in preclinical models of cancer. Differences between mouse and human immunology warrant studies on human immune cells to appreciate the potential of individual pathways in enhancing T cell responses. Results from clinical studies are not only highlighting the great benefit of immune checkpoint inhibitors for treating cancer but also yield precious information on their role in regulating T cells and other cells of the immune system. However, despite the clinical relevance of CTLA-4 and PD-1 and the high potential of the emerging immune checkpoints, there are still substantial gaps in our understanding of the biology of these molecules, which might prevent the full realization of their therapeutic potential. This review addresses PD-1, CTLA-4, BTLA, LAG-3, and TIM-3, which are considered major inhibitory immune checkpoints expressed on T cells. It provides summaries of our current conception of the role of these molecules in regulating T cell responses, and discussions about major ambiguities and gaps in our knowledge. We emphasize that each of these molecules harbors unique properties that set it apart from the others. Their distinct functional profiles should be taken into account in therapeutic strategies that aim to exploit these pathways to enhance immune responses to combat cancer.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Clinical and Experimental Immunology, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Correa-Rocha R, Lopez-Abente J, Gutierrez C, Pérez-Fernández VA, Prieto-Sánchez A, Moreno-Guillen S, Muñoz-Fernández MÁ, Pion M. CD72/CD100 and PD-1/PD-L1 markers are increased on T and B cells in HIV-1+ viremic individuals, and CD72/CD100 axis is correlated with T-cell exhaustion. PLoS One 2018; 13:e0203419. [PMID: 30161254 PMCID: PMC6117071 DOI: 10.1371/journal.pone.0203419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Collapse
Affiliation(s)
- Rafael Correa-Rocha
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Jacobo Lopez-Abente
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Gutierrez
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Verónica Astrid Pérez-Fernández
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrián Prieto-Sánchez
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Santiago Moreno-Guillen
- Department of Infectious Diseases, Hospital Ramón y Cajal, Alcalá de Henares University, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María-Ángeles Muñoz-Fernández
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Marjorie Pion
- Immuno-Regulation Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
- Immuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital, Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| |
Collapse
|