1
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025; 92:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion in a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
2
|
Sancho-Sánchez E, García-Arteaga K, Granados-Chinchilla F, Artavia G, Alfaro-Alarcón A, Villalobos-Villalobos A, Bouza-Mora L, Suárez-Esquivel M, Chacón-Díaz C, Guzmán-Verri C, Moreno E, Barquero-Calvo E. Reactivation of hidden-latent Brucella infection after doxycycline and streptomycin treatment in mice. Antimicrob Agents Chemother 2025; 69:e0130224. [PMID: 39745377 PMCID: PMC11823614 DOI: 10.1128/aac.01302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/08/2024] [Indexed: 02/14/2025] Open
Abstract
Brucellosis has therapeutic challenges due to 3%-15% relapses/therapeutic failures (R/TF) after antibiotic treatment. Therefore, determining the antibiotic concentration in tissues, the physiopathological parameters, and the R/TF after treatment is relevant. After exploring different antibiotic quantities, we found that a combined dose of 100 µg/g of doxycycline (for 45 days) and 7.5 µg/g of streptomycin (for 14 days), respectively, achieved therapeutic levels of more than fourfold minimum inhibitory concentrations (MICs) against Brucella abortus in the spleen, liver, bone marrow, and plasma of mice, causing minimal pathophysiological effects. After 30 days of infection, mice received antibiotics, and hematological, histopathological, biochemical, and immunological analyses were performed. After antibiotic therapy, the pathological, hematological, immunological, and physiological profiles paralleled those described in human brucellosis. Treatment lowered antibody titers, reduced proinflammatory cytokines, and reduced inflammation in the target organs for a protracted period. No bacteria were detected in tissues 8 weeks after treatment, suggesting complete recovery. However, despite high doxycycline and streptomycin concentrations in tissues, relapses appeared in 100% of the animals after 182 days post-infection, estimated by the bacterial counts and PCR from organs. This proportion contrasts with the 15% R/TF observed in humans after antibiotic treatments. None of the B. abortus isolated from relapses showed augmented MICs or mutations coding for antibiotic resistance in chromosomal-relevant regions. We discuss whether our findings constitute a general phenomenon or differences in the exhaustive screening method for bacteria detection related to the murine model. Along these lines, we envision likely mechanisms of bacterial persistence in tissues after antibiotic treatment.
Collapse
Affiliation(s)
- Eugenia Sancho-Sánchez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Kimberly García-Arteaga
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro Montes de Oca, San José, Costa Rica
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, San José, Costa Rica
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Berlin Institute of Health, Institute of Virology, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Laura Bouza-Mora
- Departamento de Análisis Clínicos, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Marcela Suárez-Esquivel
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
3
|
Khan N, Tran KA, Chevre R, Locher V, Richter M, Sun S, Sadeghi M, Pernet E, Herrero-Cervera A, Grant A, Saif A, Downey J, Kaufmann E, Khader SA, Joubert P, Barreiro LB, Yipp BG, Soehnlein O, Divangahi M. β-Glucan reprograms neutrophils to promote disease tolerance against influenza A virus. Nat Immunol 2025; 26:174-187. [PMID: 39779870 PMCID: PMC11785525 DOI: 10.1038/s41590-024-02041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection. β-Glucan treatment reduces the morbidity and mortality against IAV infection, independent of host resistance. The enhanced survival is the result of increased recruitment of neutrophils via RoRγt+ T cells in the lung tissue. β-Glucan treatment promotes granulopoiesis in a type 1 interferon-dependent manner that leads to the generation of a unique subset of immature neutrophils utilizing a mitochondrial oxidative metabolism and producing interleukin-10. Collectively, our data indicate that β-glucan reprograms hematopoietic stem cells to generate neutrophils with a new 'regulatory' function, which is required for promoting disease tolerance and maintaining lung tissue integrity against viral infection.
Collapse
Affiliation(s)
- Nargis Khan
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Kim A Tran
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Raphael Chevre
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Veronica Locher
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Mathis Richter
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Sarah Sun
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Mina Sadeghi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Andrea Herrero-Cervera
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Alexandre Grant
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Ahmed Saif
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - Philippe Joubert
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec, Canada
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Centre of Molecular Biology of Inflammation, Münster, Germany
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Pellegrini JM, González-Espinoza G, Shayan RR, Hysenaj L, Rouma T, Arce-Gorvel V, Lelouard H, Popoff D, Zhao Y, Hanniffy S, Castillo-Zeledón A, Loperena-Barber M, Celis-Gutierrez J, Mionnet C, Bosilkovski M, Solera J, Muraille E, Barquero-Calvo E, Moreno E, Conde-Álvarez R, Moriyón I, Gorvel JP, Mémet S. Brucella abortus impairs T lymphocyte responsiveness by mobilizing IL-1RA-secreting omental neutrophils. Nat Commun 2025; 16:862. [PMID: 39833171 PMCID: PMC11747348 DOI: 10.1038/s41467-024-55799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Immune evasion strategies of Brucella, the etiologic agent of brucellosis, a global zoonosis, remain partially understood. The omentum, a tertiary lymphoid organ part of visceral adipose tissue, has never been explored as a Brucella reservoir. We report that B. abortus infects and replicates within murine omental macrophages. Throughout the chronic phase of infection, the omentum accumulates macrophages, monocytes and neutrophils. The maintenance of PD-L1+Sca-1+ macrophages, monocytes and neutrophils in the omentum depends on the wadC-encoded determinant of Brucella LPS. We demonstrate that PD-L1+Sca-1+ murine omental neutrophils produce high levels of IL-1RA leading to T cell hyporesponsiveness. These findings corroborate brucellosis patient analysis of whole blood displaying upregulation of PDL1 and Ly6E genes, and of serum exhibiting high levels of IL-1RA. Overall, the omentum, a reservoir for B. abortus, promotes bacterial persistence and causes CD4+ and CD8+ T cell immunosuppression by IL-1RA secreted by PD-L1+Sca-1+ neutrophils.
Collapse
Affiliation(s)
| | | | | | - Lisiena Hysenaj
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Hugues Lelouard
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Dimitri Popoff
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Yun Zhao
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Sean Hanniffy
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Amanda Castillo-Zeledón
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Maite Loperena-Barber
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Cyrille Mionnet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Javier Solera
- Hospital General Universitario, Facultad de Medicina, Universidad Castilla la Mancha Albacete, Albacete, Spain
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d'Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Elías Barquero-Calvo
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Edgardo Moreno
- Universidad Nacional, Pathology Department, Escuela de Medicina Veterinaria, Heredia, Costa Rica
| | - Raquel Conde-Álvarez
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | - Ignacio Moriyón
- Universidad de Navarra, Instituto de Salud Tropical e Departamento de Microbiología y Parasitología, Pamplona, Spain
| | | | - Sylvie Mémet
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.
| |
Collapse
|
5
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
6
|
Arias-Gómez B, Fonseca-Muñoz R, Alfaro-Alarcón A, Chacón-Díaz C, Moreno E, Rucavado A, Barquero-Calvo E. Platelet depletion does not alter the course of Brucella abortus infection in vivo. Microb Pathog 2022; 164:105458. [DOI: 10.1016/j.micpath.2022.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023]
|
7
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
8
|
Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal 2019; 17:147. [PMID: 31727175 PMCID: PMC6854633 DOI: 10.1186/s12964-019-0471-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neutrophils have long been considered as cells playing a crucial role in the immune defence against invading pathogens. Accumulating evidence strongly supported the direct and indirect regulatory effects of neutrophils on adaptive immunity. Exogenous cytokines or cytokines produced in an autocrine manner as well as a cell-to-cell contact between neutrophils and T cells could induce the expression of MHC-II and costimulatory molecules on neutrophils, supporting that neutrophils may function as antigen-presenting cells (APCs) in respects of presenting antigens and activating T cells. In addition to the inflammatory roles, neutrophils also have the propensity and ability to suppress the immune response through different mechanisms. In this review, we will mainly highlight the heterogeneity and functional plasticity of neutrophils and the antigen-presenting capacity of different neutrophil subsets. We also discuss mechanisms relevant to the regulatory effects of neutrophils on adaptive immunity. Understanding how neutrophils modulate adaptive immunity may provide novel strategies and new therapeutic approaches for diseases associated with neutrophils.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Osman AY, Kadir AA, Jesse FF, Saharee AA. Modelling the immunopathophysiology of Brucella melitensis and its lipopolysaccharide in mice infected via oral route of exposure. Microb Pathog 2019; 136:103669. [PMID: 31445124 DOI: 10.1016/j.micpath.2019.103669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 01/18/2023]
Abstract
Brucella melitensis is one of the leading zoonotic pathogens with significant economic implications in animal industry worldwide. Lipopolysaccharide, however, remains by far the major virulence with substantial role in diseases pathogenesis. Nonetheless, the effect of B. melitensis and its lipopolysaccharide on immunopathophysiological aspects largely remains an enigma. This study examines the effect of B.melitensis and its lipopolysaccharide on immunopathophysiological parameters following experimental infection using mouse model. Eighty four (n = 84) mice, BALB/c, both sexes with equal gender distribution and 6-8 weeks-old were randomly assigned into three groups. Group 1-2 (n = 72) were orally inoculated with 0.4 mL containing 109 CFU/mL of B. melitensis and its LPS, respectively. Group 3 (n = 12) was challenged orally with phosphate buffered saline and served as a control group. Animals were observed for clinical signs, haematological and histopathological analysis for a period of 24 days post-infection. We hereby report that B.melitensis infected group demonstrated significant clinical signs and histopathological changes than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL-6) and antibody levels (IgM and IgG) with varying degrees of predominance in LPS infected group than B. melitensis infected group. For hormone analysis, low levels of progesterone, estradiol and testosterone were observed in both B. melitensis and LPS groups throughout the study period. Moreover, in B. melitensis infected group, the organism was re-isolated from the organs and tissues of gastrointestinal, respiratory and reproductive systems thereby confirming the infection and transmission dynamics. This report is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in a mouse model after oral inoculation with B. melitensis and its lipopolysaccharide.
Collapse
Affiliation(s)
- Abdinasir Yusuf Osman
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia; Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Arifah Abdul Kadir
- Department of Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faez Firdaus Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abdul Aziz Saharee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
Gutiérrez-Jiménez C, Mora-Cartín R, Altamirano-Silva P, Chacón-Díaz C, Chaves-Olarte E, Moreno E, Barquero-Calvo E. Neutrophils as Trojan Horse Vehicles for Brucella abortus Macrophage Infection. Front Immunol 2019; 10:1012. [PMID: 31134082 PMCID: PMC6514781 DOI: 10.3389/fimmu.2019.01012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a stealthy intracellular bacterial pathogen of animals and humans. This bacterium promotes the premature cell death of neutrophils (PMN) and resists the killing action of these leukocytes. B. abortus-infected PMNs presented phosphatidylserine (PS) as “eat me” signal on the cell surface. This signal promoted direct contacts between PMNs and macrophages (Mϕs) and favored the phagocytosis of the infected dying PMNs. Once inside Mϕs, B. abortus replicated within Mϕs at significantly higher numbers than when Mϕs were infected with bacteria alone. The high levels of the regulatory IL-10 and the lower levels of proinflammatory TNF-α released by the B. abortus-PMN infected Mϕs, at the initial stages of the infection, suggested a non-phlogistic phagocytosis mechanism. Thereafter, the levels of proinflammatory cytokines increased in the B. abortus-PMN-infected Mϕs. Still, the efficient bacterial replication proceeded, regardless of the cytokine levels and Mϕ type. Blockage of PS with Annexin V on the surface of B. abortus-infected PMNs hindered their contact with Mϕs and hampered the association, internalization, and replication of B. abortus within these cells. We propose that B. abortus infected PMNs serve as “Trojan horse” vehicles for the efficient dispersion and replication of the bacterium within the host.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Jiménez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
11
|
Tan W, Zhang C, Liu J, Miao Q. Regulatory T-cells promote pulmonary repair by modulating T helper cell immune responses in lipopolysaccharide-induced acute respiratory distress syndrome. Immunology 2019; 157:151-162. [PMID: 30919408 DOI: 10.1111/imm.13060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induces a strong local infiltration of regulatory T-cells (Tregs) in the lungs. However, at present, there remains a lack of adequate evidence showing the direct effect of Tregs on pulmonary repair and the related mechanisms of ARDS. Therefore, in this project, we studied the impact of Tregs on lipopolysaccharide (LPS)-induced ARDS and pulmonary inflammation. Surprisingly, we found that depletion of Tregs by injection of PC61 anti-CD25 antibody not only interfered with the inflammation resolution, such as inhibited total cell infiltration into the alveolar space, downregulated neutrophils, upregulated macrophages, but also impaired pulmonary epithelium and endothelial cell proliferation. Consistent with the attenuation of pulmonary repair, we found that the Th1 and Th17 immune responses were also impaired in Treg-depleted mice, suggesting that the presence of Tregs is vital for tissue repair, as Tregs modulate and promote the Th immune response in LPS-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Wen Tan
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Neutrophils Dampen Adaptive Immunity in Brucellosis. Infect Immun 2019; 87:IAI.00118-19. [PMID: 30804100 PMCID: PMC6479033 DOI: 10.1128/iai.00118-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Removal of polymorphonuclear neutrophils (PMNs) at the onset of adaptive immunity against Brucella abortus favored bacterial elimination in mice. This was associated with higher levels of interferon gamma (IFN-γ) and a higher proportion of cells expressing interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), compatible with M1 macrophages, in PMN-depleted B. abortus-infected (PMNd-Br) mice. At later times in the acute infection phase, the amounts of IFN-γ fell while IL-6, IL-10, and IL-12 became the predominant cytokines in PMNd-Br mice. IL-4, IL-1β, and tumor necrosis factor alpha (TNF-α) remained at background levels at all times of the infection. Depletion of PMNs at the acute stages of infection promoted the premature resolution of spleen inflammation. The efficient removal of bacteria in the PMNd-Br mice was not due to an increase of antibodies, since the immunoglobulin isotype responses to Brucella antigens were dampened. Anti-Brucella antibodies abrogated the production of IL-6, IL-10, and IL-12 but did not affect the levels of IFN-γ at later stages of infection in PMNd-Br mice. These results demonstrate that PMNs have an active role in modulating the course of B. abortus infection after the adaptive immune response has already developed.
Collapse
|
13
|
Gutiérrez-Jiménez C, Hysenaj L, Alfaro-Alarcón A, Mora-Cartín R, Arce-Gorvel V, Moreno E, Gorvel JP, Barquero-Calvo E. Persistence of Brucella abortus in the Bone Marrow of Infected Mice. J Immunol Res 2018; 2018:5370414. [PMID: 30622977 PMCID: PMC6304906 DOI: 10.1155/2018/5370414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023] Open
Abstract
Brucellosis is a zoonotic bacterial infection that may persist for long periods causing relapses in antibiotic-treated patients. The ability of Brucella to develop chronic infections is linked to their capacity to invade and replicate within the mononuclear phagocyte system, including the bone marrow (BM). Persistence of Brucella in the BM has been associated with hematological complications such as neutropenia, thrombocytopenia, anemia, and pancytopenia in human patients. In the mouse model, we observed that the number of Brucella abortus in the BM remained constant for up to 168 days of postinfection. This persistence was associated with histopathological changes, accompanied by augmented numbers of BM myeloid GMP progenitors, PMNs, and CD4+ lymphocytes during the acute phase (eight days) of the infection in the BM. Monocytes, PMNs, and GMP cells were identified as the cells harboring Brucella in the BM. We propose that the BM is an essential niche for the bacterium to establish long-lasting infections and that infected PMNs may serve as vehicles for dispersion of Brucella organisms, following the Trojan horse hypothesis. Monocytes are solid candidates for Brucella reservoirs in the BM.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Jiménez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Lisiena Hysenaj
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Alejandro Alfaro-Alarcón
- Pathology Department, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | | | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | | | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
14
|
Machelart A, Potemberg G, Van Maele L, Demars A, Lagneaux M, De Trez C, Sabatel C, Bureau F, De Prins S, Percier P, Denis O, Jurion F, Romano M, Vanderwinden JM, Letesson JJ, Muraille E. Allergic Asthma Favors Brucella Growth in the Lungs of Infected Mice. Front Immunol 2018; 9:1856. [PMID: 30147700 PMCID: PMC6095999 DOI: 10.3389/fimmu.2018.01856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Maxime Lagneaux
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Sofie De Prins
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Pauline Percier
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Olivier Denis
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Fabienne Jurion
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Marta Romano
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | | | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Depletion of Complement Enhances the Clearance of Brucella abortus in Mice. Infect Immun 2018; 86:IAI.00567-18. [PMID: 30082480 DOI: 10.1128/iai.00567-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Brucellosis is a bacterial disease of animals and humans. Brucella abortus barely activates the innate immune system at the onset of infection, and this bacterium is resistant to the microbicidal action of complement. Since complement stands as the first line of defense during bacterial invasions, we explored the role of complement in B. abortus infections. Brucella abortus-infected mice depleted of complement with cobra venom factor (CVF) showed the same survival rate as mice in the control group. The complement-depleted mice readily eliminated B. abortus from the spleen and did so more efficiently than the infected controls after 7 days of infection. The levels of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 (IL-6) remained within background levels in complement-depleted B. abortus-infected mice. In contrast, the levels of the immune activator cytokine gamma interferon and the regulatory cytokine IL-10 were significantly increased. No significant histopathological changes in the liver and spleen were observed between the complement-depleted B. abortus-infected mice and the corresponding controls. The action exerted by Brucella on the immune system in the absence of complement may correspond to a broader phenomenon that involves several components of innate immunity.
Collapse
|
16
|
Im YB, Park WB, Jung M, Kim S, Yoo HS. Comparative Analysis of Immune Responses to Outer Membrane Antigens OMP10, OMP19, and OMP28 of Brucella abortus. Jpn J Infect Dis 2018; 71:197-204. [PMID: 29709972 DOI: 10.7883/yoken.jjid.2017.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brucella infection is accompanied by cytokine production, which serves as an important factor to evaluate the innate and adaptive immune responses. Several researchers have been investigating the mechanisms involved in Brucella infection in the host. Here, we conducted an analytical study to define pathogenic pathways and immune mechanisms involved in Brucella infection by investigating the antigenic efficacy of recombinant outer membrane protein 10 (rOMP10), outer membrane protein 19 (rOMP19), and outer membrane protein 28 (rOMP28) in vitro and in vivo upon stimulation/immunization. Cytokine production was analyzed by nitric oxide (NO) assay and enzyme-linked immunosorbent assay (ELISA) after stimulation of RAW 264.7 cells and naive splenocytes with the recombinant proteins. Our results show that levels of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 increased in RAW 264.7 cells in a time-dependent manner following recombinant protein stimulation. In contrast, levels of interferon (IFN)-γ and IL-2 increased in naive splenocytes after stimulation with proteins. ELISA and ELISpot assays were performed after immunization of mice with recombinant proteins. rOMP28 greatly increased IFN-γ, IL-2, and TNF-α levels than IL-4 and IL-6 levels in vitro. Of the recombinant proteins, rOMP19 elicited a mixed Th1/Th2 immune response by increasing the number of IgG-secreting cells in vivo.
Collapse
Affiliation(s)
- Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University.,Institute of Green Bio Science and Technology, Seoul National University
| |
Collapse
|
17
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Clausse M, Díaz AG, Pardo RP, Zylberman V, Goldbaum FA, Estein SM. Polymeric antigen BLSOmp31 in aluminium hydroxide induces serum bactericidal and opsonic antibodies against Brucella canis in dogs. Vet Immunol Immunopathol 2016; 184:36-41. [PMID: 28166930 DOI: 10.1016/j.vetimm.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 01/28/2023]
Abstract
Polymeric antigen BLSOmp31 is an immunogenic vaccine candidate that confers protection against Brucella canis in mice. In this preliminary study, the immunogenicity and safety of BLSOmp31 adsorbed to aluminum hydroxide gel (BLSOmp31-AH) were evaluated in Beagle dogs. In addition, the potential to elicit serum antibodies with complement-dependent bactericidal activity and/or to enhance phagocytosis by neutrophils were analyzed. Dogs were immunized three times with BLSOmp31-AH by subcutaneous route, followed by an annual booster. The vaccine elicited specific antibodies 3 weeks after the first immunization. Annual booster induced comparable antibody response as the primary series. Humoral immune response stimulated by BLSOmp31-AH did not interfere with routine agglutination test for canine brucellosis. Antibodies demonstrated a high complement-dependent bactericidal activity against B. canis. Moreover, opsonization by immune serum not only stimulated binding and uptake of the bacteria by neutrophils but effectively enhanced the destruction of B. canis. Specific IgG was detected in 3/4 immunized dogs in preputial secretions. The antibody profile corresponded to a marked Th2 response, since IgG1 prevailed over IgG2 and cellular immune response was not detected in vitro or in vivo. These results require further evaluation in larger field studies to establish the full prophylactic activity of BLSOmp31 against canine brucellosis.
Collapse
Affiliation(s)
- Maria Clausse
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina.
| | - Alejandra G Díaz
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | | | - Vanesa Zylberman
- Inmunova S.A, Argentina; Fundación Instituto Leloir e Instituto de Investigaciones Biológicas Buenos Aires-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | - Fernando A Goldbaum
- Inmunova S.A, Argentina; Fundación Instituto Leloir e Instituto de Investigaciones Biológicas Buenos Aires-CONICET, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| | - Silvia M Estein
- Laboratorio de Inmunología, Departamento de Sanidad Animal y Medicina Preventiva (SAMP), Centro de Investigación Veterinaria de Tandil (CIVETAN-CONICET-CIC), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Consejo Nacional de Investigaciones Científicas (CONICET), Argentina
| |
Collapse
|
19
|
Linge IA, Kondratieva EV, Kondratieva TK, Makarov VA, Polshakov VI, Savelyev OY, Apt AS. "Suppressor Factor" of Neutrophils: A Short Story of a Long-Term Misconception. BIOCHEMISTRY (MOSCOW) 2016; 81:1284-1292. [PMID: 27914454 DOI: 10.1134/s0006297916110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A large body of evidence obtained during the last decade has demonstrated that neutrophils suppress T cell proliferation in different models of inflammation and cell interaction. The commonly used method for assessing cell proliferation and proliferation inhibition is measuring [3H]thymidine incorporation into cells. Earlier, we observed inhibition of [3H]thymidine uptake in experiments on neutrophil-mediated regulation of T cell response in tuberculosis immunity. Here, we used different types of proliferating cells to analyze the nature of the soluble "neutrophil factor" by a variety of methods (dialysis, HPLC, mass spectrometry, and NMR) and unambiguously demonstrated that neutrophils do not synthesize a specific factor inhibiting cell proliferation, but secrete high concentrations of extracellular thymidine that competitively inhibit [3H]thymidine incorporation. Although the physiological significance of thymidine secretion by neutrophils remains unknown, this phenomenon should be carefully considered when designing test systems for studying cell-cell interactions.
Collapse
Affiliation(s)
- I A Linge
- Central Research Institute for Tuberculosis, Moscow, 107564, Russia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
21
|
N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils. Infect Immun 2016; 84:1712-21. [PMID: 27001541 DOI: 10.1128/iai.00137-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 12/30/2022] Open
Abstract
Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution.
Collapse
|
22
|
Hanot Mambres D, Machelart A, Potemberg G, De Trez C, Ryffel B, Letesson JJ, Muraille E. Identification of Immune Effectors Essential to the Control of Primary and Secondary Intranasal Infection with Brucella melitensis in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:3780-93. [PMID: 27036913 DOI: 10.4049/jimmunol.1502265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-β deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/β(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella.
Collapse
Affiliation(s)
- Delphine Hanot Mambres
- Microorganisms Biology Research Unit (URBM), Laboratory of Immunology and Microbiology, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Arnaud Machelart
- Microorganisms Biology Research Unit (URBM), Laboratory of Immunology and Microbiology, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Georges Potemberg
- Microorganisms Biology Research Unit (URBM), Laboratory of Immunology and Microbiology, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Flanders Interuniversity Institute for Biotechnology, Free University of Brussels (VUB), 1050 Brussels, Belgium
| | - Bernhard Ryffel
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - Université d'Orléans, 45071 Orleans, France; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Capetown 7925, South Africa; and
| | - Jean-Jacques Letesson
- Microorganisms Biology Research Unit (URBM), Laboratory of Immunology and Microbiology, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
| | - Eric Muraille
- Microorganisms Biology Research Unit (URBM), Laboratory of Immunology and Microbiology, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| |
Collapse
|
23
|
Lacey CA, Keleher LL, Mitchell WJ, Brown CR, Skyberg JA. CXCR2 Mediates Brucella-Induced Arthritis in Interferon γ-Deficient Mice. J Infect Dis 2016; 214:151-60. [PMID: 26951819 DOI: 10.1093/infdis/jiw087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella species are facultative intracellular gram-negative bacteria that cause brucellosis, a common global zoonosis. Infection of the joints is the most common focal complication of brucellosis in humans. The purpose of this study was to identify mediators of focal inflammation during brucellosis. METHODS Wild-type (WT) mice are naturally resistant to Brucella infection; therefore, we infected anti-interferon γ (IFN-γ)-treated, or IFN-γ(-/-) mice with Brucella to induce osteoarticular and musculoskeletal inflammation, as we previously described. Mice were infected intraperitoneally with Brucella melitensis, and the clinical course of disease, histopathologic changes, and cytokine levels were compared among groups. RESULTS Rag1(-/-) mice (B- and T-cell deficient) and µMT(-/-) mice (B-cell deficient) developed paw inflammation at a similar rate and severity as WT mice following infection with B. melitensis and treatment with anti-IFN-γ. Joints from B. melitensis-infected IFN-γ(-/-) mice had markedly increased levels of CCR2 and CXCR2 ligands. While anti-IFN-γ-treated CCR2(-/-) and WT mice behaved similarly, anti-IFN-γ-treated CXCR2(-/-) or IFN-γ(-/-)/CXCR2(-/-) mice had strikingly reduced focal swelling relative to anti-IFN-γ-treated WT or IFN-γ(-/-) mice, respectively. Additionally, neutrophil recruitment was dependent on CXCR2. CONCLUSIONS Adaptive immune cells and CCR2 are dispensable, while CXCR2 is necessary for Brucella-induced focal neutrophil recruitment and inflammation.
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| | - Lauren L Keleher
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| | | | - Charles R Brown
- Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| |
Collapse
|
24
|
Degos C, Gagnaire A, Banchereau R, Moriyón I, Gorvel JP. Brucella CβG induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment. Virulence 2016; 6:19-28. [PMID: 25654761 DOI: 10.4161/21505594.2014.979692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brucella is the causing agent of a chronic zoonosis called brucellosis. The Brucella β-1,2 cyclic glucan (CβG) is a virulence factor, which has been described as a potent immune stimulator, albeit with no toxicity for cells and animals. We first used a genome-wide approach to characterize human myeloid dendritic cell (mDC) responses to CβG. Transcripts related to inflammation (IL-6, IL2RA, PTGS2), chemokine (CXCR7, CXCL2) and anti-inflammatory pathways (TNFAIP6, SOCS3) were highly expressed in CβG-treated mDC. In mouse GMCSF-derived DC, CβG triggered the expression of both activation (CXCL2, KC) and inhibition (SOCS3 and TNFAIP6) molecules. We then characterized the inflammatory infiltrates at the level of mouse ear when injected with CβG or LPS. CβG yielded a lower and transient recruitment of neutrophils compared to LPS. The consequence of these dual pro- and anti-inflammatory signals triggered by CβG corresponds to the induction of a controlled local inflammation.
Collapse
Affiliation(s)
- Clara Degos
- a Centre d'Immunologie de Marseille-Luminy (CIML) ; Aix-Marseille University ; Marseille , France
| | | | | | | | | |
Collapse
|
25
|
Dorneles EMS, Teixeira-Carvalho A, Araújo MSS, Sriranganathan N, Lage AP. Immune response triggered by Brucella abortus following infection or vaccination. Vaccine 2015; 33:3659-66. [PMID: 26048781 DOI: 10.1016/j.vaccine.2015.05.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 01/18/2023]
Abstract
Brucella abortus live vaccines have been used successfully to control bovine brucellosis worldwide for decades. However, due to some limitations of these live vaccines, efforts are being made for the development of new safer and more effective vaccines that could also be used in other susceptible species. In this context, understanding the protective immune responses triggered by B. abortus is critical for the development of new vaccines. Such understandings will enhance our knowledge of the host/pathogen interactions and enable to develop methods to evaluate potential vaccines and innovative treatments for animals or humans. At present, almost all the knowledge regarding B. abortus specific immunological responses comes from studies in mice. Active participation of macrophages, dendritic cells, IFN-γ producing CD4(+) T-cells and cytotoxic CD8(+) T-cells are vital to overcome the infection. In this review, we discuss the characteristics of the immune responses triggered by vaccination versus infection by B. abortus, in different hosts.
Collapse
Affiliation(s)
- Elaine M S Dorneles
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio S S Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Nammalwar Sriranganathan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061, USA
| | - Andrey P Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Hurrell BP, Schuster S, Grün E, Coutaz M, Williams RA, Held W, Malissen B, Malissen M, Yousefi S, Simon HU, Müller AJ, Tacchini-Cottier F. Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion. PLoS Pathog 2015; 11:e1004929. [PMID: 26020515 PMCID: PMC4447405 DOI: 10.1371/journal.ppat.1004929] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/01/2015] [Indexed: 01/10/2023] Open
Abstract
The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing. Infection with the protozoan Leishmania parasites causes a spectrum of diseases ranging from cutaneous to visceral forms that are fatal if left untreated. Among the different Leishmania species, Leishmania mexicana causes chronic cutaneous lesions in humans. To study this disease, we used a murine model. Following infection with Leishmania mexicana, most mouse species including C57BL/6 develop chronic non-healing lesion. Within hours of infection, neutrophils are recruited locally and they ingest the parasites. Although neutrophils are leukocytes that are able to rapidly kill pathogens using an arsenal of molecules, several microorganisms including some, but not all, Leishmania species are able to survive within these cells. Here, we show that L. mexicana elicits the rapid recruitment of neutrophils at the site of infection, survives within these cells and uses them to its advantage. Furthermore, transient parasite sequestration by neutrophils delays recruitment of other leukocytes such as monocytes, contributing to the impaired development of a protective immune response against the parasite and chronic lesion development. Thus, we describe a previously unanticipated pathogenic role for neutrophils in chronic lesion development. More importantly, our data suggest that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Steffen Schuster
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Eva Grün
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Manuel Coutaz
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Roderick A. Williams
- School of Science and Sport, University of the West of Scotland, Paisley, United Kingdom
| | - Werner Held
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML) Aix Marseille Université, UM2, Marseille, France
- INSERM U1104, Marseille, France
- CNRS UMR7280, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML) Aix Marseille Université, UM2, Marseille, France
- INSERM U1104, Marseille, France
- CNRS UMR7280, Marseille, France
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Andreas J. Müller
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research- Braunschweig, Magdeburg, Germany
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Barquero-Calvo E, Mora-Cartín R, Arce-Gorvel V, de Diego JL, Chacón-Díaz C, Chaves-Olarte E, Guzmán-Verri C, Buret AG, Gorvel JP, Moreno E. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide. PLoS Pathog 2015; 11:e1004853. [PMID: 25946018 PMCID: PMC4422582 DOI: 10.1371/journal.ppat.1004853] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/03/2015] [Indexed: 01/18/2023] Open
Abstract
Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. The absence of obvious clinical symptoms during the early stages of brucellosis is linked to the Brucella stealthy strategy and its non-canonical PAMPs, which are low PRRs agonists. Still, there are clinical profiles that require explanation. For instance ‒despite the fact that neutrophils readily ingest Brucella during the onset of infection, brucellosis courses without neutrophilia, and just a low number of infected neutrophils are present in target organs. In the chronic phases, a significant proportion of the patients display absolute neutropenia and bone marrow pancytopenia linked to the myeloid cell linage. Examination of the Brucella infected bone marrow reveals granulomas and phagocytosis of myeloid cells. Based on these observations we explored the fate of native neutrophils during their interaction with Brucella. We found that the bacterium induces the premature cell death of neutrophils without inducing proinflammatory phenotypic changes. This event was reproduced by the lipid A of the Brucella LPS and depends on NADPH-oxidase activation and low ROS formation. We believe that this phenomenon explains ‒at least in part‒ the hematological and histological profiles observed during brucellosis. In addition, it may be that dying Brucella-infected neutrophils serve as “Trojan horse” vehicles for infecting phagocytic cells without promoting activation.
Collapse
Affiliation(s)
- Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Juana L. de Diego
- Department of Cell Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Caterina Guzmán-Verri
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Andre G. Buret
- Biological Sciences, Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail: (JPG); (EM)
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail: (JPG); (EM)
| |
Collapse
|
28
|
Yeremeev V, Linge I, Kondratieva T, Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 2015; 95:447-51. [PMID: 25935122 DOI: 10.1016/j.tube.2015.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Mice of the I/St inbred strain genetically hyper-susceptible to TB infection and prone to form neutrophil-abundant necrotic lung lesions and relatively resistant mice of the C57BL/6 (B6) strain were infected with 100 CFU of M. tuberculosis H37Rv. To verify the role of neutrophils in TB immunity, we selectively depleted neutrophils from infected mice with highly specific 1A8 anti-Ly6G antibodies at day 2 and 6 post-challenge. Depletion of neutrophils resulted in reduced lung tissue pathology, mycobacterial CFU counts and an increase of the survival time in genetically susceptible I/St, but not in B6 mice. Furthermore, we demonstrated that in vivo neutrophil depletion at the onset of TB infection results in a significant increase in numbers of mycobacteria-specific IFN-γ-producing T-cells at the time point when the acquired immunity to mycobacteria is fully developed. These results suggest antagonistic activity of neutrophils and immune T-cells in the course of TB infection and provide further evidence of deleterious rather than protective role of the former.
Collapse
Affiliation(s)
- Vladimir Yeremeev
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Irina Linge
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Tatiana Kondratieva
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia.
| |
Collapse
|
29
|
Yao L, Wu CX, Zheng K, Xu XJ, Zhang H, Chen CF, Liu ZF. Immunogenic response to a recombinant pseudorabies virus carrying bp26 gene of Brucella melitensis in mice. Res Vet Sci 2015; 100:61-7. [PMID: 25890577 DOI: 10.1016/j.rvsc.2015.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/29/2015] [Indexed: 01/18/2023]
Abstract
Brucellae are facultative intracellular bacterial pathogens of a zoonotic disease called brucellosis. Live attenuated vaccines are utilized for prophylaxis of brucellosis; however, they retain residual virulence to human and/or animals, as well as interfere with diagnosis. In this study, recombinant virus PRV ΔTK/ΔgE/bp26 was screened and purified. One-step growth curve assay showed that the titer of recombinant virus was comparable to the parent strain. Mice experiments showed the recombinant virus elicited high titer of humoral antibodies against Brucella detected by enzyme-linked immunosorbent assay and against PRV by serum neutralization test. The recombinant virus induced high level of Brucella-specific lymphocyte proliferation response and production of interferon gamma. Collectively, these data suggest that the bivalent virus was capable of inducing both humoral and cellular immunity, and had the potential to be a vaccine candidate to prevent Brucella and/or pseudorabies virus infections.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Chang-Xian Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xian-Jin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Hui Zhang
- Department of Preventive Veterinary Medicine, College of Animal Science & Technology, Shihezi University, Shihezi city, Xinjiang Uyghur Autonomous Region, China
| | - Chuang-Fu Chen
- Department of Preventive Veterinary Medicine, College of Animal Science & Technology, Shihezi University, Shihezi city, Xinjiang Uyghur Autonomous Region, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| |
Collapse
|
30
|
Barrientos L, Bignon A, Gueguen C, de Chaisemartin L, Gorges R, Sandré C, Mascarell L, Balabanian K, Kerdine-Römer S, Pallardy M, Marin-Esteban V, Chollet-Martin S. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5689-98. [PMID: 25339673 DOI: 10.4049/jimmunol.1400586] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.
Collapse
Affiliation(s)
- Lorena Barrientos
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Alexandre Bignon
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Laboratory of Excellence in Research on Medication and Innovative Therapeutics, 92296 Clamart, France
| | | | - Luc de Chaisemartin
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France; Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Paris Nord Val de Seine, Hôpital Bichat, Unité d'Immunologie (Auto-immunité et Hypersensibilités), 75018 Paris, France
| | - Roseline Gorges
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Catherine Sandré
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | | | - Karl Balabanian
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Laboratory of Excellence in Research on Medication and Innovative Therapeutics, 92296 Clamart, France
| | - Saadia Kerdine-Römer
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Marc Pallardy
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Viviana Marin-Esteban
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- INSERM, Unité Mixte de Recherche-S 996, "Cytokines, chimiokines et immunopathologie," Université Paris-Sud, 92296 Châtenay-Malabry and Clamart, France; Université Paris-Sud, Faculté de Pharmacie, 92296 Châtenay-Malabry, France; Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Paris Nord Val de Seine, Hôpital Bichat, Unité d'Immunologie (Auto-immunité et Hypersensibilités), 75018 Paris, France
| |
Collapse
|
31
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|
32
|
Kalyan S, Kabelitz D. When neutrophils meet T cells: Beginnings of a tumultuous relationship with underappreciated potential. Eur J Immunol 2014; 44:627-33. [DOI: 10.1002/eji.201344195] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/21/2013] [Accepted: 01/14/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Shirin Kalyan
- Institute of Immunology; University of Kiel; Kiel Germany
| | | |
Collapse
|
33
|
Allen LAH. Neutrophils: potential therapeutic targets in tularemia? Front Cell Infect Microbiol 2013; 3:109. [PMID: 24409419 PMCID: PMC3873502 DOI: 10.3389/fcimb.2013.00109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/14/2013] [Indexed: 01/18/2023] Open
Abstract
The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Inflammation Program and the Departments of Internal Medicine and Microbiology, University of Iowa and the VA Medical Center Iowa City, IA, USA
| |
Collapse
|
34
|
Xavier MN, Winter MG, Spees AM, Nguyen K, Atluri VL, Silva TMA, Bäumler AJ, Müller W, Santos RL, Tsolis RM. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog 2013; 9:e1003454. [PMID: 23818855 PMCID: PMC3688575 DOI: 10.1371/journal.ppat.1003454] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4(+)CD25(+) T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25(+)CD4(+) T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection.
Collapse
Affiliation(s)
- Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Alanna M. Spees
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Kim Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Vidya L. Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Teane M. A. Silva
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| |
Collapse
|