1
|
Wu JZ, Pemberton JG, Morioka S, Sasaki J, Bablani P, Sasaki T, Balla T, Grinstein S, Freeman SA. Sorting nexin 10 regulates lysosomal ionic homeostasis via ClC-7 by controlling PI(3,5)P2. J Cell Biol 2025; 224:e202408174. [PMID: 40138451 PMCID: PMC11940377 DOI: 10.1083/jcb.202408174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Mutations or ablation of Snx10 are associated with neurodegeneration, blindness, and osteopetrosis. The similarities between osteoclasts and macrophages prompted us to analyze the role of Snx10 in phagocytosis. Deletion of Snx10 impaired phagosome resolution. Defective resolution was caused by reduced Cl- accumulation within (phago)lysosomes, replicating the phenotype reported in macrophages lacking ClC-7, a lysosomal 2Cl-/H+ antiporter. Delivery of ClC-7 to (phago)lysosomes was unaffected by ablation of Snx10, but its activity was markedly depressed. Snx10 was found to regulate ClC-7 activity indirectly by controlling the availability of phosphatidylinositol 3,5-bisphosphate (PI[3,5]P2), which inhibits ClC-7. By limiting the formation of PI(3,5)P2, Snx10 enables the accumulation of luminal Cl- in phagosomes and lysosomes, which is required for their optimal degradative function. Our data suggest that Snx10 regulates the delivery of PI 3-phosphate (PI[3]P), the precursor of PI(3,5)P2, from earlier endocytic compartments to (phago)lysosomes. By controlling the traffic of phosphoinositides, Snx10 regulates phagosomal resolution and possibly accounts for the impaired bone resorption in Snx10-deficient osteoclasts.
Collapse
Affiliation(s)
- Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joshua G. Pemberton
- Department of Biology, Faculty of Science, Western University, London, Canada
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Shin Morioka
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Priya Bablani
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Russell DG, Simwela NV, Mattila JT, Flynn J, Mwandumba HC, Pisu D. How macrophage heterogeneity affects tuberculosis disease and therapy. Nat Rev Immunol 2025; 25:370-384. [PMID: 39774813 DOI: 10.1038/s41577-024-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Macrophages are the primary host cell type for infection by Mycobacterium tuberculosis in vivo. Macrophages are also key immune effector cells that mediate the control of bacterial growth. However, the specific macrophage phenotypes that are required for optimal immune control of M. tuberculosis infection in vivo remain poorly defined. There are two distinct macrophage lineages in the lung, comprising embryonically derived, tissue-resident alveolar macrophages and recruited, blood monocyte-derived interstitial macrophages. Recent studies have shown that these lineages respond divergently to similar immune environments within the tuberculosis granuloma. Here, we discuss how the differing responses of macrophage lineages might affect the control or progression of tuberculosis disease. We suggest that the ability to reprogramme macrophage responses appropriately, through immunological or chemotherapeutic routes, could help to optimize vaccines and drug regimens for tuberculosis.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Nelson V Simwela
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - JoAnne Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry C Mwandumba
- Malawi Liverpool Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| |
Collapse
|
3
|
Lata S, Yabaji SM, O'Connell AK, Gertje HP, Kirber MT, Crossland NA, Kramnik I. Protocol for 3D multiplexed fluorescent imaging of pulmonary TB lesions using Opal-TSA dyes for signal amplification. STAR Protoc 2025; 6:103640. [PMID: 39982826 PMCID: PMC11889971 DOI: 10.1016/j.xpro.2025.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025] Open
Abstract
To detect multiple protein markers, here we present a protocol for imaging pulmonary tuberculosis (PTB) lesions from murine lungs using Opal-tyramide signal amplification (TSA) conjugated fluorescent dyes in free-floating formalin-fixed thick lung sections (50-100 μm). We describe steps for preparing tissue sections, permeabilization and antigen retrieval, and multiplexing with antibodies raised in the same species. This protocol has been optimized to preserve tissue integrity and endogenously expressed fluorescent reporter signals and nuclear staining. It enhances the signal-to-background ratio and enables 3D image rendering.
Collapse
Affiliation(s)
- Suruchi Lata
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivraj M Yabaji
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hans P Gertje
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael T Kirber
- Cellular Imaging Core, Research Implementation, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicholas A Crossland
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; The Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; The Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA; Pulmonary Center, The Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; The Department of Virology, Immunology, and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Dechow SJ, Goyal R, Johnson BK, Haiderer ER, Abramovitch RB. Carbon dioxide regulates Mycobacterium tuberculosis PhoPR signaling and virulence. Infect Immun 2025; 93:e0056824. [PMID: 39964175 PMCID: PMC11895460 DOI: 10.1128/iai.00568-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 03/12/2025] Open
Abstract
The Mycobacterium tuberculosis (Mtb) two-component regulatory system PhoPR is implicated in pH sensing within the macrophage because it is strongly induced by acidic pH both in vitro and the macrophage phagosome. The carbonic anhydrase (CA) inhibitor ethoxzolamide inhibits PhoPR signaling supporting the hypothesis that CO2 may also play a role in regulating PhoPR. Here, we show that increasing CO2 concentration induces PhoPR signaling, at both pH 7.0 and pH 5.7. At acidic pH 5.7, a normally strong inducer of PhoPR signaling, increasing CO2 from 0.5% to 5% further induces the pathway, showing CO2 acts synergistically with acidic pH to induce the PhoPR regulon. Based on these findings, we propose that PhoPR functions as a CO2 sensor. Mtb has three CA (CanA, CanB, and CanC), and using CRISPR interference knockdowns and gene deletion mutants, we assessed which CAs regulate PhoPR signaling and macrophage survival. We first examined if CA played a role in Mtb pathogenesis and observed that CanB was required for survival in macrophages, where the knockdown strain had ~1-log reduction in survival. To further define the interplay of CO2 and Mtb signaling, we conducted transcriptional profiling experiments at varying pH and CO2 concentrations. As hypothesized, we observed that the induction of PhoPR at acidic pH is dependent on CO2 concentration, with a subset of core PhoPR regulon genes dependent on both 5% CO2 and acidic pH for their induction, including expression of the ESX-1 secretion system. Transcriptional profiling also revealed core CO2-responsive genes that were differentially expressed independently of the PhoPR regulon or the acidic pH-inducible regulon. Notably, genes regulated by a second two-component regulatory system, TrcRS, are associated with adaptation to changes in CO2.
Collapse
Affiliation(s)
- Shelby J. Dechow
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Rajni Goyal
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin K. Johnson
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth R. Haiderer
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Lawrence ALE, Tan S. Building Spatiotemporal Understanding of Mycobacterium tuberculosis-Host Interactions. ACS Infect Dis 2025; 11:277-286. [PMID: 39847659 PMCID: PMC11828672 DOI: 10.1021/acsinfecdis.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Heterogeneity during Mycobacterium tuberculosis (Mtb) infection greatly impacts disease outcome and complicates treatment. This heterogeneity encompasses many facets, spanning local differences in the host immune response to Mtb and the environment experienced by the bacterium, to nonuniformity in Mtb replication state. All of these facets are interlinked and each can affect Mtb susceptibility to antibiotic treatment. In-depth spatiotemporal understanding of Mtb-host interactions is thus critical to both fundamental comprehension of Mtb infection biology and for the development of effective therapeutic regimens. Such spatiotemporal understanding dictates the need for analysis at the single bacterium/cell level in the context of intact tissue architecture, which has been a significant technical challenge. Excitingly, innovations in spatial single cell methodology have opened the door to such studies, beginning to illuminate aspects ranging from intergranuloma differences in cellular composition and phenotype, to sublocation differences in Mtb physiology and replication state. In this perspective, we discuss recent studies that demonstrate the potential of these methodological advancements to reveal critical spatiotemporal insight into Mtb-host interactions, and highlight future avenues of research made possible by these advances.
Collapse
Affiliation(s)
- Anna-Lisa E Lawrence
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| |
Collapse
|
6
|
Cornejo-Báez AA, Zenteno-Cuevas R, Luna-Herrera J. Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance. Microorganisms 2024; 12:2649. [PMID: 39770852 PMCID: PMC11728438 DOI: 10.3390/microorganisms12122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading infectious causes of death globally, with drug resistance presenting a significant challenge to control efforts. The interplay between type 2 diabetes mellitus (T2DM) and TB introduces additional complexity, as T2DM triples the risk of active TB and exacerbates drug resistance development. This review explores how T2DM-induced metabolic and immune dysregulation fosters the survival of Mtb, promoting persistence and the emergence of multidrug-resistant strains. Mechanisms such as efflux pump activation and the subtherapeutic levels of isoniazid and rifampicin in T2DM patients are highlighted as key contributors to resistance. We discuss the dual syndemics of T2DM-TB, emphasizing the role of glycemic control and innovative therapeutic strategies, including efflux pump inhibitors and host-directed therapies like metformin. This review underscores the need for integrated diagnostic, treatment, and management approaches to address the global impact of T2DM-TB comorbidity and drug resistance.
Collapse
Affiliation(s)
- Axhell Aleid Cornejo-Báez
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Julieta Luna-Herrera
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
7
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
8
|
Chung ES, Kar P, Kamkaew M, Amir A, Aldridge BB. Single-cell imaging of the Mycobacterium tuberculosis cell cycle reveals linear and heterogenous growth. Nat Microbiol 2024; 9:3332-3344. [PMID: 39548343 PMCID: PMC11602732 DOI: 10.1038/s41564-024-01846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
Difficulties in antibiotic treatment of Mycobacterium tuberculosis (Mtb) are partly thought to be due to heterogeneity in growth. Although the ability of bacterial pathogens to regulate growth is crucial to control homeostasis, virulence and drug responses, single-cell growth and cell cycle behaviours of Mtb are poorly characterized. Here we use time-lapse, single-cell imaging of Mtb coupled with mathematical modelling to observe asymmetric growth and heterogeneity in cell size, interdivision time and elongation speed. We find that, contrary to Mycobacterium smegmatis, Mtb initiates cell growth not only from the old pole but also from new poles or both poles. Whereas most organisms grow exponentially at the single-cell level, Mtb has a linear growth mode. Our data show that the growth behaviour of Mtb diverges from that of model bacteria, provide details into how Mtb grows and creates heterogeneity and suggest that growth regulation may also diverge from that in other bacteria.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, USA
| | - Prathitha Kar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Maliwan Kamkaew
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, USA
| | - Ariel Amir
- Department of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, USA.
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
9
|
Chen Y, Hagopian B, Tan S. Cholesterol metabolism and intrabacterial potassium homeostasis are intrinsically related in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622811. [PMID: 39605342 PMCID: PMC11601456 DOI: 10.1101/2024.11.10.622811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Potassium (K+) is the most abundant intracellular cation, but much remains unknown regarding how K+ homeostasis is integrated with other key bacterial biology aspects. Here, we show that K+ homeostasis disruption (CeoBC K+ uptake system deletion) impedes Mycobacterium tuberculosis (Mtb) response to, and growth in, cholesterol, a critical carbon source during infection, with K+ augmenting activity of the Mtb ATPase MceG that is vital for bacterial cholesterol import. Reciprocally, cholesterol directly binds to CeoB, modulating its function, with a residue critical for this interaction identified. Finally, cholesterol binding-deficient CeoB mutant Mtb are attenuated for growth in lipid-rich foamy macrophages and in vivo colonization. Our findings raise the concept of a role for cholesterol as a key co-factor, beyond its role as a carbon source, and illuminate how changes in bacterial intrabacterial K+ levels can act as part of the metabolic adaptation critical for bacterial survival and growth in the host.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Berge Hagopian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
10
|
Mittal E, Prasad GVRK, Upadhyay S, Sadadiwala J, Olive AJ, Yang G, Sassetti CM, Philips JA. Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice. Nat Microbiol 2024; 9:2970-2984. [PMID: 39242815 DOI: 10.1038/s41564-024-01797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy. Using ppsD mutant Mtb, we found that PDIM inhibits LC3-associated phagocytosis (LAP) by inhibiting phagosome recruitment of NADPH oxidase. In mice, PDIM protected Mtb from LAP and classical autophagy. During acute infection, PDIM was dispensable for Mtb survival in alveolar macrophages but required for survival in non-alveolar macrophages in an autophagy-dependent manner. During chronic infection, autophagy-deficient mice succumbed to infection with PDIM-deficient Mtb, with impairments in B-cell accumulation in lymphoid follicles. These findings demonstrate that PDIM contributes to Mtb virulence and immune evasion, revealing a contributory role for autophagy in B-cell responses.
Collapse
Affiliation(s)
- Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| | - G V R Krishna Prasad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sandeep Upadhyay
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jully Sadadiwala
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Guozhe Yang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
11
|
Pisu D, Johnston L, Mattila JT, Russell DG. The frequency of CD38 + alveolar macrophages correlates with early control of M. tuberculosis in the murine lung. Nat Commun 2024; 15:8522. [PMID: 39358361 PMCID: PMC11447019 DOI: 10.1038/s41467-024-52846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains an enduring global health challenge due to the limited efficacy of existing treatments. Although much research has focused on immune failure, the role of host macrophage biology in controlling the disease remains underappreciated. Here we show, through multi-modal single-cell RNA sequencing in a murine model, that different alveolar macrophage subsets play distinct roles in either advancing or controlling the disease. Initially, alveolar macrophages that are negative for the CD38 marker are the main infected population. As the infection progresses, CD38+ monocyte-derived and tissue-resident alveolar macrophages emerge as significant controllers of bacterial growth. These macrophages display a unique chromatin organization pre-infection, indicative of epigenetic priming for pro-inflammatory responses. Moreover, intranasal BCG immunization increases the numbers of CD38+ macrophages, enhancing their capability to restrict Mycobacterium tuberculosis growth. Our findings highlight the dynamic roles of alveolar macrophages in tuberculosis and open pathways for improved vaccines and therapies.
Collapse
Affiliation(s)
- Davide Pisu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luana Johnston
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Russell D, Pisu D, Mattila J, Johnston L. CD38+ Alveolar macrophages mediate early control of M. tuberculosis proliferation in the lung. RESEARCH SQUARE 2024:rs.3.rs-3934768. [PMID: 39070650 PMCID: PMC11275981 DOI: 10.21203/rs.3.rs-3934768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tuberculosis, caused by M.tuberculosis (Mtb), remains an enduring global health challenge, especially given the limited efficacy of current therapeutic interventions. Much of existing research has focused on immune failure as a driver of tuberculosis. However, the crucial role of host macrophage biology in controlling the disease remains underappreciated. While we have gained deeper insights into how alveolar macrophages (AMs) interact with Mtb, the precise AM subsets that mediate protection and potentially prevent tuberculosis progression have yet to be identified. In this study, we employed multi-modal scRNA-seq analyses to evaluate the functional roles of diverse macrophage subpopulations across different infection timepoints, allowing us to delineate the dynamic landscape of controller and permissive AM populations during the course of infection. Our analyses at specific time-intervals post-Mtb challenge revealed macrophage populations transitioning between distinct anti- and pro-inflammatory states. Notably, early in Mtb infection, CD38- AMs showed a muted response. As infection progressed, we observed a phenotypic shift in AMs, with CD38+ monocyte-derived AMs (moAMs) and a subset of tissue-resident AMs (TR-AMs) emerging as significant controllers of bacterial growth. Furthermore, scATAC-seq analysis of naïve lungs demonstrated that CD38+ TR-AMs possessed a distinct chromatin signature prior to infection, indicative of epigenetic priming and predisposition to a pro-inflammatory response. BCG intranasal immunization increased the numbers of CD38+ macrophages, substantially enhancing their capability to restrict Mtb growth. Collectively, our findings emphasize the pivotal, dynamic roles of different macrophage subsets in TB infection and reveal rational pathways for the development of improved vaccines and immunotherapeutic strategies.
Collapse
|
13
|
Helaine S, Conlon BP, Davis KM, Russell DG. Host stress drives tolerance and persistence: The bane of anti-microbial therapeutics. Cell Host Microbe 2024; 32:852-862. [PMID: 38870901 PMCID: PMC11446042 DOI: 10.1016/j.chom.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Antibiotic resistance, typically associated with genetic changes within a bacterial population, is a frequent contributor to antibiotic treatment failures. Antibiotic persistence and tolerance, which we collectively term recalcitrance, represent transient phenotypic changes in the bacterial population that prolong survival in the presence of typically lethal concentrations of antibiotics. Antibiotic recalcitrance is challenging to detect and investigate-traditionally studied under in vitro conditions, our understanding during infection and its contribution to antibiotic failure is limited. Recently, significant progress has been made in the study of antibiotic-recalcitrant populations in pathogenic species, including Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica, and Yersiniae, in the context of the host environment. Despite the diversity of these pathogens and infection models, shared signals and responses promote recalcitrance, and common features and vulnerabilities of persisters and tolerant bacteria have emerged. These will be discussed here, along with progress toward developing therapeutic interventions to better treat recalcitrant pathogens.
Collapse
Affiliation(s)
- Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Kimberly M Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Khan H, Paul P, Goar H, Bamniya B, Baid N, Sarkar D. Mycobacterium tuberculosis PhoP integrates stress response to intracellular survival by regulating cAMP level. eLife 2024; 13:RP92136. [PMID: 38739431 PMCID: PMC11090507 DOI: 10.7554/elife.92136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.
Collapse
Affiliation(s)
- Hina Khan
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Partha Paul
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Harsh Goar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Bhanwar Bamniya
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Navin Baid
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Dibyendu Sarkar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| |
Collapse
|
15
|
Bagchi S, Sharma AK, Ghosh A, Saha S, Basu J, Kundu M. RegX3-dependent transcriptional activation of kdpDE and repression of rv0500A are linked to potassium homeostasis in Mycobacterium tuberculosis. FEBS J 2024; 291:2242-2259. [PMID: 38414198 DOI: 10.1111/febs.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.
Collapse
Affiliation(s)
- Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Abhirupa Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | |
Collapse
|
16
|
Dechow SJ, Abramovitch RB. Targeting Mycobacterium tuberculosis pH-driven adaptation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001458. [PMID: 38717801 PMCID: PMC11165653 DOI: 10.1099/mic.0.001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.
Collapse
Affiliation(s)
- Shelby J. Dechow
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Feng S, McNehlan ME, Kinsella RL, Sur Chowdhury C, Chavez SM, Naik SK, McKee SR, Van Winkle JA, Dubey N, Samuels A, Swain A, Cui X, Hendrix SV, Woodson R, Kreamalmeyer D, Smirnov A, Artyomov MN, Virgin HW, Wang YT, Stallings CL. Autophagy promotes efficient T cell responses to restrict high-dose Mycobacterium tuberculosis infection in mice. Nat Microbiol 2024; 9:684-697. [PMID: 38413834 DOI: 10.1038/s41564-024-01608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.
Collapse
Affiliation(s)
- Siwei Feng
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacob A Van Winkle
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Samuels
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyan Cui
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Skyler V Hendrix
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ya-Ting Wang
- Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Stupar M, Tan L, Kerr ED, De Voss CJ, Forde BM, Schulz BL, West NP. TcrXY is an acid-sensing two-component transcriptional regulator of Mycobacterium tuberculosis required for persistent infection. Nat Commun 2024; 15:1615. [PMID: 38388565 PMCID: PMC10883919 DOI: 10.1038/s41467-024-45343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in the host complicates and prolongs tuberculosis (TB) patient chemotherapy. Here we demonstrate that a neglected two-component system (TCS) of Mtb, TcrXY, is an autoregulated acid-sensing TCS that controls a functionally diverse 70-gene regulon required for bacterial persistence. Characterisation of two representatives of this regulon, Rv3706c and Rv3705A, implicate these genes as key determinants for the survival of Mtb in vivo by serving as important effectors to mitigate redox stress at acidic pH. We show that genetic silencing of the response regulator tcrX using CRISPR interference attenuates the persistence of Mtb during chronic mouse infection and improves treatment with the two front-line anti-TB drugs, rifampicin and isoniazid. We propose that targeting TcrXY signal transduction blocks the ability of Mtb to sense and respond to acid stress, resulting in a disordered program of persistence to render the organism vulnerable to existing TB chemotherapy.
Collapse
Affiliation(s)
- Miljan Stupar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Christopher J De Voss
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Brian M Forde
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
19
|
Toniolo C, Sage D, McKinney JD, Dhar N. Quantification of Mycobacterium tuberculosis Growth in Cell-Based Infection Assays by Time-Lapse Fluorescence Microscopy. Methods Mol Biol 2024; 2813:167-188. [PMID: 38888778 DOI: 10.1007/978-1-0716-3890-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Quantification of Mycobacterium tuberculosis (Mtb) growth dynamics in cell-based in vitro infection models is traditionally carried out by measurement of colony forming units (CFU). However, Mtb being an extremely slow growing organism (16-24 h doubling time), this approach requires at least 3 weeks of incubation to obtain measurable readouts. In this chapter, we describe an alternative approach based on time-lapse microscopy and quantitative image analysis that allows faster quantification of Mtb growth dynamics in host cells. In addition, this approach provides the capability to capture other readouts from the same experimental setup, such as host cell viability, bacterial localization as well as the dynamics of propagation of infection between the host cells.
Collapse
Affiliation(s)
- Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid metabolism regulator. PLoS Genet 2024; 20:e1011143. [PMID: 38266039 PMCID: PMC10843139 DOI: 10.1371/journal.pgen.1011143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Successful colonization of the host requires Mycobacterium tuberculosis (Mtb) to sense and respond coordinately to disparate environmental cues during infection and adapt its physiology. However, how Mtb response to environmental cues and the availability of key carbon sources may be integrated is poorly understood. Here, by exploiting a reporter-based genetic screen, we have unexpectedly found that overexpression of transcription factors involved in Mtb lipid metabolism altered the dampening effect of low environmental potassium concentrations ([K+]) on the pH response of Mtb. Cholesterol is a major carbon source for Mtb during infection, and transcriptional analyses revealed that Mtb response to acidic pH was augmented in the presence of cholesterol and vice versa. Strikingly, deletion of the putative lipid regulator mce3R had little effect on Mtb transcriptional response to acidic pH or cholesterol individually, but resulted specifically in loss of cholesterol response augmentation in the simultaneous presence of acidic pH. Similarly, while mce3R deletion had little effect on Mtb response to low environmental [K+] alone, augmentation of the low [K+] response by the simultaneous presence of cholesterol was lost in the mutant. Finally, a mce3R deletion mutant was attenuated for growth in foamy macrophages and for colonization in a murine infection model that recapitulates caseous necrotic lesions and the presence of foamy macrophages. These findings reveal the critical coordination between Mtb response to environmental cues and cholesterol, a vital carbon source, and establishes Mce3R as a transcription factor that crucially serves to integrate these signals.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Current affiliation: Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Singh PR, Goar H, Paul P, Mehta K, Bamniya B, Vijjamarri AK, Bansal R, Khan H, Karthikeyan S, Sarkar D. Dual functioning by the PhoR sensor is a key determinant to Mycobacterium tuberculosis virulence. PLoS Genet 2023; 19:e1011070. [PMID: 38100394 PMCID: PMC10723718 DOI: 10.1371/journal.pgen.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.
Collapse
Affiliation(s)
| | - Harsh Goar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Partha Paul
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Khushboo Mehta
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhanwar Bamniya
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Roohi Bansal
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Hina Khan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Sarkar
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Savulescu AF, Peton N, Oosthuizen D, Hazra R, Rousseau RP, Mhlanga MM, Coussens AK. Quantifying spatial dynamics of Mycobacterium tuberculosis infection of human macrophages using microfabricated patterns. CELL REPORTS METHODS 2023; 3:100640. [PMID: 37963461 PMCID: PMC10694489 DOI: 10.1016/j.crmeth.2023.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Macrophages provide a first line of defense against invading pathogens, including the leading cause of bacterial mortality, Mycobacterium tuberculosis (Mtb). A challenge for quantitative characterization of host-pathogen processes in differentially polarized primary human monocyte-derived macrophages (MDMs) is their heterogeneous morphology. Here, we describe the use of microfabricated patterns that constrain the size and shape of cells, mimicking the physiological spatial confinement cells experience in tissues, to quantitatively characterize interactions during and after phagocytosis at the single-cell level at high resolution. Comparing pro-inflammatory (M1) and anti-inflammatory (M2) MDMs, we find interferon-γ stimulation increases the phagocytic contraction, while contraction and bacterial uptake decrease following silencing of phagocytosis regulator NHLRC2 or bacterial surface lipid removal. We identify host organelle position alterations within infected MDMs and differences in Mtb subcellular localization in line with M1 and M2 cellular polarity. Our approach can be adapted to study other host-pathogen interactions and coupled with downstream automated analytical approaches.
Collapse
Affiliation(s)
- Anca F Savulescu
- Division of Chemical, Systems, & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | - Nashied Peton
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Delia Oosthuizen
- Division of Chemical, Systems, & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Rudranil Hazra
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert P Rousseau
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, FNWI, Radboud University, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Anna K Coussens
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Pathology, University of Cape Town, Observatory 7925, South Africa; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
Peterson EJR, Brooks AN, Reiss DJ, Kaur A, Do J, Pan M, Wu WJ, Morrison R, Srinivas V, Carter W, Arrieta-Ortiz ML, Ruiz RA, Bhatt A, Baliga NS. MtrA modulates Mycobacterium tuberculosis cell division in host microenvironments to mediate intrinsic resistance and drug tolerance. Cell Rep 2023; 42:112875. [PMID: 37542718 PMCID: PMC10480492 DOI: 10.1016/j.celrep.2023.112875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) is largely attributed to its ability to physiologically adapt and withstand diverse localized stresses within host microenvironments. Here, we present a data-driven model (EGRIN 2.0) that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. Analysis of EGRIN 2.0 shows how modulation of the MtrAB two-component signaling system tunes Mtb growth in response to related host microenvironmental cues. Disruption of MtrAB by tunable CRISPR interference confirms that the signaling system regulates multiple peptidoglycan hydrolases, among other targets, that are important for cell division. Further, MtrA decreases the effectiveness of antibiotics by mechanisms of both intrinsic resistance and drug tolerance. Together, the model-enabled dissection of complex MtrA regulation highlights its importance as a drug target and illustrates how EGRIN 2.0 facilitates discovery and mechanistic characterization of Mtb adaptation to specific host microenvironments within the host.
Collapse
Affiliation(s)
| | | | - David J Reiss
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Julie Do
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Morrison
- Laboratory of Malaria, Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Warren Carter
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Rene A Ruiz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; Departments of Biology and Microbiology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Lawrence Berkeley National Lab, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Nelson SJ, Williams JT, Buglino JA, Nambi S, Lojek LJ, Glickman MS, Ioerger TR, Sassetti CM. The Rip1 intramembrane protease contributes to iron and zinc homeostasis in Mycobacterium tuberculosis. mSphere 2023; 8:e0038922. [PMID: 37318217 PMCID: PMC10449499 DOI: 10.1128/msphere.00389-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mycobacterium tuberculosis is exposed to a variety of stresses during a chronic infection, as the immune system simultaneously produces bactericidal compounds and starves the pathogen of essential nutrients. The intramembrane protease, Rip1, plays an important role in the adaptation to these stresses, at least partially by the cleavage of membrane-bound transcriptional regulators. Although Rip1 is known to be critical for surviving copper intoxication and nitric oxide exposure, these stresses do not fully account for the regulatory protein's essentiality during infection. In this work, we demonstrate that Rip1 is also necessary for growth in low-iron and low-zinc conditions, similar to those imposed by the immune system. Using a newly generated library of sigma factor mutants, we show that the known regulatory target of Rip1, SigL, shares this defect. Transcriptional profiling under iron-limiting conditions supported the coordinated activity of Rip1 and SigL and demonstrated that the loss of these proteins produces an exaggerated iron starvation response. These observations demonstrate that Rip1 coordinates several aspects of metal homeostasis and suggest that a Rip1- and SigL-dependent pathway is necessary to thrive in the iron-deficient environments encountered during infection. IMPORTANCE Metal homeostasis represents a critical point of interaction between the mammalian immune system and potential pathogens. While the host attempts to intoxicate microbes with high concentrations of copper or starve the invader of iron and zinc, successful pathogens have acquired mechanisms to overcome these defenses. Our work identifies a regulatory pathway consisting of the Rip1 intramembrane protease and the sigma factor, SigL, that is essential for the important human pathogen, Mycobacterium tuberculosis, to grow in low-iron or low-zinc conditions such as those encountered during infection. In conjunction with Rip1's known role in resisting copper toxicity, our work implicates this protein as a critical integration point that coordinates the multiple metal homeostatic systems required for this pathogen to survive in host tissue.
Collapse
Affiliation(s)
- Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John T. Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John A. Buglino
- Immunology Program, Sloan Kettering Institute, New York City, New York, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa J. Lojek
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Chen Y, MacGilvary NJ, Tan S. Mycobacterium tuberculosis response to cholesterol is integrated with environmental pH and potassium levels via a lipid utilization regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554309. [PMID: 37662244 PMCID: PMC10473576 DOI: 10.1101/2023.08.22.554309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
How bacterial response to environmental cues and nutritional sources may be integrated in enabling host colonization is poorly understood. Exploiting a reporter-based screen, we discovered that overexpression of Mycobacterium tuberculosis (Mtb) lipid utilization regulators altered Mtb acidic pH response dampening by low environmental potassium (K+). Transcriptional analyses unveiled amplification of Mtb response to acidic pH in the presence of cholesterol, a major carbon source for Mtb during infection, and vice versa. Strikingly, deletion of the putative lipid regulator mce3R resulted in loss of augmentation of (i) cholesterol response at acidic pH, and (ii) low [K+] response by cholesterol, with minimal effect on Mtb response to each signal individually. Finally, the ∆mce3R mutant was attenuated for colonization in a murine model that recapitulates lesions with lipid-rich foamy macrophages. These findings reveal critical coordination between bacterial response to environmental and nutritional cues, and establish Mce3R as a crucial integrator of this process.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
26
|
Malaga W, Payros D, Meunier E, Frigui W, Sayes F, Pawlik A, Orgeur M, Berrone C, Moreau F, Mazères S, Gonzalo-Asensio J, Rengel D, Martin C, Astarie-Dequeker C, Mourey L, Brosch R, Guilhot C. Natural mutations in the sensor kinase of the PhoPR two-component regulatory system modulate virulence of ancestor-like tuberculosis bacilli. PLoS Pathog 2023; 19:e1011437. [PMID: 37450466 PMCID: PMC10348564 DOI: 10.1371/journal.ppat.1011437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
The molecular factors and genetic adaptations that contributed to the emergence of Mycobacterium tuberculosis (MTB) from an environmental Mycobacterium canettii-like ancestor, remain poorly investigated. In MTB, the PhoPR two-component regulatory system controls production and secretion of proteins and lipid virulence effectors. Here, we describe that several mutations, present in phoR of M. canettii relative to MTB, impact the expression of the PhoP regulon and the pathogenicity of the strains. First, we establish a molecular model of PhoR and show that some substitutions found in PhoR of M. canettii are likely to impact the structure and activity of this protein. Second, we show that STB-K, the most attenuated available M. canettii strain, displays lower expression of PhoP-induced genes than MTB. Third, we demonstrate that genetic swapping of the phoPR allele from STB-K with the ortholog from MTB H37Rv enhances expression of PhoP-controlled functions and the capacities of the recombinant strain to colonize human macrophages, the MTB target cells, as well as to cause disease in several mouse infection models. Fourth, we extended these observations to other M. canettii strains and confirm that PhoP-controlled functions are expressed at lower levels in most M. canettii strains than in M. tuberculosis. Our findings suggest that distinct PhoR variants have been selected during the evolution of tuberculosis bacilli, contributing to higher pathogenicity and persistence of MTB in the mammalian host.
Collapse
Affiliation(s)
- Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Delphine Payros
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Eva Meunier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Alexandre Pawlik
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Mickael Orgeur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Céline Berrone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Flavie Moreau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Jesus Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Facultad de Medicina, Departamento de Microbiologia, Pediatria, Radiologica y Salud Pùblica, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Institudo de Salud Carlos III, Madrid, Spain
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Carlos Martin
- Grupo de Genética de Micobacterias, Facultad de Medicina, Departamento de Microbiologia, Pediatria, Radiologica y Salud Pùblica, Universidad de Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Institudo de Salud Carlos III, Madrid, Spain
- Servicio de Microbiologia, Hospital Universitario Miguel Servet, ISS Aragon, Zaragoza, Spain
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
27
|
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol 2023; 120:71-74. [PMID: 37433048 PMCID: PMC10348474 DOI: 10.1111/mmi.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023]
Abstract
The ability of a bacterium to successfully colonize its host is dependent on proper adaptation to its local environment. Environmental cues are diverse in nature, ranging from ions to bacterial-produced signals, and to host immune responses that can also be exploited by the bacteria as cues. Simultaneously, bacterial metabolism must be matched to the carbon and nitrogen sources available at a given time and location. While initial characterization of a bacterium's response to a given environmental cue or its ability to utilize a particular carbon/nitrogen source requires study of the signal in question in isolation, actual infection poses a situation where multiple signals are present concurrently. This perspective focuses on the untapped potential in uncovering and understanding how bacteria integrate their response to multiple concurrent environmental cues, and in elucidating the possible intrinsic coordination of bacterial environmental response with its metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Natalia F. Quirk
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Smirnov A, Daily KP, Gray MC, Ragland SA, Werner LM, Brittany Johnson M, Eby JC, Hewlett EL, Taylor RP, Criss AK. Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils. J Leukoc Biol 2023; 114:1-20. [PMID: 36882066 PMCID: PMC10949953 DOI: 10.1093/jleuko/qiad028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
CR3 (CD11b/CD18; αmβ2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology
| | | | - Mary C. Gray
- Department of Microbiology, Immunology, and Cancer Biology
| | | | | | | | - Joshua C. Eby
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Erik L. Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine
| | - Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | | |
Collapse
|
29
|
Wu JZ, Zeziulia M, Kwon W, Jentsch TJ, Grinstein S, Freeman SA. ClC-7 drives intraphagosomal chloride accumulation to support hydrolase activity and phagosome resolution. J Cell Biol 2023; 222:e202208155. [PMID: 37010469 PMCID: PMC10072274 DOI: 10.1083/jcb.202208155] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Degradative organelles contain enzymes that function optimally at the acidic pH generated by the V-ATPase. The resulting transmembrane H+ gradient also energizes the secondary transport of several solutes, including Cl-. We report that Cl- influx, driven by the 2Cl-/H+ exchanger ClC-7, is necessary for the resolution of phagolysosomes formed by macrophages. Cl- transported via ClC-7 had been proposed to provide the counterions required for electrogenic H+ pumping. However, we found that deletion of ClC-7 had a negligible effect on phagosomal acidification. Instead, luminal Cl- was found to be required for activation of a wide range of phagosomal hydrolases including proteases, nucleases, and glycosidases. These findings argue that the primary role of ClC-7 is the accumulation of (phago)lysosomal Cl- and that the V-ATPases not only optimize the activity of degradative hydrolases by lowering the pH but, importantly, also play an indirect role in their activation by providing the driving force for accumulation of luminal Cl- that stimulates hydrolase activity allosterically.
Collapse
Affiliation(s)
- Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Mariia Zeziulia
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Graduate Program of the Freie Universität Berlin, Berlin, Germany
| | - Whijin Kwon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité University Medicine Berlin, Berlin, Germany
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Finin P, Khan RMN, Oh S, Boshoff HIM, Barry CE. Chemical approaches to unraveling the biology of mycobacteria. Cell Chem Biol 2023; 30:420-435. [PMID: 37207631 PMCID: PMC10201459 DOI: 10.1016/j.chembiol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Mycobacterium tuberculosis (Mtb), perhaps more than any other organism, is intrinsically appealing to chemical biologists. Not only does the cell envelope feature one of the most complex heteropolymers found in nature1 but many of the interactions between Mtb and its primary host (we humans) rely on lipid and not protein mediators.2,3 Many of the complex lipids, glycolipids, and carbohydrates biosynthesized by the bacterium still have unknown functions, and the complexity of the pathological processes by which tuberculosis (TB) disease progress offers many opportunities for these molecules to influence the human response. Because of the importance of TB in global public health, chemical biologists have applied a wide-ranging array of techniques to better understand the disease and improve interventions.
Collapse
Affiliation(s)
- Peter Finin
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - R M Naseer Khan
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Chung ES, Kar P, Kamkaew M, Amir A, Aldridge BB. Mycobacterium tuberculosis grows linearly at the single-cell level with larger variability than model organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541183. [PMID: 37292927 PMCID: PMC10245742 DOI: 10.1101/2023.05.17.541183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability of bacterial pathogens to regulate growth is crucial to control homeostasis, virulence, and drug response. Yet, we do not understand the growth and cell cycle behaviors of Mycobacterium tuberculosis (Mtb), a slow-growing pathogen, at the single-cell level. Here, we use time-lapse imaging and mathematical modeling to characterize these fundamental properties of Mtb. Whereas most organisms grow exponentially at the single-cell level, we find that Mtb exhibits a unique linear growth mode. Mtb growth characteristics are highly variable from cell-to-cell, notably in their growth speeds, cell cycle timing, and cell sizes. Together, our study demonstrates that growth behavior of Mtb diverges from what we have learned from model bacteria. Instead, Mtb generates a heterogeneous population while growing slowly and linearly. Our study provides a new level of detail into how Mtb grows and creates heterogeneity, and motivates more studies of growth behaviors in bacterial pathogens.
Collapse
|
32
|
Aylan B, Bernard EM, Pellegrino E, Botella L, Fearns A, Athanasiadi N, Bussi C, Santucci P, Gutierrez MG. ATG7 and ATG14 restrict cytosolic and phagosomal Mycobacterium tuberculosis replication in human macrophages. Nat Microbiol 2023; 8:803-818. [PMID: 36959508 PMCID: PMC10159855 DOI: 10.1038/s41564-023-01335-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/24/2023] [Indexed: 03/25/2023]
Abstract
Autophagy is a cellular innate-immune defence mechanism against intracellular microorganisms, including Mycobacterium tuberculosis (Mtb). How canonical and non-canonical autophagy function to control Mtb infection in phagosomes and the cytosol remains unresolved. Macrophages are the main host cell in humans for Mtb. Here we studied the contributions of canonical and non-canonical autophagy in the genetically tractable human induced pluripotent stem cell-derived macrophages (iPSDM), using a set of Mtb mutants generated in the same genetic background of the common lab strain H37Rv. We monitored replication of Mtb mutants that are either unable to trigger canonical autophagy (Mtb ΔesxBA) or reportedly unable to block non-canonical autophagy (Mtb ΔcpsA) in iPSDM lacking either ATG7 or ATG14 using single-cell high-content imaging. We report that deletion of ATG7 by CRISPR-Cas9 in iPSDM resulted in increased replication of wild-type Mtb but not of Mtb ΔesxBA or Mtb ΔcpsA. We show that deletion of ATG14 resulted in increased replication of both Mtb wild type and the mutant Mtb ΔesxBA. Using Mtb reporters and quantitative imaging, we identified a role for ATG14 in regulating fusion of phagosomes containing Mtb with lysosomes, thereby enabling intracellular bacteria restriction. We conclude that ATG7 and ATG14 are both required for restricting Mtb replication in human macrophages.
Collapse
Affiliation(s)
- Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Enrica Pellegrino
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Natalia Athanasiadi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Claudio Bussi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
- Aix-Marseille University, CNRS, LISM, Marseille, France
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
33
|
Ahn YM, Lavin RC, Tan S, Freundlich JS. Liquid chromatography-mass spectrometry-based protocol to measure drug accumulation in Mycobacterium tuberculosis and its host cell. STAR Protoc 2023; 4:101971. [PMID: 36598855 PMCID: PMC9826881 DOI: 10.1016/j.xpro.2022.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The extent to which a drug accumulates in Mycobacterium tuberculosis (Mtb) and its host cell can affect treatment efficacy. We describe protocols measuring drug accumulation in Mtb, macrophages, and Mtb-infected macrophages. The method leverages drug extraction from the cellular lysate and drug-level quantification by liquid chromatography-mass spectrometry. The general methodology has broad applicability and can quantify drug accumulation in other cell types, while being extended to quantification of drug metabolites formed within the cell under study. For complete details on the use and execution of this protocol, please refer to Lavin et al. (2021).1.
Collapse
Affiliation(s)
- Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07101, USA
| | - Richard C Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07101, USA; Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
34
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
35
|
Aylan B, Botella L, Gutierrez MG, Santucci P. High content quantitative imaging of Mycobacterium tuberculosis responses to acidic microenvironments within human macrophages. FEBS Open Bio 2022. [PMID: 36520007 DOI: 10.1002/2211-5463.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Intracellular pathogens such as Mycobacterium tuberculosis (Mtb) have evolved diverse strategies to counteract macrophage defence mechanisms including phagolysosomal biogenesis. Within macrophages, Mtb initially resides inside membrane-bound phagosomes that interact with lysosomes and become acidified. The ability of Mtb to control and subvert the fusion between phagosomes and lysosomes plays a key role in the pathogenesis of tuberculosis. Therefore, understanding how pathogens interact with the endolysosomal network and cope with intracellular acidification is important to better understand the disease. Here, we describe in detail the use of fluorescence microscopy-based approaches to investigate Mtb responses to acidic environments in cellulo. We report high-content imaging modalities to probe Mtb sensing of external pH or visualise in real-time Mtb intrabacterial pH within infected human macrophages. We discuss various methodologies with step-by-step analyses that enable robust image-based quantifications. Finally, we highlight the advantages and limitations of these different approaches and discuss potential alternatives that can be applied to further investigate Mtb-host cell interactions. These methods can be adapted to study host-pathogen interactions in different biological systems and experimental settings. Altogether, these approaches represent a valuable tool to further broaden our understanding of the cellular and molecular mechanisms underlying intracellular pathogen survival.
Collapse
Affiliation(s)
- Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
36
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
37
|
Samuels AN, Wang ER, Harrison GA, Valenta JC, Stallings CL. Understanding the contribution of metabolism to Mycobacterium tuberculosis drug tolerance. Front Cell Infect Microbiol 2022; 12:958555. [PMID: 36072222 PMCID: PMC9441742 DOI: 10.3389/fcimb.2022.958555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
38
|
Giacalone D, Yap RE, Ecker AMV, Tan S. PrrA modulates Mycobacterium tuberculosis response to multiple environmental cues and is critically regulated by serine/threonine protein kinases. PLoS Genet 2022; 18:e1010331. [PMID: 35913986 PMCID: PMC9371303 DOI: 10.1371/journal.pgen.1010331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to adapt to its surrounding environment is critical for the bacterium to successfully colonize its host. Transcriptional changes are a vital mechanism by which Mtb responds to key environmental signals experienced, such as pH, chloride (Cl-), nitric oxide (NO), and hypoxia. However, much remains unknown regarding how Mtb coordinates its response to the disparate signals seen during infection. Utilizing a transcription factor (TF) overexpression plasmid library in combination with a pH/Cl--responsive luciferase reporter, we identified the essential TF, PrrA, part of the PrrAB two-component system, as a TF involved in modulation of Mtb response to pH and Cl-. Further studies revealed that PrrA also affected Mtb response to NO and hypoxia, with prrA overexpression dampening induction of NO and hypoxia-responsive genes. PrrA is phosphorylated not just by its cognate sensor histidine kinase PrrB, but also by serine/threonine protein kinases (STPKs) at a second distinct site. Strikingly, a STPK-phosphoablative PrrA variant was significantly dampened in its response to NO versus wild type Mtb, disrupted in its ability to adaptively enter a non-replicative state upon extended NO exposure, and attenuated for in vivo colonization. Together, our results reveal PrrA as an important regulator of Mtb response to multiple environmental signals, and uncover a critical role of STPK regulation of PrrA in its function. Vital to successful host colonization by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the bacterium’s ability to respond and adapt to changes in its local environment during infection. Here, we discover that the essential transcription factor PrrA, part of the PrrAB two-component system (TCS), modulates Mtb response to four important environmental cues encountered within the host: pH, chloride, nitric oxide, and hypoxia. PrrA acts as a rheostat, adjusting the amplitude of Mtb gene expression changes upon bacterial exposure to each of the four environmental signals. Further, we reveal a critical impact of serine/threonine protein kinases (STPKs) on PrrA function, with prevention of STPK phosphorylation of PrrA disrupting adaptive response of Mtb to growth-inhibiting cues and attenuating the bacterium’s ability to colonize its host. Our work uncovers PrrA as a regulator with broad impact across environmental signals, and highlights how two regulatory systems, TCSs and STPKs, critically interact in coordinating Mtb response to environmental cues.
Collapse
Affiliation(s)
- David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Rochelle E. Yap
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alwyn M. V. Ecker
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
40
|
Stupar M, Furness J, De Voss CJ, Tan L, West NP. Two-component sensor histidine kinases of Mycobacterium tuberculosis: beacons for niche navigation. Mol Microbiol 2022; 117:973-985. [PMID: 35338720 PMCID: PMC9321153 DOI: 10.1111/mmi.14899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Intracellular bacterial pathogens such as Mycobacterium tuberculosis are remarkably adept at surviving within a host, employing a variety of mechanisms to counteract host defenses and establish a protected niche. Constant surveying of the environment is key for pathogenic mycobacteria to discern their immediate location and coordinate the expression of genes necessary for adaptation. Two‐component systems efficiently perform this role, typically comprised of a transmembrane sensor kinase and a cytoplasmic response regulator. In this review, we describe the role of two‐component systems in bacterial pathogenesis, focusing predominantly on the role of sensor kinases of M. tuberculosis. We highlight important features of sensor kinases in mycobacterial infection, discuss ways in which these signaling proteins sense and respond to environments, and how this is attuned to their intracellular lifestyle. Finally, we discuss recent studies which have identified and characterized inhibitors of two‐component sensor kinases toward establishing a new strategy in anti‐mycobacterial therapy.
Collapse
Affiliation(s)
- Miljan Stupar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Juanelle Furness
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Christopher J De Voss
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
41
|
Martínez-Pérez A, Estévez O, González-Fernández Á. Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis. Front Microbiol 2022; 13:835620. [PMID: 35283833 PMCID: PMC8908424 DOI: 10.3389/fmicb.2022.835620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and “omic” approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - Olivia Estévez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| |
Collapse
|
42
|
Lavin RC, Tan S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog 2022; 18:e1010459. [PMID: 35344572 PMCID: PMC8989358 DOI: 10.1371/journal.ppat.1010459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
A hallmark of Mycobacterium tuberculosis (Mtb) infection is the marked heterogeneity that exists, spanning lesion type differences to microenvironment changes as infection progresses. A mechanistic understanding of how this heterogeneity affects Mtb growth and treatment efficacy necessitates single bacterium level studies in the context of intact host tissue architecture; however, such an evaluation has been technically challenging. Here, we exploit fluorescent reporter Mtb strains and the C3HeB/FeJ murine model in an integrated imaging approach to study microenvironment heterogeneity within a single lesion in situ, and analyze how these differences relate to non-uniformity in Mtb replication state, activity, and drug efficacy. We show that the pH and chloride environments differ spatially even within a single caseous necrotic lesion, with increased acidity and chloride levels in the lesion cuff versus core. Strikingly, a higher percentage of Mtb in the lesion core versus cuff were in an actively replicating state, and correspondingly active in transcription/translation. Finally, examination of three first-line anti-tubercular drugs showed that isoniazid efficacy was conspicuously poor against Mtb in the lesion cuff. Our study reveals spatial relationships of intra-lesion heterogeneity, sheds light on important considerations in anti-tubercular treatment strategies, and establishes a foundational framework for Mtb infection heterogeneity analysis at the single bacterium level in situ.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
43
|
Kevorkian YL, MacGilvary NJ, Giacalone D, Johnson C, Tan S. Rv0500A is a transcription factor that links Mycobacterium tuberculosis environmental response with division and impacts host colonization. Mol Microbiol 2022; 117:1048-1062. [PMID: 35167150 PMCID: PMC9382876 DOI: 10.1111/mmi.14886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
For Mycobacterium tuberculosis (Mtb) to successfully infect a host, it must be able to adapt to changes in its microenvironment, including to variations in ionic signals such as pH and chloride (Cl- ), and link these responses to its growth. Transcriptional changes are a key mechanism for Mtb environmental adaptation, and we identify here Rv0500A as a novel transcriptional regulator that links Mtb environmental response and division processes. Global transcriptional profiling revealed that Rv0500A acts as a repressor and influences the expression of genes related to division, with the magnitude of its effect modulated by pH and Cl- . Rv0500A can directly bind the promoters of several of these target genes, and we identify key residues required for its DNA-binding ability and biological effect. Overexpression of rv0500A disrupted Mtb growth morphology, resulting in filamentation that was exacerbated by high environmental Cl- levels and acidic pH. Finally, we show that perturbation of rv0500A leads to attenuation of the ability of Mtb to colonize its host in vivo. Our work highlights the important link between Mtb environmental response and growth characteristics, and uncovers a new transcription factor involved in this critical facet of Mtb biology.
Collapse
Affiliation(s)
- Yuzo L Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Nathan J MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Calvin Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA.,Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Cui Z, Li X, Shin J, Gamper H, Hou YM, Sacchettini JC, Zhang J. Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nat Commun 2022; 13:432. [PMID: 35064151 PMCID: PMC8782954 DOI: 10.1038/s41467-022-28078-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs) to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation. These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, providing insights into the mechanism of translational regulation by EttA-like proteins.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
45
|
Alvarez-Eraso KLF, Muñoz-Martínez LM, Alzate JF, Barrera LF, Baena A. Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Curr Microbiol 2022; 79:39. [PMID: 34982251 DOI: 10.1007/s00284-021-02733-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.
Collapse
Affiliation(s)
| | | | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
- Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia.
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia.
- Sede de Investigación Universitaria-SIU, Medellín, Colombia.
| |
Collapse
|
46
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
47
|
Pisu D, Huang L, Narang V, Theriault M, Lê-Bury G, Lee B, Lakudzala AE, Mzinza DT, Mhango DV, Mitini-Nkhoma SC, Jambo KC, Singhal A, Mwandumba HC, Russell DG. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med 2021; 218:e20210615. [PMID: 34292313 PMCID: PMC8302446 DOI: 10.1084/jem.20210615] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, we detail a novel approach that combines bacterial fitness fluorescent reporter strains with scRNA-seq to simultaneously acquire the host transcriptome, surface marker expression, and bacterial phenotype for each infected cell. This approach facilitates the dissection of the functional heterogeneity of M. tuberculosis-infected alveolar (AMs) and interstitial macrophages (IMs) in vivo. We identify clusters of pro-inflammatory AMs associated with stressed bacteria, in addition to three different populations of IMs with heterogeneous bacterial phenotypes. Finally, we show that the main macrophage populations in the lung are epigenetically constrained in their response to infection, while inter-species comparison reveals that most AMs subsets are conserved between mice and humans. This conceptual approach is readily transferable to other infectious disease agents with the potential for an increased understanding of the roles that different host cell populations play during the course of an infection.
Collapse
MESH Headings
- Animals
- Antitubercular Agents/pharmacology
- Bronchoalveolar Lavage Fluid/microbiology
- CD11 Antigens/immunology
- CD11 Antigens/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation, Bacterial
- Heme/metabolism
- Host-Pathogen Interactions
- Humans
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice, Inbred C57BL
- Microorganisms, Genetically-Modified
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Sequence Analysis, RNA
- Single-Cell Analysis
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- Mice
Collapse
Affiliation(s)
- Davide Pisu
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Vipin Narang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Monique Theriault
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Gabrielle Lê-Bury
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Agnes E. Lakudzala
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David T. Mzinza
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - David V. Mhango
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Steven C. Mitini-Nkhoma
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
| | - Kondwani C. Jambo
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore
| | - Henry C. Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Program, University of Malawi College of Medicine, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
48
|
Lavin RC, Johnson C, Ahn YM, Kremiller KM, Sherwood M, Patel JS, Pan Y, Russo R, MacGilvary NJ, Giacalone D, Kevorkian YL, Zimmerman MD, Glickman JF, Freundlich JS, Tan S. Targeting Mycobacterium tuberculosis response to environmental cues for the development of effective antitubercular drugs. PLoS Biol 2021; 19:e3001355. [PMID: 34319985 PMCID: PMC8351955 DOI: 10.1371/journal.pbio.3001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/09/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
Sensing and response to environmental cues, such as pH and chloride (Cl−), is critical in enabling Mycobacterium tuberculosis (Mtb) colonization of its host. Utilizing a fluorescent reporter Mtb strain in a chemical screen, we have identified compounds that dysregulate Mtb response to high Cl− levels, with a subset of the hits also inhibiting Mtb growth in host macrophages. Structure–activity relationship studies on the hit compound “C6,” or 2-(4-((2-(ethylthio)pyrimidin-5-yl)methyl)piperazin-1-yl)benzo[d]oxazole, demonstrated a correlation between compound perturbation of Mtb Cl− response and inhibition of bacterial growth in macrophages. C6 accumulated in both bacterial and host cells, and inhibited Mtb growth in cholesterol media, but not in rich media. Subsequent examination of the Cl− response of Mtb revealed an intriguing link with bacterial growth in cholesterol, with increased transcription of several Cl−-responsive genes in the simultaneous presence of cholesterol and high external Cl− concentration, versus transcript levels observed during exposure to high external Cl− concentration alone. Strikingly, oral administration of C6 was able to inhibit Mtb growth in vivo in a C3HeB/FeJ murine infection model. Our work illustrates how Mtb response to environmental cues can intersect with its metabolism and be exploited in antitubercular drug discovery. Responding to environmental cues such as pH and chloride is critical in enabling Mycobacterium tuberculosis to colonize its host. A chemical screen using an M. tuberculosis strain bearing a fluorescent reporter identifies a compound that perturbs the bacterial response to chloride and inhibits its growth in a murine infection model.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Calvin Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kyle M. Kremiller
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Matthew Sherwood
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jimmy S. Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Yuzo L. Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
| | - J. Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenco Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog 2021; 17:e1008911. [PMID: 34320028 PMCID: PMC8351954 DOI: 10.1371/journal.ppat.1008911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/09/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.
Collapse
Affiliation(s)
- Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eleni Jaecklein
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | | | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
50
|
Subhash N, Sundaramurthy V. Advances in host-based screening for compounds with intracellular anti-mycobacterial activity. Cell Microbiol 2021; 23:e13337. [PMID: 33813790 DOI: 10.1111/cmi.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Intracellular pathogens interact with host systems in intimate ways to sustain a pathogenic lifestyle. Consequently, these interactions can potentially be targets of host-directed interventions against infectious diseases. In case of tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), while effective anti-tubercular compounds are available, the long treatment duration and emerging drug resistance necessitate identification of new class of molecules with anti-TB activity, as well as new treatment strategies. A significant part of the effort in finding new anti-TB drugs is focused on bacterial targets in bacterial systems. However, the host environment plays a major role in pathogenesis mechanisms and must be considered actively in these efforts. On the one hand, the bacterial origin targets must be relevant and accessible in the host, while on the other hand, new host origin targets required for the bacterial survival can be targeted. Such targets are good candidates for host-directed therapeutics, a strategy gaining traction as an adjunct in TB treatment. In this review, we will summarise the screening platforms used to identify compounds with anti-tubercular activities inside different host environments and outline recent technical advances in these platforms. Finally, while the examples given are specific to mycobacteria, the methods and principles outlined are broadly applicable to most intracellular infections.
Collapse
Affiliation(s)
- Neeraja Subhash
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,SASTRA University, Thanjavur, India
| | | |
Collapse
|