1
|
David C, Verney C, Si-Tahar M, Guillon A. Evaluating the evidence for GM-CSF as a host-directed therapy in respiratory infections. Cytokine 2025; 189:156902. [PMID: 39999678 DOI: 10.1016/j.cyto.2025.156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Novel therapeutic approaches are needed to treat respiratory infections due to the rising antimicrobial resistance and the lack of effective antiviral therapies. A promising avenue to overcome treatment failure is to develop strategies that target the host immune response rather than the pathogen itself. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical role in controlling homeostasis in lungs, alveolar macrophages being the most sensitive cells to GM-CSF signaling. In this review, we discuss the importance of GM-CSF secretion for lung homeostasis and its alteration during respiratory infections. We also present the pre-clinical evidence and clinical investigations evaluating GM-CSF-based treatments (administration or inhibition) as a therapeutic strategy for treating respiratory infections, highlighting both supporting and contradictory findings.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France.
| |
Collapse
|
2
|
Vigeland CL, Link JD, Beggs HS, Alwarawrah Y, Ehrmann BM, Dang H, Doerschuk CM. Alveolar and Bone Marrow-derived Macrophages Differ in Metabolism and Glutamine Utilization. Am J Respir Cell Mol Biol 2025; 72:563-577. [PMID: 39499818 PMCID: PMC12051935 DOI: 10.1165/rcmb.2023-0249oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Changes in metabolic activity are key regulators of macrophage activity. Proinflammatory macrophages upregulate glycolysis, which promotes an inflammatory phenotype, whereas prorepair macrophages rely on oxidative metabolism and glutaminolysis to support their activity. Work to understand how metabolism regulates macrophage phenotype has been done primarily in macrophage cell lines and bone marrow-derived macrophages (BMDM). Our study sought to understand changes in metabolic activity of murine tissue-resident alveolar macrophages (AM) in response to LPS stimulation and to contrast them to BMDM. These studies also determined the contribution of glutamine metabolism using the glutamine inhibitor, 6-diazo-5-oxo-L-norleucine (DON). We found that compared with BMDM, AM have higher rates of oxygen consumption and contain a higher concentration of intracellular metabolites involved in fatty acid oxidation. In response to LPS, BMDM, but not AM, increased rates of glycolysis. Inhibition of glutamine metabolism using DON altered the metabolic activity of AM but not BMDM. Within AM, glutamine inhibition led to increases in intracellular metabolites involved in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and amino acid metabolism. Glutamine inhibition also altered the metabolic response to LPS within AM but not BMDM. Our data reveal striking differences in the metabolic activity of AM and BMDM.
Collapse
Affiliation(s)
- Christine L. Vigeland
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | - Jordan D. Link
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | - Henry S. Beggs
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| | - Yazan Alwarawrah
- Division of Endocrinology, Department of Pediatrics, University of North Carolina School of Medicine, and
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Claire M. Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine
- Marsico Lung Institute
| |
Collapse
|
3
|
Le CTT, Kim KH, Raha JR, Bhatnagar N, Pal SS, Grovenstein P, Yeasmin M, Liu R, Wang BZ, Kang SM. Dual roles of influenza B virus neuraminidase mRNA vaccine in enhancing cross-lineage protection by supplementing inactivated split vaccination. J Virol 2025:e0229424. [PMID: 40265888 DOI: 10.1128/jvi.02294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
The current influenza vaccine is based on immunity to hemagglutinin (HA) and provides poor cross-protection. Here, we generated mRNA vaccine encoding influenza B virus (IBV) neuraminidase (NA) conjugated to influenza A virus M2 ectodomain (M2e), encapsulated in lipid nanoparticles (LNP), capable of inducing cross-lineage IBV protection in a dose-dependent pattern. The combination of low-dose NA mRNA and inactivated split IBV vaccines was found to induce significantly higher levels of cross-reactive IgG responses, NA and HA inhibition titers, effector and memory cellular immune responses as well as cross-lineage protection than either NA mRNA or split vaccine alone. This study suggests that the NA mRNA vaccine not only provides cross-lineage protection with a high dose but also enhances the cross-protective efficacy of the combined low-dose NA mRNA and split vaccines. Our findings support a new strategy of using mRNA LNP-supplemented conventional vaccination to enhance cross-protection.IMPORTANCEThis study highlights a significant advancement in influenza vaccination strategies. To test a new vaccination strategy, we developed an influenza B virus (IBV) neuraminidase (NA) mRNA vaccine which could provide cross-lineage protection at a high dose. More importantly, the co-administration of NA mRNA and split IBV vaccine at low doses was found to significantly enhance the hemagglutinin and NA immunity as well as cross-lineage protection of seasonal IBV vaccines. This proof-of-concept study provides evidence for a novel strategy to enhance the immunogenicity and cross-protective efficacy of conventional vaccines by supplementing with new targets of mRNA vaccines.
Collapse
Affiliation(s)
- Chau Thuy Tien Le
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Jannatul Ruhan Raha
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Noopur Bhatnagar
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Surya Sekhar Pal
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Phillip Grovenstein
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Mahmuda Yeasmin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Rong Liu
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Zhong X, Xie T, Wang SY, Xu ZS, Chi XX, Lan QS, Xie BW, Sun QL, Yuan L, Lan QY, Zhao ZX, Pan BR, Feng H, Lu L, Wang YY, Wang X, Dong C. Alveolar macrophages critically control infection by seasonal human coronavirus OC43 to avoid severe pneumonia. Cell Rep 2025; 44:115531. [PMID: 40222012 DOI: 10.1016/j.celrep.2025.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Seasonal coronaviruses, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), only cause severe respiratory symptoms in a small fraction of infected individuals. However, the host factors that determine the variable responses to coronavirus infection remain unclear. Here, we use seasonal human coronavirus OC43 (HCoV-OC43) infection as an asymptomatic model that triggers both innate and adaptive immune responses in mice. Interestingly, innate sensing pathways as well as adaptive immune cells are not essential in protection against HCoV-OC43. Instead, alveolar macrophage (AMΦ) deficiency in mice results in COVID-19-like severe pneumonia post HCoV-OC43 infection, with abundant neutrophil infiltration, neutrophil extracellular trap (NET) release, and exaggerated pro-inflammatory cytokine production. Mechanistically, AMΦ efficiently phagocytose HCoV-OC43, effectively blocking virus spread, whereas, in their absence, HCoV-OC43 triggers Toll-like receptor (TLR)-dependent chemokine production to cause pneumonia. These findings reveal the central role of AMΦ in defending against seasonal HCoV-OC43 with clinical implications for human immunopathology associated with coronavirus infection.
Collapse
Affiliation(s)
- Xuan Zhong
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Tian Xie
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Su-Yun Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Zhi-Sheng Xu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Xin-Xin Chi
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiao-Shuai Lan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bo-Wen Xie
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qin-Li Sun
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Yuan
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiu-Yan Lan
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zi-Xuan Zhao
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bi-Rui Pan
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Han Feng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Lu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan-Yi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Xiaohu Wang
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China; Westlake University School of Medicine, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
5
|
Li J, Qin Z, He X, Jiang L, Liu X, Xue Z, Li X, Xu Y, Li P, Gu J. Alveolar macrophages polarization switch via α 2-adrenoceptor activation ameliorates pulmonary inflammation following kidney ischemia reperfusion. Inflamm Res 2025; 74:62. [PMID: 40244462 DOI: 10.1007/s00011-025-02029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The present study aimed to explore the anti-inflammatory mechanism of dexmedetomidine (Dex), an α2-adrenoceptor (α2-AR) agonist, in renal ischemia-reperfusion (RIR)-induced acute lung injury (ALI). METHODS RIR was induced in C57BL/6J mice by bilateral renal pedicles occlusion for 60 min followed by 24 h of reperfusion. Mice were pretreated with Dex alone or in combination with atipamezole (Atip), an α2-AR antagonist. Pulmonary histopathological assessment, arterial blood gas analysis, cell count and multiple cytokine examination in bronchoalveolar lavage fluid (BALF), evaluation of the global inflammation status in lung tissue, and investigation of alveolar macrophage phenotypes were carried out. In vitro, the polarization of mouse alveolar macrophages (MH-S) treated with serum from normal or RIR mice was indirectly detected by quantitative polymerase chain reaction (qPCR). RESULTS The findings demonstrated that, in comparison to RIR animals, dexmedetomidine mitigated lung injury and remarkably promoted macrophage polarization towards an anti-inflammatory M2 phenotype in the pulmonary tissue. Concurrently, a reduction in inflammatory cell infiltration and levels of pro-inflammatory cytokines was observed. In vitro studies verified that dexmedetomidine directed MH-S towards the M2 phenotype after stimulation with RIR serum. However, these effects were mostly reversed following administration of atipamezole. CONCLUSION Dexmedetomidine alleviates renal ischemia-reperfusion-induced ALI by activating α2-adrenoceptor, thereby inducing macrophage polarization towards an anti-inflammatory phenotype and reducing pulmonary global inflammation.
Collapse
Affiliation(s)
- Jieyu Li
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
- Department of Pharmacognosy and Traditional Chinese Medicine, College of Pharmacy and Laboratory Medicine, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Zhigang Qin
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
- Department of Anesthesiology, The 958th Hospital, Army Medical University, 29 Jianxindong Road, Chongqing, China
| | - Xinhai He
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Ling Jiang
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Xiangfeng Liu
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Zhengwei Xue
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Xiao Li
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China
| | - Yueming Xu
- Department of Anesthesiology, The 958th Hospital, Army Medical University, 29 Jianxindong Road, Chongqing, China.
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Medicine, College of Pharmacy and Laboratory Medicine, Army Medical University, 30 Gaotanyan Road, Chongqing, China.
| | - Jianteng Gu
- Department of Anesthesiology, Southwest Hospital, Army Medical University, 30 Gaotanyan Road, Chongqing, China.
| |
Collapse
|
6
|
Xu R, Hong HA, Khandaker S, Baltazar M, Allehyani N, Beentjes D, Prince T, Ho YL, Nguyen LH, Hynes D, Love W, Cutting SM, Kadioglu A. Nasal delivery of killed Bacillus subtilis spores protects against influenza, RSV and SARS-CoV-2. Front Immunol 2025; 16:1501907. [PMID: 40242757 PMCID: PMC12000887 DOI: 10.3389/fimmu.2025.1501907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Spores of the bacterium Bacillus subtilis (B. subtilis) have been shown to carry a number of properties potentially beneficial for vaccination. Firstly, as vehicles enabling mucosal delivery of heterologous antigens and secondly, as stimulators of innate immunity. Here, we have examined the specificity of protection conferred by the spore-induced innate response, focusing on influenza H1N1, respiratory syncytial virus (RSV), and coronavirus-2 (SARS-CoV-2) infections. Methods In vivo viral challenge murine models were used to assess the prophylactic anti-viral effects of B. subtilis spores delivered by intranasal instilling, using an optimised three-dose regimen. Multiple nasal boosting doses following intramuscular priming with SARS-CoV-2 spike protein was also tested for the capability of spores on enhancing the efficacy of parenteral vaccination. To determine the impact of spores on immune cell trafficking to lungs, we used intravascular staining to characterise cellular participants in spore-dosed pulmonary compartments (airway and lung parenchyma) before and after viral challenge. Results We found that mice pre-treated with spores developed resistance to all three pathogens and, in each case, exhibited a significant improvement in both survival rate and disease severity. Intranasal spore dosing expanded alveolar macrophages and induced recruitment of leukocyte populations, providing a cellular mechanism for the protection. Most importantly, virus-induced inflammatory leukocyte infiltration was attenuated in spore-treated lungs, which may alleviate the associated collateral tissue damage that leads to the development of severe conditions. Remarkably, spores were able to promote the induction of tissue-resident memory T cells, and, when administered following an intramuscular prime with SARS-CoV-2 spike protein, increased the levels of anti-spike IgA and IgG in the lung and serum. Conclusions Taken together, our results show that Bacillus spores are able to regulate both innate and adaptive immunity, providing heterologous protection against a variety of important respiratory viruses of high global disease burden.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Huynh A. Hong
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Noor Allehyani
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Riyadh, Saudi Arabia
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Tessa Prince
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, United Kingdom
| | - Yen-Linh Ho
- Huro Biotech Joint Stock Company, Ho Chi Minh, Vietnam
| | | | - Daniel Hynes
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - William Love
- Destiny Pharma Plc., Sussex Innovation Centre, Brighton, United Kingdom
| | - Simon M. Cutting
- SporeGen Ltd., London Bioscience Innovation Centre, London, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Mills KAM, Westermann F, Espinosa V, Rosiek E, Desai JV, Aufiero MA, Guo Y, Liu FL, Mitchell KA, Tuzlak S, De Feo D, Lionakis MS, Rivera A, Becher B, Hohl TM. GM-CSF-mediated epithelial-immune cell cross-talk orchestrates pulmonary immunity to Aspergillus fumigatus. Sci Immunol 2025; 10:eadr0547. [PMID: 40117345 DOI: 10.1126/sciimmunol.adr0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Aspergillus fumigatus causes life-threatening mold pneumonia in immunocompromised patients, particularly in those with quantitative or qualitative defects in neutrophils. Whereas innate immune cell cross-talk licenses neutrophil antifungal activity in the lung, the role of epithelial cells in this process is unknown. Here, we find that surfactant protein C (SPC)-expressing lung epithelial cells integrate infection-induced interleukin-1 and type III interferon signaling to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) preferentially at local sites of fungal infection and neutrophil influx. Using in vivo models that distinguish the role of GM-CSF during acute infection from its homeostatic function in alveolar macrophage survival and surfactant catabolism, we demonstrate that epithelial-derived GM-CSF increases the accumulation and fungicidal activity of GM-CSF-responsive neutrophils, which is essential for host survival. Our findings establish SPC+ epithelial cells as a central player in regulating the quality and strength of neutrophil-dependent immunity against inhaled mold pathogens.
Collapse
Affiliation(s)
- Kathleen A M Mills
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | | | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-State University of New Jersey, Newark, NJ, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariano A Aufiero
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahui Guo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fitty L Liu
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Kennedy A Mitchell
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-State University of New Jersey, Newark, NJ, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tobias M Hohl
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
8
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2025; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol 2025; 16:1535796. [PMID: 40092977 PMCID: PMC11906440 DOI: 10.3389/fimmu.2025.1535796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunometabolism has emerged as a key area of focus in immunology and has the potential to lead to new treatments for immune-related diseases. It is well-established that glycolytic metabolism is essential for adaptation to hypoxia and for macrophage inflammatory function. Macrophages have been shown to upregulate their glycolytic metabolism in response to pathogens and pathogen-associated molecular patterns such as LPS. As a direct link to the external environment, the lungs' distinctive nutrient composition and multiple macrophage subtypes provide a unique opportunity to study macrophage metabolism. This review aims to highlight how the steady-state airway and severely inflamed airway offer divergent environments for macrophage glycolytic metabolism. We describe the differences in glycolytic metabolism between tissue-resident alveolar macrophages, and other lung macrophages at steady-state and during inflammation/injury. We also provide an overview of experimental guidelines on how to assess metabolism at the cellular level using Seahorse-based bioenergetic analysis including a review of pharmacologic agents used to inhibit or activate glycolysis.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University
of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Shirazi R, Morrison J. The Emerging Role of Pleural Macrophages in Influenza Defense. DNA Cell Biol 2025; 44:127-131. [PMID: 39868992 DOI: 10.1089/dna.2024.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The pleural cavity is gaining recognition as an important player in lung infections. Our recent research revealed that pleural macrophages (PMs) migrate from the pleural cavity into the lung during influenza virus infection, contributing to improved disease outcomes. This summary highlights key findings on the role of PMs in influencing viral lung infection outcomes and explores the potential directions for advancing this emerging field of study.
Collapse
Affiliation(s)
- Roksana Shirazi
- Department of Microbiology, University of California Riverside, Riverside, California, USA
| | - Juliet Morrison
- Department of Microbiology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
11
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
12
|
Jiang W, Chen Y, Yu CY, Zou B, Lu Y, Yang Q, Tang Z, Mao W, Li J, Han H, Shao L, Zeng J, Chu Y, Tang J, Lu M. Alveolar epithelial cells shape lipopolysaccharide-induced inflammatory responses and reprogramming of alveolar macrophages. Eur J Immunol 2025; 55:e2350378. [PMID: 39498697 DOI: 10.1002/eji.202350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Alveolar macrophages (AMs) are sentinels in the airways, where they sense and respond to invading microbes and other stimuli. Unlike macrophages in other locations, AMs can remain responsive to Gram-negative lipopolysaccharides (LPS) after they have responded to LPS in vivo (they do not develop "endotoxin tolerance"), suggesting that the alveolar microenvironment may influence their responses. Although alveolar epithelial cells (AECs) normally limit AMs' innate responses, preventing inflammation induced by harmless antigens in the lung, how AECs influence the innate responses of AMs to infectious agents has been uncertain. Here we report that (1) after exposure to aspirated (intranasal instillation) LPS, AMs increase their responses to TLR agonists and elevate their phagocytic and bactericidal activities in mice; (2) Aspirated LPS pre-exposure increases host resistance to pulmonary infection caused by Gram-negative bacteria and the protection effect lasts for at least 35 days; (3) LPS stimulation of AECs both increases AMs' innate immune responses and prevents AMs from developing tolerance in vitro; (4) Upon LPS stimulation, AMs secreted TNF-α induces AECs to release GM-CSF, which potentiates AMs' response. These experiments have revealed a previously unappreciated role that AECs may play in boosting the innate responses of AMs and promoting resistance to pulmonary infections.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yeying Chen
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Cheng-Yun Yu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yimeng Lu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihui Tang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Han Han
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
13
|
Panahipoor Javaherdehi A, Ghanbari S, Mahdavi P, Zafarani A, Razizadeh MH. The role of alveolar macrophages in viral respiratory infections and their therapeutic implications. Biochem Biophys Rep 2024; 40:101826. [PMID: 39324036 PMCID: PMC11422589 DOI: 10.1016/j.bbrep.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Alveolar macrophages are pivotal components of the lung's innate immune defense against respiratory virus infections. Their multifaceted role spans from viral clearance to modulation of immune responses, making them essential players in shaping disease outcomes. In this comprehensive review collection, we look into the intricate interplay between Alveolar macrophages and various respiratory viruses, shedding light on their dynamic contributions to immune resilience. From influenza to respiratory syncytial virus, Alveolar macrophages emerge as sentinels of the airways, actively participating in viral detection and initiating rapid antiviral responses. Their ability to recognize viral pathogens triggers a cascade of events, including cytokine and chemokine production that guides the recruitment and activation of immune effectors. Furthermore, Alveolar macrophages impact the fate of adaptive immune responses by modulating the activation of T lymphocytes and the secretion of key cytokines. These reviews encompass a range of insights, including the regulation of inflammasome activation, the influence of Alveolar macrophages on cytokine dysregulation, and their role in preventing secondary bacterial pneumonia post-infection. Collectively, they highlight the significance of Alveolar macrophages in preserving pulmonary integrity and immune homeostasis during viral challenges.
Collapse
Affiliation(s)
| | | | - Pooya Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Zafarani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
15
|
Amatya S, Lanza M, Umstead TM, Chroneos ZC. Loss of Surfactant Protein A Alters Perinatal Lung Morphology and Susceptibility to Hyperoxia-Induced Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:1309. [PMID: 39594451 PMCID: PMC11591242 DOI: 10.3390/antiox13111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a condition of poor alveolar formation that causes chronic breathing impairment in infants born prematurely. Preterm lungs lack surfactant and are vulnerable to oxidative injuries driving the development of BPD. Our recent studies reported that surfactant protein A (SP-A) genetic variants influence susceptibility to neonatal lung disease. SP-A modulates activation of alveolar macrophages and parturition onset in late gestation. We asked whether a lack of SP-A alters alveolarization in a mouse model of hyperoxia-induced BPD. SP-A-deficient and control newborn mice were exposed to either clinically relevant 60% O2 hyperoxia or normoxia for 5-7 days. Alveolar formation was then assessed by mean linear intercept (MLI) and radial alveolar count (RAC) measurements in lung tissue sections. We report that the combination of SP-A deficiency and hyperoxia reduces alveolar growth compared to WT mice. The morphometric analysis of normoxic SP-A-deficient lungs showed lower RAC compared to controls, indicating reduced alveolar number. In the presence of hyperoxia, MLI was higher in SP-A-deficient lungs compared to controls. Differences were statistically significant for female pups. Spatial proteomic profiling of lung tissue sections showed that hyperoxia caused a 4-fold increase in the DNA damage marker γH2Ax in macrophages of SP-A-deficient lungs compared to normoxia. Our short report suggests an important role for SP-A in perinatal lung development and the protection of lung macrophages from oxidant injury. These studies warrant future investigation to discern the temporal interaction of SP-A, gender, oxidant injury, and lung macrophages in perinatal alveolar formation and development of BPD.
Collapse
Affiliation(s)
- Shaili Amatya
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
| | - Matthew Lanza
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (T.M.U.); (Z.C.C.)
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
16
|
Jung H, Kim DH, Díaz RE, White JM, Rucknagel S, Mosby L, Wang Y, Reddy S, Winkler ES, Hassan AO, Ying B, Diamond MS, Locksley RM, Fraser JS, Van Dyken SJ. An ILC2-chitinase circuit restores lung homeostasis after epithelial injury. Sci Immunol 2024; 9:eadl2986. [PMID: 39423283 PMCID: PMC11854321 DOI: 10.1126/sciimmunol.adl2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/15/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Environmental exposures increase the risk for severe lung disease, but specific drivers of persistent epithelial injury and immune dysfunction remain unclear. Here, we identify a feedback circuit triggered by chitin, a common component of airborne particles, that affects lung health after epithelial injury. In mice, epithelial damage disrupts lung chitinase activity, leading to environmental chitin accumulation, impaired epithelial renewal, and group 2 innate lymphoid cell (ILC2) activation. ILC2s, in turn, restore homeostasis by inducing acidic mammalian chitinase (AMCase) in regenerating epithelial cells and promoting chitin degradation, epithelial differentiation, and inflammatory resolution. Mice lacking AMCase or ILC2s fail to clear chitin and exhibit increased mortality and impaired epithelial regeneration after injury. These effects are ameliorated by chitinase replacement therapy, demonstrating that chitin degradation is crucial for recovery after various forms of lung perturbation. Thus, the ILC2-chitinase response circuit may serve as a target for alleviating persistent postinjury lung epithelial and immune dysfunction.
Collapse
Affiliation(s)
- Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | - J. Michael White
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine; St. Louis, MO, USA
| | - Summer Rucknagel
- Department of Pathology & Immunology, Washington University Gnotobiotic Core Facility, Washington University School of Medicine; St. Louis, MO, USA
| | - Lauryn Mosby
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sanjana Reddy
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Emma S. Winkler
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
| | - Richard M. Locksley
- Department of Microbiology & Immunology, University of California, San Francisco; San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco; San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco; San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA, USA
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
17
|
Wang Z, Wang Y, Yan Q, Cai C, Feng Y, Huang Q, Li T, Yuan S, Huang J, Luo ZH, Zhou J. FPR1 signaling aberrantly regulates S100A8/A9 production by CD14 +FCN1 hi macrophages and aggravates pulmonary pathology in severe COVID-19. Commun Biol 2024; 7:1321. [PMID: 39402337 PMCID: PMC11473795 DOI: 10.1038/s42003-024-07025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Excessive alarmins S100A8/A9 escalate the inflammation and even exacerbate immune-driven thrombosis and multi-organ damage. However, the regulatory mechanisms of S100A8/A9 expression in infectious diseases remain unclear. In this study, high-dimensional transcriptomic data analyses revealed a high proportion of CD14+FCN1hi macrophages within the pulmonary niche post-severe SARS-CoV-2 infection. By constructing the S100-coexpression gene list and supervised module scoring, we found that CD14+FCN1hi macrophages presented the highest scores of alarmin S100, and possibly served as the trigger and amplifier of inflammation in severe COVID-19. These CD14+FCN1hi cells lacked the positive regulatory activity of transcription factor PPARγ, and lost their differentiation ability towards mature macrophages. Ex vivo experiments further validated that the epithelial cells with high ORF-3a expression promoted the expression and secretion of S100A8/A9 through ANXA1/SAA1-FPR1 signaling. S100A8/A9 heterodimers, as well as the co-localization of S100A8/A9 with microtubules, were both diminished by the FPR1 inhibitor. Phospho-kinase protein array indicated that STAT3 promoted transcription, and PLC-γ and ERK1/2 pathways were involved in the hetero-dimerization and unconventional secretion of S100A8/A9. Our study highlights the pivotal role of FPR1 signaling in the excessive production of S100A8/A9 and provides a promising target for the prevention and control of severe COVID-19 and post-acute COVID-19 sequelae.
Collapse
Affiliation(s)
- Zhongyi Wang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qing Yan
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Changlin Cai
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Feng
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qinghan Huang
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Ting Li
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shenzhen Yuan
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Luo
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Jingjiao Zhou
- Department of Biology and Genetics, The College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Creusat F, Jouan Y, Gonzalez L, Barsac E, Ilango G, Lemoine R, Soulard D, Hankard A, Boisseau C, Guillon A, Lin Q, de Amat Herbozo C, Sencio V, Winter N, Sizaret D, Trottein F, Si-Tahar M, Briard B, Mallevaey T, Faveeuw C, Baranek T, Paget C. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. SCIENCE ADVANCES 2024; 10:eadn3257. [PMID: 39392875 PMCID: PMC11468905 DOI: 10.1126/sciadv.adn3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Neutrophil subsets endowed with regulatory/suppressive properties are widely regarded as deleterious immune cells that can jeopardize antitumoral response and/or antimicrobial resistance. Here, we describe a sizeable fraction of neutrophils characterized by the expression of programmed death-ligand 1 (PD-L1) in biological fluids of humans and mice with severe viral respiratory infections (VRI). Biological and transcriptomic approaches indicated that VRI-driven PD-L1+ neutrophils are endowed with potent regulatory functions and reduced classical antimicrobial properties, as compared to their PD-L1- counterpart. VRI-induced regulatory PD-L1+ neutrophils were generated remotely in the bone marrow in an IFN-γ-dependent manner and were quickly mobilized into the inflamed lungs where they fulfilled their maturation. Neutrophil depletion and PD-L1 blockade during experimental VRI resulted in higher mortality, increased local inflammation, and reduced expression of resolving factors. These findings suggest that PD-L1+ neutrophils are important players in disease tolerance by mitigating local inflammation during severe VRI and that they may constitute relevant targets for future immune interventions.
Collapse
Affiliation(s)
- Florent Creusat
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
- Service de Chirurgie Cardiaque et de Réanimation Chirurgicale Cardio-Vasculaire, CHRU de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emilie Barsac
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Guy Ilango
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Roxane Lemoine
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Cytometry and Single-cell Immunobiology Core Facility, University of Tours, Tours, France
| | - Daphnée Soulard
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Antoine Hankard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Chloé Boisseau
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Winter
- INRAe (Institut National de la Recherche pour l'Agriculture, l'Alimentation et l’Environnement), Université de Tours, ISP, 37380 Nouzilly, France
| | - Damien Sizaret
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service d’Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christelle Faveeuw
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Thomas Baranek
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
19
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
20
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
21
|
Chronopoulos J, Pernet E, Tran KA, McGovern TK, Morozan A, Wang S, Tsai O, Makita K, Divangahi M, Martin JG. Pregnancy enhances antiviral immunity independent of type I IFN but dependent on IL-17-producing γδ + T cells in the nasal mucosa. SCIENCE ADVANCES 2024; 10:eado7087. [PMID: 39331716 PMCID: PMC11430450 DOI: 10.1126/sciadv.ado7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Pregnancy is associated with profound changes in immunity. However, pregnancy-related respiratory immune adaptations in response to influenza infection and their impact on disease severity remain unclear. Here, we describe, in a preclinical model of mid-gestation pregnancy, a mechanism of enhanced host defense against influenza A virus (IAV) localized to the nasal cavity that limits viral replication and reduces the magnitude of intrapulmonary immune responses. Consequently, the pregnant mice show reduced pulmonary pathology and preserved airway function after IAV infection. The early restriction of viral replication is independent of type I interferon (IFN) but dependent on increased antimicrobial peptides (AMPs) driven by interleukin-17+ (IL-17+) γδ+ T cells within the nasal passages. This pathway of host defense against IAV infection in the upper airways during pregnancy restricts early viral infection and prevents virus dissemination into the lung supporting maternal fitness.
Collapse
Affiliation(s)
- Julia Chronopoulos
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Erwan Pernet
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medical Biology, Université du Québec à Trois-Rivières, Quebec, Canada
| | - Kim A. Tran
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Toby K. McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Arina Morozan
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sadie Wang
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Oscar Tsai
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Kosuke Makita
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - James G. Martin
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Ren X, Song H, Wang Y, Wang Y, Zhang Q, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. TIPE1 limits virus replication by disrupting PKM2/ HIF-1α/ glycolysis feedback loop. Free Radic Biol Med 2024; 221:52-63. [PMID: 38754745 DOI: 10.1016/j.freeradbiomed.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Virus infection is a major threat to human health and remains a significant cause of death to date. Macrophages are important innate immune cells that exhibit indispensable roles in controlling virus replication. It was recently reported that metabolic adaption determines the functional state of macrophages. Thus, to further unravel the crucial factors involving in metabolic adaption of macrophages might provide the potential candidates for optimizing their anti-viral capabilities. METHODS RT-PCR, Western blotting, virus plaque assay and HE were used to evaluate the viral load in virus-infected Tipe1M-KO and Tipe1f/f mice or cultured macrophages. RNA sequencing were performed with Tipe1M-KOor Tipe1f/f BMDMs upon virus infection. Extracellular acidification rate (ECAR) was applied for analyzing glycolysis rate in virus-infected BMDMs. Co-immunoprecipitation (Co-IP) assay and LC-MS/MS were used to determine the potential interacting proteins of TIPE1. RESULTS TIPE1 level was significantly reduced in BMDMs infected with either RNA viruses or DNA virus. Deficiency of Tipe1 in macrophages increased viral load and aggravated tissue damage. Mechanistically, TIPE1 suppressed the glycolytic capacity of macrophages through interacting with PKM2 and promoting its ubiquitination degradation, which in turn decreased HIF1α transcription and viral replication in macrophages. CONCLUSIONS TIPE1 functions as a novel regulator for metabolic reprogramming and virus infection in macrophages.
Collapse
Affiliation(s)
- Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Qiang Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
23
|
Ruscitti C, Abinet J, Maréchal P, Meunier M, de meeûs C, Vanneste D, Janssen P, Dourcy M, Thiry M, Bureau F, Schneider C, Machiels B, Hidalgo A, Ginhoux F, Dewals B, Guiot J, Schleich F, Garigliany MM, Bellahcène A, Radermecker C, Marichal T. Recruited atypical Ly6G + macrophages license alveolar regeneration after lung injury. Sci Immunol 2024; 9:eado1227. [PMID: 39093958 PMCID: PMC7616420 DOI: 10.1126/sciimmunol.ado1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024]
Abstract
The lung is constantly exposed to airborne pathogens and particles that can cause alveolar damage. Hence, appropriate repair responses are essential for gas exchange and life. Here, we deciphered the spatiotemporal trajectory and function of an atypical population of macrophages after lung injury. Post-influenza A virus (IAV) infection, short-lived monocyte-derived Ly6G-expressing macrophages (Ly6G+ Macs) were recruited to the alveoli of lung perilesional areas. Ly6G+ Macs engulfed immune cells, exhibited a high metabolic potential, and clustered with alveolar type 2 epithelial cells (AT2s) in zones of active epithelial regeneration. Ly6G+ Macs were partially dependent on granulocyte-macrophage colony-stimulating factor and interleukin-4 receptor signaling and were essential for AT2-dependent alveolar regeneration. Similar macrophages were recruited in other models of injury and in the airspaces of lungs from patients with suspected pneumonia. This study identifies perilesional alveolar Ly6G+ Macs as a spatially restricted, short-lived macrophage subset promoting epithelial regeneration postinjury, thus representing an attractive therapeutic target for treating lung damage.
Collapse
Affiliation(s)
- C. Ruscitti
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - J. Abinet
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - P. Maréchal
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - M. Meunier
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - C. de meeûs
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Department of Pathology, FARAH Institute, University of Liège; Liège, Belgium
| | - D. Vanneste
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - P. Janssen
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - M. Dourcy
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Laboratory of Immunology-Vaccinology, FARAH Institute, University of Liège; Liège, Belgium
| | - M. Thiry
- Laboratory of Cellular and Tissular Biology, GIGA Institute, University of Liège; Liège, Belgium
| | - F. Bureau
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège; Liège, Belgium
| | - C. Schneider
- Institute of Physiology, University of Zurich; Zurich, Switzerland
| | - B. Machiels
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Laboratory of Immunology-Vaccinology, FARAH Institute, University of Liège; Liège, Belgium
| | - A. Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid, Spain
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - F. Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine; Shanghai, China
- Inserm U1015, Gustave Roussy, Bâtiment de Médecine Moléculaire ; Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR); Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre; Singapore, Singapore
| | - B.G. Dewals
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Laboratory of Immunology-Vaccinology, FARAH Institute, University of Liège; Liège, Belgium
| | - J. Guiot
- Laboratory of Pneumology, GIGA Institute, University of Liège; Liège, Belgium
- Department of Respiratory Medicine, CHU University Hospital; Liège, Belgium
| | - F. Schleich
- Laboratory of Pneumology, GIGA Institute, University of Liège; Liège, Belgium
- Department of Respiratory Medicine, CHU University Hospital; Liège, Belgium
| | - M-M. Garigliany
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Department of Pathology, FARAH Institute, University of Liège; Liège, Belgium
| | - A. Bellahcène
- Metastasis Research Laboratory, GIGA Institute, University of Liège; Liège, Belgium
| | - C. Radermecker
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
| | - T. Marichal
- Laboratory of Immunophysiology, GIGA Institute, University of Liège; Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège; Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute; Wavre, Belgium
| |
Collapse
|
24
|
Ysasi AB, Engler AE, Bawa PS, Wang F, Conrad RD, Yeung AK, Rock JR, Beane-Ebel J, Mazzilli SA, Franklin RA, Mizgerd JP, Murphy GJ. A specialized population of monocyte-derived tracheal macrophages promote airway epithelial regeneration through a CCR2-dependent mechanism. iScience 2024; 27:110169. [PMID: 38993668 PMCID: PMC11238131 DOI: 10.1016/j.isci.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Macrophages are critical for maintenance and repair of mucosal tissues. While functionally distinct subtypes of macrophage are known to have important roles in injury response and repair in the lungs, little is known about macrophages in the proximal conducting airways. Single-cell RNA sequencing and flow cytometry demonstrated murine tracheal macrophages are largely monocyte-derived and are phenotypically distinct from lung macrophages at homeostasis. Following sterile airway injury, monocyte-derived macrophages are recruited to the trachea and activate a pro-regenerative phenotype associated with wound healing. Animals lacking the chemokine receptor CCR2 have reduced numbers of circulating monocytes and tracheal macrophages, deficient pro-regenerative macrophage activation and defective epithelial repair. Together, these studies indicate that recruitment and activation of monocyte-derived tracheal macrophages is CCR2-dependent and is required for normal airway epithelial regeneration.
Collapse
Affiliation(s)
- Alexandra B. Ysasi
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anna E. Engler
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Singh Bawa
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Regan D. Conrad
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anthony K. Yeung
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jason R. Rock
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jennifer Beane-Ebel
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Ruth A. Franklin
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA 02115, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph P. Mizgerd
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - George J. Murphy
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- Section of Hematology and Medical Oncology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Zhao C, Yang Z, Li Y, Wen Z. Macrophages in tissue repair and regeneration: insights from zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:12. [PMID: 38861103 PMCID: PMC11166613 DOI: 10.1186/s13619-024-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Yang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Ruscitti C, Radermecker C, Marichal T. Journey of monocytes and macrophages upon influenza A virus infection. Curr Opin Virol 2024; 66:101409. [PMID: 38564993 DOI: 10.1016/j.coviro.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Influenza A virus (IAV) infections pose a global health challenge that necessitates a comprehensive understanding of the host immune response to devise effective therapeutic interventions. As monocytes and macrophages play crucial roles in host defence, inflammation, and repair, this review explores the intricate journey of these cells during and after IAV infection. First, we highlight the dynamics and functions of lung-resident macrophage populations post-IAV. Second, we review the current knowledge of recruited monocytes and monocyte-derived cells, emphasising their roles in viral clearance, inflammation, immunomodulation, and tissue repair. Third, we shed light on the consequences of IAV-induced macrophage alterations on long-term lung immunity. We conclude by underscoring current knowledge gaps and exciting prospects for future research in unravelling the complexities of macrophage responses to respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Ruscitti
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium
| | - Coraline Radermecker
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA Institute, Liège University, Avenue de l'Hôpital 11, 4000 Liège, Belgium; Faculty of Veterinary Medicine, Liège University, Avenue de Cureghem 5D, 4000 Liège, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, 1300 Wavre, Belgium.
| |
Collapse
|
28
|
Pernet E, Poschmann J, Divangahi M. A complex immune communication between eicosanoids and pulmonary macrophages. Curr Opin Virol 2024; 66:101399. [PMID: 38547562 DOI: 10.1016/j.coviro.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/07/2024]
Abstract
Respiratory viral infections represent a constant threat for human health and urge for a better understanding of the pulmonary immune response to prevent disease severity. Macrophages are at the center of pulmonary immunity, where they play a pivotal role in orchestrating beneficial and/or pathological outcomes during infection. Eicosanoids, the host bioactive lipid mediators, have re-emerged as important regulators of pulmonary immunity during respiratory viral infections. In this review, we summarize the current knowledge linking eicosanoids' and pulmonary macrophages' homeostatic and antimicrobial functions and discuss eicosanoids as emerging targets for immunotherapy in viral infection.
Collapse
Affiliation(s)
- Erwan Pernet
- Department of Medical Biology, Université du Québec à Trois-Rivières, Québec, Canada.
| | - Jeremie Poschmann
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
30
|
Memet O, Cao C, Hu H, Dun Y, Bao X, Liu F, Zhang L, Zhou J, Shen J. Galectin-3 inhibition ameliorates alveolar epithelial cell pyroptosis in phosgene-induced acute lung injury. Int Immunopharmacol 2024; 132:111965. [PMID: 38583242 DOI: 10.1016/j.intimp.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Phosgene is a type of poisonous gas that can cause acute lung injury (ALI) upon accidental exposure. Casualties still occur due to phosgene-induced acute lung injury (P-ALI) from accidents resulting from improper operations. The pathological mechanisms of P-ALI are still understudied. Thus, we performed scRNA-seq on cells isolated from all subpopulations of the BALF in P-ALI and found that Gal3 expression was significantly higher in the gas group than in the control group. Further analysis revealed a ligand-receptor correspondence between alveolar macrophages (AMs) and alveolar epithelial cells (AEC), with Gal3 playing a key role in this interaction. To confirm and elaborate on this discovery, we selected four time points during the previous week: sham (day 0), day 1, day 3, and day 7 in the P-ALI mouse model and found that Gal3 expression was significantly elevated in P-ALI, most abundantly expressed in AM cells. This was further confirmed with the use of a Gal3 inhibitor. The inhibition of Gal3 and elimination of AMs in mice both attenuated epithelial cell pyroptosis, as confirmed in in vitro experiments, and revealed the Gal3/caspase-8/GSDMD signaling pathway. These findings suggest that Galectin-3 inhibition can ameliorate AEC pyroptosis by inhibiting the Gal3/caspase-8/GSDMD signaling pathway, thus reducing alveolar damage in mice with P-ALI. This finding provides novel insights for improving treatment efficacy for P-ALI.
Collapse
Affiliation(s)
- Obulkasim Memet
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China.
| | - Chao Cao
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Hanbing Hu
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yu Dun
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Xuanrong Bao
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Fuli Liu
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Lin Zhang
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai 200032, China; Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Shen
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China; Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China; Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China.
| |
Collapse
|
31
|
Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, Yang L, Zhang J, Shi L. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnology 2024; 22:190. [PMID: 38637808 PMCID: PMC11025283 DOI: 10.1186/s12951-024-02473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Collapse
Affiliation(s)
- Lusha Ye
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Gao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wucan Liao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yazhou Wang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changjiang Chen
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Yang
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
32
|
Yang Q, Barbachano-Guerrero A, Fairchild LM, Rowland TJ, Dowell RD, Allen MA, Warren CJ, Sawyer SL. Macrophages derived from human induced pluripotent stem cells (iPSCs) serve as a high-fidelity cellular model for investigating HIV-1, dengue, and influenza viruses. J Virol 2024; 98:e0156323. [PMID: 38323811 PMCID: PMC10949493 DOI: 10.1128/jvi.01563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Macrophages are important target cells for diverse viruses and thus represent a valuable system for studying virus biology. Isolation of primary human macrophages is done by culture of dissociated tissues or from differentiated blood monocytes, but these methods are both time consuming and result in low numbers of recovered macrophages. Here, we explore whether macrophages derived from human induced pluripotent stem cells (iPSCs)-which proliferate indefinitely and potentially provide unlimited starting material-could serve as a faithful model system for studying virus biology. Human iPSC-derived monocytes were differentiated into macrophages and then infected with HIV-1, dengue virus, or influenza virus as model human viruses. We show that iPSC-derived macrophages support the replication of these viruses with kinetics and phenotypes similar to human blood monocyte-derived macrophages. These iPSC-derived macrophages were virtually indistinguishable from human blood monocyte-derived macrophages based on surface marker expression (flow cytometry), transcriptomics (RNA sequencing), and chromatin accessibility profiling. iPSC lines were additionally generated from non-human primate (chimpanzee) fibroblasts. When challenged with dengue virus, human and chimpanzee iPSC-derived macrophages show differential susceptibility to infection, thus providing a valuable resource for studying the species-tropism of viruses. We also show that blood- and iPSC-derived macrophages both restrict influenza virus at a late stage of the virus lifecycle. Collectively, our results substantiate iPSC-derived macrophages as an alternative to blood monocyte-derived macrophages for the study of virus biology. IMPORTANCE Macrophages have complex relationships with viruses: while macrophages aid in the removal of pathogenic viruses from the body, macrophages are also manipulated by some viruses to serve as vessels for viral replication, dissemination, and long-term persistence. Here, we show that iPSC-derived macrophages are an excellent model that can be exploited in virology.
Collapse
Affiliation(s)
- Qing Yang
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Laurence M. Fairchild
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robin D. Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mary A. Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome Boulder Branch, BioFrontiers Institute, Boulder, Colorado, USA
| | - Cody J. Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
33
|
Zhang WX, Neupane AS, David BA, Ginhoux F, Vargas E Silva Castanheira F, Kubes P. A Functional Assessment of Fetal Liver and Monocyte-Derived Macrophages in the Lung Alveolar Environment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1012-1021. [PMID: 38251913 DOI: 10.4049/jimmunol.2300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by β-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.
Collapse
Affiliation(s)
- Wen Xuan Zhang
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arpan Sharma Neupane
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bruna Araujo David
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernanda Vargas E Silva Castanheira
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024; 32:335-348.e8. [PMID: 38295788 PMCID: PMC10942762 DOI: 10.1016/j.chom.2024.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Science, Athens, GA 30602, USA
| | - Michal Kuczma
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
35
|
Chappin K, Besteman SB, Hennus MP, Wildenbeest JG, Mokry M, Bont LJ, van der Vlist M, Calis JJA. Airway and Blood Monocyte Transcriptomic Profiling Reveals an Antiviral Phenotype in Infants With Severe Respiratory Syncytial Virus Infection. J Infect Dis 2024; 229:S100-S111. [PMID: 37941411 DOI: 10.1093/infdis/jiad487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is the primary cause of lower respiratory tract infections in children <5 years of age. Monocytes, especially in the respiratory tract, are suggested to contribute to RSV pathology, but their role is incompletely understood. With transcriptomic profiling of blood and airway monocytes, we describe the role of monocytes in severe RSV infection. METHODS Tracheobronchial aspirates and blood samples were collected from control patients (n = 9) and those infected with RSV (n = 14) who were admitted to the pediatric intensive care unit. Monocytes (CD14+) were sorted and analyzed by RNA sequencing for transcriptomic profiling. RESULTS Peripheral blood and airway monocytes of patients with RSV demonstrated increased expression of antiviral and interferon-responsive genes as compared with controls. Cytokine signaling showed a shared response between blood and airway monocytes while displaying responses that were more pronounced according to the tissue of origin. Airway monocytes upregulated additional genes related to migration and inflammation. CONCLUSIONS We found that the RSV-induced interferon response extends from the airways to the peripheral blood. Moreover, RSV induces a migration-promoting transcriptional program in monocytes. Unraveling the monocytic response and its role in the immune response to RSV infection could help the development of therapeutics to prevent severe disease.
Collapse
Affiliation(s)
- K Chappin
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | | | - M P Hennus
- Department of Paediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Centre Utrecht
| | | | - M Mokry
- Experimental Cardiology, Department of Heart and Lungs, University Medical Centre Utrecht, the Netherlands
| | - L J Bont
- Department of Paediatric Infectious Diseases and Immunology
| | - M van der Vlist
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| | - J J A Calis
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University
| |
Collapse
|
36
|
Tran KA, Pernet E, Sadeghi M, Downey J, Chronopoulos J, Lapshina E, Tsai O, Kaufmann E, Ding J, Divangahi M. BCG immunization induces CX3CR1 hi effector memory T cells to provide cross-protection via IFN-γ-mediated trained immunity. Nat Immunol 2024; 25:418-431. [PMID: 38225437 DOI: 10.1038/s41590-023-01739-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αβ T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.
Collapse
Affiliation(s)
- Kim A Tran
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Medical Biology, Université du Québec à Trois-Rivières, Quebec, Quebec, Canada
| | - Mina Sadeghi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Julia Chronopoulos
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Elizabeth Lapshina
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Oscar Tsai
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Ding
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
37
|
Rodriguez Gonzalez C, Schevel H, Hansen G, Schwerk N, Lachmann N. Pulmonary Alveolar Proteinosis and new therapeutic concepts. KLINISCHE PADIATRIE 2024; 236:73-79. [PMID: 38286410 PMCID: PMC10883756 DOI: 10.1055/a-2233-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Collapse
Affiliation(s)
- Claudio Rodriguez Gonzalez
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Hannah Schevel
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
| | - Nicolaus Schwerk
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine,
Hannover, Germany
| |
Collapse
|
38
|
Wang T, Wang Y, Zhang J, Yao Y. Role of trained innate immunity against mucosal cancer. Curr Opin Virol 2024; 64:101387. [PMID: 38364654 DOI: 10.1016/j.coviro.2024.101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Mucosal tissues are frequent targets of both primary and metastatic cancers. This has highlighted the significance of both innate and adaptive anti-cancer immunity at mucosal sites. Trained innate immunity (TII) is an emerging concept defined as enhanced reactivity of innate leukocytes long after a previous stimulation that induces prolonged epigenetic, transcriptional, and metabolic changes. Trained innate leukocytes can respond to heterologous targets due to their lacking of antigen-specificity in most cases. Emerging experimental and clinical data suggest that certain microbes or their products induce TII in mucosal-associated innate leukocytes which endows heterologous anti-tumor innate immunity, in both prophylactic and therapeutic scenarios. In this mini-review, we summarize updated findings on the significance of TII in mucosal cancers. We also attempt to raise a few key questions critical to our further understanding on the roles of TII in mucosal cancers, and to the potential application of TII as anti-cancer strategy.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanling Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jinjing Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Hangzhou, Zhejiang 310023, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
39
|
Zhao D, Sun Y, Guo J, Tang Y, Wang Z, Wen X, Dong Y, Liu Y. Pathogenic Characteristics of an Infection with Canine Influenza Virus and Streptococcus equi subsp. zooepidemicus Alone or in Combination in Mice. Transbound Emerg Dis 2024; 2024:2237621. [PMID: 40303164 PMCID: PMC12016976 DOI: 10.1155/2024/2237621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 05/02/2025]
Abstract
Both Streptococcus equi subsp. zooepidemicus (SEZ) and canine influenza virus (CIV) are two important pathogens causing infectious respiratory disease in dogs and are frequently codetected in respiratory secretions. However, the clinical significance of viral/bacterial coinfection remains unknown. This study investigated the pathogenic characteristics of infection with CIV and SEZ alone or in combination in mice. Our data indicated that the severity of the disease is related to the challenge order of CIV and SEZ. Coinfection of CIV and SEZ induced higher weight loss in mice than single infection, except for the VB group (viral followed by secondary bacterial infection). Compared with the concurrent or sequential infection groups of CIV and SEZ, mice in the CIV-SEZ preincubation group exhibited more obvious weight loss, higher mortality, and significantly enhanced burden of SEZ and CIV in tissues. Interestingly, viral and bacterial preincubation before coinfection caused typical pulmonary fibrosis in mice. Correspondingly, transforming growth factor (TGF)-β was upregulated, and its canonical small mother against decapentaplegic (Smad) 2/3 signaling was noticeably induced. Further investigation indicated that the activity of the viral neuraminidase (NA) enzyme upon sialic acid was considerably increased due to the direct interaction of CIV with SEZ, which may be related to the activation of the TGF-β signaling pathway. These findings implicate an unexpected contribution of the direct interaction between CIV and SEZ to synergistic pathogenicity.
Collapse
Affiliation(s)
- Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaru Sun
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jingjing Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuping Tang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhibo Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xia Wen
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Casalino-Matsuda SM, Chen F, Gonzalez-Gonzalez FJ, Matsuda H, Nair A, Abdala-Valencia H, Budinger GS, Dong JT, Beitel GJ, Sporn PH. Myeloid Zfhx3 deficiency protects against hypercapnia-induced suppression of host defense against influenza A virus. JCI Insight 2024; 9:e170316. [PMID: 38227369 PMCID: PMC11143927 DOI: 10.1172/jci.insight.170316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024] Open
Abstract
Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3) - a mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila - is expressed in mouse and human macrophages. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury, and mortality in hypercapnic mice infected with influenza A virus. To our knowledge, our results establish Zfhx3 as the first known mammalian mediator of CO2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung disease.
Collapse
Affiliation(s)
- S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francisco J. Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiroaki Matsuda
- Department of Physical Sciences and Engineering, Wilbur Wright College, Chicago, Illinois, USA
| | - Aisha Nair
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Greg J. Beitel
- Department of Molecular Biosciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, USA
| | - Peter H.S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
41
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558814. [PMID: 37790571 PMCID: PMC10542499 DOI: 10.1101/2023.09.21.558814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.
Collapse
|
42
|
Baasch S, Henschel J, Henneke P. Combined Host-Pathogen Fate Mapping to Investigate Lung Macrophages in Viral Infection. Methods Mol Biol 2024; 2713:347-361. [PMID: 37639135 DOI: 10.1007/978-1-0716-3437-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophage identity, as defined by epigenetic, transcriptional, proteomic, and functional programs, is greatly impacted by cues originating from the microenvironment. As a consequence, immunophenotyping based on surface marker expression is established and reliable in homeostatic conditions, whereas environmental challenges, in particular infections, severely hamper the determination of identity states. This has become more evident with recent discoveries that macrophage-inherent plasticity may go beyond limits of lineage-defining immunophenotypes. Therefore, transgenic fate mapping tools, such as the phage-derived loxP-cre-system, are essential for the analysis of macrophage adaptation in the tissue under extreme environmental conditions, for example, upon encounter with pathogens. In this chapter, we describe an advanced application of the loxP-cre-system during infection. Here, the host encodes a cell type-specific cre-recombinase, while the pathogen harbors a STOP-floxed fluorescent reporter gene. As an instructive example for the versatility of the system, we demonstrate that alveolar macrophages are predominantly targeted after respiratory tract infection with mouse cytomegalovirus (MCMV). Combined host-pathogen fate mapping not only enables to distinguish between infected and non-infected (bystander) macrophages but also spurs exploration of phenotypic adaptation and tracing of cellular localization in the context of MCMV infection. Moreover, we provide a gating strategy for resolving the diversity of pulmonary immune cell populations.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Imunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Julia Henschel
- Institute for Imunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Imunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Li H, Terrando N, Gelbard HA. Infectious Diseases. ADVANCES IN NEUROBIOLOGY 2024; 37:423-444. [PMID: 39207706 PMCID: PMC11556852 DOI: 10.1007/978-3-031-55529-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, brain-resident innate immune cells, have been extensively studied in neurodegenerative contexts like Alzheimer's disease. The Coronavirus disease 2019 (COVID-19) pandemic highlighted how peripheral infection and inflammation can be detrimental to the neuroimmune milieu and initiate microgliosis driven by peripheral inflammation. Microglia can remain deleterious to brain health by sustaining inflammation in the central nervous system even after the clearance of the original immunogenic agents. In this chapter, we discuss how pulmonary infection with Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) can lead to neurovascular and neuroimmune inflammation causing the neurological syndrome of post-acute sequelae of COVID-19 (PASC). Further, we incorporate lessons from the Human Immunodeficiency Virus' (HIV's) effects on microglial functioning in the era of combined antiretroviral therapies (cART) that contribute to HIV-1 associated neurocognitive disorders (HAND). Finally, we describe roles for mixed lineage kinase 3 (MLK3) and leucine-rich repeat kinase (LRRK2) as key regulators of multiple inflammatory and apoptotic pathways important to the pathogenesis of PASC and HAND. Inhibition of these pathways provides a therapeutically synergistic method of treating both PASC and HAND.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
44
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. PLoS Pathog 2024; 20:e1011983. [PMID: 38271477 PMCID: PMC10846703 DOI: 10.1371/journal.ppat.1011983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
45
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
46
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
47
|
Martínez-Espinoza I, Bungwon AD, Guerrero-Plata A. Human Metapneumovirus-Induced Host microRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023; 15:2272. [PMID: 38005948 PMCID: PMC10675405 DOI: 10.3390/v15112272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human metapneumovirus (HMPV) is a nonsegmented, single-stranded negative RNA virus and a member of the Pneumoviridae family. During HMPV infection, macrophages play a critical role in defending the respiratory epithelium by secreting large amounts of type I interferon (IFN). MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that play an essential role in regulating gene expression during normal cellular homeostasis and disease by binding to specific mRNAs, thereby regulating at the transcriptional and post-transcriptional levels with a direct impact on the immune response and other cellular processes. However, the role of miRNAs in macrophages and respiratory viral infections remains largely unknown. Here, we characterized the susceptibility of THP-1-derived macrophages to HMPV infection and the effect of hsa-miR-4634 on these cells. Transfection of an miRNA mimic and inhibitor demonstrated that hsa-miR-4634 regulates the IFN response in HMPV-infected macrophages, suggesting that HMPV induces the expression of the miRNA as a subversion mechanism of the antiviral response. This effect was not limited to macrophages, as a similar effect was also observed in epithelial cells. Overall, our results demonstrate that hsa-miR-4634 is an important factor in regulating the IFN response in macrophages and epithelial cells during HMPV infection.
Collapse
Affiliation(s)
| | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (I.M.-E.); (A.D.B.)
| |
Collapse
|
48
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565369. [PMID: 37961221 PMCID: PMC10635079 DOI: 10.1101/2023.11.02.565369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
49
|
Almond M, Farne HA, Jackson MM, Jha A, Katsoulis O, Pitts O, Tunstall T, Regis E, Dunning J, Byrne AJ, Mallia P, Kon OM, Saunders KA, Simpson KD, Snelgrove RJ, Openshaw PJM, Edwards MR, Barclay WS, Heaney LM, Johnston SL, Singanayagam A. Obesity dysregulates the pulmonary antiviral immune response. Nat Commun 2023; 14:6607. [PMID: 37857661 PMCID: PMC10587167 DOI: 10.1038/s41467-023-42432-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals.
Collapse
Affiliation(s)
- Mark Almond
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Millie M Jackson
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Akhilesh Jha
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Orestis Katsoulis
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | - Oliver Pitts
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK
| | | | - Eteri Regis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jake Dunning
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wendy S Barclay
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Aran Singanayagam
- Centre for Bacterial Resistance Biology. Section of Molecular Microbiology. Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
50
|
Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133:e170501. [PMID: 37781922 PMCID: PMC10541196 DOI: 10.1172/jci170501] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Alveolar macrophages (AMs) are the sentinel cells of the alveolar space, maintaining homeostasis, fending off pathogens, and controlling lung inflammation. During acute lung injury, AMs orchestrate the initiation and resolution of inflammation in order to ultimately restore homeostasis. This central role in acute lung inflammation makes AMs attractive targets for therapeutic interventions. Single-cell RNA-Seq and spatial omics approaches, together with methodological advances such as the generation of human macrophages from pluripotent stem cells, have increased understanding of the ontogeny, function, and plasticity of AMs during infectious and sterile lung inflammation, which could move the field closer to clinical application. However, proresolution phenotypes might conflict with proinflammatory and antibacterial responses. Therefore, therapeutic targeting of AMs at vulnerable time points over the course of infectious lung injury might harbor the risk of serious side effects, such as loss of antibacterial host defense capacity. Thus, the identification of key signaling hubs that determine functional fate decisions in AMs is of the utmost importance to harness their therapeutic potential.
Collapse
Affiliation(s)
- Christina Malainou
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Shifaa M. Abdin
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology and
- REBIRTH Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- RESIST (Resolving Infection Susceptibility), Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Ulrich Matt
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine V, Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Giessen, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|