1
|
Fokou PVT, Tali MBT, Mbouna CDJ, Yamthe LRT, Sharifi-Rad J, Calina D, Radha, Kumar M, Tchouankeu JC, Boyom FF. Natural products as transmission-blocking agents against malaria: a comprehensive review of bioactive compounds and their therapeutic potential. Malar J 2025; 24:164. [PMID: 40420292 DOI: 10.1186/s12936-025-05395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 05/03/2025] [Indexed: 05/28/2025] Open
Abstract
Malaria eradication is hindered by the persistence of transmission stages of Plasmodium falciparum that enable parasite transfer from humans to mosquitoes. Current therapeutic strategies, such as artemisinin-based combination therapy (ACT) combined with primaquine, are insufficient due to limited efficacy on mature gametocytes and safety concerns in populations with glucose-6-phosphate dehydrogenase deficiency. This highlights the critical need for innovative, safe, and effective transmission-blocking interventions. This review explores the potential of natural sources, including medicinal plants, marine organisms, and microorganisms-as reservoirs of novel bioactive compounds with anti-malarial properties. A comprehensive literature search identified promising natural products with gametocytocidal and sporontocidal activity, validated through advanced bioassays. The review also evaluates various methodologies, such as colorimetric, microscopy, and flow cytometry assays, for assessing transmission-blocking efficacy. The findings emphasize the potent gametocytocidal effects of certain plant extracts, such as Azadirachta indica and Vernonia amygdalina, and microbial products, including ionophores and proteasome inhibitors. Despite promising in vitro and in vivo data, the transition of these compounds to clinical applications remains limited. Challenges include standardizing assays, addressing resistance to current therapies, and ensuring drug safety for endemic populations. The current review underscores the untapped potential of natural products as transmission-blocking agents and proposes a systematic, stage-specific screening cascade to identify and optimize these compounds. Addressing these gaps could significantly advance global malaria eradication efforts.
Collapse
Affiliation(s)
- Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Bamenda, 39, Bambili, Cameroon.
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon.
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon.
| | - Mariscal Brice Tchatat Tali
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Cedric Derick Jiatsa Mbouna
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y , Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jean Claude Tchouankeu
- Laboratory of Natural Products and Organic Synthesis, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, 812, Yaounde, Cameroon
- Advanced Research & Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| |
Collapse
|
2
|
Onyango SA, Machani MG, Ochwedo KO, Oriango RM, Lee MC, Kokwaro E, Afrane YA, Githeko AK, Zhong D, Yan G. Plasmodium falciparum Pfs47 haplotype compatibility to Anopheles gambiae in Kisumu, a malaria-endemic region of Kenya. Sci Rep 2025; 15:6550. [PMID: 39994226 PMCID: PMC11850800 DOI: 10.1038/s41598-024-84847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/27/2024] [Indexed: 02/26/2025] Open
Abstract
Insecticide resistance and outdoor transmission have reduced the effectiveness of existing malaria transmission prevention strategies. As a result, targeted approaches to support continuing malaria control, such as transmission-blocking vaccines, are required. Cross-sectional mass blood screening in children between 5 and 15 years was conducted in Chulaimbo, Kisumu, during the dry and wet seasons in 2018 and 2019. Plasmodium falciparum gametocyte carriers were identified by Microscopy. Subsequently, carriers were used to feed colony bred Anopheles gambiae females in serum replacement and whole blood membrane feeding experiments. The infection prevalence was 19.7% (95% Cl 0.003-0.007) with 95% of the infections being caused by P. falciparum. Of all confirmed P. falciparum infections, 16.9% were gametocytes. Thirty-seven paired experiments showed infection rates of 0.9% and 0.5% in the serum replacement and whole blood experiments, respectively, with no significant difference (P = 0.738). Six Pfs47 haplotypes were identified from 24 sequenced infectious blood samples: Hap_1 (E27D and L240I), Hap_2 (S98T); Hap_3 (E27D); Hap_4 (L240I); Hap_5 (E188D); and Hap_6 without mutations. Haplotype 4 had the highest frequency of 29.2% followed by Hap_3 and Hap_6 at 20.8% each then Hap_1 with a frequency of 16.7%, whereas Hap_5 and Hap_2 had frequencies of 8.3% and 4.2% respectively. Varying frequencies of Pfs47 haplotypes observed from genetically heterogeneous parasite populations in endemic regions illuminates vector compatibility to refracting P. falciparum using the hypothesized lock and key analogy. This acts as a bottleneck that increases the frequency of P. falciparum haplotypes that escape elimination by vector immune responses. The interaction can be used as a potential target for transmission blocking through a refractory host.
Collapse
Affiliation(s)
- Shirley A Onyango
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya.
| | - Maxwell G Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin O Ochwedo
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Robin M Oriango
- International Centre of Excellence for Malaria Research, Tom Mboya University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| | | | - Yaw A Afrane
- Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Benjamin-Chung J, Li H, Nguyen A, Barratt Heitmann G, Bennett A, Ntuku H, Prach LM, Tambo M, Wu L, Drakeley C, Gosling R, Mumbengegwi D, Kleinschmidt I, Smith JL, Hubbard A, van der Laan M, Hsiang MS. Extension of efficacy range for targeted malaria-elimination interventions due to spillover effects. Nat Med 2024; 30:2813-2820. [PMID: 38965434 PMCID: PMC11483210 DOI: 10.1038/s41591-024-03134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Malaria-elimination interventions aim to extinguish hotspots and prevent transmission to nearby areas. Here, we re-analyzed a cluster-randomized trial of reactive, focal interventions (chemoprevention using artemether-lumefantrine and/or indoor residual spraying with pirimiphos-methyl) delivered within 500 m of confirmed malaria index cases in Namibia to measure direct effects (among intervention recipients within 500 m) and spillover effects (among non-intervention recipients within 3 km) on incidence, prevalence and seroprevalence. There was no or weak evidence of direct effects, but the sample size of intervention recipients was small, limiting statistical power. There was the strongest evidence of spillover effects of combined chemoprevention and indoor residual spraying. Among non-recipients within 1 km of index cases, the combined intervention reduced malaria incidence by 43% (95% confidence interval, 20-59%). In analyses among non-recipients within 3 km of interventions, the combined intervention reduced infection prevalence by 79% (6-95%) and seroprevalence, which captures recent infections and has higher statistical power, by 34% (20-45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 42%. Targeting hotspots with combined chemoprevention and vector-control interventions can indirectly benefit non-recipients up to 3 km away.
Collapse
Affiliation(s)
- Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Haodong Li
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Anna Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- PATH, Seattle, WA, USA
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa M Prach
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Jennifer L Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Mark van der Laan
- Division of Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Michelle S Hsiang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Hofer LM, Kweyamba PA, Sayi RM, Chabo MS, Mwanga R, Maitra SL, Somboka MM, Schnoz A, Golumbeanu M, Schneeberger PHH, Ross A, Habtewold T, Nsanzabana C, Moore SJ, Tambwe MM. Additional blood meals increase sporozoite infection in Anopheles mosquitoes but not Plasmodium falciparum genetic diversity. Sci Rep 2024; 14:17467. [PMID: 39075150 PMCID: PMC11286785 DOI: 10.1038/s41598-024-67990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The availability of nutrients from mosquito blood meals accelerates the development of Plasmodium falciparum laboratory strains in artificially infected Anopheles gambiae mosquitoes. The impact of multiple blood meals on the number of P. falciparum genotypes developing from polyclonal natural human malaria infections (field-isolates) remains unexplored. Here, we experimentally infect An. gambiae with P. falciparum field-isolates and measure the impact of an additional non-infectious blood meal on parasite development. We also assess parasite genetic diversity at the blood stage level of the parasite in the human host and of the sporozoites in the mosquito. Additional blood meals increase the sporozoite infection prevalence and intensity, but do not substantially affect the genetic diversity of sporozoites in the mosquito. The most abundant parasite genotypes in the human blood were transmitted to mosquitoes, suggesting that there was no preferential selection of specific genotypes. This study underlines the importance of additional mosquito blood meals for the development of parasite field-isolates in the mosquito host.
Collapse
Affiliation(s)
- Lorenz M Hofer
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
| | - Prisca A Kweyamba
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu M Sayi
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mohamed S Chabo
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rehema Mwanga
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Sonali L Maitra
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Mariam M Somboka
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Annina Schnoz
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Pierre H H Schneeberger
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Tibebu Habtewold
- Departement of Life Sciences, Imperial College London, London, UK
| | - Christian Nsanzabana
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
5
|
Benjamin-Chung J, Li H, Nguyen A, Heitmann GB, Bennett A, Ntuku H, Prach LM, Tambo M, Wu L, Drakeley C, Gosling R, Mumbengegwi D, Kleinschmidt I, Smith JL, Hubbard A, van der Laan M, Hsiang MS. Targeted malaria elimination interventions reduce Plasmodium falciparum infections up to 3 kilometers away. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295806. [PMID: 37790419 PMCID: PMC10543053 DOI: 10.1101/2023.09.19.23295806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Malaria elimination interventions in low-transmission settings aim to extinguish hot spots and prevent transmission to nearby areas. In malaria elimination settings, the World Health Organization recommends reactive, focal interventions targeted to the area near malaria cases shortly after they are detected. A key question is whether these interventions reduce transmission to nearby uninfected or asymptomatic individuals who did not receive interventions. Here, we measured direct effects (among intervention recipients) and spillover effects (among non-recipients) of reactive, focal interventions delivered within 500m of confirmed malaria index cases in a cluster-randomized trial in Namibia. The trial delivered malaria chemoprevention (artemether lumefantrine) and vector control (indoor residual spraying with Actellic) separately and in combination using a factorial design. We compared incidence, infection prevalence, and seroprevalence between study arms among intervention recipients (direct effects) and non-recipients (spillover effects) up to 3 km away from index cases. We calculated incremental cost-effectiveness ratios accounting for spillover effects. The combined chemoprevention and vector control intervention produced direct effects and spillover effects. In the primary analysis among non-recipients within 1 km from index cases, the combined intervention reduced malaria incidence by 43% (95% CI 20%, 59%). In secondary analyses among non-recipients 500m-3 km from interventions, the combined intervention reduced infection by 79% (6%, 95%) and seroprevalence 34% (20%, 45%). Accounting for spillover effects increased the cost-effectiveness of the combined intervention by 37%. Our findings provide the first evidence that targeting hot spots with combined chemoprevention and vector control interventions can indirectly benefit non-recipients up to 3 km away.
Collapse
Affiliation(s)
- Jade Benjamin-Chung
- Department of Epidemiology and Population Health, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Haodong Li
- Division of Biostatistics, University of California, Berkeley
| | - Anna Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, United States
| | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- PATH, Seattle, United States
| | - Henry Ntuku
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Lisa M. Prach
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Munyaradzi Tambo
- Multidisciplinary Research Centre, University of Namibia, Windhoek, Namibia
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Jennifer L. Smith
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
| | - Alan Hubbard
- Division of Biostatistics, University of California, Berkeley
| | | | - Michelle S. Hsiang
- Chan Zuckerberg Biohub, San Francisco, United States
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco (UCSF) , San Francisco, United States
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, United States
| |
Collapse
|
6
|
Ferraboli JW, Soares da Veiga GT, Albrecht L. Plasmodium vivax transcriptomics: What is new? Exp Biol Med (Maywood) 2023; 248:1645-1656. [PMID: 37786955 PMCID: PMC10723030 DOI: 10.1177/15353702231198070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Malaria is the leading human parasitosis and is transmitted through the bite of anopheline mosquitoes infected with parasites of the genus Plasmodium spp. Among the seven species that cause malaria in humans, Plasmodium vivax is the most prevalent species in Latin America. In recent years, there have been an increasing number of reports of clinical complications caused by P. vivax infections, which were previously neglected and underestimated. P. vivax biology remains with large gaps. The emergence of next-generation sequencing technology has ensured a breakthrough in species knowledge. Coupled with this, the deposition of the P. vivax Sal-1 reference genome allowed an increase in transcriptomics projects by accessing messenger RNA. Thus, the regulation of differential gene expression according to the parasite life stage was verified, and several expressed genes were linked to different biological functions. Today, with the progress associated with RNA sequencing technologies, it is possible to detect nuances and obtain robust results. Discoveries provided by transcriptomic studies allow us to understand topics such as RNA expression and regulation and proteins and metabolic pathways involved during different stages of the parasite life cycle. The information obtained enables a better comprehension of immune system evasion mechanisms; invasion and adhesion strategies used by the parasite; as well as new vaccine targets, potential molecular markers, and others therapeutic targets. In this review, we provide new insights into P. vivax biology by summarizing recent findings in transcriptomic studies.
Collapse
Affiliation(s)
- Julia Weber Ferraboli
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| |
Collapse
|
7
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
8
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
9
|
Mariano RMDS, Gonçalves AAM, de Oliveira DS, Ribeiro HS, Pereira DFS, Santos IS, Lair DF, da Silva AV, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Giunchetti RC. A Review of Major Patents on Potential Malaria Vaccine Targets. Pathogens 2023; 12:pathogens12020247. [PMID: 36839519 PMCID: PMC9959516 DOI: 10.3390/pathogens12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite's complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite's replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite's life cycle.
Collapse
Affiliation(s)
- Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ingrid Soares Santos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Daniel Ferreira Lair
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Augusto Ventura da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratory of Biotechnology of Microorganisms, Federal University of São João Del-Rei, Divinópolis CEP 35501-296, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru
| | - Denise da Silveira-Lemos
- Campus Jaraguá, University José of Rosário Vellano, UNIFENAS, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
- Correspondence: or ; Tel.: +55-31-3409-3003
| |
Collapse
|
10
|
Bai J, Liu F, Yang F, Zhao Y, Jia X, Thongpoon S, Roobsoog W, Sattabongkot J, Zheng L, Cui Z, Zheng W, Cui L, Cao Y. Evaluation of transmission-blocking potential of Pv22 using clinical Plasmodium vivax infections and transgenic Plasmodium berghei. Vaccine 2023; 41:555-563. [PMID: 36503858 PMCID: PMC9812905 DOI: 10.1016/j.vaccine.2022.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Antigens expressed during the sexual development of malaria parasites are transmission-blocking vaccine (TBV) targets. Pb22, a protein expressed and localized to the plasma membrane of gametes and ookinetes in Plasmodium berghei, is an excellent TBV candidate. Here, we evaluated the TB potential of the Plasmodium vivax ortholog Pv22 using a transgenic P. berghei parasite line and P. vivax clinical isolates. The full-length recombinant Pv22 (rPv22) protein was produced and used to immunize mice and rabbits to obtain antibodies. We generated a transgenic P. berghei line (TrPv22Pb) by inserting the pv22 gene into the pb22 locus and showed that Pv22 expression completely rescued the defects in male gametogenesis of the pb22 deletion parasite. Since Pv22 in the transgenic parasite showed similar expression and localization patterns to Pb22, we used the TrPv22Pb parasite as a surrogate to evaluate the TB potential of Pv22. In mosquito feeding assays, mosquitoes feeding on rPv22-immunized mice infected with TrPv22Pb parasites showed a 49.3-53.3 % reduction in the oocyst density compared to the control group. In vitro assays showed that the rPv22 immune sera significantly inhibited exflagellation and ookinete formation of the TrPv22Pb parasites. In a direct membrane feeding assay using three clinical P. vivax isolates, the rabbit anti-rPv22 antibodies also significantly decreased the oocyst density by 53.7, 30.2, and 26.2 %, respectively. This study demonstrated the feasibility of using transgenic P. berghei parasites expressing P. vivax antigens as a potential tool to evaluate TBV candidates. However, the much weaker TB activity of Pv22 obtained from two complementary assays suggest that Pv22 may not be a promising TBV candidate for P. vivax.
Collapse
Affiliation(s)
- Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoog
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zeshi Cui
- College of Pharmacy, China Medical University, Shenyang, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Omorou R, Bin Sa'id I, Delves M, Severini C, Kouakou YI, Bienvenu AL, Picot S. Protocols for Plasmodium gametocyte production in vitro: an integrative review and analysis. Parasit Vectors 2022; 15:451. [PMID: 36471426 PMCID: PMC9720971 DOI: 10.1186/s13071-022-05566-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The production of Plasmodium gametocytes in vitro is a real challenge. Many protocols have been described, but few have resulted in the production of viable and infectious gametocytes in sufficient quantities to conduct research on-but not limited to-transmission-blocking drug and vaccine development. The aim of this review was to identify and discuss gametocyte production protocols that have been developed over the last two decades. METHODS We analyzed the original gametocyte production protocols published from 2000 onwards based on a literature search and a thorough review. A systematic review was performed of relevant articles identified in the PubMed, Web of Sciences and ScienceDirect databases. RESULTS A total 23 studies on the production of Plasmodium gametocytes were identified, 19 involving in vitro Plasmodium falciparum, one involving Plasmodium knowlesi and three involving ex vivo Plasmodium vivax. Of the in vitro studies, 90% used environmental stressors to trigger gametocytogenesis. Mature gametocytemia of up to 4% was reported. CONCLUSIONS Several biological parameters contribute to an optimal production in vitro of viable and infectious mature gametocytes. The knowledge gained from this systematic review on the molecular mechanisms involved in gametocytogenesis enables reproducible gametocyte protocols with transgenic parasite lines to be set up. This review highlights the need for additional gametocyte production protocols for Plasmodium species other than P. falciparum.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.
| | - Ibrahim Bin Sa'id
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut Agama Islam Negeri (IAIN) Kediri, 64127, Kota Kediri, Jawa Timur, Indonesia
| | - Michael Delves
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1A 7HT, UK
| | - Carlo Severini
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Yobouet Ines Kouakou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE-University Lyon1, University of Lyon, 69100, Villeurbanne, France.,Institut de Parasitologie Et Mycologie Médicale, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Abate A, Kedir S, Bose M, Hassen J, Dembele L, Golassa L. Infectivity of Symptomatic Patients and Their Contribution for Infectiousness of Mosquitoes following a Membrane Feeding Assay in Ethiopia. Microbiol Spectr 2022; 10:e0062822. [PMID: 36066239 PMCID: PMC9602676 DOI: 10.1128/spectrum.00628-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
The membrane feeding assay is widely used to evaluate the efficacy of transmission-blocking interventions (TBIs) and identify the reservoir of malaria. This study aimed to determine the infectivity of blood meals from symptomatic Plasmodium-infected patients to an Anopheles arabiensis colony in Ethiopia. A membrane feeding assay was conducted on a total of 63 Plasmodium falciparum- and/or Plasmodium vivax-infected clinical patients in East Shoa Zone, Ethiopia. Detection of P. falciparum and P. vivax in blood samples was done using microscopy. Mosquito infection rates were determined by dissection of mosquitoes' midguts, while mosquito infectiousness was observed by dissection of their salivary glands. The proportion of infectious symptomatic patients was 68.3% (43/63). Using the chi-square or Fisher's exact test, the oocyst infection levels were higher among patients infected with P. vivax, females, and rural residents. Nearly 57% (56.7%, 17/30) of assays produced sporozoites in the salivary glands of mosquitoes. Both oocyst and sporozoite infection rates had positive correlations with parasitemia and gametocytemia. High infectiousness of symptomatic patients was observed, with a greater proportion of infectious mosquitoes per assay. Demonstrating oocyst infection in the mosquitoes might confirm estimates of the infectiousness of mosquitoes, although some of the oocyst-infected mosquitoes failed to produce sporozoites. IMPORTANCE Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria. Moreover, the effect of Plasmodium-infected patients on the infectiousness of mosquitoes was also observed. These findings are therefore important for designing future evaluation of transmission-blocking interventions that will support the malaria elimination program.
Collapse
Affiliation(s)
- Andargie Abate
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Soriya Kedir
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Mitiku Bose
- Adama Regional Laboratory, Oromia Region Health Bureau, Adama, Ethiopia
| | - Jifar Hassen
- Adama Science and Technology University, Adama, Ethiopia
| | - Laurent Dembele
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Malaria Research and Training Center (MRTC), Bamako, Mali
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Abugri J, Ayariga J, Sunwiale SS, Wezena CA, Gyamfi JA, Adu-Frimpong M, Agongo G, Dongdem JT, Abugri D, Dinko B. Targeting the Plasmodium falciparum proteome and organelles for potential antimalarial drug candidates. Heliyon 2022; 8:e10390. [PMID: 36033316 PMCID: PMC9398786 DOI: 10.1016/j.heliyon.2022.e10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
There is an unmet need to unearth alternative treatment options for malaria, wherein this quest is more pressing in recent times due to high morbidity and mortality data arising mostly from the endemic countries coupled with partial diversion of attention from the disease in view of the SARS-Cov-2 pandemic. Available therapeutic options for malaria have been severely threatened with the emergence of resistance to almost all the antimalarial drugs by the Plasmodium falciparum parasite in humans, which is a worrying situation. Artemisinin combination therapies (ACT) that have so far been the mainstay of malaria have encountered resistance by malaria parasite in South East Asia, which is regarded as a notorious ground zero for the emergence of resistance to antimalarial drugs. This review analyzes a few key druggable targets for the parasite and the potential of specific inhibitors to mitigate the emerging antimalarial drug resistance problem by providing a concise assessment of the essential proteins of the malaria parasite that could serve as targets. Moreover, this work provides a summary of the advances made in malaria parasite biology and the potential to leverage these findings for antimalarial drug production.
Collapse
Affiliation(s)
- James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Joseph Ayariga
- The Biomedical Engineering Programme, Alabama State University, Montgomery, AL, 36104, USA
| | - Samuel Sunyazi Sunwiale
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Cletus Adiyaga Wezena
- Department of Microbiology, School of Biosciences, University for Development Studies (UDS), Nyankpala Campus, Tamale, Ghana
| | - Julien Agyemang Gyamfi
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Julius Tieroyaare Dongdem
- Department of Biochemistry and Molecular Medicine. School of Medicine. University for Development Studies (UDS), Tamale-Campus, Ghana
| | - Daniel Abugri
- Department of Biological Sciences, Microbiology PhD Programme, Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, USA
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho. Ghana
| |
Collapse
|
14
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Consalvi S, Tammaro C, Appetecchia F, Biava M, Poce G. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Pat 2022; 32:649-666. [PMID: 35240899 DOI: 10.1080/13543776.2022.2049239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions which could be used as "chemical vaccines" to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last six years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Birkholtz LM, Alano P, Leroy D. Transmission-blocking drugs for malaria elimination. Trends Parasitol 2022; 38:390-403. [DOI: 10.1016/j.pt.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
17
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
Oduma CO, Koepfli C. Plasmodium falciparum and Plasmodium vivax Adjust Investment in Transmission in Response to Change in Transmission Intensity: A Review of the Current State of Research. Front Cell Infect Microbiol 2021; 11:786317. [PMID: 34956934 PMCID: PMC8692836 DOI: 10.3389/fcimb.2021.786317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria parasites can adjust the proportion of parasites that develop into gametocytes, and thus the probability for human-to-vector transmission, through changes in the gametocyte conversion rate. Understanding the factors that impact the commitment of malaria parasites to transmission is required to design better control interventions. Plasmodium spp. persist across countries with vast differences in transmission intensities, and in sites where transmission is highly seasonal. Mounting evidence shows that Plasmodium spp. adjusts the investment in transmission according to seasonality of vector abundance, and transmission intensity. Various techniques to determine the investment in transmission are available, i.e., short-term culture, where the conversion rate can be measured most directly, genome and transcriptome studies, quantification of mature gametocytes, and mosquito feeding assays. In sites with seasonal transmission, the proportion of gametocytes, their densities and infectivity are higher during the wet season, when vectors are plentiful. When countries with pronounced differences in transmission intensity were compared, the investment in transmission was higher when transmission was low, thus maximizing the parasite’s chances to be transmitted to mosquitoes. Increased transmissibility of residual infections after a successful reduction of malaria transmission levels need to be considered when designing intervention measures.
Collapse
Affiliation(s)
- Colins O Oduma
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
19
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
20
|
Abstract
Apicomplexan parasites, such as Toxoplasma gondii and Plasmodium falciparum, are the cause of many important human and animal diseases. While T. gondii tachyzoites replicate through endodyogeny, during which two daughter cells are formed within the parental cell, P. falciparum replicates through schizogony, where up to 32 parasites are formed in a single infected red blood cell and even thousands of daughter cells during mosquito- or liver-stage development. These processes require a tightly orchestrated division and distribution over the daughter parasites of one-per-cell organelles such as the mitochondrion and apicoplast. Although proper organelle segregation is highly essential, the molecular mechanism and the key proteins involved remain largely unknown. In this review, we describe organelle dynamics during cell division in T. gondii and P. falciparum, summarize the current understanding of the molecular mechanisms underlying organelle fission in these parasites, and introduce candidate fission proteins.
Collapse
|
21
|
Asghari A, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Shams M, Montazeri F. In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum. INFECTION GENETICS AND EVOLUTION 2021; 93:104985. [PMID: 34214673 DOI: 10.1016/j.meegid.2021.104985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022]
Abstract
Malaria is the deadliest parasitic disease in tropical and subtropical areas around the world, with considerable morbidity and mortality, particularly due to the life-threatening Plasmodium falciparum. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the six pre-erythrocytic proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, different web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physico-chemical properties, post-translational modification sites (PTMs), the presence of signal peptide and transmembrane domains. Moreover, the secondary and tertiary structures of the proteins were revealed followed by refinement and validations. Finally, NetCTL server was used to predict cytotoxic T-lymphocyte (CTL) epitopes, followed by subsequent screening in terms of antigenicity and immunogenicity. Also, IEDB server was utilized to predict helper T-lymphocyte (HTL) epitopes, followed by screening regarding interferon gamma induction and population coverage. These proteins showed appropriate antigenicity, abundant PTMs as well as many CTL and HTL epitopes, which could be directed for future vaccination studies in the context of multi-epitope vaccine design.
Collapse
Affiliation(s)
- Ali Asghari
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Nourmohammadi
- Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Ali Shariatzadeh
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran.
| | - Fattaneh Montazeri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Yang F, Liu F, Yu X, Zheng W, Wu Y, Qiu Y, Jin Y, Cui L, Cao Y. Evaluation of two sexual-stage antigens as bivalent transmission-blocking vaccines in rodent malaria. Parasit Vectors 2021; 14:241. [PMID: 33962671 PMCID: PMC8103607 DOI: 10.1186/s13071-021-04743-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transmission-blocking vaccine (TBV) is a promising strategy for malaria elimination. It is hypothesized that mixing or fusing two antigens targeting different stages of sexual development may provide higher transmission-blocking activity than these antigens used individually. METHODS A chimeric protein composed of fragments of Pbg37 and PSOP25 was designed and expressed the recombinant protein in Escherichia coli Rosetta-gami B (DE3). After immunizing mice with individual recombinant proteins Pbg37 and PSOP25, mixed proteins (Pbg37+PSOP25), or the fusion protein (Pbg37-PSOP25), the antibody titers of individual sera were analyzed by ELISA. IFA and Western blot were performed to test the reactivity of the antisera with the native proteins in the parasite. The transmission-blocking activity of the different immunization schemes was assessed using in vitro and in vivo assays. RESULTS When Pbg37 and PSOP25 were co-administered in a mixture or as a fusion protein, they elicited similar antibody responses in mice as single antigens without causing immunological interference with each other. Antibodies against the mixed or fused antigens recognized the target proteins in the gametocyte, gamete, zygote, and ookinete stages. The mixed proteins or the fusion protein induced antibodies with significantly stronger transmission-reducing activities in vitro and in vivo than individual antigens. CONCLUSIONS There was no immunological interference between Pbg37 and PSOP25. The bivalent vaccines, which expand the portion of the sexual development during which the transmission-blocking antibodies act, produced significantly stronger transmission-reducing activities than single antigens. Altogether, these data provide the theoretical basis for the development of combination TBVs targeting different sexual stages.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wenqi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yudi Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yue Qiu
- The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ying Jin
- Liaoning Research Institute of Family Planning, Shenyang, 110031, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
23
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage among school children in Mbita, Western Kenya and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2021; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Asymptomatic Plasmodium falciparum gametocyte carriers are reservoirs for sustaining transmission in malaria endemic regions. Gametocyte presence in the host peripheral blood is a predictor of capacity to transmit malaria. However, it does not always directly translate to mosquito infectivity. Factors that affect mosquito infectivity include, gametocyte sex-ratio and density, multiplicity of infection (MOI), and host and vector anti-parasite immunity. We assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and to further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: P. falciparum parasite infections were detected by RDT (Rapid Diagnostic Test) and microscopy among schoolchildren (5-15 years old). Blood from 37 microscopy positive gametocyte carriers offered to laboratory reared An. gambiae s.l. mosquitoes. A total of 3395 fully fed mosquitoes were screened for Plasmodium sporozoites by ELISA. P. falciparum was genotyped using 10 polymorphic microsatellite markers. The association between MOI and gametocyte density and mosquito infection prevalence was investigated. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopic gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After offering gametocyte positive blood to An. gambiae s.l. by membrane feeding assay, our results indicated that 68.1% of the variation in mosquito infection prevalence was accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: We observed a higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI significantly predicted mosquito infection prevalence.
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
24
|
Corbett Y, Parapini S, Perego F, Messina V, Delbue S, Misiano P, Falchi M, Silvestrini F, Taramelli D, Basilico N, D'Alessandro S. Phagocytosis and activation of bone marrow-derived macrophages by Plasmodium falciparum gametocytes. Malar J 2021; 20:81. [PMID: 33568138 PMCID: PMC7874634 DOI: 10.1186/s12936-021-03589-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/08/2021] [Indexed: 02/01/2023] Open
Abstract
Background The innate immune response against various life cycle stages of the malaria parasite plays an important role in protection against the disease and regulation of its severity. Phagocytosis of asexual erythrocytic stages is well documented, but little and contrasting results are available about phagocytic clearance of sexual stages, the gametocytes, which are responsible for the transmission of the parasites from humans to mosquitoes. Similarly, activation of host macrophages by gametocytes has not yet been carefully addressed. Methods Phagocytosis of early or late Plasmodium falciparum gametocytes was evaluated through methanol fixed cytospin preparations of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated for 2 h with P. falciparum and stained with Giemsa, and it was confirmed through a standardized bioluminescent method using the transgenic P. falciparum 3D7elo1-pfs16-CBG99 strain. Activation was evaluated by measuring nitric oxide or cytokine levels in the supernatants of immortalized mouse C57Bl/6 bone marrow-derived macrophages treated with early or late gametocytes. Results The results showed that murine bone marrow-derived macrophages can phagocytose both early and late gametocytes, but only the latter were able to induce the production of inflammatory mediators, specifically nitric oxide and the cytokines tumour necrosis factor and macrophage inflammatory protein 2. Conclusions These results support the hypothesis that developing gametocytes interact in different ways with innate immune cells of the host. Moreover, the present study proposes that early and late gametocytes act differently as targets for innate immune responses.
Collapse
Affiliation(s)
- Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy.
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Federica Perego
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Valeria Messina
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Paola Misiano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy
| | - Mario Falchi
- AIDS-Ricerca e sviluppo, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Silvestrini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria-Italian Malaria Network, Milan, Italy. .,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36, 20133, Milan, Italy.
| |
Collapse
|
25
|
Omondi BR, Muthui MK, Muasya WI, Orindi B, Mwakubambanya RS, Bousema T, Drakeley C, Marsh K, Bejon P, Kapulu MC. Antibody Responses to Crude Gametocyte Extract Predict Plasmodium falciparum Gametocyte Carriage in Kenya. Front Immunol 2021; 11:609474. [PMID: 33633729 PMCID: PMC7902058 DOI: 10.3389/fimmu.2020.609474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Background Malaria caused by Plasmodium falciparum remains a serious global public health challenge especially in Africa. Interventions that aim to reduce malaria transmission by targeting the gametocyte reservoir are key to malaria elimination and/or eradication. However, factors that are associated with gametocyte carriage have not been fully explored. Consequently, identifying predictors of the infectious reservoir is fundamental in the elimination campaign. Methods We cultured P. falciparum NF54 gametocytes (to stage V) and prepared crude gametocyte extract. Samples from a total of 687 participants (aged 6 months to 67 years) representing two cross-sectional study cohorts in Kilifi, Kenya were used to assess IgG antibody responses by ELISA. We also analyzed IgG antibody responses to the blood-stage antigen AMA1 as a marker of asexual parasite exposure. Gametocytemia and asexual parasitemia data quantified by microscopy and molecular detection (QT-NASBA) were used to determine the relationship with antibody responses, season, age, and transmission setting. Multivariable logistic regression models were used to study the association between antibody responses and gametocyte carriage. The predictive power of the models was tested using the receiver operating characteristic (ROC) curve. Results Multivariable logistic regression analysis showed that IgG antibody response to crude gametocyte extract predicted both microscopic (OR=1.81 95% CI: 1.06-3.07, p=0.028) and molecular (OR=1.91, 95% CI: 1.11-3.29, p=0.019) P. falciparum gametocyte carriage. Antibody responses to AMA1 were also associated with both microscopic (OR=1.61 95% CI: 1.08-2.42, p=0.020) and molecular (OR=3.73 95% CI: 2.03-6.74, p<0.001) gametocytemia. ROC analysis showed that molecular (AUC=0.897, 95% CI: 0.868-0.926) and microscopic (AUC=0.812, 95% CI: 0.758-0.865) multivariable models adjusted for gametocyte extract showed very high predictive power. Molecular (AUC=0.917, 95% CI: 0.891-0.943) and microscopic (AUC=0.806, 95% CI: 0.755-0.858) multivariable models adjusted for AMA1 were equally highly predictive. Conclusion In our study, it appears that IgG responses to crude gametocyte extract are not an independent predictor of gametocyte carriage after adjusting for AMA1 responses but may predict gametocyte carriage as a proxy marker of exposure to parasites. Serological responses to AMA1 or to gametocyte extract may facilitate identification of individuals within populations who contribute to malaria transmission and support implementation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Brian R. Omondi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - Michelle K. Muthui
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - William I. Muasya
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benedict Orindi
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa C. Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
27
|
Liu F, Yang F, Wang Y, Hong M, Zheng W, Min H, Li D, Jin Y, Tsuboi T, Cui L, Cao Y. A conserved malaria parasite antigen Pb22 plays a critical role in male gametogenesis in Plasmodium berghei. Cell Microbiol 2020; 23:e13294. [PMID: 33222390 DOI: 10.1111/cmi.13294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Gametogenesis, the formation of gametes from gametocytes, an essential step for malaria parasite transmission, is targeted by transmission-blocking drugs and vaccines. We identified a conserved protein (PBANKA_0305900) in Plasmodium berghei, which encodes a protein of 22 kDa (thus named Pb22) and is expressed in both asexual stages and gametocytes. Its homologues are present in all Plasmodium species and its closely related, Hepatocystis, but not in other apicomplexans. Pb22 protein was localised in the cytosols of schizonts, as well as male and female gametocytes. During gamete-to-ookinete development, Pb22 became localised on the plasma membranes of gametes and ookinetes. Compared to the wild-type (WT) parasites, P. berghei with pb22 knockout (KO) showed a significant reduction in exflagellation (~89%) of male gametocytes and ookinete number (~97%) during in vitro ookinete culture. Mosquito feeding assays showed that ookinete and oocyst formation of the pb22-KO line in mosquito midguts was almost completely abolished. These defects were rescued in parasites where pb22 was restored. Cross-fertilisation experiments with parasite lines defective in either male or female gametes confirmed that the defects in the pb22-KO line were restricted to the male gametes, whereas female gametes in the pb22-KO line were fertile at the WT level. Detailed analysis of male gametogenesis showed that 30% of the male gametocytes in the pb22-KO line failed to assemble the axonemes, whereas ~48.9% of the male gametocytes formed flagella but failed to egress from the host erythrocyte. To explore its transmission-blocking potential, recombinant Pb22 (rPb22) was expressed and used to immunise mice. in vitro assays showed that the rPb22-antisera significantly inhibited exflagellation by ~64.8% and ookinete formation by ~93.4%. Mosquitoes after feeding on rPb22-immunised mice also showed significant decreases in infection prevalence (83.3-93.3%) and oocyst density (93.5-99.6%). Further studies of the Pb22 orthologues in human malaria parasites are warranted.
Collapse
Affiliation(s)
- Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yaru Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Minsheng Hong
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Danni Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ying Jin
- Division of Administration, Liaoning Research Institute of Family Planning, Shenyang, China
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11:594653. [PMID: 33193447 PMCID: PMC7658415 DOI: 10.3389/fimmu.2020.594653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
29
|
Touray AO, Mobegi VA, Wamunyokoli F, Butungi H, Herren JK. Prevalence of asymptomatic P. falciparum gametocyte carriage in schoolchildren and assessment of the association between gametocyte density, multiplicity of infection and mosquito infection prevalence. Wellcome Open Res 2020; 5:259. [PMID: 33959684 PMCID: PMC8078214 DOI: 10.12688/wellcomeopenres.16299.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 07/22/2023] Open
Abstract
Background: Malaria is a major public health threat in sub-Saharan Africa. Asymptomatic Plasmodium falciparum gametocyte carriers are potential infectious reservoirs for sustaining transmission in many malaria endemic regions. The aim of the study was to assess the prevalence of gametocyte carriage and some of its associated risk factors among asymptomatic schoolchildren in Western Kenya and further analyse the association between gametocyte density, multiplicity of infection (MOI) and mosquito infection prevalence. Methods: Rapid diagnostic tests were used to screen for P. falciparum parasite infection among schoolchildren (5-15 years old) and the results were verified using microscopy. Microscopy positive gametocyte carriers were selected to feed laboratory reared An. gambiae s.l. mosquitoes using membrane feeding method. Genomic DNA was extracted from dry blood spot samples and P. falciparum populations were genotyped using 10 polymorphic microsatellite markers. Assessment of the association between MOI and gametocyte density and mosquito infection prevalence was conducted. Results: A significantly higher prevalence of P. falciparum infection was found in males 31.54% (764/2422) ( p-value < 0.001) compared to females 26.72% (657/2459). The microscopy gametocyte prevalence among the study population was 2% (84/4881). Children aged 5-9 years have a higher prevalence of gametocyte carriage (odds ratios = 2.1 [95% CI = 1.3-3.4], P = 0.002) as compared to children aged 10-15 years. After challenging An. gambiae s.l. by membrane feeding assay on gametocyte positive patient blood, our results indicate that 68.1% of the variation in mosquito infection prevalence is accounted for by gametocyte density and MOI (R-SQR. = 0.681, p < 0.001). Conclusions: Age was a significant risk factor for gametocyte carriage, as indicated by the higher risk of gametocyte carriage among the younger children (5-9 years). Gametocyte density and MOI statistically significantly predicted mosquito infection prevalence. Both of the variables added significantly to the prediction ( p < 0.05).
Collapse
Affiliation(s)
- Abdoulie O. Touray
- Department of Molecular Biology and Biotechnology, Institute of Basic Sciences, Technology and Innovation, Pan African University (PAUSTI), Nairobi, Kenya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
30
|
Al-Malki ES. Understanding the structural insights of enzymatic conformations for adenylosuccinate lyase receptor in malarial parasite Plasmodium falciparum. J Recept Signal Transduct Res 2020; 41:566-573. [PMID: 33073638 DOI: 10.1080/10799893.2020.1835960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dreadful disease malaria is one among the infectious diseases that comes in third number after the tuberculosis and HIV. This disease is spread by female Anopheles mosquito and caused by the malarial parasite sp notably Plasmodium falciparum. In this, the organism has several enzymes for processing the infection and growth mechanism and among that, the adenylosuccinate lyase is an enzyme that plays a critical role in metabolism and cellular replication via its action in the de novo purine biosynthetic pathway. Adenylosuccinate has been studied for two reaction mechanisms, and in that, the adenylosuccinate to AMP and fumarate is core important. As of now, there have been several studies indicating the reaction mechanism of adenylosuccinate lyase, this study projects the conformations of the reactant and product changes through molecular docking and molecular dynamic simulations. Adenylosuccinate bound complex involves His role in the product than the reactant complex, and the complex shows high flexibility due to fumarate. Thus, identifying the core inhibitor that binds to His rings could be a standard adenylosuccinate lyase inhibitor, that can block the malarial diseases in humans. In addition to the competitive inhibition site, we also predicted the uncompetitive ligand binding site, which suggest the alternate region to be targeted. Thus, from this work, we suggest both competitive and uncompetitive binding regions for the purpose identifying the malarial inhibitors.
Collapse
Affiliation(s)
- Esam S Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
31
|
Choi R, Michaels SA, Onu EC, Hulverson MA, Saha A, Coker ME, Weeks JC, Van Voorhis WC, Ojo KK. Taming the Boys for Global Good: Contraceptive Strategy to Stop Malaria Transmission. Molecules 2020; 25:molecules25122773. [PMID: 32560085 PMCID: PMC7356879 DOI: 10.3390/molecules25122773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022] Open
Abstract
Transmission of human malaria parasites (Plasmodium spp.) by Anopheles mosquitoes is a continuous process that presents a formidable challenge for effective control of the disease. Infectious gametocytes continue to circulate in humans for up to four weeks after antimalarial drug treatment, permitting prolonged transmission to mosquitoes even after clinical cure. Almost all reported malaria cases are transmitted to humans by mosquitoes, and therefore decreasing the rate of Plasmodium transmission from humans to mosquitoes with novel transmission-blocking remedies would be an important complement to other interventions in reducing malaria incidence.
Collapse
Affiliation(s)
- Ryan Choi
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Samantha A. Michaels
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Emmanuel C. Onu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Matthew A. Hulverson
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Aparajita Saha
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Morenike E. Coker
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; (E.C.O.); (M.E.C.)
| | - Janis C. Weeks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA;
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
| | - Kayode K. Ojo
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.C.); (S.A.M.); (M.A.H.); (A.S.); (W.C.V.V.)
- Correspondence: ; Tel.: +1-206-543-0821
| |
Collapse
|
32
|
Llorà-Batlle O, Michel-Todó L, Witmer K, Toda H, Fernández-Becerra C, Baum J, Cortés A. Conditional expression of PfAP2-G for controlled massive sexual conversion in Plasmodium falciparum. SCIENCE ADVANCES 2020; 6:eaaz5057. [PMID: 32577509 PMCID: PMC7286680 DOI: 10.1126/sciadv.aaz5057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Malaria transmission requires that some asexual parasites convert into sexual forms termed gametocytes. The initial stages of sexual development, including sexually committed schizonts and sexual rings, remain poorly characterized, mainly because they are morphologically identical to their asexual counterparts and only a small subset of parasites undergo sexual development. Here, we describe a system for controlled sexual conversion in the human malaria parasite Plasmodium falciparum, based on conditional expression of the PfAP2-G transcription factor. Using this system, ~90 percent of the parasites converted into sexual forms upon induction, enabling the characterization of committed and early sexual stages without further purification. We characterized sexually committed schizonts and sexual rings at the transcriptomic and phenotypic levels, which revealed down-regulation of genes involved in solute transport upon sexual commitment, among other findings. The new inducible lines will facilitate the study of early sexual stages at additional levels, including multiomic characterization and drug susceptibility assays.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Lucas Michel-Todó
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Kathrin Witmer
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Haruka Toda
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Carmen Fernández-Becerra
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- IGTP Institut d’Investigació Germans Trias i Pujol, Badalona 08916, Catalonia, Spain
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Alfred Cortés
- ISGlobal, Hospital Clinic–Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- ICREA, Barcelona 08010, Catalonia, Spain
- Corresponding author.
| |
Collapse
|
33
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
34
|
Antwi-Baffour S, Malibha-Pinchbeck M, Stratton D, Jorfi S, Lange S, Inal J. Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets. J Extracell Vesicles 2019; 9:1697124. [PMID: 32002165 PMCID: PMC6968499 DOI: 10.1080/20013078.2019.1697124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023] Open
Abstract
This study sought to measure medium-sized extracellular vesicles (mEVs) in plasma, when patients have low Plasmodium falciparum early in infection. We aimed to define the relationship between plasma mEVs and: (i) parasitaemia, (ii) period from onset of malaria symptoms until seeking medical care (patient delay, PD), (iii) age and (iv) gender. In this cross-sectional study, n = 434 patients were analysed and Nanosight Tracking Analysis (NTA) used to quantify mEVs (vesicles of 150–500 nm diameter, isolated at 15,000 × g, β-tubulin-positive and staining for annexin V, but weak or negative for CD81). Overall plasma mEV levels (1.69 × 1010 mEVs mL−1) were 2.3-fold higher than for uninfected controls (0.51 × 1010 mEVs mL−1). Divided into four age groups, we found a bimodal distribution with 2.5- and 2.1-fold higher mEVs in infected children (<11 years old [yo]) (median:2.11 × 1010 mEVs mL−1) and the elderly (>45 yo) (median:1.92 × 1010 mEVs mL−1), respectively, compared to uninfected controls; parasite density varied similarly with age groups. There was a positive association between mEVs and parasite density (r = 0.587, p < 0.0001) and mEVs were strongly associated with PD (r = 0.919, p < 0.0001), but gender had no effect on plasma mEV levels (p = 0.667). Parasite density was also exponentially related to patient delay. Gender (p = 0.667) had no effect on plasma mEV levels. During periods of low parasitaemia (PD = 72h), mEVs were 0.93-fold greater than in uninfected controls. As 75% (49/65) of patients had low parasitaemia levels (20–500 parasites µL−1), close to the detection limits of microscopy of Giemsa-stained thick blood films (5–150 parasites µL−1), mEV quantification by NTA could potentially have early diagnostic value, and raises the potential of Pf markers in mEVs as early diagnostic targets.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Dan Stratton
- Faculty of Health Sciences, University of Hull, Hull, UK
| | - Samireh Jorfi
- School of Human Sciences, London Metropolitan University, London, UK
| | - Sigrun Lange
- Department of Biomedical Science, Tissue Architecture and Regeneration Research Group, University of Westminster, London, UK
| | - Jameel Inal
- School of Human Sciences, London Metropolitan University, London, UK.,School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
35
|
Warncke JD, Passecker A, Kipfer E, Brand F, Pérez-Martínez L, Proellochs NI, Kooij TWA, Butter F, Voss TS, Beck HP. The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cell Microbiol 2019; 22:e13123. [PMID: 31652487 DOI: 10.1111/cmi.13123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte-infected host cell periphery. Co-immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock-out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage-specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Jan D Warncke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Enja Kipfer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Françoise Brand
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lara Pérez-Martínez
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nicholas I Proellochs
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Falk Butter
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:14595. [PMID: 31601834 PMCID: PMC6787211 DOI: 10.1038/s41598-019-50768-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Transmission of malaria parasites from humans to mosquito vectors requires that some asexual parasites differentiate into sexual forms termed gametocytes. The balance between proliferation in the same host and conversion into transmission forms can be altered by the conditions of the environment. The ability to accurately measure the rate of sexual conversion under different conditions is essential for research addressing the mechanisms underlying sexual conversion, and to assess the impact of environmental factors. Here we describe new Plasmodium falciparum transgenic lines with genome-integrated constructs in which a fluorescent reporter is expressed under the control of the promoter of the gexp02 gene. Using these parasite lines, we developed a sexual conversion assay that shortens considerably the time needed for an accurate determination of sexual conversion rates, and dispenses the need to add chemicals to inhibit parasite replication. Furthermore, we demonstrate that gexp02 is expressed specifically in sexual parasites, with expression starting as early as the sexual ring stage, which makes it a candidate marker for circulating sexual rings in epidemiological studies.
Collapse
|
37
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
38
|
Ngara M, Palmkvist M, Sagasser S, Hjelmqvist D, Björklund ÅK, Wahlgren M, Ankarklev J, Sandberg R. Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites. Exp Cell Res 2018; 371:130-138. [PMID: 30096287 DOI: 10.1016/j.yexcr.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
The malaria parasite has a complex lifecycle, including several events of differentiation and stage progression, while actively evading immunity in both its mosquito and human hosts. Important parasite gene expression and regulation during these events remain hidden in rare populations of cells. Here, we combine a capillary-based platform for cell isolation with single-cell RNA-sequencing to transcriptionally profile 165 single infected red blood cells (iRBCs) during the intra-erythrocytic developmental cycle (IDC). Unbiased analyses of single-cell data grouped the cells into eight transcriptional states during IDC. Interestingly, we uncovered a gene signature from the single iRBC analyses that can successfully discriminate between developing asexual and sexual stage parasites at cellular resolution, and we verify five, previously undefined, gametocyte stage specific genes. Moreover, we show the capacity of detecting expressed genes from the variable gene families in single parasites, despite the sparse nature of data. In total, the single parasite transcriptomics holds promise for molecular dissection of rare parasite phenotypes throughout the malaria lifecycle.
Collapse
Affiliation(s)
- Mtakai Ngara
- Ludwig Institute for Cancer Research, Karolinska Institutet, Box 240, SE-171 77 Stockholm, Sweden; Dept. of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 1, Box 285, SE-171 77 Stockholm, Sweden
| | - Mia Palmkvist
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sven Sagasser
- Ludwig Institute for Cancer Research, Karolinska Institutet, Box 240, SE-171 77 Stockholm, Sweden
| | - Daisy Hjelmqvist
- Dept. of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 1, Box 285, SE-171 77 Stockholm, Sweden
| | - Åsa K Björklund
- Ludwig Institute for Cancer Research, Karolinska Institutet, Box 240, SE-171 77 Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Johan Ankarklev
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Microbiology and Immunology, Weill-Cornell Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10062, United States; Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden.
| | - Rickard Sandberg
- Ludwig Institute for Cancer Research, Karolinska Institutet, Box 240, SE-171 77 Stockholm, Sweden; Dept. of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 1, Box 285, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
39
|
Transcriptome analysis based detection of Plasmodium falciparum development in Anopheles stephensi mosquitoes. Sci Rep 2018; 8:11568. [PMID: 30068910 PMCID: PMC6070505 DOI: 10.1038/s41598-018-29969-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/18/2018] [Indexed: 02/03/2023] Open
Abstract
The Plasmodium life cycle within the mosquito involves the gamete, zygote, motile ookinete, and the oocyst stage that supports sporogony and sporozoite formation. We mapped the P. falciparum transcriptome as the parasite progresses through the oocyst stage of development on days 2, 4, 6, and 8 post-P. falciparum infectious blood meal. Through these genomic studies, we identified 212 novel transmission stage biomarkers including genes that are developmentally expressed at a single time point and genes that are pan-developmentally expressed at all four time points in P. falciparum oocysts. Validation of a small subset of genes at the transcriptional and translational level resulted in identification of a signature of genes/proteins that can detect parasites within the mosquito as early as day 2 post-infectious blood meal and can be used to distinguish early versus late stage P. falciparum oocyst development in the mosquito. Currently, circumsporozoite protein (CSP), which is detectable only after day 7 post-infection, is the only marker used for detection of P. falciparum infection in mosquitoes. Our results open the prospect to develop a non-CSP based detection assay for assessment of P. falciparum infection in mosquitoes and evaluate the effect of intervention measures on malaria transmission in an endemic setting.
Collapse
|
40
|
Abstract
Human malaria is a complex disease that can show a wide array of clinical outcomes, from asymptomatic carriage and chronic infection to acute disease presenting various life-threatening pathologies. The specific outcome of an infection is believed to be determined by a multifactorial interplay between the host and the parasite but with a general trend toward disease attenuation with increasing prior exposure. Therefore, the main burden of malaria in a population can be understood as a function of transmission intensity, which itself is intricately linked to the prevalence of infected hosts and mosquito vectors, the distribution of infection outcomes, and the parasite population diversity. Predicting the long-term impact of malaria intervention measures therefore requires an in-depth understanding of how the parasite causes disease, how this relates to previous exposures, and how different infection pathologies contribute to parasite transmission. Here, we provide a brief overview of recent advances in the molecular epidemiology of clinical malaria and how these might prove to be influential in our fight against this important disease.
Collapse
Affiliation(s)
- Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Peter C Bull
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
41
|
Canepa GE, Molina-Cruz A, Yenkoidiok-Douti L, Calvo E, Williams AE, Burkhardt M, Peng F, Narum D, Boulanger MJ, Valenzuela JG, Barillas-Mury C. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines 2018; 3:26. [PMID: 30002917 PMCID: PMC6039440 DOI: 10.1038/s41541-018-0065-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
Transmission-blocking vaccines are based on eliciting antibody responses in the vertebrate host that disrupt parasite development in the mosquito vector and prevent malaria transmission. The surface protein Pfs47 is present in Plasmodium falciparum gametocytes and female gametes. The potential of Pfs47 as a vaccine target was evaluated. Soluble full-length recombinant protein, consisting of three domains, was expressed in E. coli as a thioredoxin fusion (T-Pfs47). The protein was immunogenic, and polyclonal and monoclonal antibodies (mAb) were obtained, but they did not confer transmission blocking activity (TBA). All fourteen mAb targeted either domains 1 or 3, but not domain 2 (D2), and immune reactivity to D2 was also very low in polyclonal mouse IgG after T-Pfs47 immunization. Disruption of the predicted disulfide bond in D2, by replacing cysteines for alanines (C230A and C260A), allowed expression of recombinant D2 protein in E. coli. A combination of mAbs targeting D2, and deletion proteins from this domain, allowed us to map a central 52 amino acid (aa) region where antibody binding confers strong TBA (78-99%). This 52 aa antigen is immunogenic and well conserved, with only seven haplotypes world-wide that share 96-98% identity. Neither human complement nor the mosquito complement-like system are required for the observed TBA. A dramatic reduction in ookinete numbers and ookinete-specific transcripts was observed, suggesting that the antibodies are interacting with female gametocytes and preventing fertilization.
Collapse
Affiliation(s)
- Gaspar E. Canepa
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Lampouguin Yenkoidiok-Douti
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Fangni Peng
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2 Canada
| | - David Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2 Canada
| | - Jesus G. Valenzuela
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Insti6tute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 USA
| |
Collapse
|
42
|
Josling GA, Williamson KC, Llinás M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 2018; 72:501-519. [PMID: 29975590 DOI: 10.1146/annurev-micro-090817-062712] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kim C Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
43
|
Obaldia N, Meibalan E, Sa JM, Ma S, Clark MA, Mejia P, Moraes Barros RR, Otero W, Ferreira MU, Mitchell JR, Milner DA, Huttenhower C, Wirth DF, Duraisingh MT, Wellems TE, Marti M. Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. mBio 2018; 9:e00625-18. [PMID: 29739900 PMCID: PMC5941073 DOI: 10.1128/mbio.00625-18] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Abstract
Plasmodium vivax causes heavy burdens of disease across malarious regions worldwide. Mature P. vivax asexual and transmissive gametocyte stages occur in the blood circulation, and it is often assumed that accumulation/sequestration in tissues is not an important phase in their development. Here, we present a systematic study of P. vivax stage distributions in infected tissues of nonhuman primate (NHP) malaria models as well as in blood from human infections. In a comparative analysis of the transcriptomes of P. vivax and Plasmodium falciparum blood-stage parasites, we found a conserved cascade of stage-specific gene expression despite the greatly different gametocyte maturity times of these two species. Using this knowledge, we validated a set of conserved asexual- and gametocyte-stage markers both by quantitative real-time PCR and by antibody assays of peripheral blood samples from infected patients and NHP (Aotus sp.). Histological analyses of P. vivax parasites in organs of 13 infected NHP (Aotus and Saimiri species) demonstrated a major fraction of immature gametocytes in the parenchyma of the bone marrow, while asexual schizont forms were enriched to a somewhat lesser extent in this region of the bone marrow as well as in sinusoids of the liver. These findings suggest that the bone marrow is an important reservoir for gametocyte development and proliferation of malaria parasites.IMPORTANCEPlasmodium vivax malaria continues to cause major public health burdens worldwide. Yet, significant knowledge gaps in the basic biology and epidemiology of P. vivax malaria remain, largely due to limited available tools for research and diagnostics. Here, we present a systematic examination of tissue sequestration during P. vivax infection. Studies of nonhuman primates and malaria patients revealed enrichment of developing sexual stages (gametocytes) and mature replicative stages (schizonts) in the bone marrow and liver, relative to those present in peripheral blood. Identification of the bone marrow as a major P. vivax tissue reservoir has important implications for parasite diagnosis and treatment.
Collapse
Affiliation(s)
- Nicanor Obaldia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Tropical Medicine Research, Panama City, Panama
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juliana M Sa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Siyuan Ma
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Pedro Mejia
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - William Otero
- Tropical Medicine Research, Panama City, Panama
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
44
|
Grignard L, Gonçalves BP, Early AM, Daniels RF, Tiono AB, Guelbéogo WM, Ouédraogo A, van Veen EM, Lanke K, Diarra A, Nebie I, Sirima SB, Targett GA, Volkman SK, Neafsey DE, Wirth DF, Bousema T, Drakeley C. Transmission of molecularly undetectable circulating parasite clones leads to high infection complexity in mosquitoes post feeding. Int J Parasitol 2018; 48:671-677. [PMID: 29738740 PMCID: PMC6018601 DOI: 10.1016/j.ijpara.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
Additional parasite alleles were consistently identified in mosquitoes compared with the human blood sample they had fed on. Assessments of Plasmodium falciparum complexity relying on single time-point collections miss transmissible clones. Low-density gametocyte – producing clones are capable of successfully establishing infections in mosquitoes.
Plasmodium falciparum malaria infections often comprise multiple distinct parasite clones. Few datasets have directly assessed infection complexity in humans and mosquitoes they infect. Examining parasites using molecular tools may provide insights into the selective transmissibility of isolates. Using capillary electrophoresis genotyping and next generation amplicon sequencing, we analysed complexity of parasite infections in human blood and in the midguts of mosquitoes that became infected in membrane feeding experiments using the same blood material in two West African settings. Median numbers of clones in humans and mosquitoes were higher in samples from Burkina Faso (4.5, interquartile range 2–8 for humans; and 2, interquartile range 1–3 for mosquitoes) than in The Gambia (2, interquartile range 1–3 and 1, interquartile range 1–3, for humans and mosquitoes, respectively). Whilst the median number of clones was commonly higher in human blood samples, not all transmitted alleles were detectable in the human peripheral blood. In both study sample sets, additional parasite alleles were identified in mosquitoes compared with the matched human samples (10–88.9% of all clones/feeding assay, n = 73 feeding assays). The results are likely due to preferential amplification of the most abundant clones in peripheral blood but confirm the presence of low density clones that produce transmissible sexual stage parasites.
Collapse
Affiliation(s)
- Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rachel F Daniels
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbéogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Elke M van Veen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amidou Diarra
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebie
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Sodiomon B Sirima
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Geoff A Targett
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; School of Nursing and Health Sciences, Simmons College, Boston, MA, USA
| | | | - Dyann F Wirth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
45
|
De Niz M, Meibalan E, Mejia P, Ma S, Brancucci NMB, Agop-Nersesian C, Mandt R, Ngotho P, Hughes KR, Waters AP, Huttenhower C, Mitchell JR, Martinelli R, Frischknecht F, Seydel KB, Taylor T, Milner D, Heussler VT, Marti M. Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. SCIENCE ADVANCES 2018; 4:eaat3775. [PMID: 29806032 PMCID: PMC5966192 DOI: 10.1126/sciadv.aat3775] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/12/2018] [Indexed: 05/13/2023]
Abstract
Transmission of Plasmodium parasites to the mosquito requires the formation and development of gametocytes. Studies in infected humans have shown that only the most mature forms of Plasmodium falciparum gametocytes are present in circulation, whereas immature forms accumulate in the hematopoietic environment of the bone marrow. We used the rodent model Plasmodium berghei to study gametocyte behavior through time under physiological conditions. Intravital microscopy demonstrated preferential homing of early gametocyte forms across the intact vascular barrier of the bone marrow and the spleen early during infection and subsequent development in the extravascular environment. During the acute phase of infection, we observed vascular leakage resulting in further parasite accumulation in this environment. Mature gametocytes showed high deformability and were found entering and exiting the intact vascular barrier. We suggest that extravascular gametocyte localization and mobility are essential for gametocytogenesis and transmission of Plasmodium to the mosquito.
Collapse
Affiliation(s)
- Mariana De Niz
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Mejia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicolas M. B. Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Rebecca Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Priscilla Ngotho
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Katie R. Hughes
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Centre, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Friedrich Frischknecht
- Parasitology Centre for Infectious Diseases, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | - Karl B. Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Danny Milner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA Scotland, UK
| |
Collapse
|
46
|
Koepfli C, Yan G. Plasmodium Gametocytes in Field Studies: Do We Measure Commitment to Transmission or Detectability? Trends Parasitol 2018; 34:378-387. [PMID: 29544966 DOI: 10.1016/j.pt.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The proportion of Plasmodium spp. infections carrying gametocytes, and gametocyte densities, are often reported as surrogate markers for transmission potential. It remains unclear whether parasites under natural conditions adjust commitment to transmission depending on external factors. Population-based surveys comprising mostly asymptomatic low-density infections are always impacted by the sensitivity of the assays used to diagnose infections and detect gametocytes. Asexual parasite density is an important predictor for the probability of detecting gametocytes, and in many cases it can explain patterns in gametocyte carriage without the need for an adjustment of the gametocyte conversion rate. When reporting gametocyte data, quantification of blood-stage parasitemia and its inclusion as a confounder in multivariable analyses is essential.
Collapse
Affiliation(s)
- Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
47
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
48
|
Abstract
The controlled infection of volunteers with Plasmodium falciparum parasites could provide a platform to evaluate new drugs and vaccines aimed at blocking malaria transmission.
Collapse
Affiliation(s)
- Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nicolas Mb Brancucci
- University of Basel, Basel, Switzerland.,Department of Molecular Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| |
Collapse
|
49
|
Reuling IJ, van de Schans LA, Coffeng LE, Lanke K, Meerstein-Kessel L, Graumans W, van Gemert GJ, Teelen K, Siebelink-Stoter R, van de Vegte-Bolmer M, de Mast Q, van der Ven AJ, Ivinson K, Hermsen CC, de Vlas S, Bradley J, Collins KA, Ockenhouse CF, McCarthy J, Sauerwein RW, Bousema T. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model. eLife 2018; 7:e31549. [PMID: 29482720 PMCID: PMC5828662 DOI: 10.7554/elife.31549] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods In a single centre, open-label randomised trial, healthy malaria-naive participants (aged 18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes. Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen upon recrudescence. Male and female gametocyte densities were determined by molecular assays. Results Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days (95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory mosquito feeding assays showed successful sporadic mosquito infections. There were no serious adverse events or significant differences in the occurrence and severity of adverse events between study arms (p=0.49 and p=0.28). Conclusions The early appearance of gametocytes indicates gametocyte commitment during the first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking interventions against falciparum malaria for downstream selection and clinical development. Funding Funded by PATH Malaria Vaccine Initiative (MVI). Clinical trial number NCT02836002.
Collapse
Affiliation(s)
- Isaie J Reuling
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | | | - Luc E Coffeng
- Department of Public HealthErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - Kjerstin Lanke
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | | | - Wouter Graumans
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | - Geert-Jan van Gemert
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | - Karina Teelen
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | | | | | - Quirijn de Mast
- Department of Internal MedicineRadboud University Medical CenterNijmegenNetherlands
| | - André J van der Ven
- Department of Internal MedicineRadboud University Medical CenterNijmegenNetherlands
| | - Karen Ivinson
- PATH Malaria Vaccine InitiativeWashingtonUnited States
| | - Cornelus C Hermsen
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | - Sake de Vlas
- Department of Public HealthErasmus MC, University Medical Center RotterdamRotterdamNetherlands
| | - John Bradley
- MRC Tropical Epidemiology GroupLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | | | - James McCarthy
- Clinical Tropical Medicine LaboratoryQIMR BerghoferBrisbaneAustralia
| | - Robert W Sauerwein
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| | - Teun Bousema
- Department of Medical MicrobiologyRadboud university medical centerNijmegenNetherlands
| |
Collapse
|
50
|
Capela R, Magalhães J, Miranda D, Machado M, Sanches-Vaz M, Albuquerque IS, Sharma M, Gut J, Rosenthal PJ, Frade R, Perry MJ, Moreira R, Prudêncio M, Lopes F. Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability. Eur J Med Chem 2018; 149:69-78. [PMID: 29499488 DOI: 10.1016/j.ejmech.2018.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/28/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022]
Abstract
Hybrid compounds may play a critical role in the context of the malaria eradication agenda, which will benefit from therapeutic tools active against the symptomatic erythrocytic stage of Plasmodium infection, and also capable of eliminating liver stage parasites. To address the need for efficient multistage antiplasmodial compounds, a small library of 1,2,4,5-tetraoxane-8- aminoquinoline hybrids, with the metabolically labile C-5 position of the 8-aminoquinoline moiety blocked with aryl groups, was synthesized and screened for antiplasmodial activity and metabolic stability. The hybrid compounds inhibited development of intra-erythrocytic forms of the multidrug-resistant Plasmodium falciparum W2 strain, with EC50 values in the nM range, and with low cytotoxicity against mammalian cells. The compounds also inhibited the development of P. berghei liver stage parasites, with the most potent compounds displaying EC50 values in the low μM range. SAR analysis revealed that unbranched linkers between the endoperoxide and 8-aminoquinoline pharmacophores are most beneficial for dual antiplasmodial activity. Importantly, hybrids were significantly more potent than a 1:1 mixture of 8-aminoquinoline-tetraoxane, highlighting the superiority of the hybrid approach over the combination therapy. Furthermore, aryl substituents at C-5 of the 8-aminoquinoline moiety improve the compounds' metabolic stability when compared with their primaquine (i.e. C-5 unsubstituted) counterparts. Overall, this study reveals that blocking the quinoline C-5 position does not result in loss of dual-stage antimalarial activity, and that tetraoxane-8- aminoquinoline hybrids are an attractive approach to achieve elimination of exo- and intraerythrocytic parasites, thus with the potential to be used in malaria eradication campaigns.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Magalhães
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Daniela Miranda
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Margarida Sanches-Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Moni Sharma
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, CA 94143, USA
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, CA 94143, USA
| | - Raquel Frade
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria J Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|