1
|
Navidifar T, Meftah E, Baghsheikhi H, Kazemzadeh K, Karimi H, Rezaei N. Dual role of hepcidin in response to pathogens. Microb Pathog 2025; 203:107496. [PMID: 40118299 DOI: 10.1016/j.micpath.2025.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Hepcidin is the primary regulator of vertebrate iron homeostasis. Its production is stimulated by systemic iron levels and inflammatory signals. Although the role of hepcidin in iron homeostasis is well characterized, its response to pathogenic agents is complex and diverse. In this review, we examine studies that investigate the role of hepcidin in response to infectious agents. Interleukin-6 (IL-6) is a key factor responsible for the induction of hepcidin expression. During infection, hepcidin-mediated depletion of extracellular iron serves as a protective mechanism against a variety of pathogens. However, accumulation of iron in macrophages through hepcidin-mediated pathways may increase susceptibility to intracellular pathogens such as Mycobacterium tuberculosis. Prolonged elevation of hepcidin production can lead to anemia due to reduced iron availability for erythropoiesis, a condition referred to as anemia of inflammation. In addition, we highlight the role of hepcidin upregulation in several infectious contexts, including HIV-associated anemia, iron deficiency anemia in Helicobacter pylori infection, and post-malarial anemia in pediatric patients. In addition, we show that certain infectious agents, such as hepatitis C virus (HCV), can suppress hepcidin production during both the acute and chronic phases of infection, while hepatitis B virus (HBV) exhibits similar suppression during the chronic phase.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Meftah
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hediyeh Baghsheikhi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kazemzadeh
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Choi G, Bessman NJ. Iron at the crossroads of host-microbiome interactions in health and disease. Nat Microbiol 2025:10.1038/s41564-025-02001-y. [PMID: 40399686 DOI: 10.1038/s41564-025-02001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/31/2025] [Indexed: 05/23/2025]
Abstract
Iron is an essential dietary micronutrient for both humans and microorganisms. Disruption of iron homeostasis is closely linked, as both a cause and an effect, to the development and progression of gut microbiota dysbiosis and multiple diseases. Iron absorption in humans is impacted by diverse environmental factors, including diet, medication and microbiota-derived molecules. Accordingly, treatment outcomes for iron-associated diseases may depend on an individual patient's microbiome. Here we describe various iron acquisition strategies used by the host, commensal microorganisms and pathogens to benefit or outcompete each other in the complex gut environment. We further explore recently discovered microbial species and metabolites modulating host iron absorption, which represent potential effectors of disease and therapeutic targets. Finally, we discuss the need for mechanistic studies on iron-host-microbiome interactions that can affect disease and treatment outcomes, with the ultimate aim of supporting the development of microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Garam Choi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nicholas J Bessman
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Wang C, Melgar‐Bermudez E, Welch D, Dagbay KB, Bhattacharya S, Lema E, Daman T, Sierra O, Todorova R, Drame PM, Grenha R, Fisher FM, Grayson D, Lerner L, Cadena SM, Seehra J, Lachey J. A Recombinant Antibody Against ALK2 Promotes Tissue Iron Redistribution and Contributes to Anemia Resolution in a Mouse Model of Anemia of Inflammation. Am J Hematol 2025; 100:797-812. [PMID: 39791515 PMCID: PMC11966360 DOI: 10.1002/ajh.27578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality. The bone morphogenetic protein (BMP)-SMAD pathway is crucial for hepcidin regulation. Here, we characterized a research antibody against BMP receptor ALK2, RKER-216, and investigated its mechanism in suppressing hepcidin and improving anemia in acute/chronic inflammation. Additive effects of RKER-216 and recombinant human erythropoietin (rhEPO) on erythropoiesis and iron utilization were also explored. We showed that RKER-216 neutralized ALK2 activity by competing with the binding of BMP6. RKER-216 reduced hepcidin transcription in Hep3B cells, and a subcutaneous dose of RKER-216 at 3 mg/kg suppressed serum hepcidin and increased circulating iron for 3-4 days in wildtype mice. Moreover, RKER-216 decreased hepcidin by inhibiting SMAD1/5/9 signaling in lipopolysaccharide-mediated inflammation and liberated iron from the recycling pathway to alleviate anemia in mice with adenine-induced chronic kidney disease (CKD), a mouse model of AI. Finally, RKER-216 reversed iron-restricted erythropoiesis in CKD mice and supplied the iron requirement for complete resolution of anemia when coupled with rhEPO in addressing AI. Our data support that ALK2 is a key hepcidin regulator and that a neutralizing ALK2 antibody has the potential to restore iron homeostasis as monotherapy or in combination with rhEPO to ameliorate AI.
Collapse
Affiliation(s)
| | | | | | | | | | - Evan Lema
- Keros TherapeuticsLexingtonMassachusettsUSA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Al-Awadhi A, Alwehaidah MS, Al-Sabaan K, Al-Ajmi N. Assessment of ferritin and hepcidin levels in splenectomised and non-splenectomised β-thalassemia major patients and exploring a potential correlation with von Willebrand factor and ADAMTS-13. Ann Hematol 2025; 104:2229-2238. [PMID: 40232405 PMCID: PMC12053081 DOI: 10.1007/s00277-025-06360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Iron overload is a major complication in β-thalassemia major (β-TM) patients, resulting from ineffective erythropoiesis, increased gastrointestinal iron absorption and multiple blood transfusions. Excess iron accumulates in various organs, leading to organ dysfunction, and increased risk of thrombotic events. In this study we aim to determine levels of ferritin and its regulation hormone hepcidin in multi-transfused splenectomised and non-splenectomised β-thalassemia major patients and assess a possible correlation with the coagulation protein von Willebrand factor (vWF) and its cleaving protease ADAMTS-13. The study was conducted on 80 β-thalassemia major patients and 80 age- and sex-matched healthy controls. Plasma levels of vWF, ADAMTS-13, and hepcidin were assessed using the ELISA method. All patients presented with significantly higher levels of ferritin compared to normal controls (p < 0.001), while hepcidin levels were barely higher in patients (p = 0.05). Ferritin had a positive correlation with vWF antigen levels (r = 0.222, p = 0.05), ADAMTS-13 antigen levels (r = 0.334, p = 0.002) and ADAMTS-13 activity levels (r = 0.353, p = 0.001) in patients. Splenectomised patients had significantly higher levels of white blood cell counts, platelet counts and vWF antigen levels compared to non-splenectomised patients (p < 0.05), but ferritin and hepcidin levels were comparable between the two groups (p > 0.05). Hepcidin was not found to be correlated with any of the measured parameters in patients (p > 0.05). Iron overload is well manifested in our study group despite continuous chelation therapy. Unlike hepcidin, ferritin appeared to be associated with increased secretion of vWF and ADAMTS-13 in patients, while splenectomy had no effect on ferritin or hepcidin levels. These findings highlight the importance of proper iron monitoring in β-TM and recognition of thrombotic risks in managing this anemia.
Collapse
Affiliation(s)
- Anwar Al-Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait.
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Kefayah Al-Sabaan
- Department of Hematology, Al-Farwaniya Hospital, Ministry of Health, Farwaniya, Kuwait
| | - Nouf Al-Ajmi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
5
|
Wu L, Chen L, Peng L, Liu C, He S, Xie L. Clinical characteristics of Chlamydia psittaci pneumonia and predictors analysis of severe patients: a retrospective observational study. Front Med (Lausanne) 2025; 12:1565254. [PMID: 40236451 PMCID: PMC11996669 DOI: 10.3389/fmed.2025.1565254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Background With this study, we aimed to explore the clinical features, laboratory examinations, imaging features, and severe predictors of Chlamydia psittaci pneumonia to identify the disease early, shorten the course of illness, and improve prognosis. Methods We retrospectively reviewed the clinical data of 39 patients diagnosed with Chlamydia psittaci pneumonia and 39 patients with non-psittacosis community-acquired pneumonia at the Third Xiangya Hospital of Central South University from December 2018 to April 2021. We collected the remaining medical serum to analyze cytokines that are associated with disease-related inflammation. We used the R software to perform statistical analysis. Results Compared to the non-psittacosis community-acquired pneumonia group, the common Chlamydia psittaci pneumonia group exhibited more severe symptoms, including a longer duration of hyperthermia. Most patients experienced dyspnea, as well as extrapulmonary symptoms such as fatigue, muscle soreness, and diarrhea. There were also significant increases in levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), C-reactive protein, and procalcitonin, while hemoglobin (Hb) and albumin (ALB) levels decreased significantly. Primary lung imaging features included consolidation and exudation, with nodules and cavities being rare. These changes were even more severe in the severe Chlamydia psittaci pneumonia group, with further increased levels of myoglobin and a larger spread of lesions in the lungs. Additionally, the Th1 inflammatory factor INF-γ was elevated in the Chlamydia psittaci pneumonia group. Conclusion Fatigue, myalgia, low Hb, low ALB, high ALT, and high AST are predictors of Chlamydia psittaci pneumonia. Fast respiratory rates, low Hb, high LDH, significant involvement of multiple lobes, high Sequential Organ Failure scores, and high Acute Physiological and Chronic Health scores are predictors of severe Chlamydia psittaci pneumonia. The increase of INF-γ may be related to the condition.
Collapse
Affiliation(s)
- Ling Wu
- Department of General Medicine, The Yuelushan Area of Hunan Provincial People’s Hospital, Changsha, China
| | - Liang Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liping Peng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chun Liu
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shengyang He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Xie
- Department of Respiratory and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Obi OA, Obiezue RN, Eze D, Adebote DA. Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review. J Parasit Dis 2025; 49:13-28. [PMID: 39975623 PMCID: PMC11833005 DOI: 10.1007/s12639-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/13/2024] [Indexed: 02/21/2025] Open
Abstract
Recent fights on the control of trypanosomiasis and malaria focused on underscoring the concepts of antigen evasive mechanisms with the view to exploit the defensive mechanisms inherent in VSG and PfEMP1, although giant strides is being achieved towards beating the antigenic propensity of malaria parasites. Trypanosoma and Plasmodium falciparum adopt a common antigenic novelty through alternate expression of VSG and PfEMP1 respectively. These immunodominant antigens sterically shield other surface proteins from host antibodies and unvaryingly turn out to be the requisite elements with difficult underlining immunological concept for unmatched escape mechanisms of vaccine actions. Hence, the uncommon role of the pathogens to brazenly circumnavigate immunity through switching of variant antigens has not kept pace. Switching of variant surface in human trypanosomes occurs through programmed DNA rearrangements while in P. falciparum, switching occurs by purely transcriptional mechanism. The repertoire genes harmonize evasion of human immunity and also rekindle the outcome of infections. The extensive sequence divergence and genetic polymorphism of VSG and PfEMP1 are the requisite elements for the next generation breakthrough in vaccine discoveries. Thus, the springboard for the development of novel targets is lurking with the wit of unraveling the immunological concepts underlining the evasive aptitude of VSG and PfEMP1 with convincing biochemical techniques, hence offering a blueprint for enhanced vaccine targets. This review elucidates evasive mechanisms of VSG and PfEMP1 with link to pathologies, challenges of antigenic switches and prospects to current vaccine scenario.
Collapse
Affiliation(s)
- Okechukwu Anthony Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | - Rose Nduka Obiezue
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Desmond Eze
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | | |
Collapse
|
7
|
Suh SH, Oh TR, Choi HS, Kim CS, Bae EH, Ma SK, Oh KH, Lee KB, Jung JY, Kim SW, on behalf of the Korean Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD) Investigators. Predictive Value of Serum Hepcidin Levels for the Risk of Incident End-Stage Kidney Disease in Patients with Chronic Kidney Disease: The KNOW-CKD. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:492-503. [PMID: 39664339 PMCID: PMC11631166 DOI: 10.1159/000542057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
Introduction Despite the pivotal role of hepcidin in the development of anemia among the patients with chronic kidney disease (CKD), the association between serum hepcidin levels and CKD progression has been never investigated. We here hypothesized that elevation in serum hepcidin levels might be associated with the risk of incident end-stage kidney disease (ESKD) among the patients with pre-dialysis CKD. Methods A total of 2,109 patients with pre-dialysis CKD at stages 1 to pre-dialysis 5 were categorized into the quartiles by serum hepcidin levels. The study outcome was incident ESKD. The median duration of follow-up was 7.9 years. Results The analysis of the baseline characteristics revealed that unfavorable clinical features were in general associated with higher serum hepcidin levels. The cumulative incidence of ESKD was significantly differed by serum hepcidin levels, with the highest incidence in the 4th quartile (p < 0.001, by log-rank test). Cox regression analysis demonstrated that, compared to the 1st quartile, the risk of incident ESKD is significantly increased in the 4th quartile (adjusted hazard ratio 1.372, 95% confidence interval 1.070-1.759). Penalized spline curve analysis illustrated a linear, positive correlation between serum hepcidin levels and the risk of incident ESKD. Subgroup analyses revealed that the association is significantly more prominent in the patients with advanced CKD (i.e., estimated glomerular filtration rate <45 mL/min/1.73 m2). Conclusion Elevation in serum hepcidin levels is significantly associated with the risk of incident ESKD among the patients with pre-dialysis CKD.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu-Beck Lee
- Division of Nephrology, Department of Internal Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Ji Yong Jung
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
| | - on behalf of the Korean Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD) Investigators
- Department of Internal Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Kangbuk Samsung Hospital, Seoul, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
8
|
Im MH, Kim YR, Byun JH, Jeon YJ, Choi MJ, Lim HK, Kim JM. Antibacterial activity of recombinant liver-expressed antimicrobial peptide-2 derived from olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109954. [PMID: 39389171 DOI: 10.1016/j.fsi.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a cysteine-rich peptide that plays a crucial role in the innate immune system of fish. To investigate the molecular function of LEAP-2 from olive flounder, Paralichthys olivaceus, we cloned the gene encoding LEAP-2 using PCR and expressed it in Escherichia coli. Analysis of LEAP-2 expression revealed predominant transcripts in the liver and lower levels in the intestine of olive flounder, whereas their expression levels in the liver and head kidney increased, during the initial stage of infection with the aquapathogenic bacterium Edwardsiella piscicida. Recombinant LEAP-2 (rOfLEAP-2) purified from E. coli exhibited antimicrobial activity, as demonstrated by the ultrasensitive radial diffusion assay, against both Gram-positive (Bacillus subtilis, Streptococcus parauberis, and Lactococcus garvieae) and Gram-negative (Vibrio harveyi and E. coli) bacteria, with minimum inhibitory concentrations ranging from 25 to 100 μg/mL depending on the species tested. The antibacterial activity of rOfLEAP-2 was attributed to its ability to disrupt bacterial membranes, validated by the N-phenylnaphthalen-1-amine uptake assays and scanning electron microscope analysis against E. coli, V. harveyi, B. subtilis, and L. garvieae treated with rOfLEAP-2. Furthermore, a synergistic enhancement of antibacterial activity was observed when rOfLEAP-2 was combined with ampicillin or synthetic LEAP-1 peptide, suggesting a distinct mechanism of action from those of other antimicrobial agents. These findings provide evidence for the antibacterial efficacy of LEAP-2 from olive flounder, highlighting its potential therapeutic application against pathogenic bacteria.
Collapse
Affiliation(s)
- Min-Hyuk Im
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yu-Jeong Jeon
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi-Jin Choi
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han Kyu Lim
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jong-Myoung Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
9
|
Clark P. Iron Deficiency Related to Obesity. JOURNAL OF INFUSION NURSING 2024; 47:163-174. [PMID: 38744241 DOI: 10.1097/nan.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is a direct correlation between being overweight and iron deficiency. Physiological changes occur in obese adipose cells that contribute to the development of iron deficiency (ID) and iron deficiency anemia (IDA). These changes disrupt the normal iron metabolic checks and balances. Furthermore, bariatric surgery can lead to long-term ID and IDA. Oral iron supplementation may not be effective for many of these patients. Intravenous iron infusions can significantly increase the quality of life for individuals experiencing this condition but are also associated with potentially serious complications. Adequate knowledge about intravenous (IV) iron administration can greatly increase the safety of this beneficial therapy. This review article explains the relationship between obesity, ID/IDA, bariatric surgery and the safe administration of IV iron.
Collapse
Affiliation(s)
- Pamela Clark
- Author Affiliations: Houston Methodist Sugar Land Hospital, Outpatient IV Therapy Clinic, Sugar Land, Texas (Clark)
- Pamela Clark, RN, BSN, CRNI, has been a registered nurse for 47 years, practicing exclusively in infusion nursing for 40 of those years. She has worked in multiple practice settings, including home health, skilled nursing facilities, free-standing infusion centers, physician office-based infusion centers, and hospital-based infusion centers. Pamela has presented at Infusion Nurses Society conferences on various topics related to infusion nursing and is president of the Greater Houston Area Chapter of the Infusion Nurses Society
| |
Collapse
|
10
|
Patel H, Minkah NK, Kumar S, Zanghi G, Schepis A, Goswami D, Armstrong J, Abatiyow BA, Betz W, Reynolds L, Camargo N, Sheikh AA, Kappe SHI. Malaria blood stage infection suppresses liver stage infection via host-induced interferons but not hepcidin. Nat Commun 2024; 15:2104. [PMID: 38453916 PMCID: PMC10920859 DOI: 10.1038/s41467-024-46270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Malaria-causing Plasmodium parasites first replicate as liver stages (LS), which then seed symptomatic blood stage (BS) infection. Emerging evidence suggests that these stages impact each other via perturbation of host responses, and this influences the outcome of natural infection. We sought to understand whether the parasite stage interplay would affect live-attenuated whole parasite vaccination, since the efficacy of whole parasite vaccines strongly correlates with their extend of development in the liver. We thus investigated the impact of BS infection on LS development of genetically attenuated and wildtype parasites in female rodent malaria models and observed that for both, LS infection suffered severe suppression during concurrent BS infection. Strikingly and in contrast to previously published studies, we find that the BS-induced iron-regulating hormone hepcidin is not mediating suppression of LS development. Instead, we demonstrate that BS-induced host interferons are the main mediators of LS developmental suppression. The type of interferon involved depended on the BS-causing parasite species. Our study provides important mechanistic insights into the BS-mediated suppression of LS development. This has direct implications for understanding the outcomes of live-attenuated Plasmodium parasite vaccination in malaria-endemic areas and might impact the epidemiology of natural malaria infection.
Collapse
Affiliation(s)
- Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amina A Sheikh
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Krepuska M, Mayer B, Vitale-Cross L, Myneni VD, Boyajian MK, Németh K, Szalayova I, Cho T, McClain-Caldwell I, Gingerich AD, Han H, Westerman M, Rada B, Mezey É. Bone marrow stromal cell-derived hepcidin has antimicrobial and immunomodulatory activities. Sci Rep 2024; 14:3986. [PMID: 38368463 PMCID: PMC10874407 DOI: 10.1038/s41598-024-54227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.
Collapse
Affiliation(s)
- Miklós Krepuska
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Department of Neuroradiology, University Hospital Zürich, Zürich, Switzerland
| | - Balázs Mayer
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Stem Cell Laboratory, Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | | | - Vamsee D Myneni
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| | | | - Krisztián Németh
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Stem Cell Laboratory, Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | | | - Ted Cho
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| | | | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Éva Mezey
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| |
Collapse
|
12
|
Ahmadi Badi S, Bereimipour A, Rohani P, Khatami S, Siadat SD. Interplay between gut microbiota and the master iron regulator, hepcidin, in the pathogenesis of liver fibrosis. Pathog Dis 2024; 82:ftae005. [PMID: 38555503 PMCID: PMC10990161 DOI: 10.1093/femspd/ftae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION There is a proven role for hepcidin and the composition of gut microbiota and its derivatives in the pathophysiology of liver fibrosis. AREA COVERED This review focuses on the literature search regarding the effect of hepcidin and gut microbiota on regulating liver physiology. We presented the regulating mechanisms of hepcidin expression and discussed the possible interaction between gut microbiota and hepcidin regulation. Furthermore, we investigated the importance of the hepcidin gene in biological processes and bacterial interactions using bioinformatics analysis. EXPERT OPINION One of the main features of liver fibrosis is iron accumulation in hepatic cells, including hepatocytes. This accumulation can induce an oxidative stress response, inflammation, and activation of hepatic stellate cells. Hepcidin is a crucial regulator of iron by targeting ferroportin expressed on hepatocytes, macrophages, and enterocytes. Various stimuli, such as iron load and inflammatory signals, control hepcidin regulation. Furthermore, a bidirectional relationship exists between iron and the composition and metabolic activity of gut microbiota. We explored the potential of gut microbiota to influence hepcidin expression and potentially manage liver fibrosis, as the regulation of iron metabolism plays a crucial role in this context.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, 1963737611, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, 1416753955, Iran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, 1416753955, Iran
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, 1963737611, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, 1963737611, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran,1963737611, Iran
| |
Collapse
|
13
|
Zhang X, Han K, Kan L, Zhang Z, Gong Y, Xiao S, Bai Y, Liu N, Meng C, Qi H, Shen F. A Differential Protein Study on Bronchoalveolar Lavage Fluid at Different Stages of Silicosis. Comb Chem High Throughput Screen 2024; 27:2366-2401. [PMID: 38173059 DOI: 10.2174/0113862073260760231023055036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES In this study, by comparing the difference in protein expression in bronchoalveolar lavage fluid between silicosis patients in different stages and healthy controls, the pathogenesis of pneumoconiosis was discussed, and a new idea for the prevention and treatment of pneumoconiosis was provided. METHODS The lung lavage fluid was pretreated by 10 K ultrafiltration tube, Agilent 1100 conventional liquid phase separation, strong cation exchange column (SCX) HPLC pre-separation, and C18 reverse phase chromatography desalting purification, and protein was labeled with isotope. GO, KEGG pathway, and PPI analysis of differential proteins were conducted by bioinformatics, and protein types and corresponding signal pathways were obtained. RESULTS Thermo Q-Exactive mass spectrometry identified 943 proteins. T-test analysis was used to evaluate the different significance of the results, and the different protein of each group was obtained by screening with the Ratio≥1.2 or Ratio≤0.83 and P<0.05. We found that there are 16 kinds of protein throughout the process of silicosis. There are different expressions of protein in stages III/control, stages II/control, stage I/control, stages III/ stages II, stages III/ stage I and stages II/ stage I groups. The results of ontology enrichment analysis of total differential protein genes show that KEGG pathway enrichment analysis of differential protein suggested that there were nine pathways related to silicosis. CONCLUSION The main biological changes in the early stage of silicosis are glycolysis or gluconeogenesis, autoimmunity, carbon metabolism, phagocytosis, etc., and microfibril-associated glycoprotein 4 may be involved in the early stage of silicosis. The main biological changes in the late stage of silicosis are autoimmunity, intercellular adhesion, etc. Calcium hippocampus binding protein may participate in the biological changes in the late stage of silicosis. It provides a new idea to understand the pathogenesis of silicosis and also raises new questions for follow-up research.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Ke Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Linhui Kan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Zheng Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Yihong Gong
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, P.R. China
| | - Yuping Bai
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Nan Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Chunyan Meng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| |
Collapse
|
14
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
15
|
Dorsey AF, Miller EM. Revisiting geophagy: An evolved sickness behavior to microbiome-mediated gastrointestinal inflammation. Evol Anthropol 2023; 32:325-335. [PMID: 37661330 DOI: 10.1002/evan.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Geophagy, the consumption of clay or similar substances, is known as an evolved behavior that protects vulnerable populations, such as pregnant women and children, against gastrointestinal injury. However, perplexing questions remain, like the presence of geophagy in the absence of overt gastrointestinal infection and the potential causal relationship between geophagy and iron deficiency anemia. In this review, we hypothesize that geophagy is an inflammation-mediated sickness behavior regulated via the vagus nerve. We further hypothesize that the gut microbiome plays a critical role in mediating the relationship between inflammation and geophagy. By including inflammation and the microbiome within the existing protection hypothesis, we can explain how subclinical gastrointestinal states induce geophagy. Furthermore, we can explain how gastrointestinal inflammation is responsible for both geophagy and iron-deficiency anemia, explaining why the two phenomena frequently co-occur. Ultimately, defining geophagy as a sickness behavior allows us to integrate the gut-brain axis into geophagy research.
Collapse
Affiliation(s)
- Achsah F Dorsey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth M Miller
- Department of Anthropology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
16
|
Ullah I, Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface. Front Immunol 2023; 14:1279826. [PMID: 37942316 PMCID: PMC10627961 DOI: 10.3389/fimmu.2023.1279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes. Free iron is cytotoxic and is readily available to invading pathogens. During infection, most pathogens utilize host iron for their survival. Therefore, to ensure limited free iron, the host's natural system denies this metal in a process termed nutritional immunity. In this fierce battle for iron, hosts win over some pathogens, but others have evolved mechanisms to overdrive the host barriers. Production of siderophores, heme iron thievery, and direct binding of transferrin and lactoferrin to bacterial receptors are some of the pathogens' successful strategies which are highlighted in this review. The intricate interplay between hosts and pathogens in iron alteration systems is crucial for understanding host defense mechanisms and pathogen virulence. This review aims to elucidate the current understanding of host and pathogen iron alteration systems and propose future research directions to enhance our knowledge in this field.
Collapse
Affiliation(s)
- Inam Ullah
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
17
|
Urbańska DM, Pawlik M, Korwin-Kossakowska A, Czopowicz M, Rutkowska K, Kawecka-Grochocka E, Mickiewicz M, Kaba J, Bagnicka E. Effect of Supplementation with Curcuma longa and Rosmarinus officinalis Extract Mixture on Acute Phase Protein, Cathelicidin, Defensin and Cytolytic Protein Gene Expression in the Livers of Young Castrated Polish White Improved Bucks. Genes (Basel) 2023; 14:1932. [PMID: 37895281 PMCID: PMC10606746 DOI: 10.3390/genes14101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Goats are an excellent animal model for research on some physiological and pathophysiological processes in humans. The search for supplements that prevent homeostasis disorders and strengthen the immune system is necessary to reduce the risk of many diseases in both humans and animals. The aim of the study was to analyze the effect of supplementation with a mixture of dried extracts of Curcuma longa and Rosmarinus officinalis on the expression of acute-phase protein (SAA, HP, CRP, LALBA, AGP, CP, FGA, FGB, and FGG), cathelicidin (BAC5, BAC7.5, BAC3.4, MAP28, MAP34, and HEPC), beta-defensin-1 (GBD1, DEFB1), and beta-defensin-2, and cytolytic protein (LIZ and LF) genes in the livers of young castrated bucks of the Polish White Improved breed. The higher expression of LF in the control group suggests that it is important for the first line of hepatic immune defense and its expression is downregulated by the mixture of turmeric and rosemary extracts; thus, the spice-herb mixture mutes its activity. The lower expression of FGB and the higher expression of BAC5 genes in the livers of healthy, young castrated bucks who were administered the supplement suggest the silencing effects of the mixture on the acute-phase response and the stimulating effect on the antimicrobial activity of the immune system.
Collapse
Affiliation(s)
- Daria M. Urbańska
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Agnieszka Korwin-Kossakowska
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c Str., 02-106 Warsaw, Poland;
| | - Ewelina Kawecka-Grochocka
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Emilia Bagnicka
- Department of Animal Improvement and Nutrigenomics, Institute of Genetics and Animal Breeding Polish Academy of Sciences, Postepu 36A Str., 05-552 Jastrzębiec, Poland; (A.K.-K.); (E.B.)
| |
Collapse
|
18
|
Chang J, Debreli Coskun M, Kim J. Inflammation alters iron distribution in bone and spleen in mice. Metallomics 2023; 15:mfad055. [PMID: 37738439 PMCID: PMC10563149 DOI: 10.1093/mtomcs/mfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Anemia of inflammation (or inflammation-associated anemia) decreases the quality of life in billions of patients suffering from various inflammatory diseases, such as infection, autoimmune diseases, and cancer, associated with a prolonged state of immune activation. While proper utilization of iron, a nutrient metal essential for erythropoiesis, is important for the prevention of anemia, the alteration of body iron homeostasis upon inflammation, which can contribute to the development of anemia, is not completely understood. Thus, we sought to examine temporal and spatial changes in the distribution of iron and iron-associated molecules during inflammation in mice. To induce inflammation, C57BL/6J mice were injected with turpentine oil weekly for 3 weeks, which resulted in anemia, decreased protein expression of ferroportin, a cellular iron exporter, in the spleen, duodenum, and liver, and increased iron stores in the duodenum and spleen. Tracer kinetic studies after oral administration of 59Fe revealed that more iron was found in the spleen and less in the femur bone in turpentine oil-injected mice compared to the saline-injected mice, indicating tissue-specific abnormalities in iron distribution during inflammation. However, there was no difference in the utilization of iron for red blood cell production after turpentine oil injection; instead, serum hemopexin level and lactate dehydrogenase activity were increased, suggesting increased red blood cell destruction upon inflammation. Our findings provide an improved understanding of temporal and spatial changes in the distribution and utilization of iron during inflammation.
Collapse
Affiliation(s)
- JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, South Korea
| | - Melis Debreli Coskun
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA 01854, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA 01854, USA
| |
Collapse
|
19
|
Paluschinski M, Kordes C, Vucur M, Buettner V, Roderburg C, Xu HC, Shinte PV, Lang PA, Luedde T, Castoldi M. Differential Modulation of miR-122 Transcription by TGFβ1/BMP6: Implications for Nonresolving Inflammation and Hepatocarcinogenesis. Cells 2023; 12:1955. [PMID: 37566034 PMCID: PMC10416984 DOI: 10.3390/cells12151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFβ1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Veronika Buettner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Haifeng C. Xu
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Prashant V. Shinte
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Philipp A. Lang
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| |
Collapse
|
20
|
Qu G, Liu H, Li J, Huang S, Zhao N, Zeng L, Deng J. GPX4 is a key ferroptosis biomarker and correlated with immune cell populations and immune checkpoints in childhood sepsis. Sci Rep 2023; 13:11358. [PMID: 37443372 PMCID: PMC10345139 DOI: 10.1038/s41598-023-32992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is the uncontrolled reaction of the body to infection-induced inflammation, which results in life-threatening multiple-organ dysfunction (MODS). Although the research on sepsis has advanced significantly in recent years, its pathophysiology remains entirely unknown. Ferroptosis is a new-fashioned type of programmed cell death that may have an impact on sepsis development. However, the precise mechanism still needs to be explored. In this paper, Four pediatric sepsis datasets [training datasets (GSE26378 and GSE26440) and validation datasets (GSE11755 and GSE11281)] were chosen through the GEO (Gene Expression Omnibus) database, and 63 differentially expressions of ferroptosis-relation-genes (DE-FRGs) were eventually discovered using bioinformatics investigation. Functional annotation was performed using GO and KEGG pathway enrichment analysis. Then, four Core-FRGs (FTH1, GPX4, ACSL1, and ACSL6) were extracted after the construction of the protein-protein interaction (PPI) network and the research of the MCODE module. Consequently, Hub-FRG (GPX4) was found using the validation datasets, and correlation exploration of immunity populations (neutrophils, r = - 0.52; CD8 T-cells, r = 0.43) and immunity checkpoints (CD274, r = - 0.42) was implemented. The usefulness of GPX4 as a marker in sepsis was assessed in a mouse model of sepsis. The findings demonstrate that GPX4 is a crucial biomarker and a new latent immunotherapy target for the prediction and therapy of pediatric sepsis.
Collapse
Affiliation(s)
- Guoxin Qu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China
- The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, People's Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hui Liu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China
| | - Jin Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Siyuan Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Nannan Zhao
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570100, People's Republic of China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Jin Deng
- The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, People's Republic of China.
| |
Collapse
|
21
|
Baratz E, Protchenko O, Jadhav S, Zhang D, Violet PC, Grounds S, Shakoury-Elizeh M, Levine M, Philpott CC. Vitamin E Induces Liver Iron Depletion and Alters Iron Regulation in Mice. J Nutr 2023; 153:1866-1876. [PMID: 37127137 PMCID: PMC10375508 DOI: 10.1016/j.tjnut.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Vitamin E (vit E) is an essential nutrient that functions as a lipophilic antioxidant and is used clinically to treat nonalcoholic fatty liver disease, where it suppresses oxidative damage and impedes the progression of steatosis and fibrosis. Mice lacking a critical liver iron-trafficking protein also manifest steatosis because of iron-mediated oxidative damage and are protected from liver disease by oral vit E supplements. OBJECTIVES We aimed to examine the role of dietary vit E supplementation in modulating iron-sensing regulatory systems and nonheme iron levels in mouse liver. METHODS C57Bl/6 male mice, aged 6 wk, were fed purified diets containing normal amounts of iron and either control (45 mg/kg) or elevated (450 mg/kg) levels of 2R-α-tocopherol (vit E) for 18 d. Mouse plasma and liver were analyzed for nonheme iron, levels and activity of iron homeostatic proteins, and markers of oxidative stress. We compared means ± SD for iron and oxidative stress parameters between mice fed the control diet and those fed the vit E diet. RESULTS The Vit E-fed mice exhibited lower levels of liver nonheme iron (38% reduction, P < 0.0001) and ferritin (74% reduction, P < 0.01) than control-fed mice. The levels of liver mRNA for transferrin receptor 1 and divalent metal transporter 1 were reduced to 42% and 57% of the control, respectively. The mRNA levels for targets of nuclear factor erythroid 2-related factor (Nrf2), a major regulator of the oxidative stress response and iron-responsive genes, were also suppressed in vit E livers. Hepcidin, an iron regulatory hormone, levels were lower in the plasma (P < 0.05), and ferroportin (FPN), the iron exporter regulated by hepcidin, was expressed at higher levels in the liver (P < 0.05). CONCLUSIONS Oral vit E supplementation in mice can lead to depletion of liver iron stores by suppressing the iron- and redox-sensing transcription factor Nrf2, leading to enhanced iron efflux through liver FPN. Iron depletion may indirectly enhance the antioxidative effects of vit E.
Collapse
Affiliation(s)
- Ethan Baratz
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | | | - Deliang Zhang
- Section on Human Iron Metabolism, NICHD, NIH, Bethesda, MD, United States
| | | | - Samantha Grounds
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, United States
| | | | - Mark Levine
- Molecular and Clinical Nutrition Section, NIDDK, NIH, Bethesda, MD, United States
| | | |
Collapse
|
22
|
Keenum MC, Chatterjee P, Atalis A, Pandey B, Jimenez A, Roy K. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 2023; 297:122097. [PMID: 37001347 PMCID: PMC10192313 DOI: 10.1016/j.biomaterials.2023.122097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1β. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.
Collapse
Affiliation(s)
- M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Bhawana Pandey
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA; The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
23
|
Woźnica-Niesobska E, Leśnik P, Janc J, Zalewska M, Łysenko L. The Role of Plasminogen Activator Inhibitor 1 in Predicting Sepsis-Associated Liver Dysfunction: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4846. [PMID: 36981754 PMCID: PMC10049524 DOI: 10.3390/ijerph20064846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Sepsis-associated liver dysfunction (SALD) is associated with a poor prognosis and increased mortality in the intensive care unit. Bilirubin is one of the components of Sequential Organ Failure Assessment used in Sepsis-3 criteria. Hyperbilirubinemia is a late and non-specific symptom of liver dysfunction. This study aimed to identify plasma biomarkers that could be used for an early diagnosis of SALD. This prospective, observational study was conducted on a group of 79 patients with sepsis and septic shock treated in the ICU. Plasma biomarkers-prothrombin time, INR, antithrombin III, bilirubin, aspartate transaminase (AST), alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, albumin, endothelin-1, hepcidin, plasminogen activator inhibitor-1 (PAI-1), thrombin-antithrombin complex, and interferon-gamma inducible protein (10 kDa) were analysed. Plasma samples were obtained within 24 h after having developed sepsis/septic shock. Enrolled patients were followed for 14 days for developing SALD and 28 days for overall survival. A total of 24 patients (30.4%) developed SALD. PAI-1 with a cut-off value of 48.7 ng/mL was shown to be a predictor of SALD (AUC = 0.671, sensitivity 87.3%, and specificity 50.0%) and of 28-day survival in patients with sepsis/septic shock (p = 0.001). Measuring PAI-1 serum levels at the onset of sepsis and septic shock may be useful in predicting the development of SALD. This should be verified in multicenter prospective clinical trials.
Collapse
Affiliation(s)
- Ewa Woźnica-Niesobska
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Patrycja Leśnik
- Department of Anaesthesiology and Intensive Therapy, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Jarosław Janc
- Department of Anaesthesiology and Intensive Therapy, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Małgorzata Zalewska
- Department of Infectious Diseases Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Lidia Łysenko
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
24
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
25
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
26
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
28
|
Reyes J, Yap GS. Emerging Roles of Growth Differentiation Factor 15 in Immunoregulation and Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:5-11. [PMID: 36542831 PMCID: PMC9779231 DOI: 10.4049/jimmunol.2200641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Growth differentiation factor 15 (GDF-15) is a cytokine that is widely used as a biomarker for the severity of diverse disease states. It also has been shown to play a protective role after tissue injury and to promote a negative energy balance during obesity and diabetes. In addition to its metabolic effects, GDF-15 also regulates the host's immune responses to infectious and noninfectious diseases. GDF-15 can suppress a type 1 and, in contrast, promote a type 2 inflammatory response. In this brief review, we discuss how GDF-15 affects the effector function and recruitment of immune cells, the pathways that induce its expression, and the diverse mechanisms by which it is regulated during inflammation and infection. We further highlight outstanding questions that should be the focus of future investigations in this emerging field.
Collapse
Affiliation(s)
- Jojo Reyes
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ 07101
| |
Collapse
|
29
|
Ali A, Salem M. Genome-wide identification of antisense lncRNAs and their association with susceptibility to Flavobacterium psychrophilum in rainbow trout. Front Immunol 2022; 13:1050722. [PMID: 36561762 PMCID: PMC9763276 DOI: 10.3389/fimmu.2022.1050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes encode long noncoding natural antisense transcripts (lncNATs) that have been increasingly recognized as regulatory members of gene expression. Recently, we identified a few antisense transcripts correlating in expression with immune-related genes. However, a systematic genome-wide analysis of lncNATs in rainbow trout is lacking. This study used 134 RNA-Seq datasets from five different projects to identify antisense transcripts. A total of 13,503 lncNATs were identified genome-wide. About 75% of lncNATs showed multiple exons compared to 36.5% of the intergenic lncRNAs. RNA-Seq datasets from resistant, control, and susceptible rainbow trout genetic lines with significant differences in survival rate following Flavobacterium psychrophilum (Fp) infection were analyzed to investigate the potential role of the lncNATs during infection. Twenty-four pairwise comparisons between the different genetic lines, infectious status, and time points revealed 581 differentially expressed (DE) lncNATs and 179 differentially used exons (DUEs). Most of the DE lncNATs strongly and positively correlated in expression with their corresponding sense transcripts across 24 RNA-Seq datasets. LncNATs complementary to genes related to immunity, muscle contraction, proteolysis, and iron/heme metabolism were DE following infection. LncNATs complementary to hemolysis-related genes were DE in the resistant fish compared to susceptible fish on day 5 post-infection, suggesting enhanced clearance of free hemoglobin (Hb) and heme and increased erythropoiesis. LncNATs complementary to hepcidin, a master negative regulator of the plasma iron concentration, were the most downregulated lncNATs on day 5 of bacterial infection in the resistant fish. Ninety-four DE lncNAT, including five complementary to hepcidin, are located within 26 QTL regions previously identified in association with bacterial cold water disease (BCWD) in rainbow trout. Collectively, lncNATs are involved in the molecular architecture of fish immunity and should be further investigated for potential applications in genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
30
|
Bayraktar N, Bayraktar M, Ozturk A, Ibrahim B. Evaluation of the Relationship Between Aquaporin-1, Hepcidin, Zinc, Copper, and İron Levels and Oxidative Stress in the Serum of Critically Ill Patients with COVID-19. Biol Trace Elem Res 2022; 200:5013-5021. [PMID: 36001235 PMCID: PMC9399591 DOI: 10.1007/s12011-022-03400-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Our study aims to determine the relationship between hepcidin, aquaporin (AQP-1), copper (Cu), zinc (Zn), iron (Fe) levels, and oxidative stress in the sera of seriously ill COVID-19 patients with invasive mechanical ventilation. Ninety persons with and without COVID-19 were taken up and separated into two groups. The first group included seriously COVID-19 inpatients having endotracheal intubation in the intensive care unit (n = 45). The second group included individuals who had negative PCR tests and had no chronic disease (the healthy control group n = 45). AQP-1, hepcidin, Zn, Cu, Fe, total antioxidant status (TAS), and total oxidant status (TOS) were studied in the sera of both groups, and the relations of these levels with oxidative stress were determined. When the COVID-19 patient and the control groups were compared, all studied parameters were found to be statistically significant (p < 0.01). Total oxidant status (TOS), oxidative stress index (OSI), and AQP-1, hepcidin, and Cu levels were increased in patients with COVID-19 compared to healthy people. Serum TAC, Zn, and Fe levels were found to be lower in the patient group than in the control group. Significant correlations were detected between the studied parameters in COVID-19 patients. Results indicated that oxidative stress may play an important role in viral infection due to SARS-CoV-2. We think that oxidative stress parameters as well as some trace elements at the onset of COVID-19 disease will provide a better triage in terms of disease severity.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Department of Internal Medical, Faculty of Medicine, Yıdırım Beyazıt University, Ankara, Turkey
| | - Ali Ozturk
- Department of Medical Microbiology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Bashar Ibrahim
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
31
|
Pezzanite LM, Chow L, Strumpf A, Johnson V, Dow SW. Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine. Vet Sci 2022; 9:610. [PMID: 36356087 PMCID: PMC9695672 DOI: 10.3390/vetsci9110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Antimicrobial resistance and biofilm formation both present challenges to treatment of bacterial infections with conventional antibiotic therapy and serve as the impetus for development of improved therapeutic approaches. Mesenchymal stromal cell (MSC) therapy exerts an antimicrobial effect as demonstrated in multiple acute bacterial infection models. This effect can be enhanced by pre-conditioning the MSC with Toll or Nod-like receptor stimulation, termed activated cellular therapy (ACT). The purpose of this review is to summarize the current literature on mechanisms of antimicrobial activity of MSC with emphasis on enhanced effects through receptor agonism, and data supporting use of ACT in treatment of bacterial infections in veterinary species including dogs, cats, and horses with implications for further treatment applications. This review will advance the field's understanding of the use of activated antimicrobial cellular therapy to treat infection, including mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alyssa Strumpf
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Valerie Johnson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Michigan State University, Lansing, MI 48824, USA
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Guilliams M, Scott CL. Liver macrophages in health and disease. Immunity 2022; 55:1515-1529. [PMID: 36103850 DOI: 10.1016/j.immuni.2022.08.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Collapse
Affiliation(s)
- Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Chemical Sciences, Bernal Institute, University of Limerick, Castletroy, County Limerick, Ireland.
| |
Collapse
|
33
|
Hepcidin discriminates sepsis from other critical illness at admission to intensive care. Sci Rep 2022; 12:14857. [PMID: 36050405 PMCID: PMC9434539 DOI: 10.1038/s41598-022-18826-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Initial differential diagnosis and prognosis for patients admitted to intensive care with suspected sepsis remain arduous. Hepcidin has emerged as a potential biomarker for sepsis. Here we report data on the relevance of levels of hepcidin versus other biomarkers as a diagnostic and prognostic tool for sepsis. 164 adult patients admitted to the intensive care unit (ICU) within 24 h upon arrival to the hospital were included. Blood samples collected daily for seven consecutive days and hepcidin levels, heparin binding protein (HBP) levels and standard biomarkers were determined. Blood cultures were initiated at inclusion. Clinical scores were evaluated daily and mortality after 28- and 180-days was recorded. One hundred of the patients were found to fulfil the criteria for sepsis whereas 64 did not. Hepcidin levels at admission were significantly higher in the septic than in the non-septic patients. In septic patients hepcidin levels declined significantly already at 24 h followed by a steady decline. A significant negative correlation was observed between hepcidin levels and SAPS 3 in patients with sepsis. Hepcidin levels at inclusion were significantly higher among septic patients that survived 180-days and predicted mortality. Our data show that hepcidin levels are indicative of sepsis in patients admitted to the ICU and has a prognostic value for mortality.
Collapse
|
34
|
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
35
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
36
|
Mutasa K, Tome J, Rukobo S, Govha M, Mushayanembwa P, Matimba FS, Chiorera CK, Majo FD, Tavengwa NV, Mutasa B, Chasekwa B, Humphrey JH, Ntozini R, Prendergast AJ, Bourke CD. Stunting Status and Exposure to Infection and Inflammation in Early Life Shape Antibacterial Immune Cell Function Among Zimbabwean Children. Front Immunol 2022; 13:899296. [PMID: 35769481 PMCID: PMC9234645 DOI: 10.3389/fimmu.2022.899296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Children who are stunted (length-for-age Z-score<-2) are at greater risk of infectious morbidity and mortality. Previous studies suggest that stunted children have elevated inflammatory biomarkers, but no studies have characterised their capacity to respond to new infections (i.e., their immune function). We hypothesised that antibacterial immune function would differ between stunted and non-stunted children and relate to their health and environment during early life. Methods We enrolled a cross-sectional cohort of 113 HIV-negative children nested within a longitudinal cluster-randomised controlled trial of household-level infant and young child feeding (IYCF) and water, sanitation and hygiene (WASH) interventions in rural Zimbabwe (SHINE; Clinical trials registration: NCT01824940). Venous blood was collected at 18 months of age and cultured for 24 h without antigen or with bacterial antigens: heat-killed Salmonella typhimurium (HKST) or Escherichia coli lipopolysaccharide (LPS). TNFα, IL-6, IL-8, IL-12p70, hepcidin, soluble (s)CD163, myeloperoxidase (MPO) and IFNβ were quantified in culture supernatants by ELISA to determine antigen-specific immune function. The effect of stunting status and early-life exposures (anthropometry, inflammation at 18 months, maternal health during pregnancy, household WASH) on immune function was tested in logit and censored log-normal (tobit) regression models. Results Children who were stunted (n = 44) had higher proportions (86.4% vs. 65.2%; 88.6% vs. 73.4%) and concentrations of LPS-specific IL-6 (geometric mean difference (95% CI): 3.46 pg/mL (1.09, 10.80), p = 0.035) and IL-8 (3.52 pg/mL (1.20, 10.38), p = 0.022) than non-stunted children (n = 69). Bacterial antigen-specific pro-inflammatory cytokine concentrations were associated with biomarkers of child enteropathy at 18 months and biomarkers of systemic inflammation and enteropathy in their mothers during pregnancy. Children exposed to the WASH intervention (n = 33) produced higher LPS- (GMD (95% CI): 10.48 pg/mL (1.84, 60.31), p = 0.008) and HKST-specific MPO (5.10 pg/mL (1.77, 14.88), p = 0.003) than children in the no WASH group (n = 80). There was no difference in antigen-specific immune function between the IYCF (n = 55) and no IYCF groups (n = 58). Conclusions Antibacterial immune function among 18-month-old children in a low-income setting was shaped by their stunting status and prior exposure to maternal inflammation and household WASH. Heterogeneity in immune function due to adverse exposures in early life could plausibly contribute to infection susceptibility.
Collapse
Affiliation(s)
- Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Farai S. Matimba
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Florence D. Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V. Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jean H. Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Andrew J. Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
| | - Claire D. Bourke
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Centre for Genomics and Child Health, Queen Mary University of London, London, United Kingdom
- *Correspondence: Claire D. Bourke,
| |
Collapse
|
37
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Michels K, Solomon AL, Scindia Y, Sordo Vieira L, Goddard Y, Whitten S, Vaulont S, Burdick MD, Atkinson C, Laubenbacher R, Mehrad B. Aspergillus Utilizes Extracellular Heme as an Iron Source During Invasive Pneumonia, Driving Infection Severity. J Infect Dis 2022; 225:1811-1821. [PMID: 35267014 PMCID: PMC9113461 DOI: 10.1093/infdis/jiac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection. METHODS We assessed the effect of heme on fungal phenotype in various in vitro conditions and in a neutropenic mouse model of invasive pulmonary aspergillosis. RESULTS In mice with neutropenic invasive aspergillosis, we found a progressive and compartmentalized increase in lung heme iron. Fungal cells cultured under low iron conditions took up heme, resulting in increased fungal iron content, resolution of iron starvation, increased conidiation, and enhanced resistance to oxidative stress. Intrapulmonary administration of heme to mice with neutropenic invasive aspergillosis resulted in markedly increased lung fungal burden, lung injury, and mortality, whereas administration of heme analogs or heme with killed Aspergillus did not. Finally, infection caused by fungal germlings cultured in the presence of heme resulted in a more severe infection. CONCLUSIONS Invasive aspergillosis induces local hemolysis in infected tissues, thereby supplying heme iron to the fungus, leading to lethal infection.
Collapse
Affiliation(s)
- Kathryn Michels
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Angelica L Solomon
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yogesh Scindia
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Luis Sordo Vieira
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Spencer Whitten
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, Paris, France
| | - Marie D Burdick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Reinhard Laubenbacher
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Iron deficient diets modify the gut microbiome and reduce the severity of enteric infection in a mouse model of S. Typhimurium-induced enterocolitis. J Nutr Biochem 2022; 107:109065. [DOI: 10.1016/j.jnutbio.2022.109065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
|
40
|
Serna-Duque JA, Cuesta A, Esteban MÁ. Massive gene expansion of hepcidin, a host defense peptide, in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 124:563-571. [PMID: 35489593 DOI: 10.1016/j.fsi.2022.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Host defense peptides (HDP) are among the most ancient immune molecules in animals and clearly reflect an ancestral evolutionary history involving pathogen-host interactions. Hepcidins are a very widespread family of HDPs among vertebrates and are especially diverse in teleosts. We have investigated the identification of new hepcidins in gilthead seabream (Sparus aurata), a fish farmed in the Mediterranean. Targeted gene predictions supported with expressed sequence tags (ESTs) derived from Hidden Markov Models were used to find the hamp genes in the seabream genome. The results revealed a massively clustered hamp duplication on chromosome 17. In fact, the seabream genome contains the largest number of hepcidin copies described in any vertebrate. The evolutionary history of hepcidins in seabream, and vertebrates generally, clearly indicates high adaptation in teleosts and novel subgroups within hepcidin type II. Furthermore, basal hepcidin gene expression analysis indicates specific-tissue expression profiles, while the presence and distribution of transcription factor binding sites (TFBS) in hamp promoters as well as their transcription profile upon bacterial challenge indicates different immune roles depending on the type of hepcidin and tissue. This massive duplication of HDP genes in a bony fish could point to a far more specific and adaptive innate immune system than assumed in the classic concept of immunity in mammals. Hence, a new world of knowledge regarding hepcidins in fish and vertebrates is being initiated.
Collapse
Affiliation(s)
- Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
41
|
de Oliveira J, Denadai MB, Costa DL. Crosstalk between Heme Oxygenase-1 and Iron Metabolism in Macrophages: Implications for the Modulation of Inflammation and Immunity. Antioxidants (Basel) 2022; 11:861. [PMID: 35624725 PMCID: PMC9137896 DOI: 10.3390/antiox11050861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.
Collapse
Affiliation(s)
- Joseana de Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Marina B. Denadai
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil; (J.d.O.); (M.B.D.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
42
|
Zhou J, Xu W, Wang J, Fan Z. Related Markers for the Precision Diagnosis of Complex Appendicitis in Children. Front Pharmacol 2022; 13:865303. [PMID: 35431963 PMCID: PMC9010144 DOI: 10.3389/fphar.2022.865303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Acute appendicitis is the most common surgical emergency in children. Despite the high incidence rate of appendicitis, it is sometimes misdiagnosed or missed. Complex appendicitis (CA) in children is characterized by a critical condition, several complications, and high mortality. Precision distinguishing between simple appendicitis and CA correctly is key to choosing appropriate treatment. A safe, cheap, rapid, extensive and accurate diagnostic marker of appendicitis will be of great significance for emergency general surgeons to treat suspected CA. Many studies have investigated possible diagnostic markers for the diagnosis of CA in children. In this study, studies related to CA in children in recent years are summarized, and the related markers and scoring system for the diagnosis of CA in children are summarized.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Wenjing Xu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jitao Wang
- Department of Hepatobiliary Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Zhe Fan
- Department of General Surgery, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People’s Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
44
|
Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, Skugor S, Hawes C, Santander J, Taylor RG, Rise ML. Transcriptome Profiling of Atlantic Salmon ( Salmo salar) Parr With Higher and Lower Pathogen Loads Following Piscirickettsia salmonis Infection. Front Immunol 2022; 12:789465. [PMID: 35035387 PMCID: PMC8758579 DOI: 10.3389/fimmu.2021.789465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. “phagocytosis”, “defense response to bacterium”, “inflammatory response”) and adaptive (e.g. “regulation of T cell activation”, “antigen processing and presentation of exogenous antigen”) immune processes, while a small number of general physiological processes (e.g. “apoptotic process”, development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eva Jakob
- Cargill Innovation Centre - Colaco, Colaco, Chile
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
45
|
The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. J Microbiol 2021; 60:118-127. [PMID: 34964947 DOI: 10.1007/s12275-022-1614-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
The gut microbiome plays an important role in lipid metabolism. Consumption of a high-fat diet (HFD) alters the bacterial communities in the gut, leading to metabolic disorders. Several bacterial species have been associated with diet-induced obesity, nonalcoholic fatty liver disease, and metabolic syndrome. However, the mechanisms underlying the control of lipid metabolism by symbiotic bacteria remain elusive. Here, we show that the human symbiont Bacteroides thetaiotaomicron aggravates metabolic disorders by promoting lipid digestion and absorption. Administration of B. thetaiotaomicron to HFD-fed mice promoted weight gain, elevated fasting glucose levels, and impaired glucose tolerance. Furthermore, B. thetaiotaomicron treatment upregulated the gene expression of the fatty acid transporter and increased fatty acid accumulation in the liver. B. thetaiotaomicron inhibits expression of the gene encoding a lipoprotein lipase inhibitor, angiopoietin-like protein 4 (ANGPTL4), thereby increasing lipase activity in the small intestine. In particular, we found that B. thetaiotaomicron induced the expression of hepcidin, the master regulator of iron metabolism and an antimicrobial peptide, in the liver. Hepcidin treatment resulted in a decrease in ANGPTL4 expression in Caco-2 cells, whereas treatment with an iron chelator restored ANGPTL4 expression in hepcidin-treated cells. These results indicate that B. thetaiotaomicron-mediated regulation of iron storage in intestinal epithelial cells may contribute to increased fat deposition and impaired glucose tolerance in HFD-fed mice.
Collapse
|
46
|
Ortiz-Severín J, Tandberg JI, Winther-Larsen HC, Chávez FP, Cambiazo V. Comparative Analysis of Salmon Cell Lines and Zebrafish Primary Cell Cultures Infection with the Fish Pathogen Piscirickettsia salmonis. Microorganisms 2021; 9:microorganisms9122516. [PMID: 34946119 PMCID: PMC8706985 DOI: 10.3390/microorganisms9122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Piscirickettsia salmonis is the etiologic agent of piscirickettsiosis, a disease that causes significant losses in the salmon farming industry. In order to unveil the pathogenic mechanisms of P. salmonis, appropriate molecular and cellular studies in multiple cell lines with different origins need to be conducted. Toward that end, we established a cell viability assay that is suitable for high-throughput analysis using the alamarBlue reagent to follow the distinct stages of the bacterial infection cycle. Changes in host cell viability can be easily detected using either an absorbance- or fluorescence-based plate reader. Our method accurately tracked the infection cycle across two different Atlantic salmon-derived cell lines, with macrophage and epithelial cell properties, and zebrafish primary cell cultures. Analyses were also carried out to quantify intracellular bacterial replication in combination with fluorescence microscopy to visualize P. salmonis and cellular structures in fixed cells. In addition, dual gene expression analysis showed that the pro-inflammatory cytokines IL-6, IL-12, and TNFα were upregulated, while the cytokines IL1b and IFNγ were downregulated in the three cell culture types. The expression of the P. salmonis metal uptake and heme acquisition genes, together with the toxin and effector genes ospD3, ymt, pipB2 and pepO, were upregulated at the early and late stages of infection regardless of the cell culture type. On the other hand, Dot/Icm secretion system genes as well as stationary state and nutrient scarcity-related genes were upregulated only at the late stage of P. salmonis intracellular infection. We propose that these genes encoding putative P. salmonis virulence factors and immune-related proteins could be suitable biomarkers of P. salmonis infection. The infection protocol and cell viability assay described here provide a reliable method to compare the molecular and cellular changes induced by P. salmonis in other cell lines and has the potential to be used for high-throughput screenings of novel antimicrobials targeting this important fish intracellular pathogen.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
| | - Julia I. Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Hanne C. Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, 0316 Oslo, Norway; (J.I.T.); (H.C.W.-L.)
- Department of Pharmacology and Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Francisco P. Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.O.-S.); (F.P.C.)
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830489, Chile
- Fondap Center for Genome Regulation, Universidad de Chile, Santiago 8370415, Chile
- Correspondence:
| |
Collapse
|
47
|
Nascimento CS, Alves ÉAR, de Melo CP, Corrêa-Oliveira R, Calzavara-Silva CE. Immunotherapy for cancer: effects of iron oxide nanoparticles on polarization of tumor-associated macrophages. Nanomedicine (Lond) 2021; 16:2633-2650. [PMID: 34854309 DOI: 10.2217/nnm-2021-0255] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy is the most promising trend in oncology, focusing on helping or activating the patient's immune system to identify and fight against cancer. In the last decade, interest in metabolic reprogramming of tumor-associated macrophages from M2-like phenotype (promoting tumor progression) to M1-like phenotypes (suppressing tumor growth) as a therapeutic strategy against cancer has increased considerably. Iron metabolism has been standing out as a target for the reprogramming of tumor-associated macrophages to M1-like phenotype with therapeutic purposes against cancer. Due to the importance of the iron levels in macrophage polarization states, iron oxide nanoparticles can be used to change the activation state of tumor-associated macrophages for a tumor suppressor phenotype and as an anti-tumor strategy.
Collapse
Affiliation(s)
- Camila Sales Nascimento
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto - Belo Horizonte-MG , 30190-002, Brazil
| | - Érica Alessandra Rocha Alves
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto - Belo Horizonte-MG , 30190-002, Brazil
| | - Celso Pinto de Melo
- Grupo de Polímeros Não-Convencionais, Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE , 50670-901, Brazil
| | - Rodrigo Corrêa-Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto - Belo Horizonte-MG , 30190-002, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto - Belo Horizonte-MG , 30190-002, Brazil
| |
Collapse
|
48
|
Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2021; 149:155742. [PMID: 34688020 DOI: 10.1016/j.cyto.2021.155742] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 is produced locally in response to an inflammatory stimulus, and is able to induce systemic manifestations at distance from the site of inflammation. Its unique signaling mechanism, including classical and trans-signaling pathways, leads to a major expansion in the number of cell types responding to IL-6. This pleiotropic cytokine is a key factor in the pathogenesis of rheumatoid arthritis (RA) and is involved in many extra-articular manifestations that accompany the disease. Thus, IL-6 blockade is associated with various biological effects beyond the joints. In this review, the systemic effects of IL-6 in RA comorbidities and the consequences of its blockade will be discussed, including anemia of chronic disease, cardiovascular risks, bone and muscle functions, and neuro-psychological manifestations.
Collapse
Affiliation(s)
- Matthias Jarlborg
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; VIB-UGent Center for Inflammation Research and Ghent University, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
49
|
Tofacitinib Suppresses IL-10/IL-10R Signaling and Modulates Host Defense Responses in Human Macrophages. J Invest Dermatol 2021; 142:559-570.e6. [PMID: 34536483 DOI: 10.1016/j.jid.2021.07.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Jak inhibitors are increasingly used in dermatology. Despite broad inhibitory effects on cytokine signaling cascades, they only modestly increase the risk for infectious diseases. To address the molecular mechanisms underlying this unexpected clinical observation, we investigated how tofacintib (tofa), a first-in-class Jak inhibitor, regulates host defense responses in toll-like receptor 4-activated human macrophages. Specifically, we asked whether tofa inhibits anti-inflammatory IL-10 signaling, thereby counteracting the downregulation of inflammatory, host-protective pathways. We found that tofa blocked macrophage responses to IL-10 at the level of signal transducer and activator of transcription 3 phosphorylation. Furthermore, toll-like receptor 4-induced, autocrine/paracrine IL-10/IL-10R activation promoted the expression of hepcidin, the master regulator of iron metabolism, resulting in intracellular iron sequestration. In contrast, autocrine/paracrine IL-10/IL-10R activation repressed the expression of cathelicidin antimicrobial peptide as well as antigen-presenting molecules, thus together, inducing a pathogen-favoring environment. Although tofa further repressed cathelicidin, it prevented the induction of intracellular HAMP and restored the expression of antigen-presentation molecules in toll-like receptor 4-activated macrophages. Our study supports the concept that induction of IL-10/IL-10R signaling drives a complex immune evasion strategy of intracellular microbes. Moreover, we conclude that tofa has diverging effects on macrophage host response pathways, and we identify the toll-like receptor 4-IL-10-signal transducer and activator of transcription 3-HAMP axis as a potential therapeutic target to counteract immune evasion.
Collapse
|
50
|
Hayford FEA, Dolman RC, Ozturk M, Nienaber A, Ricci C, Loots DT, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status. Front Nutr 2021; 8:695452. [PMID: 34504860 PMCID: PMC8421789 DOI: 10.3389/fnut.2021.695452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 02/02/2023] Open
Abstract
Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n-3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Post-infection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Pro-inflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1α (p = 0.039), MCP1 (p = 0.003), MIP1- α (p = 0.043), and RANTES (p = 0.034); were lower, and the anti-inflammatory cytokine IL-4 (p = 0.002) and growth factor GMCSF (p = 0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Renée Blaauw
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|