1
|
Halvorsen S, Thomas M, Mino-Kenudson M, Kinowaki Y, Burke KE, Morgan D, Miller KC, Williams KM, Gurung J, McGoldrick J, Hopton M, Hoppe B, Samanta N, Martin S, Tirard A, Arnold BY, Tantivit J, Yarze J, Staller K, Chung DC, Villani AC, Sassi S, Khalili H. Single-cell transcriptomic characterization of microscopic colitis. Nat Commun 2025; 16:4618. [PMID: 40383833 PMCID: PMC12086216 DOI: 10.1038/s41467-025-59648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Microscopic colitis (MC) is a chronic inflammatory disease of the large intestine and a common cause of chronic diarrhea in older adults. Here, we use single-cell RNA sequencing analysis of colonic mucosal tissue to build a cellular and molecular model for MC. Our results show that in MC, there is a substantial expansion of tissue CD8+ T cells, likely arising from local expansion following T cell receptor engagement. Within the T cell compartment, MC is characterized by a shift in CD8 tissue-resident memory T cells towards a highly cytotoxic and inflammatory phenotype and expansion of CD4+ T regulatory cells. These results provide insight into inflammatory cytokines shaping MC pathogenesis and highlight notable similarities and differences with other immune-mediated intestinal diseases, including a common upregulation of IL26 and an MC-specific upregulation of IL10. These data help identify targets against enteric T cell subsets as an effective strategy for treatment of MC.
Collapse
Affiliation(s)
- Stefan Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Molly Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, HMS, MGH, Boston, MA, USA
| | | | - Kristin E Burke
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - David Morgan
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - Kaia C Miller
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
- Department of Medicine, Duke University Health System, NC, Durham, USA
| | | | - Jenny Gurung
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | | | - Megan Hopton
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Brooke Hoppe
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sidney Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Joseph Yarze
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Kyle Staller
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - Daniel C Chung
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
| | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Orthopedic Surgery, MGH, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA.
- Institute of Environmental Medicine, Nutrition Epidemiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Gao S, Yi X, Gao X, Long Z, Guo J, Xia G, Shen X. Stabilization of β-Carotene Liposomes with Chitosan-Lactoferrin Coating System: Vesicle Properties and Anti-Inflammatory In Vitro Studies. Foods 2025; 14:968. [PMID: 40231987 PMCID: PMC11941038 DOI: 10.3390/foods14060968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Liposomes serve as an effective delivery system capable of encapsulating a variety of bioactive substances. However, their structural integrity is susceptible to damage from various environmental factors, which can result in the leakage of the encapsulated bioactive agents. Consequently, identifying effective strategies to enhance the stability of liposomes has become a central focus of contemporary liposome research. Surface modification, achieved by introducing a protective layer on the liposome surface, effectively reduces liposome aggregation and enhances their stability. To this end, we designed a surface modification and constructed liposomes loaded with β-carotene through co-modification with chitosan and lactoferrin, resulting in enhanced stability. This improvement was evident in terms of storage stability, light stability, and in vitro digestion stability. The study investigated the morphology, structure, and physicochemical properties of liposomes with varying degrees of modification. CS-LF co-modified liposomes exhibited significant structural changes, with particle size increasing from 257.9 ± 6.2 nm to 580.5 ± 21.5 nm, and zeta potential shifting from negative to +48.9 ± 1.3 mV. Chitosan and lactoferrin were modified on the liposome surface through electrostatic interactions and hydrogen bonding, forming a dense protective barrier on the lipid membrane. Physicochemical analysis indicated that chitosan-lactoferrin co-modification led to a more ordered arrangement of the phospholipid bilayer, reduced membrane fluidity, and increased membrane rigidity. The interactions between chitosan, lactoferrin, and phospholipids were enhanced through hydrogen bonding, resulting in a denser surface membrane structure. This structural integrity reduced membrane permeability and improved the stability of liposomes under storage conditions, UV irradiation, and in vitro digestion. Additionally, co-modified chitosan-lactoferrin liposomes effectively alleviated lipopolysaccharide-induced inflammatory damage in mouse microglial cells by increasing cellular uptake capacity, thereby enhancing the bioavailability of β-carotene. The results of this study demonstrate that chitosan-lactoferrin co-modification significantly enhances the stability of liposomes and the bioavailability of β-carotene. These findings may contribute to the development of multi-substance co-modified liposome systems, providing a more stable transport mechanism for various compounds.
Collapse
Affiliation(s)
- Shuxin Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China;
| | - Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Zhengsen Long
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Jingfeng Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (S.G.); (X.G.); (Z.L.); (J.G.); (G.X.)
- School of Food Science and Engineering, Hainan Tropic Ocean University, Sanya 572022, China;
| |
Collapse
|
3
|
Abou‐Daya KI, Moussawy MA, Kubo M, Lu L, Perez‐Gutierrez A, Ezzelarab MB. Distinct Pro-Inflammatory Species-Specific Transcriptional Changes in Human T Cells Following Pig Xenogeneic Stimulation. Xenotransplantation 2024; 31:e70007. [PMID: 39679658 PMCID: PMC11648065 DOI: 10.1111/xen.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 12/17/2024]
Abstract
Conventional T cell-directed immunosuppression is the mainstay of standard-of-care therapy to prevent graft rejection in clinical organ transplantation. However, it remains ineffective in preventing experimental and clinical organ xenograft rejection. Here, we explored the impact of allogeneic versus xenogeneic antigen stimulation on human T cell responses and gene profile. A comparable proliferative human T cell response was observed in vitro following stimulation with either human or pig cells. Yet, elevated High mobility group box-1 (HMGB1) levels were following xenogeneic but not allogeneic stimulation, suggesting a pro-inflammatory response. Next, human peripheral blood mononuclear cells (PBMC) were cultured with allogeneic human, "concordant" xenogeneic monkey, or "discordant" xenogeneic pig, intact cells, or cell lysates. Flow-sorted CD3+T cells were analyzed for gene expression using NanoString. A distinct pro-inflammatory gene profile was observed in human CD3+T cells following co-culture with discordant xenogeneic pig cells, but not concordant xenogeneic monkey cells or allogeneic human cells. Uniquely, stimulation with pig cells induced the expression of the transcription factor NCF4, which promotes inflammasome activation. Pig cell lysate, but not intact pig cells, induced high expression of the DNA-binding cytokine interleukin-26 gene. Collectively, these observations highlight the impact of xenogeneic stimulation of human T cells in pig xenograft recipients and concomitant inflammatory responses, which may contribute to immunosuppression-resistant xenograft rejection. Finally, the impact of genetic engineering of donor pigs on human T cell transcriptomic gene profile is yet to be determined.
Collapse
Affiliation(s)
- Khodor I. Abou‐Daya
- The Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Mouhamad Al Moussawy
- The Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Masahiko Kubo
- The Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Lien Lu
- The Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | | | - Mohamed B. Ezzelarab
- The Thomas E. Starzl Transplantation InstituteUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Huang K, Zhou H, Chen M, Chen R, Wang X, Chen Q, Shi Z, Liang Y, Yu L, Ouyang P, Li L, Jiang D, Xu G. Interleukin-26 expression in tuberculosis disease and its regulatory effect in macrophage polarization and intracellular elimination of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1455819. [PMID: 39431054 PMCID: PMC11486762 DOI: 10.3389/fcimb.2024.1455819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Tuberculosis(TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infections, remains the leading cause of mortality from a single infectious agent globally. The progression of tuberculosis disease is contingent upon the complex interplay between the host's immune system and the pathogen Mtb. Interleukin-26 (IL-26), the most recently identified cytokine belonging to the IL-10 family, exhibits both extracellular antimicrobial properties and pro-inflammatory functions. However, the precise role of IL-26 in the host immune defense against Mtb infections and intracellular killing remains largely unexplored. In this study, we observed significantly elevated IL-26 mRNA expression in peripheral blood mononuclear cells of active-TB patients compared to healthy individuals. Conversely, circulating IL-26 levels in the plasma of adult TB patients were markedly lower than those of healthy cohorts. We purified recombinant IL-26 from an E. coli expression system using the Ni-NTA resin. Upon stimulations with the recombinant IL-26, human THP1 cells exhibited rapid morphological changes characterized by increased irregular spindle shape and formation of granular structures. Treating THP1 cells with IL-26 can also lead to heightened expressions of CD80, TNF-α, and iNOS but not CD206 and Arg1 in these cells, indicating an M1 macrophage differentiation phenotype. Furthermore, our investigations revealed a dose-dependent escalation of reactive oxygen species production, decreased mitochondrial membrane potential, and enhanced autophagy flux activity in THP1 macrophages following IL-26 treatment. Moreover, our results demonstrated that IL-26 contributed to the elimination of intracellular Mycobacterium tuberculosis via orchestrated ROS production. In conclusion, our findings elucidated the role of IL-26 in the development of tuberculosis and its contributions to intracellular bacilli killing by macrophages through the induction of M1-polarization and ROS production. These insights may have significant implications for understanding the pathogenesis of tuberculosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Haijin Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Mei Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiaoping Wang
- Reference Lab, Fourth People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Chen
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhiyun Shi
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Binhaiwan Central Hospital, Dongguan, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Lv Y, Yang L, Mao Z, Zhou M, Zhu B, Chen Y, Ding Z, Zhou F, Ye Y. Tetrastigma hemsleyanum polysaccharides alleviate imiquimod-induced psoriasis-like skin lesions in mice by modulating the JAK/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155917. [PMID: 39153275 DOI: 10.1016/j.phymed.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.
Collapse
Affiliation(s)
- Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Yujian Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
6
|
Muñiz P, Martínez-García M, Bailén R, Chicano M, Oarbeascoa G, Triviño JC, de la Iglesia-San Sebastian I, Fernández de Córdoba S, Anguita J, Kwon M, Díez-Martín JL, Olmos PM, Martínez-Laperche C, Buño I. Identification of predictive models including polymorphisms in cytokines genes and clinical variables associated with post-transplant complications after identical HLA-allogeneic stem cell transplantation. Front Immunol 2024; 15:1396284. [PMID: 39247183 PMCID: PMC11377344 DOI: 10.3389/fimmu.2024.1396284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Backgrounds Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies, it can be associated with relevant post-transplant complications. Several reports have shown that polymorphisms in immune system genes are correlated with the development of post-transplant complications. Within this context, this work focuses on identifying novel polymorphisms in cytokine genes and developing predictive models to anticipate the risk of developing graft-versus-host disease (GVHD), transplantation-related mortality (TRM), relapse and overall survival (OS). Methods Our group developed a 132-cytokine gene panel which was tested in 90 patients who underwent an HLA-identical sibling-donor allo-HSCT. Bayesian logistic regression (BLR) models were used to select the most relevant variables. Based on the cut-off points selected for each model, patients were classified as being at high or low-risk for each of the post-transplant complications (aGVHD II-IV, aGVHD III-IV, cGVHD, mod-sev cGVHD, TRM, relapse and OS). Results A total of 737 polymorphisms were selected from the custom panel genes. Of these, 41 polymorphisms were included in the predictive models in 30 cytokine genes were selected (17 interleukins and 13 chemokines). Of these polymorphisms, 5 (12.2%) were located in coding regions, and 36 (87.8%) in non-coding regions. All models had a statistical significance of p<0.0001. Conclusion Overall, genomic polymorphisms in cytokine genes make it possible to anticipate the development all complications studied following allo-HSCT and, consequently, to optimize the clinical management of patients.
Collapse
Affiliation(s)
- Paula Muñiz
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - María Martínez-García
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Signal Theory and Communications, University Carlos III of Madrid, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - María Chicano
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Gillen Oarbeascoa
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | | | - Ismael de la Iglesia-San Sebastian
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Sara Fernández de Córdoba
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - José Luis Díez-Martín
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pablo M Olmos
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Department of Signal Theory and Communications, University Carlos III of Madrid, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
- Signal Theory and Communications Department, School of Engineering, Carlos III University, Leganés, Madrid, Spain
- Genomics Unit, Gregorio Marañón General University Hospital, IiSGM, Madrid, Spain
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Cammayo-Fletcher PLT, Flores RA, Nguyen BT, Altanzul B, Fernandez-Colorado CP, Kim WH, Devi RM, Kim S, Min W. Identification of Critical Immune Regulators and Potential Interactions of IL-26 in Riemerella anatipestifer-Infected Ducks by Transcriptome Analysis and Profiling. Microorganisms 2024; 12:973. [PMID: 38792803 PMCID: PMC11123779 DOI: 10.3390/microorganisms12050973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Riemerella anatipestifer (RA) is an economically important pathogen in the duck industry worldwide that causes high mortality and morbidity in infected birds. We previously found that upregulated IL-17A expression in ducks infected with RA participates in the pathogenesis of the disease, but this mechanism is not linked to IL-23, which primarily promotes Th17 cell differentiation and proliferation. RNA sequencing analysis was used in this study to investigate other mechanisms of IL-17A upregulation in RA infection. A possible interaction of IL-26 and IL-17 was discovered, highlighting the potential of IL-26 as a novel upstream cytokine that can regulate IL-17A during RA infection. Additionally, this process identified several important pathways and genes related to the complex networks and potential regulation of the host immune response in RA-infected ducks. Collectively, these findings not only serve as a roadmap for our understanding of RA infection and the development of new immunotherapeutic approaches for this disease, but they also provide an opportunity to understand the immune system of ducks.
Collapse
Affiliation(s)
- Paula Leona T. Cammayo-Fletcher
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Bujinlkham Altanzul
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Rajkumari Mandakini Devi
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (1), Jalukie 797110, India;
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (P.L.T.C.-F.); (R.A.F.); (B.T.N.); (B.A.); (W.H.K.); (S.K.)
| |
Collapse
|
8
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
9
|
Al-Qahtani AA, Alhamlan FS, Al-Qahtani AA. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop Med Infect Dis 2024; 9:13. [PMID: 38251210 PMCID: PMC10818686 DOI: 10.3390/tropicalmed9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024] Open
Abstract
Interleukins (ILs) are signaling molecules that are crucial in regulating immune responses during infectious diseases. Pro-inflammatory ILs contribute to the activation and recruitment of immune cells, whereas anti-inflammatory ILs help to suppress excessive inflammation and promote tissue repair. Here, we provide a comprehensive overview of the role of pro-inflammatory and anti-inflammatory ILs in infectious diseases, with a focus on the mechanisms underlying their effects, their diagnostic and therapeutic potential, and emerging trends in IL-based therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Qahtani
- Department of Family Medicine, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Ahmed Ali Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
10
|
Yang Y, Zhu X, Liu Y, Xu N, Kong W, Ai X, Zhang H. Effect of Agaricus bisporus Polysaccharides (ABPs) on anti-CCV immune response of channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109051. [PMID: 37689228 DOI: 10.1016/j.fsi.2023.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
11
|
Wang YH, Peng YJ, Liu FC, Lin GJ, Huang SH, Sytwu HK, Cheng CP. Interleukin 26 Induces Macrophage IL-9 Expression in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087526. [PMID: 37108686 PMCID: PMC10139149 DOI: 10.3390/ijms24087526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with chronic inflammation, bone erosion, and joint deformation. Synovial tissue in RA patients is full of proinflammatory cytokines and infiltrated immune cells, such as T help (Th) 9, Th17, macrophages, and osteoclasts. Recent reports emphasized a new member of the interleukin (IL)-10 family, IL-26, an inducer of IL-17A that is overexpressed in RA patients. Our previous works found that IL-26 inhibits osteoclastogenesis and conducts monocyte differentiation toward M1 macrophages. In this study, we aimed to clarify the effect of IL-26 on macrophages linking to Th9 and Th17 in IL-9 and IL-17 expression and downstream signal transduction. Murine and human macrophage cell lines and primary culture cells were used and stimulated by IL26. Cytokines expressions were evaluated by flow cytometry. Signal transduction and transcription factors expression were detected by Western blot and real time-PCR. Our results show that IL-26 and IL-9 colocalized in macrophage in RA synovium. IL-26 directly induces macrophage inflammatory cytokines IL-9 and IL-17A expression. IL-26 increases the IL-9 and IL-17A upstream mechanisms IRF4 and RelB expression. Moreover, the AKT-FoxO1 pathway is also activated by IL-26 in IL-9 and IL-17A expressing macrophage. Blockage of AKT phosphorylation enhances IL-26 stimulating IL-9-producing macrophage cells. In conclusion, our results support that IL-26 promotes IL-9- and IL-17-expressing macrophage and might initiate IL-9- and IL-17-related adaptive immunity in rheumatoid arthritis. Targeting IL-26 may a potential therapeutic strategy for rheumatoid arthritis or other IL-9 plus IL-17 dominant diseases.
Collapse
Affiliation(s)
- Yi-Hsun Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gu-Jiun Lin
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shing-Hwa Huang
- Division of Breast Surgery, Department of Surgery, New Taipei City Hospital, New Taipei City 241204, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Pi Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
12
|
Adel-Patient K, Campeotto F, Grauso M, Guillon B, Moroldo M, Venot E, Dietrich C, Machavoine F, Castelli FA, Fenaille F, Molina TJ, Barbet P, Delacourt C, Leite-de-Moraes M, Lezmi G. Assessment of local and systemic signature of eosinophilic esophagitis (EoE) in children through multi-omics approaches. Front Immunol 2023; 14:1108895. [PMID: 37006253 PMCID: PMC10050742 DOI: 10.3389/fimmu.2023.1108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundEosinophilic oesophagitis (EoE) is a chronic food allergic disorder limited to oesophageal mucosa whose pathogenesis is still only partially understood. Moreover, its diagnosis and follow-up need repeated endoscopies due to absence of non-invasive validated biomarkers. In the present study, we aimed to deeply describe local immunological and molecular components of EoE in well-phenotyped children, and to identify potential circulating EoE-biomarkers.MethodsBlood and oesophageal biopsies were collected simultaneously from French children with EoE (n=17) and from control subjects (n=15). Untargeted transcriptomics analysis was performed on mRNA extracted from biopsies using microarrays. In parallel, we performed a comprehensive analysis of immune components on both cellular and soluble extracts obtained from both biopsies and blood, using flow cytometry. Finally, we performed non-targeted plasma metabolomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Uni/multivariate supervised and non-supervised statistical analyses were then conducted to identify significant and discriminant components associated with EoE within local and/or systemic transcriptomics, immunologic and metabolomics datasets. As a proof of concept, we conducted multi-omics data integration to identify a plasmatic signature of EoE.ResultsFrench children with EoE shared the same transcriptomic signature as US patients. Network visualization of differentially expressed (DE) genes highlighted the major dysregulation of innate and adaptive immune processes, but also of pathways involved in epithelial cells and barrier functions, and in perception of chemical stimuli. Immune analysis of biopsies highlighted EoE is associated with dysregulation of both type (T) 1, T2 and T3 innate and adaptive immunity, in a highly inflammatory milieu. Although an immune signature of EoE was found in blood, untargeted metabolomics more efficiently discriminated children with EoE from control subjects, with dysregulation of vitamin B6 and various amino acids metabolisms. Multi-blocks integration suggested that an EoE plasma signature may be identified by combining metabolomics and cytokines datasets.ConclusionsOur study strengthens the evidence that EoE results from alterations of the oesophageal epithelium associated with altered immune responses far beyond a simplistic T2 dysregulation. As a proof of concept, combining metabolomics and cytokines data may provide a set of potential plasma biomarkers for EoE diagnosis, which needs to be confirmed on a larger and independent cohort.
Collapse
Affiliation(s)
- Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
- *Correspondence: Karine Adel-Patient, ; Guillaume Lezmi,
| | - Florence Campeotto
- AP-HP, Hôpital Necker-Enfants Malades, Service de Gastro-Entérologie et Nutrition Pédiatriques, Paris, France
- Université de Paris Cité, INSERM UMR1139, Laboratoire de Microbiologie, Faculté de Pharmacie, Paris, France
| | - Marta Grauso
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Blanche Guillon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Eric Venot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Céline Dietrich
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - François Machavoine
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - Florence A. Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Thierry Jo Molina
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France
- AP-HP, Centre-Université de Paris, hôpital Necker-Enfant-Malades, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Patrick Barbet
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France
- AP-HP, Centre-Université de Paris, hôpital Necker-Enfant-Malades, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
- *Correspondence: Karine Adel-Patient, ; Guillaume Lezmi,
| |
Collapse
|
13
|
Luciani LL, Miller LM, Zhai B, Clarke K, Hughes Kramer K, Schratz LJ, Balasubramani GK, Dauer K, Nowalk MP, Zimmerman RK, Shoemaker JE, Alcorn JF. Blood Inflammatory Biomarkers Differentiate Inpatient and Outpatient Coronavirus Disease 2019 From Influenza. Open Forum Infect Dis 2023; 10:ofad095. [PMID: 36949873 PMCID: PMC10026548 DOI: 10.1093/ofid/ofad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Background The ongoing circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a diagnostic challenge because symptoms of coronavirus disease 2019 (COVID-19) are difficult to distinguish from other respiratory diseases. Our goal was to use statistical analyses and machine learning to identify biomarkers that distinguish patients with COVID-19 from patients with influenza. Methods Cytokine levels were analyzed in plasma and serum samples from patients with influenza and COVID-19, which were collected as part of the Centers for Disease Control and Prevention's Hospitalized Adult Influenza Vaccine Effectiveness Network (inpatient network) and the US Flu Vaccine Effectiveness (outpatient network). Results We determined that interleukin (IL)-10 family cytokines are significantly different between COVID-19 and influenza patients. The results suggest that the IL-10 family cytokines are a potential diagnostic biomarker to distinguish COVID-19 and influenza infection, especially for inpatients. We also demonstrate that cytokine combinations, consisting of up to 3 cytokines, can distinguish SARS-CoV-2 and influenza infection with high accuracy in both inpatient (area under the receiver operating characteristics curve [AUC] = 0.84) and outpatient (AUC = 0.81) groups, revealing another potential screening tool for SARS-CoV-2 infection. Conclusions This study not only reveals prospective screening tools for COVID-19 infections that are independent of polymerase chain reaction testing or clinical condition, but it also emphasizes potential pathways involved in disease pathogenesis that act as potential targets for future mechanistic studies.
Collapse
Affiliation(s)
- Lauren L Luciani
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leigh M Miller
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo Zhai
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karen Clarke
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kailey Hughes Kramer
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucas J Schratz
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - G K Balasubramani
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Klancie Dauer
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Patricia Nowalk
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard K Zimmerman
- Department of Family Medicine and Clinical Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Balato A, Scala E, Eyerich K, Brembilla NC, Chiricozzi A, Sabat R, Ghoreschi K. Management of Infections in Psoriatic Patients Treated with Systemic Therapies: A Lesson from the Immunopathogenesis of Psoriasis. Dermatol Pract Concept 2023; 13:dpc.1301a16. [PMID: 36892377 PMCID: PMC9946081 DOI: 10.5826/dpc.1301a16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Modern treatments continue to be developed based on identifying targets within the innate and adaptive immune pathways associated with psoriasis. Whilst there is a sound biologic rationale for increased risk of infection following treatment with immunomodulators, the clinical evidence is confounded by these agents being used in patients affected with several comorbidities. In an era characterized by an ever greater and growing risk of infections, it is necessary to always be updated on this risk. In this mini-review, we will discuss recent updates in psoriasis immunopathogenesis as a rationale for systemic therapy, outline the risk of infections linked to the disease itself and systemic therapy as well, and provide an overview of the prevention and management of infections.
Collapse
Affiliation(s)
- Anna Balato
- Dermatology Unit, University of Campania, Naples, Italy
| | - Emanuele Scala
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Dermatology and Venereology, Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Robert Sabat
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin, Berlin, Germany.,Psoriasis Research and Treatment Center, Department of Dermatology and Allergy and Institute of Medical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
15
|
Meermeier EW, Zheng CL, Tran JG, Soma S, Worley AH, Weiss DI, Modlin RL, Swarbrick G, Karamooz E, Khuzwayo S, Wong EB, Gold MC, Lewinsohn DM. Human lung-resident mucosal-associated invariant T cells are abundant, express antimicrobial proteins, and are cytokine responsive. Commun Biol 2022; 5:942. [PMID: 36085311 PMCID: PMC9463188 DOI: 10.1038/s42003-022-03823-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells are an innate-like T cell subset that recognize a broad array of microbial pathogens, including respiratory pathogens. Here we investigate the transcriptional profile of MAIT cells localized to the human lung, and postulate that MAIT cells may play a role in maintaining homeostasis at this mucosal barrier. Using the MR1/5-OP-RU tetramer, we identified MAIT cells and non-MAIT CD8+ T cells in lung tissue not suitable for transplant from human donors. We used RNA-sequencing of MAIT cells compared to non-MAIT CD8+ T cells to define the transcriptome of MAIT cells in the human lung. We show that, as a population, lung MAIT cells are polycytotoxic, secrete the directly antimicrobial molecule IL-26, express genes associated with persistence, and selectively express cytokine and chemokine- related molecules distinct from other lung-resident CD8+ T cells, such as interferon-γ- and IL-12- receptors. These data highlight MAIT cells' predisposition to rapid pro-inflammatory cytokine responsiveness and antimicrobial mechanisms in human lung tissue, concordant with findings of blood-derived counterparts, and support a function for MAIT cells as early sensors in the defense of respiratory barrier function.
Collapse
Affiliation(s)
- Erin W Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Christina L Zheng
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jessica G Tran
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Shogo Soma
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Aneta H Worley
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - David I Weiss
- David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gwendolyn Swarbrick
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Sharon Khuzwayo
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Emily B Wong
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | - Marielle C Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - David M Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
16
|
Medovic MV, Jakovljevic VL, Zivkovic VI, Jeremic NS, Jeremic JN, Bolevich SB, Ravic Nikolic AB, Milicic VM, Srejovic IM. Psoriasis between Autoimmunity and Oxidative Stress: Changes Induced by Different Therapeutic Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2249834. [PMID: 35313642 PMCID: PMC8934232 DOI: 10.1155/2022/2249834] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
Psoriasis is defined as chronic, immune-mediated disease. Regardless of the development of new therapeutic approaches, the precise etiology of psoriasis remains unknown and speculative. The aim of this review was to systematize the results of previous research on the role of oxidative stress and aberrant immune response in the pathogenesis of psoriasis, as well as the impact of certain therapeutic modalities on the oxidative status in patients with psoriasis. Complex immune pathways of both the innate and adaptive immune systems appear to be major pathomechanisms in the development of psoriasis. Oxidative stress represents another important contributor to the pathophysiology of disease, and the redox imbalance in psoriasis has been reported in skin cells and, systemically, in plasma and blood cells, and more recently, also in saliva. Current immune model of psoriasis begins with activation of immune system in susceptible person by some environmental factor and loss of immune tolerance to psoriasis autoantigens. Increased production of IL-17 appears to be the most prominent role in psoriasis pathogenesis, while IL-23 is recognized as master regulator in psoriasis having a specific role in cross bridging the production of IL-17 by innate and acquired immunity. Other proinflammatory cytokines, including IFN-γ, TNF-α, IL-1β, IL-6, IL-22, IL-26, IL-29, or IL-36, have also been reported to play important roles in the development of psoriasis. Oxidative stress can promote inflammation through several signaling pathways. The most noticeable and most powerful antioxidative effects exert various biologics compared to more convenient therapeutic modalities, such as methotrexate or phototherapy. The complex interaction of redox, immune, and inflammatory signaling pathways should be focused on further researches tackling the pathophysiology of psoriasis, while antioxidative supplementation could be the solution in some refractory cases of the disease.
Collapse
Affiliation(s)
- Marija V. Medovic
- Department of Dermatovenerology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University, Department of Human Pathophysiology, Moscow, Russian Federation, Trubetskaya Str. 2, 119992 Moscow, Russia
| | - Vladimir I. Zivkovic
- Department of Physiology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena S. Jeremic
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Jovana N. Jeremic
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- I.M. Sechenov First Moscow State Medical University, Department of Human Pathophysiology, Moscow, Russian Federation, Trubetskaya Str. 2, 119992 Moscow, Russia
| | - Ana B. Ravic Nikolic
- Department of Dermatovenerology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Vesna M. Milicic
- Department of Dermatovenerology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, Zmaj Jovina 30, 34000 Kragujevac, Serbia
| | - Ivan M. Srejovic
- Department of Physiology, University of Kragujevac, Faculty of Medical Sciences, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
17
|
Peng V, Jaeger N, Colonna M. Innate Lymphoid Cells and Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:97-112. [DOI: 10.1007/978-981-16-8387-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Che KF, Paulsson M, Piersiala K, Sax J, Mboob I, Rahman M, Rekha RS, Säfholm J, Adner M, Bergman P, Cardell LO, Riesbeck K, Lindén A. Complex Involvement of Interleukin-26 in Bacterial Lung Infection. Front Immunol 2021; 12:761317. [PMID: 34777376 PMCID: PMC8581676 DOI: 10.3389/fimmu.2021.761317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023] Open
Abstract
Pneumonia is a global cause of mortality, and this provides a strong incentive to improve the mechanistic understanding of innate immune responses in the lungs. Here, we characterized the involvement of the cytokine interleukin (IL)-26 in bacterial lung infection. We observed markedly increased concentrations of IL-26 in lower airway samples from patients with bacterial pneumonia and these correlated with blood neutrophil concentrations. Moreover, pathogen-associated molecular patterns (PAMPs) from both Gram-negative and -positive bacteria increased extracellular IL-26 concentrations in conditioned media from human models of alveolar epithelial cells, macrophages, and neutrophils in vitro. Stimulation with IL-26 inhibited the inherent release of neutrophil elastase and myeloperoxidase in unexposed neutrophils. This stimulation also inhibited the expression of activity makers in neutrophils exposed to Klebsiella pneumoniae. In addition, priming of human lung tissue ex vivo with exogenous IL-26 potentiated the endotoxin-induced increase in mRNA for other cytokines involved in the innate immune response, including the master Th17-regulator IL-23 and the archetype inhibitory cytokine IL-10. Finally, neutralization of endogenous IL-26 clearly increased the growth of Klebsiella pneumoniae in the macrophage culture. These findings suggest that IL-26 is involved in bacterial lung infection in a complex manner, by modulating critical aspects of innate immune responses locally and systemically in a seemingly purposeful manner and by contributing to the killing of bacteria in a way that resembles an antimicrobial peptide. Thus, IL-26 displays both diagnostic and therapeutic potential in pneumonia and deserves to be further evaluated in these respects.
Collapse
Affiliation(s)
- Karlhans F Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska Severe Chronic Obstructive Pulmonary Disease (COPD) Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Magnus Paulsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Krzysztof Piersiala
- Division of Ear Nose and Throat (ENT) Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Ear Nose and Throat (ENT) Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Sax
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ibrahim Mboob
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Rokeya S Rekha
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Immunodeficiency Unit, Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of Ear Nose and Throat (ENT) Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Ear Nose and Throat (ENT) Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska Severe Chronic Obstructive Pulmonary Disease (COPD) Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
19
|
Ferhat E, Karabekir E, Gultekin K, Orhan K, Onur Y, Nilnur E. Evaluation of the relationship between anti-inflammatory cytokines and adverse cardiac remodeling after myocardial infarction. KARDIOLOGIIA 2021; 61:61-70. [PMID: 34763640 DOI: 10.18087/cardio.2021.10.n1749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Aim To clarify the role of interleukin (IL) - 10 and members of its subfamily (IL-19 and IL-26) in cardiac remodeling during the post-myocardial infarction (MI) period.Material and methods A total of 45 patients with ST-segment elevation MI were enrolled. Serum cytokine concentrations were measured at the first day and 14 days post-MI. Left ventricular (LV) reverse remodeling (RR) was defined as the reduction of LV end-diastolic volume or LV end-systolic volume by ≥ 12 % in cardiac magnetic resonance images at 6‑mo follow-up. A 12 % increase was defined as adverse remodeling (AR).Results The post-MI first-day median IL-10 (9.7 pg / ml vs. 17.6 pg / ml, p<0.001), median IL-19 (28.7 pg / ml vs. 36.9 pg / ml, p<0.001), and median IL-26 (47.8 pg / ml vs. 90.7 pg / ml, p<0.001) were lower in the RR group compared to the AR group. There was a significant decrease in the concentration of anti-inflammatory cytokines in the AR group from the first to the 14 days post-MI. However, no significant change was observed in the RR group. Regression analysis revealed that a low IL-10 concentration on the post-MI first day was related to RR (OR=0.76, p=0.035). A 1 % increase in change of IL-10 concentration increased the probability of RR by 1.07 times.Conclusion The concentrations of cytokines were higher in the AR group, but this elevation was not sustained and significantly decreased for the 14 days post-MI. In the RR group, the concentrations of cytokines did not change and stable for the 14 days post-MI. As a reflection of this findings, stable IL-10 concentration may play a role the improvement of cardiac functions.
Collapse
Affiliation(s)
- Eyyupkoca Ferhat
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Ercan Karabekir
- Ankara Bilkent City Hospital, Department of Radiology, Ankara, Turkey
| | - Karakus Gultekin
- Acibadem Mehmet Ali Aydinlar University School of Medicine, Department of Cardiology, Istanbul, Turkey
| | - Karayigit Orhan
- Ministry of Health Yozgat City Hospital, Department of Cardiology, Yozgat, Turkey
| | - Yildirim Onur
- Dr.Nafiz Korez Sincan State Hospital, Department of Cardiology, Ankara, Turkey
| | - Eyerci Nilnur
- Faculty of Medicine, Ataturk University, Department of Medical Biology, Erzurum, Turkey
| |
Collapse
|
20
|
Noli M, Meloni G, Manca P, Cossu D, Palermo M, Sechi LA. HERV-W and Mycobacteriumavium subspecies paratuberculosis Are at Play in Pediatric Patients at Onset of Type 1 Diabetes. Pathogens 2021; 10:pathogens10091135. [PMID: 34578167 PMCID: PMC8471288 DOI: 10.3390/pathogens10091135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
The etiology of T1D remains unknown, although a variety of etiological agents have been proposed as potential candidates to trigger autoimmunity in susceptible individuals. Emerging evidence has indicated that endogenous human retrovirus (HERV) may play a role in the disease etiopathogenesis; although several epigenetic mechanisms keep most HERVs silenced, environmental stimuli such as infections may contribute to the transcriptional reactivation of HERV-Wand thus promote pathological conditions. Previous studies have indicated that also Mycobacterium avium subspecies paratuberculosis (MAP) could be a potential risk factor for T1D, particularly in the Sardinian population. In the present study, the humoral response against HERV-W envelope and MAP-derived peptides was analyzed to investigate their potential role in T1D etiopathogenesis, in a Sardinian population at T1D onset (n = 26), T1D (45) and an age-matched healthy population (n = 45). For the first time, a high serum-prevalence of anti-Map and anti-HERV-W Abs was observed in pediatric patients at onset of T1D compared to T1D patients and healthy controls. Our results support the hypothesis that external infections and internal reactivations are involved in the etiology of T1D, and that HERV-W activation may be induced by infectious agents such as MAP.
Collapse
Affiliation(s)
- Marta Noli
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
| | - Gianfranco Meloni
- Dipartimento di Medicina Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, 07100 Sassari, Italy;
| | - Pietro Manca
- Servizio Centro Trasfusionale, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Davide Cossu
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
| | - Mario Palermo
- Servizio di Endocrinologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.N.); (D.C.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
- Mediterranean Center for Disease Control, Università degli Studi di Sassari, 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
21
|
Loss of Lymphotoxin Alpha-Expressing Memory B Cells Correlates with Metastasis of Human Primary Melanoma. Diagnostics (Basel) 2021; 11:diagnostics11071238. [PMID: 34359321 PMCID: PMC8307480 DOI: 10.3390/diagnostics11071238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Activated antigen-experienced B cells play an unexpected complex role in anti-tumor immunity in human melanoma patients. However, correlative studies between B cell infiltration and tumor progression are limited by the lack of distinction between functional B cell subtypes. In this study, we examined a series of 59 primary and metastatic human cutaneous melanoma specimens with B cell infiltration. Using seven-color multiplex immunohistochemistry and automated tissue imaging and analysis, we analyzed the spatiotemporal dynamics of three major antigen-experienced B cell subpopulations expressing lymphotoxin alpha (LTA/TNFSF1) or interleukin-10 (IL-10) outside tertiary lymphoid structures. The expression of both LTA and IL-10 was not restricted to a particular B cell subtype. In primary melanomas, these cells were predominantly found at the invasive tumor-stroma front and, in metastatic melanomas, they were also found in the intratumoral stroma. In primary melanomas, decreased densities of LTA+ memory-like and, to a lesser extent, activated B cells were associated with metastasis. Compared with metastatic primary tumors, B cell infiltrates in melanoma metastases were enriched in both LTA+ memory-like and LTA+ activated B cells, but not in any of the IL-10+ B cell subpopulations. Melanoma disease progression shows distinct dynamics of functional B cell subpopulations, with the regulation of LTA+ B cell numbers being more significant than IL-10+ B cell subpopulations.
Collapse
|
22
|
Zhang Y, Dong X, Hou L, Cao Z, Zhu G, Vongsangnak W, Xu Q, Chen G. Identification of Differentially Expressed Non-coding RNA Networks With Potential Immunoregulatory Roles During Salmonella Enteritidis Infection in Ducks. Front Vet Sci 2021; 8:692501. [PMID: 34222406 PMCID: PMC8242174 DOI: 10.3389/fvets.2021.692501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogen that can colonize the preovulatory follicles of poultry, thereby causing both reduced egg production and an elevated risk of foodborne salmonellosis in humans. Although a few studies have revealed S. Enteritidis preferentially invades the granulosa cell layer within these follicles, it can readily persist and proliferate through mechanisms that are not well-understood. In this study, we characterized competing endogenous RNA (ceRNA) regulatory networks within duck granulosa cells following time-course of S. Enteritidis challenge. The 8108 long non-coding RNAs (lncRNAs), 1545 circular RNAs (circRNAs), 542 microRNAs (miRNAs), and 4137 mRNAs (fold change ≥2; P < 0.01) were differentially expressed during S. Enteritidis challenge. Also, eight mRNAs, eight lncRNAs and five circRNAs were selected and the consistent expression trend was found between qRT-PCR detection and RNA-seq. Moreover, the target genes of these differentially expressed ncRNAs (including lncRNAs, circRNAs and miRNAs) were predicted, and significantly enriched in the innate immune response and steroidogenesis pathways. Then, the colocalization and coexpression analyses were conducted to investigate relationships between ncRNAs and mRNAs. The 16 differentially expressed miRNAs targeting 60 differentially expressed mRNAs were identified in granulosa cells at 3 and 6 h post-infection (hpi) and enriched in the MAPK, GnRH, cytokine-cytokine receptor interaction, Toll-like receptor, endocytosis, and oxidative phosphorylation signaling pathways. Additionally, underlying lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks were then constructed to further understand their interaction during S. Enteritidis infection. Lnc_012227 and novel_circ_0004892 were identified as ceRNAs, which could compete with miR-let-7g-5p and thereby indirectly modulating map3k8 expression to control S. Enteritidis infection. Together, our data thus identified promising candidate ncRNAs responsible for regulating S. Enteritidis infection in the preovulatory follicles of ducks, offering new insights regarding the ovarian transmission of this pathogen.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoqian Dong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Lie Hou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengfeng Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Qi Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Itoh T, Hatano R, Horimoto Y, Yamada T, Song D, Otsuka H, Shirakawa Y, Mastuoka S, Iwao N, Aune TM, Dang NH, Kaneko Y, Okumura K, Morimoto C, Ohnuma K. IL-26 mediates epidermal growth factor receptor-tyrosine kinase inhibitor resistance through endoplasmic reticulum stress signaling pathway in triple-negative breast cancer cells. Cell Death Dis 2021; 12:520. [PMID: 34021125 PMCID: PMC8139965 DOI: 10.1038/s41419-021-03787-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis compared to other breast cancer subtypes. Although epidermal growth factor receptor (EGFR) is overexpressed in TNBC, clinical trials with EGFR inhibitors including tyrosine kinase inhibitors (EGFR-TKI) in TNBC have heretofore been unsuccessful. To develop effective EGFR-targeted therapy for TNBC, the precise mechanisms of EGFR-TKI resistance in TNBC need to be elucidated. In this study, to understand the molecular mechanisms involved in the differences in EGFR-TKI efficacy on TNBC between human and mouse, we focused on the effect of IL-26, which is absent in mice. In vitro analysis showed that IL-26 activated AKT and JNK signaling of bypass pathway of EGFR-TKI in both murine and human TNBC cells. We next investigated the mechanisms involved in IL-26-mediated EGFR-TKI resistance in TNBC. We identified EphA3 as a novel functional receptor for IL-26 in TNBC. IL-26 induced dephosphorylation and downmodulation of EphA3 in TNBC, which resulted in increased phosphorylation of AKT and JNK against EGFR-TKI-induced endoplasmic reticulum (ER) stress, leading to tumor growth. Meanwhile, the blockade of IL-26 overcame EGFR-TKI resistance in TNBC. Since the gene encoding IL-26 is absent in mice, we utilized human IL-26 transgenic (hIL-26Tg) mice as a tumor-bearing murine model to characterize the role of IL-26 in the differential effect of EGFR-TKI in human and mice and to confirm our in vitro findings. Our findings indicate that IL-26 activates the bypass pathway of EGFR-TKI, while blockade of IL-26 overcomes EGFR-TKI resistance in TNBC via enhancement of ER stress signaling. Our work provides novel insights into the mechanisms of EGFR-TKI resistance in TNBC via interaction of IL-26 with its newly identified receptor EphA3, while also suggesting IL-26 as a possible therapeutic target in TNBC.
Collapse
Affiliation(s)
- Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.,Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Dan Song
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yuki Shirakawa
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuji Mastuoka
- Department of Immunological Diagnosis, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Noriaki Iwao
- Department of Hematology, Juntendo University Shizuoka Hospital, 1129 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road-Box 100278, Room MSB M410A, Gainesville, FL, 32610, USA
| | - Yutaro Kaneko
- Y's AC Co., Ltd., 2-6-8 Kudanminami, Chiyoda-ku, Tokyo, 102-0074, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
24
|
Xu S, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Yu J, Ye D, Zhao M, Feng Y, Pan W, Wang M, Wan J. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94:107475. [PMID: 33662690 DOI: 10.1016/j.intimp.2021.107475] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-10 cytokine family members, including IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the distantly related IL-28A, IL-28B, and IL-29, play critical roles in the regulation of inflammation. The occurrence and progression of cardiovascular diseases closely correlate with the regulation of inflammation, which may provide novel strategies for the treatment of cardiovascular diseases. In recent years, studies have focused on the association between the IL-10 cytokine family and the physiological and pathological progression of cardiovascular diseases. The aim of this review is to summarize relevant studies and clarify whether the IL-10 cytokine family contributes to the regulation of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwan Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
25
|
Zhao Y, Kilian C, Turner JE, Bosurgi L, Roedl K, Bartsch P, Gnirck AC, Cortesi F, Schultheiß C, Hellmig M, Enk LUB, Hausmann F, Borchers A, Wong MN, Paust HJ, Siracusa F, Scheibel N, Herrmann M, Rosati E, Bacher P, Kylies D, Jarczak D, Lütgehetmann M, Pfefferle S, Steurer S, Zur-Wiesch JS, Puelles VG, Sperhake JP, Addo MM, Lohse AW, Binder M, Huber S, Huber TB, Kluge S, Bonn S, Panzer U, Gagliani N, Krebs CF. Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients. Sci Immunol 2021; 6:eabf6692. [PMID: 33622974 PMCID: PMC8128299 DOI: 10.1126/sciimmunol.abf6692] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
Abstract
Hyperinflammation contributes to lung injury and subsequent acute respiratory distress syndrome (ARDS) with high mortality in patients with severe coronavirus disease 2019 (COVID-19). To understand the underlying mechanisms involved in lung pathology, we investigated the role of the lung-specific immune response. We profiled immune cells in bronchoalveolar lavage fluid and blood collected from COVID-19 patients with severe disease and bacterial pneumonia patients not associated with viral infection. By tracking T cell clones across tissues, we identified clonally expanded tissue-resident memory-like Th17 cells (Trm17 cells) in the lungs even after viral clearance. These Trm17 cells were characterized by a a potentially pathogenic cytokine expression profile of IL17A and CSF2 (GM-CSF). Interactome analysis suggests that Trm17 cells can interact with lung macrophages and cytotoxic CD8+ T cells, which have been associated with disease severity and lung damage. High IL-17A and GM-CSF protein levels in the serum of COVID-19 patients were associated with a more severe clinical course. Collectively, our study suggests that pulmonary Trm17 cells are one potential orchestrator of the hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Yu Zhao
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Kilian
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jan-Eric Turner
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Patricia Bartsch
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ann-Christin Gnirck
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Filippo Cortesi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Malte Hellmig
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Leon U B Enk
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alina Borchers
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
| | - Francesco Siracusa
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Nicola Scheibel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Marissa Herrmann
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Dominik Kylies
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Jarczak
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Marc Lütgehetmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Germany
| | - Susanne Pfefferle
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute for Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Jan-Peter Sperhake
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Marylyn M Addo
- I. Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Samuel Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias B Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Germany
| | - Ulf Panzer
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany.
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Christian F Krebs
- III. Department of Medicine, Division of Translational Immunology, University Medical Center Hamburg-Eppendorf, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
26
|
Hwang J, Yoo JA, Yoon H, Han T, Yoon J, An S, Cho JY, Lee J. The Role of Leptin in the Association between Obesity and Psoriasis. Biomol Ther (Seoul) 2021; 29:11-21. [PMID: 32690821 PMCID: PMC7771847 DOI: 10.4062/biomolther.2020.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue secretes many adipokines which contribute to various metabolic processes, such as blood pressure, glucose homeostasis, inflammation and angiogenesis. The biology of adipose tissue in an obese individual is abnormally altered in a manner that increases the body’s vulnerability to immune diseases, such as psoriasis. Psoriasis is considered a chronic inflammatory skin disease which is closely associated with being overweight and obese. Additionally, secretion of leptin, a type of adipokine, increases dependently on adipose cell size and adipose accumulation. Likewise, high leptin levels also aggravate obesity via development of leptin resistance, suggesting that leptin and obesity are closely related. Leptin induction in psoriatic patients is mainly driven by the interleukin (IL)-23/helper T (Th) 17 axis pathway. Furthermore, leptin can have an effect on various types of immune cells such as T cells and dendritic cells. Here, we discuss the relationship between obesity and leptin expression as well as the linkage between effect of leptin on immune cells and psoriasis progression.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ju Ah Yoo
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology & Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyungkee Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taekyung Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongchan Yoon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoljun An
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology & Biocosmetics Research Center, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Azeem M, Kader H, Kerstan A, Hetta HF, Serfling E, Goebeler M, Muhammad K. Intricate Relationship Between Adaptive and Innate Immune System in Allergic Contact Dermatitis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:699-709. [PMID: 33380932 PMCID: PMC7757059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allergic contact dermatitis (ACD) is a complex immunological allergic disease characterized by the interplay between the innate and adaptive immune system. Initially, the role of the innate immune system was believed to be confined to the initial sensitization phase, while adaptive immune reactions were linked with the advanced elicitation phase. However, recent data predicted a comparatively mixed and interdependent role of both immune systems throughout the disease progression. Therefore, the actual mechanisms of disease progression are more complex and interlinked. The aim of this review is to combine such findings that enhanced our understanding of the pathomechanisms of ACD. Here, we focused on the main cell types from both immune domains, which are involved in ACD, such as CD4+ and CD8+ T cells, B cells, neutrophils, and innate lymphoid cells (ILCs). Such insights can be useful for devising future therapeutic interventions for ACD.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Hidaya Kader
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology,
Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of
Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of
Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology,
University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab
Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Che KF, Tengvall S, Lindén A. Interleukin-26 in host defense and inflammatory disorders of the airways. Cytokine Growth Factor Rev 2020; 57:1-10. [PMID: 33293237 DOI: 10.1016/j.cytogfr.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The dimeric cytokine interleukin (IL)-26 belongs to the IL-10 family. Whereas it was originally perceived as a T-helper (Th)17 cytokine, subsequent studies have shown that IL-26 is produced by several populations of leukocytes and structural cells. This cytokine binds to a heterodimeric receptor complex including IL-10R2 and -20R1 (IL-26R) and signals through STAT 1 and 3 to induce the release of chemokines and growth factors. Remarkably, IL-26 directly kills bacteria and inhibits viral replication. The most recent studies on human airways confirm multiple cellular sources in this critical interphase of host defense and demonstrate that stimulation of toll-like receptors (TLR) trigger the release of IL-26. Once released, it exerts a dualistic effect on cytokine production and up-regulates gene expression of IL-26R. It also potentiates chemotaxis and inhibits chemokinesis for neutrophils, thereby facilitating the accumulation of innate effector cells at the site of bacterial stimulation. The high levels of IL-26 in human airways are altered in inflammatory airway disorders such as asthma and chronic obstructive pulmonary disease. Thus, IL-26 emerges as an important mediator, providing direct and indirect actions on microbes, actions that are essential for host defense and inflammation and bears potential as a biomarker of disease.
Collapse
Affiliation(s)
- Karlhans Fru Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden.
| | - Sara Tengvall
- Närhälsan, Frölunda Vårdcentral, Gothenburg, SE-421 42, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-17177, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, SE-171 76, Sweden
| |
Collapse
|
29
|
Norton DL, Ceppe A, Tune MK, McCravy M, Devlin T, Drummond MB, Carson SS, Vincent BG, Hagan RS, Dang H, Doerschuk CM, Mock JR. Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome. J Transl Med 2020; 18:427. [PMID: 33176790 PMCID: PMC7656499 DOI: 10.1186/s12967-020-02595-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023] Open
Abstract
Background Foxp3+ regulatory T cells (Tregs) play essential roles in immune homeostasis and repair of damaged lung tissue. We hypothesized that patients whose lung injury resolves quickly, as measured by time to liberation from mechanical ventilation, have a higher percentage of Tregs amongst CD4+ T cells in either airway, bronchoalveolar lavage (BAL) or peripheral blood samples. Methods We prospectively enrolled patients with ARDS requiring mechanical ventilation and collected serial samples, the first within 72 h of ARDS diagnosis (day 0) and the second 48–96 h later (day 3). We analyzed immune cell populations and cytokines in BAL, tracheal aspirates and peripheral blood, as well as cytokines in plasma, obtained at the time of bronchoscopy. The study cohort was divided into fast resolvers (FR; n = 8) and slow resolvers (SR; n = 5), based on the median number of days until first extubation for all participants (n = 13). The primary measure was the percentage of CD4+ T cells that were Tregs. Results The BAL of FR contained more Tregs than SR. This finding did not extend to Tregs in tracheal aspirates or blood. BAL Tregs expressed more of the full-length FOXP3 than a splice variant missing exon 2 compared to Tregs in simultaneously obtained peripheral blood. Conclusion Tregs are present in the bronchoalveolar space during ARDS. A greater percentage of CD4+ cells were Tregs in the BAL of FR than SR. Tregs may play a role in the resolution of ARDS, and enhancing their numbers or functions may be a therapeutic target.
Collapse
Affiliation(s)
- Dustin L Norton
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Agathe Ceppe
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew McCravy
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Thomas Devlin
- Department of Respiratory Care, University of North Carolina, Chapel Hill, NC, USA
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon S Carson
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.,Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA. .,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina School of Medicine, Marsico Hall 7203, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
30
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
31
|
Wang D, Liu L, Augustino SMA, Duan T, Hall TJ, MacHugh DE, Dou J, Zhang Y, Wang Y, Yu Y. Identification of novel molecular markers of mastitis caused by Staphylococcus aureus using gene expression profiling in two consecutive generations of Chinese Holstein dairy cattle. J Anim Sci Biotechnol 2020; 11:98. [PMID: 32944235 PMCID: PMC7488426 DOI: 10.1186/s40104-020-00494-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mastitis in dairy cows caused by Staphylococcus aureus is a major problem hindering economic growth in dairy farms worldwide. It is difficult to prevent or eliminate due to its asymptomatic nature and long persistence of infection. Although transcriptomic responses of bovine mammary gland cells to pathogens that cause mastitis have been studied, the common responses of peripheral blood leukocytes to S. aureus infection across two consecutive generations of dairy cattle have not been investigated. Methods In the current study, RNA-Seq was used to profile the transcriptomes of peripheral blood leukocytes sampled from S. aureus-infected mothers and their S. aureus-infected daughters, and also healthy non-infected mothers and their healthy daughters. Differential gene expression was evaluated as follows: 1) S. aureus-infected cows versus healthy non-infected cows (S vs. H, which include all the mothers and daughters), 2) S. aureus-infected mothers versus healthy non-infected mothers (SM vs. HM), and 3) S. aureus-infected daughters versus healthy non-infected daughters (SMD vs. HMD). Results Analysis of all identified expressed genes in the four groups (SM, SMD, HM, and HMD) showed that EPOR, IL9, IFNL3, CCL26, IL26 were exclusively expressed in both the HM and HMD groups, and that they were significantly (P < 0.05) enriched for the cytokine-cytokine receptor interaction pathway. A total of 17, 13 and 10 differentially expressed genes (DEGs) (FDR Padj. < 0.1 and |FC| > 1.2) were detected in the three comparisons, respectively. DEGs with P < 0.05 and |FC| > 2 were used for functional enrichment analyses. For the S vs. H comparison, DEGs detected included CCL20, IL13 and MMP3, which are associated with the IL-17 signaling pathway. In the SM vs. HM and SMD vs. HMD comparisons, five (BLA-DQB, C1R, C2, FCGR1A, and KRT10) and six (BLA-DQB, C3AR1, CFI, FCAR, FCGR3A, and LOC10498484) genes, respectively, were involved in the S. aureus infection pathway. Conclusions Our study provides insights into the transcriptomic responses of bovine peripheral blood leukocytes across two generations of cattle naturally infected with S. aureus. The genes highlighted in this study could serve as expression biomarkers for mastitis and may also contain sequence variation that can be used for genetic improvement of dairy cattle for resilience to mastitis.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland
| | - Lei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Serafino M A Augustino
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tao Duan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Thomas J Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, D04 V1W8 Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8 Ireland
| | - Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
32
|
Hirsh J, Kositangool P, Shah A, Radwan Y, Padilla D, Barragan J, Cervantes J. IL-26 mediated human cell activation and antimicrobial activity against Borrelia burgdorferi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:30-36. [PMID: 34841299 PMCID: PMC8610320 DOI: 10.1016/j.crmicr.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Lyme disease is an inflammatory disease caused by infection with Borrelia burgdorferi (Bb). Inflammatory sequelae of Bb infection appear to be refractory to antibiotics. An antimicrobial peptide with the ability to bind the DNA in the tissue could serve as a viable option of treatment for chronic complications of Lyme borreliosis. DNA of Bb can remain in tissues causing a prolonged inflammatory response that lead to chronic joint pain. Here we examined the effect of IL-26, a newly reported antimicrobial protein, against Bb DNA. An antimicrobial effect of IL-26 on the spirochete was observed. In human macrophages, IL-26 treated cells showed an increase in IRF activation upon Bb stimulation. Moreover, IL-26 treated macrophages showed an increased in phagocytic activity compared to untreated cells. Although no Bb DNA degradation was observed using a TUNEL assay run in an agarose gel, a Comet assay on whole bacteria showed cellular and Bb DNA degradation by IL-26. Our results showed that IL-26 (monomer and dimer) has not only the potential to control Bb growth in vitro, but it also enhances the anti-borrelial response of human macrophages. Further research aiming to characterize the role of IL-26 in controlling other aspects of the inflammatory response that could provide insight of its potential therapeutic applications are needed.
Collapse
Affiliation(s)
- Joshua Hirsh
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Piya Kositangool
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Aayush Shah
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Yousf Radwan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Diana Padilla
- Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| | - Jose Barragan
- Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A.,Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| |
Collapse
|
33
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
34
|
Lee KA, Kim KW, Kim BM, Won JY, Min HK, Lee DW, Kim HR, Lee SH. Promotion of osteoclastogenesis by IL-26 in rheumatoid arthritis. Arthritis Res Ther 2019; 21:283. [PMID: 31831038 PMCID: PMC6909469 DOI: 10.1186/s13075-019-2070-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The inflammatory cascade in the rheumatoid arthritis (RA) synovium is modulated by a variety of cytokine and chemokine networks; however, the roles of IL-26, in RA pathogenesis, are poorly defined. Here, we investigated the functional role of interleukin-26 (IL)-26 in osteoclastogenesis in RA. Methods We analyzed levels of IL-20 receptor subunit A (IL-20RA), CD55, and receptor activator of nuclear factor kappaB (NF-κB) ligand (RANKL) in RA fibroblast-like synoviocytes (FLSs) using confocal microscopy. Recombinant human IL-26-induced RANKL expression in RA-FLSs was examined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Human peripheral blood monocytes were cultured with macrophage colony-stimulating factor (M-CSF) and IL-26, after which osteoclastogenesis was evaluated by counting the number of tartrate-resistant acid phosphatase-positive multinucleated cells. Additionally, osteoclastogenesis was evaluated by monocytes co-cultured with IL-26-prestimulated FLSs. Results The expression of IL-20RA in RA-FLSs was higher than that in osteoarthritis-FLSs. Additionally, in IL-26-pretreated RA-FLSs, the expression of IL-20RA (but not IL-10 receptor subunit B) and RANKL increased in a dose-dependent manner, with IL-26-induced RANKL expression reduced by IL-20RA knockdown. Moreover, IL-26-induced RANKL expression was significantly downregulated by inhibition of signal transducer and activator of transcription 1, mitogen-activated protein kinase, and NF-κB signaling. Furthermore, IL-26 promoted osteoclast differentiation from peripheral blood monocytes in the presence of low dose of RANKL, with IL-26 exerting an additive effect. Furthermore, co-culture of IL-26-pretreated RA-FLSs with peripheral blood monocytes also increased osteoclast differentiation in the absence of addition of RANKL. Conclusions IL-26 regulated osteoclastogenesis in RA through increased RANKL expression in FLSs and direct stimulation of osteoclast differentiation. These results suggest the IL-26/IL-20RA/RANKL axis as a potential therapeutic target for addressing RA-related joint damage.
Collapse
Affiliation(s)
- Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Neungdong-ro 120-1, Gwangjin-gu, Seoul, 05030, South Korea.,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, South Korea
| | - Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Yeon Won
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Neungdong-ro 120-1, Gwangjin-gu, Seoul, 05030, South Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Neungdong-ro 120-1, Gwangjin-gu, Seoul, 05030, South Korea
| | - Dhong Won Lee
- Department of Orthopaedic Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Neungdong-ro 120-1, Gwangjin-gu, Seoul, 05030, South Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Neungdong-ro 120-1, Gwangjin-gu, Seoul, 05030, South Korea.
| |
Collapse
|
35
|
Murine models of psoriasis and its applications in drug development. J Pharmacol Toxicol Methods 2019; 101:106657. [PMID: 31751654 DOI: 10.1016/j.vascn.2019.106657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023]
Abstract
Psoriasis is an autoimmune skin disease which characteristic of a well-demarcated, erythematous, raised lesion with silvery-white dry scale. Although the mechanism of psoriasis has not been fully understood so far, much progress has been made in understanding many of its complex potential mechanism, particularly the crucial role of the IL-23/Th17 axis. There are a large number of psoriasis models that reflect the complexity of the psoriasis mechanisms. In this review, we summarize various psoriasis mouse models, detail the features and molecular mechanisms of these mouse models, and discuss their strengths and limitations for psoriasis research. The development of mouse models of psoriasis provide an important basis for studying psoriasis pathogenesis and antipsoriatic drugs development. Therefore, the application of various psoriasis mouse models in antipsoriatic drug development are also discussed.
Collapse
|
36
|
Li B, He S, Liu R, Huang L, Liu G, Wang R, Yang Z, Liu X, Leng Y, Liu D, Ye C, Li Y, Chen Y, Yin H, Fang W. Total glucosides of paeony attenuates animal psoriasis induced inflammatory response through inhibiting STAT1 and STAT3 phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112121. [PMID: 31356966 DOI: 10.1016/j.jep.2019.112121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is an immune system meditated disease, especially T cells. It disturbed many people around the world and hard to therapy. Paeonia lactiflora Pall has been used as a medicine in china for thousands of years. Recent studies found that the main component of Paeonia lactiflora Pall can alleviates the immune response in many diseases. In this study, we researched the effects and possible mechanisms of total glucosides of paeony (TGP) on animal psoriasis. AIM OF THE STUDY To study the therapeutic effects and mechanisms of TGP in 5% propranolol cream-induced psoriasis in guinea pigs and Imiquimod (IMQ) cream-induced psoriasis in mice. MATERIALS AND METHODS The effect of TGP was evaluated using a psoriasis-like model of guinea pigs and mice. Ear thickness was accessed, and pathology injury was observed by H&E staining. The levels of serum IL-1β, IL-6, IL-12, IL-17, IL-23, TNF-α, and IFN-γ, skin IL-17A, IL-22 and orphan nuclear receptor (RORγt) mRNA expression, proliferating cell nuclear antigen (PCNA), total or phosphorylated signal transducers and activators of transcription (STAT1, STAT3) were determined by enzyme linked immunosorbent assays (ELISAs), real time PCR, immunohistochemical staining, and western blotting, respectively. RESULTS Compared with model group, TGP treatment decreased the ear thickness, improved pathology of psoriasis, alleviated IMQ-induced keratinocyte proliferation, reduced the inflammatory cytokine, and downregulated IL-17A, IL-22, and RORγt mRNA in mice. Further study indicated that TGP inhibited STAT1 and STAT3 phosphorylation in lesion skins of psoriasis-like mice. CONCLUSIONS TGP alleviates the symptoms of psoriasis-like guinea pigs and mice, and the possible mechanism may relate to inhibit T helper 17 (TH17) cell differentiation and keratinocytes proliferation by inhibiting STAT1 and STAT3 phosphorylation.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shucheng He
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Rui Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ruixuan Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhuoyue Yang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xinyi Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ye Leng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dan Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chengyu Ye
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yongjian Chen
- Ningbo Liwah Pharmaceutical Co, Ningbo, 315174, PR China
| | - Hong Yin
- Ningbo Liwah Pharmaceutical Co, Ningbo, 315174, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
37
|
Tu H, Lai X, Li J, Huang L, Liu Y, Cao J. Interleukin-26 is overexpressed in human sepsis and contributes to inflammation, organ injury, and mortality in murine sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:290. [PMID: 31464651 PMCID: PMC6716900 DOI: 10.1186/s13054-019-2574-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sepsis is a serious syndrome that is caused by an unbalanced host inflammatory response to an infection. The cytokine network plays a pivotal role in the orchestration of inflammatory response during sepsis. IL-26 is an emerging proinflammatory member of the IL-10 cytokine family with multifaceted actions in inflammatory disorders. However, its role in the pathogenesis of sepsis remains unknown. METHODS Serum IL-26 level was measured and analyzed in 52 septic patients sampled on the day of intensive care unit (ICU) admission, 18 non-septic ICU patient controls, and 30 healthy volunteers. In addition, the effects of recombinant human IL-26 on host inflammatory response in cecal ligation and puncture (CLP)-induced polymicrobial sepsis were determined. RESULTS On the day of ICU admission, the patients with sepsis showed a significant increase in serum IL-26 levels compared with ICU patient controls and healthy volunteers, and the serum IL-26 levels were related to the severity of sepsis. Nonsurvivors of septic patients displayed significantly higher serum IL-26 levels compared with survivors. A high serum IL-26 level on ICU admission was associated with 28-day mortality, and IL-26 was found to be an independent predictor of 28-day mortality in septic patients by logistic regression analysis. Furthermore, administration of recombinant human IL-26 increased lethality in CLP-induced polymicrobial sepsis. Despite a lower bacterial load, septic mice treated with recombinant IL-26 had higher concentrations of IL-1β, IL-4, IL-6, IL-10, IL-17A, TNF-α, CXCL1, and CCL2 in peritoneal lavage fluid and blood and demonstrated more severe multiple organ injury (including lung, liver and kidney) as indicated by clinical chemistry and histopathology. Furthermore, septic mice treated with recombinant human IL-26 showed an increased neutrophil recruitment to the peritoneal cavity. CONCLUSIONS Septic patients had elevated serum IL-26 levels, which may correlate with disease severity and mortality. In experimental sepsis, we demonstrated a previously unrecognized role of IL-26 in increasing lethality despite promoting antibacterial host responses.
Collapse
Affiliation(s)
- Hongmei Tu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxi Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lili Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Liu
- Department of Intensive care unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
38
|
Hatano R, Itoh T, Otsuka H, Okamoto S, Komiya E, Iwata S, Aune TM, Dang NH, Kuwahara-Arai K, Ohnuma K, Morimoto C. Characterization of novel anti-IL-26 neutralizing monoclonal antibodies for the treatment of inflammatory diseases including psoriasis. MAbs 2019; 11:1428-1442. [PMID: 31397631 DOI: 10.1080/19420862.2019.1654305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)-26, known as a Th17 cytokine, acts on various cell types and has multiple biological functions. Although its precise role still remains to be elucidated, IL-26 is suggested to be associated with the pathology of diverse chronic inflammatory diseases such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis. To develop novel neutralizing anti-human IL-26 monoclonal antibodies (mAbs) for therapeutic use in the clinical setting, we immunized mice with human IL-26 protein. Hybridomas producing anti-IL-26 mAbs were screened for various in vitro functional assays, STAT3 phosphorylation and antibiotic assays. Although the IL-20RA/IL-10RB heterodimer is generally believed to be the IL-26 receptor, our data strongly suggest that both IL-20RA-dependent and -independent pathways are involved in IL-26-mediated stimulation. We also investigated the potential therapeutic effect of anti-IL-26 mAbs in the imiquimod-induced psoriasis-like murine model using human IL-26 transgenic mice. These screening methods enabled us to develop novel neutralizing anti-human IL-26 mAbs. Importantly, administration of IL-26-neutralizing mAb did not have an effect on the antimicrobial activity of IL-26. Taken together, our data strongly suggest that our newly developed anti-human IL-26 mAb is a potential therapeutic agent for the treatment of diverse chronic inflammatory diseases including psoriasis.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Takumi Itoh
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Haruna Otsuka
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Sayo Okamoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Eriko Komiya
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan.,Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine , Urayasu , Japan
| | - Satoshi Iwata
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida , Gainesville , FL , USA
| | - Kyoko Kuwahara-Arai
- Department of Microbiology, Juntendo University School of Medicine , Tokyo , Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University , Tokyo , Japan
| |
Collapse
|
39
|
Carrasco Pro S, Dafonte Imedio A, Santoso CS, Gan KA, Sewell JA, Martinez M, Sereda R, Mehta S, Fuxman Bass JI. Global landscape of mouse and human cytokine transcriptional regulation. Nucleic Acids Res 2019; 46:9321-9337. [PMID: 30184180 PMCID: PMC6182173 DOI: 10.1093/nar/gky787] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Cytokines are cell-to-cell signaling proteins that play a central role in immune development, pathogen responses, and diseases. Cytokines are highly regulated at the transcriptional level by combinations of transcription factors (TFs) that recruit cofactors and the transcriptional machinery. Here, we mined through three decades of studies to generate a comprehensive database, CytReg, reporting 843 and 647 interactions between TFs and cytokine genes, in human and mouse respectively. By integrating CytReg with other functional datasets, we determined general principles governing the transcriptional regulation of cytokine genes. In particular, we show a correlation between TF connectivity and immune phenotype and disease, we discuss the balance between tissue-specific and pathogen-activated TFs regulating each cytokine gene, and cooperativity and plasticity in cytokine regulation. We also illustrate the use of our database as a blueprint to predict TF-disease associations and identify potential TF-cytokine regulatory axes in autoimmune diseases. Finally, we discuss research biases in cytokine regulation studies, and use CytReg to predict novel interactions based on co-expression and motif analyses which we further validated experimentally. Overall, this resource provides a framework for the rational design of future cytokine gene regulation studies.
Collapse
Affiliation(s)
- Sebastian Carrasco Pro
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Kok Ann Gan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Rebecca Sereda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shivani Mehta
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Juan Ignacio Fuxman Bass
- Department of Biology, Boston University, Boston, MA 02215, USA.,Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
40
|
Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. THE JOURNAL OF IMMUNOLOGY 2019; 201:1605-1613. [PMID: 30181299 DOI: 10.4049/jimmunol.1800013] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Psoriasis vulgaris is a common, heterogeneous, chronic inflammatory skin disease characterized by thickened, red, scaly plaques and systemic inflammation. Psoriasis is also associated with multiple comorbid conditions, such as joint destruction, cardiovascular disease, stroke, hypertension, metabolic syndrome, and chronic kidney disease. The discovery of IL-17-producing T cells in a mouse model of autoimmunity transformed our understanding of inflammation driven by T lymphocytes and associations with human inflammatory diseases, such as psoriasis. Under the regulation of IL-23, T cells that produce high levels of IL-17 create a self-amplifying, feed-forward inflammatory response in keratinocytes that drives the development of thickened skin lesions infiltrated with a mixture of inflammatory cell populations. Recently, the Food and Drug Administration approved multiple highly effective psoriasis therapies that disrupt IL-17 (secukinumab, ixekizumab, and brodalumab) and IL-23 (guselkumab and tildrakizumab) signaling in the skin, thus leading to a major paradigm shift in the way that psoriatic disease is managed.
Collapse
Affiliation(s)
- Jason E Hawkes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10065; and
| | - Bernice Y Yan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10065; and
| | - Tom C Chan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10065; and.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10065; and
| |
Collapse
|
41
|
Scala E, Di Caprio R, Cacciapuoti S, Caiazzo G, Fusco A, Tortorella E, Fabbrocini G, Balato A. A new T helper 17 cytokine in hidradenitis suppurativa: antimicrobial and proinflammatory role of interleukin-26. Br J Dermatol 2019; 181:1038-1045. [PMID: 30829398 DOI: 10.1111/bjd.17854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Interleukin (IL)-26 is a signature T helper 17 cytokine described as a proinflammatory and antimicrobial mediator. So far, IL-26 has been reported in several immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders is poorly known. OBJECTIVES To investigate the role of IL-26 in hidradenitis suppurativa (HS), through its involvement in antimicrobial activity. METHODS IL-26 was assessed in patients with HS through gene expression and protein analysis at skin and circulating levels. Ex vivo HS organ skin cultures, together with IL-26 antibody treatment, were performed to determine the IL-26 activity. Peripheral blood mononuclear cells (PBMCs) from patients with HS and healthy controls were either silenced or not with IL-26 small interfering (si)RNA in order to measure its antimicrobial, cytotoxic and phagocytic activities against Staphylococcus aureus. RESULTS Firstly, we observed that IL-26 is able to modulate the proinflammatory response at the immune cell level. IL-26 was increased in the plasma of patients with HS compared with healthy controls. Subsequently, we explored the bactericidal, cytotoxic and phagocytic activities of PBMCs against S. aureus in patients with HS and healthy controls. These activities were lower in patients with HS than in controls. Remarkably, the killing activities were reduced when healthy control PBMCs were transfected with IL-26 siRNA. However, the transfection did not affect the killing activity of HS PBMCs, supporting the idea that IL-26 lacks efficacy in HS. CONCLUSIONS Our findings suggest that infection susceptibility in HS might be related to IL-26. Although the role of bacteria remains controversial in HS, this paper supports that there is a defect of antimicrobial response in these patients. What's already known about this topic? Interleukin (IL)-26 is a T helper 17 cytokine described as an antimicrobial and proinflammatory mediator. IL-26 has been reported in immune-mediated inflammatory diseases, but its involvement in inflammatory skin disorders remains unclear. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder characterized by deficiency of IL-20 and IL-22 (a close homologue of IL-26), which causes antimicrobial peptide pauperization leading to severe and recurrent skin infections. What does this study add? IL-26 plasma levels are higher in patients with HS than in healthy control individuals. The antimicrobial activity of IL-26 might be ineffective in patients with HS. What is the translational message? Cutaneous antimicrobial incompetence in HS could be related to IL-26.
Collapse
Affiliation(s)
- E Scala
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - R Di Caprio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - S Cacciapuoti
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - G Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Fusco
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - E Tortorella
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - G Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - A Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
42
|
Dang AT, Teles RM, Weiss DI, Parvatiyar K, Sarno EN, Ochoa MT, Cheng G, Gilliet M, Bloom BR, Modlin RL. IL-26 contributes to host defense against intracellular bacteria. J Clin Invest 2019; 129:1926-1939. [PMID: 30939123 DOI: 10.1172/jci99550] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
IL-26 is an antimicrobial protein secreted by Th17 cells that has the ability to directly kill extracellular bacteria. To ascertain whether IL-26 contributes to host defense against intracellular bacteria, we studied leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, as a model. Analysis of leprosy skin lesions by gene expression profiling and immunohistology revealed that IL-26 was more strongly expressed in lesions from the self-limited tuberculoid compared with expression in progressive lepromatous patients. IL-26 directly bound to M. leprae in axenic culture and reduced bacteria viability. Furthermore, IL-26, when added to human monocyte-derived macrophages infected with M. leprae, entered the infected cell, colocalized with the bacterium, and reduced bacteria viability. In addition, IL-26 induced autophagy via the cytoplasmic DNA receptor stimulator of IFN genes (STING), as well as fusion of phagosomes containing bacilli with lysosomal compartments. Altogether, our data suggest that the Th17 cytokine IL-26 contributes to host defense against intracellular bacteria.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - David I Weiss
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Euzenir N Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
43
|
Zheng Y, Feng K, Yang H, Duan R, Wu Y, Yin J, Yue M, Zhang J. IL-22/IL-22R1 axis is involved in myocardial injury of a mouse cecal ligation and puncture model. Am J Transl Res 2019; 11:998-1008. [PMID: 30899399 PMCID: PMC6413265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Myocardial depression is a hallmark of severe sepsis, which may result from a complex interplay among several factors. However, the mechanisms are still unclear yet. In this study, we aimed to explore if IL-22/IL-22R1 axis plays a role in the myocardial injury during sepsis. A cecal ligation and puncture (CLP) mouse model was established to explore the histopathological changes and to analyze the role of IL-22/IL-22R1 axis in myocardial injury during the process of sepsis. Histopathologically, myocardial injury was apparently observed with the progress of sepsis but it was improved at 72 h after surgery. On the contrary, the heart tissue in the sham group revealed injury at a limited degree at the first 8 h after surgery and then restored to normal. Results from immunohistochemical study and real-time qPCR showed that IL-22, IL-22R1 and IL-22BP had different changing trends in the progress of sepsis at both protein and mRNA levels. The expression of IL-22R1 and IL-22BP was markedly induced after CLP modeling (P < 0.01), while that of IL-22 was sharply reduced in both groups (P < 0.01). The differences in the expression of IL-22, IL-22R1 and IL-22BP between the sham and CLP groups were significant only at 72 h after surgery (P < 0.05) but not at the other time points (P > 0.05). In conclusion, IL-22/IL-22R1 axis is involved and may have a potential immunoprotective role in the cardiac tissue repair, but the immunoprotection on the cardiac tissue of CLP mice was remarkably damaged in the progress of sepsis and even in the recovery phase.
Collapse
Affiliation(s)
- Yanhua Zheng
- Medical School of Chinese PLABeijing, China
- Special Medical Center, 306 Hospital of PLABeijing, China
| | - Kai Feng
- Special Medical Center, 306 Hospital of PLABeijing, China
| | - Heming Yang
- Department of General Surgery, 306 Hospital of PLABeijing, China
| | - Ran Duan
- Special Medical Center, 306 Hospital of PLABeijing, China
| | - Yingying Wu
- Special Medical Center, 306 Hospital of PLABeijing, China
| | - Jinnan Yin
- Department of Emergency Medicine, Changzhou Wujin People’s Hospital Affiliated to Jiangsu UniversityChangzhou, China
| | - Maoxing Yue
- Special Medical Center, 306 Hospital of PLABeijing, China
- Department of Emergency Medicine, Changzhou Wujin People’s Hospital Affiliated to Jiangsu UniversityChangzhou, China
| | - Jianzhong Zhang
- Medical School of Chinese PLABeijing, China
- Department of Pathology, 306 Hospital of PLABeijing, China
| |
Collapse
|
44
|
Larochette V, Miot C, Poli C, Beaumont E, Roingeard P, Fickenscher H, Jeannin P, Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front Immunol 2019; 10:204. [PMID: 30809226 PMCID: PMC6379347 DOI: 10.3389/fimmu.2019.00204] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells. Novel properties have recently been assigned to IL-26, owing to its non-conventional cationic, and amphipathic features. IL-26 binds to DNA released from damaged cells and, as a carrier molecule for extracellular DNA, links DNA to inflammation. This observation suggests that IL-26 may act both as a driver and an effector of inflammation, leading to the establishment of a deleterious amplification loop and, ultimately, sustained inflammation. Thus, IL-26 emerges as an important mediator in local immunity/inflammation. The dysregulated expression and extracellular DNA carrier capacity of IL-26 may have profound consequences for the chronicity of inflammation. IL-26 also exhibits direct antimicrobial properties. This review summarizes recent advances on the biology of IL-26 and discusses its roles as a novel kinocidin.
Collapse
Affiliation(s)
- Vincent Larochette
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Charline Miot
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Caroline Poli
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Elodie Beaumont
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Philippe Roingeard
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
45
|
Turner SD. The Cellular Origins of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Implications for Immunogenesis. Aesthet Surg J 2019; 39:S21-S27. [PMID: 30715172 PMCID: PMC6355097 DOI: 10.1093/asj/sjy229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The exact cellular origins of most malignancies are unknown, largely because of the complex nature of malignancies, and because the potential vast number of pathways towards transformation are difficult to discern from established growths. This is compounded by the fact that cancer cells have evolved rather than being the consequence of a design process, with most data collected from (sometimes epidemiological) studies of large numbers of related malignancies. In the case of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), the relative rarity of this disease, coupled with limited insight into its biological basis, have hampered progress. The known facts that are holding up as our knowledge increases with rising incidences are that most cases have been reported in the context of textured breast implants, although not all women with these implants develop BIA-ALCL, and cure for early-stage disease (accounting for the majority of patients) can be achieved via complete capsulectomy and implant removal. However, some theories can be gleaned from the limited biological studies conducted to date whereby a T-helper cell derivation is implicated, with its specific and apparent subset of origin dependent on, and shaped by, a number of factors, including the inflammatory microenvironment (the presence of other inflammatory cell types), the driving antigen (bacterial and/or synthetic), the acquisition of driving oncogenic events, and the inherent genetics/health status of the patient.
Collapse
Affiliation(s)
- Suzanne Dawn Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Wei H, Li B, Sun A, Guo F. Interleukin-10 Family Cytokines Immunobiology and Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:79-96. [PMID: 31628652 DOI: 10.1007/978-981-13-9367-9_4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26, which are considered as Class 2α-helical cytokines. IL-10 is the most important cytokine in suppressing pro-inflammatory responses in all kinds of autoimmune diseases and limiting excessive immune responses. Due to protein structure homology and shared usage of receptor complexes as well as downstream signaling pathway, other IL-10 family cytokines also show indispensable functions in immune regulation, tissue homeostasis, and host defense. In this review, we focus on immune functions and structures of different cytokines in this family and try to better understand how their molecular mechanisms connect to their biological functions. The molecular details regarding their actions also provide useful information in developing candidate immune therapy reagents for a variety of diseases.
Collapse
Affiliation(s)
- Huaxing Wei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Bofeng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
| | - Anyuan Sun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| | - Feng Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China
| |
Collapse
|
47
|
Duque-Correa MA, Karp NA, McCarthy C, Forman S, Goulding D, Sankaranarayanan G, Jenkins TP, Reid AJ, Cambridge EL, Ballesteros Reviriego C, Müller W, Cantacessi C, Dougan G, Grencis RK, Berriman M. Exclusive dependence of IL-10Rα signalling on intestinal microbiota homeostasis and control of whipworm infection. PLoS Pathog 2019; 15:e1007265. [PMID: 30640950 PMCID: PMC6347331 DOI: 10.1371/journal.ppat.1007265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/25/2019] [Accepted: 12/04/2018] [Indexed: 12/28/2022] Open
Abstract
The whipworm Trichuris trichiura is a soil-transmitted helminth that dwells in the epithelium of the caecum and proximal colon of their hosts causing the human disease, trichuriasis. Trichuriasis is characterized by colitis attributed to the inflammatory response elicited by the parasite while tunnelling through intestinal epithelial cells (IECs). The IL-10 family of receptors, comprising combinations of subunits IL-10Rα, IL-10Rβ, IL-22Rα and IL-28Rα, modulates intestinal inflammatory responses. Here we carefully dissected the role of these subunits in the resistance of mice to infection with T. muris, a mouse model of the human whipworm T. trichiura. Our findings demonstrate that whilst IL-22Rα and IL-28Rα are dispensable in the host response to whipworms, IL-10 signalling through IL-10Rα and IL-10Rβ is essential to control caecal pathology, worm expulsion and survival during T. muris infections. We show that deficiency of IL-10, IL-10Rα and IL-10Rβ results in dysbiosis of the caecal microbiota characterised by expanded populations of opportunistic bacteria of the families Enterococcaceae and Enterobacteriaceae. Moreover, breakdown of the epithelial barrier after whipworm infection in IL-10, IL-10Rα and IL-10Rβ-deficient mice, allows the translocation of these opportunistic pathogens or their excretory products to the liver causing organ failure and lethal disease. Importantly, bone marrow chimera experiments indicate that signalling through IL-10Rα and IL-10Rβ in haematopoietic cells, but not IECs, is crucial to control worm expulsion and immunopathology. These findings are supported by worm expulsion upon infection of conditional mutant mice for the IL-10Rα on IECs. Our findings emphasize the pivotal and complex role of systemic IL-10Rα signalling on immune cells in promoting microbiota homeostasis and maintaining the intestinal epithelial barrier, thus preventing immunopathology during whipworm infections.
Collapse
Affiliation(s)
| | - Natasha A Karp
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Catherine McCarthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon Forman
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Emma L Cambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
48
|
Chen J, Caspi RR, Po Chong W. IL-20 receptor cytokines in autoimmune diseases. J Leukoc Biol 2018; 104:953-959. [PMID: 30260500 PMCID: PMC6298946 DOI: 10.1002/jlb.mr1117-471r] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
IL-19, IL-20, and IL-24 are the members of IL-10 family. They are also known as IL-20 receptor (IL-20R) cytokines as they all signal through the IL-20RA/IL-20RB receptor complex; IL-20 and IL-24 (but not IL-19) also signal through the IL-20RB/IL22RA1 receptor complex. Despite their protein structure homology and shared use of receptor complexes, they display distinct biological functions in immune regulation, tissue homeostasis, host defense, and oncogenesis. IL-20R cytokines can be expressed by both immune cells and epithelial cells, and are important for their interaction. In general, these cytokines are considered to be associated with pathogenesis of chronic inflammation and autoimmune diseases, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. However, a number of studies also highlighted their suppressive functions in regulating both innate and adaptive T cell responses and other immune cells, suggesting that the role of IL-20R cytokines in autoimmunity may be complex. In this review, we will discuss the immunobiological functions of IL-20R cytokines and how they are involved in regulating autoimmune diseases.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-1857, USA
| | - Wai Po Chong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| |
Collapse
|
49
|
Cruz MS, Diamond A, Russell A, Jameson JM. Human αβ and γδ T Cells in Skin Immunity and Disease. Front Immunol 2018; 9:1304. [PMID: 29928283 PMCID: PMC5997830 DOI: 10.3389/fimmu.2018.01304] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
γδ T lymphocytes maintain skin homeostasis by balancing keratinocyte differentiation and proliferation with the destruction of infected or malignant cells. An imbalance in skin-resident T cell function can aggravate skin-related autoimmune diseases, impede tumor eradication, or disrupt proper wound healing. Much of the published work on human skin T cells attributes T cell function in the skin to αβ T cells, while γδ T cells are an often overlooked participant. This review details the roles played by both αβ and γδ T cells in healthy human skin and then focuses on their roles in skin diseases, such as psoriasis and alopecia areata. Understanding the contribution of skin-resident and skin-infiltrating T cell populations and cross-talk with other immune cells is leading to the development of novel therapeutics for patients. However, there is still much to be learned in order to effectively modulate T cell function and maintain healthy skin homeostasis.
Collapse
Affiliation(s)
| | | | | | - Julie Marie Jameson
- Department of Biological Sciences, California State University of San Marcos, San Marcos, CA, United States
| |
Collapse
|
50
|
Caparrós E, Francés R. The Interleukin-20 Cytokine Family in Liver Disease. Front Immunol 2018; 9:1155. [PMID: 29892294 PMCID: PMC5985367 DOI: 10.3389/fimmu.2018.01155] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The three main causes of inflammation and chronic injury in the liver are viral hepatitis, alcohol consumption, and non-alcoholic steatohepatitis, all of which can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma, which in turn may prompt the need for liver transplant. The interleukin (IL)-20 is a subfamily part of the IL-10 family of cytokines that helps the liver respond to damage and disease, they participate in the control of tissue homeostasis, and in the immunological responses developed in this organ. The best-studied member of the family in inflammatory balance of the liver is the IL-22 cytokine, which on the one hand may have a protective role in fibrosis progression but on the other may induce liver tissue susceptibility in hepatocellular carcinoma development. Other members of the family might also carry out this dual function, as some of them share IL receptor subunits and signal through common intracellular pathways. Investigators are starting to consider the potential for targeting IL-20 subfamily members in liver disease. The recently explored role of miRNA in the transcriptional regulation of IL-22 and IL-24 opens the door to promising new approaches for controlling the local immune response and limiting organ injury. The IL-20RA cytokine receptor has also been classified as being under miRNA control in non-alcoholic steatohepatitis. Moreover, researchers have proposed combining anti-inflammatory drugs with IL-22 as a hepatoprotective IL for alcoholic liver disease (ALD) treatment, and clinical trials of ILs for managing severe alcoholic-derived liver degeneration are ongoing. In this review, we focus on exploring the role of the IL-20 subfamily of cytokines in viral hepatitis, ALD, non-alcoholic steatohepatitis, and hepatocellular carcinoma, as well as delineating the main strategies explored so far in terms of therapeutic possibilities of the IL-20 subfamily of cytokines in liver disease.
Collapse
Affiliation(s)
- Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|