1
|
de Souza Godinho FM, Campos A, Huff R, Ruivo AP, Bermann T, Bauerman M, Dos Santos FM, Selayaran TM, Correa AB, Dos Santos RN, Roehe PM, da Luz Wallau G, Salvato RS. Development and validation of an all-in-one rabies virus Bat-Clade genomic sequencing and host identification protocol. J Virol Methods 2025; 333:115097. [PMID: 39653152 DOI: 10.1016/j.jviromet.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Rabies virus (RABV), remains a significant public health concern, with bat-maintained lineages accounting for all currently documented cases in Brazil. Despite the availability of pharmacological prophylaxis for humans and animals, the high genetic diversity of RABV in diverse natural bat hosts and continued circulation in multiple animals pose challenges for effective surveillance. Here, we developed and validated a novel, rapidly deployable amplicon-based sequencing approach for RABV genomic surveillance. This "all-in-one" protocol integrates whole RABV genome sequencing with host species identification through COI gene amplification and sequencing, addressing the challenges posed by RABV's high genetic diversity and complex transmission dynamics. We assessed the protocol's effectiveness by sequencing 25 near-complete RABV genomes from host species across four distinct families (Bovidae, Equidae, Felidae, and Microchiroptera) obtained from the Rabies Control and Surveillance Program from the Rio Grande do Sul State, Southern Brazil. The method achieved an average genome coverage of 91.4 % at a minimum 5x read depth, with a mean depth coverage of 816x across sequenced genomes. The results demonstrated significant Bat-Clade sublineage diversity, which was classified using the MADDOG RABV lineage system. The protocol successfully identified three bat species (Tadarida brasiliensis, Desmodus rotundus, and Myotis nigricans) among the samples, highlighting its capability for precise host identification. This study presents a powerful tool for high-resolution evaluation of RABV genomic features and host identification, enabling more targeted animal and human health interventions. This new approach has the potential to enhance RABV surveillance capabilities, contributing to more effective rabies control strategies within a One Health framework.
Collapse
Affiliation(s)
| | - Aline Campos
- Centro Estadual de Vigilância em Saúde, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rosana Huff
- Centro Estadual de Vigilância em Saúde, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Pellenz Ruivo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Thales Bermann
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Milena Bauerman
- Centro Estadual de Vigilância em Saúde, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Artur Beineke Correa
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raissa Nunes Dos Santos
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gabriel da Luz Wallau
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil; Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil; Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany; Universidade Federal Santa Maria (UFSM), Rio Grande do Sul, Brazil
| | - Richard Steiner Salvato
- Centro Estadual de Vigilância em Saúde, Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Gigante CM, Wicker V, Wilkins K, Seiders M, Zhao H, Patel P, Orciari L, Condori RE, Dettinger L, Yager P, Xia D, Li Y. Optimization of pan-lyssavirus LN34 assay for streamlined rabies diagnostics by real-time RT-PCR. J Virol Methods 2025; 333:115070. [PMID: 39580120 DOI: 10.1016/j.jviromet.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Reliable, validated diagnostic tests are critical for rabies control in animals and prevention in people. We present a performance assessment and updates to the LN34 real-time RT-PCR assay for rabies diagnosis in postmortem animal brain samples. In two U.S. laboratories during 2017-2022, routine used of the LN34 assay produced excellent diagnostic sensitivity (99.72-100 %) and specificity (99.99-100 %) compared to the direct fluorescence antibody test (DFA). Almost all (>90 %) DFA indeterminate results caused by non-specific or atypical fluorescence were negative by LN34 testing, representing up to 111 cases where unnecessary post-exposure prophylaxis could be avoided. LN34 assay original primer sequences showed low sensitivity for some rare lyssaviruses. Increased primer concentration combined with new primer formulation showed improved performance for impacted lyssaviruses with no loss in performance across diverse rabies virus variants from clinical samples. The updated LN34 and internal control assays were combined into a single-well LN34 multiplexed (LN34M) format, run at half reagent volumes. The LN34M assay showed similar detection of rabies virus to the singleplexed assay with simplified assay set-up, lower cost, and improved quality controls.
Collapse
Affiliation(s)
- Crystal M Gigante
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Vaughn Wicker
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kimberly Wilkins
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Melanie Seiders
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, PA 19341, USA
| | - Hui Zhao
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Puja Patel
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, PA 19341, USA
| | - Lillian Orciari
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Rene Edgar Condori
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Goldbelt Professional Services, Chesapeake, VA 23320, USA
| | - Lisa Dettinger
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, PA 19341, USA
| | - Pamela Yager
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Dongxiang Xia
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, PA 19341, USA
| | - Yu Li
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Salazar R, Brunker K, Díaz EW, Zegarra E, Monroy Y, Baldarrago GN, Borrini-Mayorí K, De la Puente-León M, Palmalux N, Nichols J, Kasaragod S, Levy MZ, Hampson K, Castillo-Neyra R. Genomic characterization of a dog-mediated rabies outbreak in El Pedregal, Arequipa, Peru. PLoS Negl Trop Dis 2025; 19:e0012396. [PMID: 40043048 PMCID: PMC12043231 DOI: 10.1371/journal.pntd.0012396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/30/2025] [Accepted: 02/05/2025] [Indexed: 03/12/2025] Open
Abstract
BACKGROUND Rabies, a re-emerging zoonosis with the highest known human case fatality rate, has been largely absent from Peru, except for endemic circulation in the Puno region on the Bolivian border and re-emergence in Arequipa City in 2015, where it has persisted. In 2021, an outbreak occurred in the rapidly expanding city of El Pedregal near Arequipa, followed by more cases in 2022 after nearly a year of epidemiological silence. While currently under control, questions persist regarding the origin of the El Pedregal outbreak and implications for maintaining rabies control in Peru. METHODS We sequenced 25 dog rabies virus (RABV) genomes from the El Pedregal outbreak (n=11) and Arequipa City (n=14) from 2021-2023 using Nanopore sequencing in Peru. Historical genomes from Puno (n=4, 2010-2012) and Arequipa (n=5, 2015-2019), were sequenced using an Illumina approach in the UK. In total, 34 RABV genomes were generated, including archived and newly obtained samples. The genomes were analyzed phylogenetically to understand the outbreak's context and origins. RESULTS Phylogenomic analysis identified two genetic clusters in El Pedregal: 2021 cases stemmed from a single introduction unrelated to Arequipa cases, while the 2022 sequence suggested a new introduction from Arequipa rather than persistence. In relation to canine RABV diversity in Latin America, all new sequences belonged to the new minor clade, Cosmopolitan Am5, sharing relatives from Bolivia, Argentina, and Brazil. CONCLUSION Genomic insights into the El Pedregal outbreak revealed multiple introductions over a 2-year window. Eco-epidemiological conditions, including migratory worker patterns, suggest human-mediated movement drove introductions. Despite outbreak containment, El Pedregal remains at risk of dog-mediated rabies due to ongoing circulation in Arequipa, Puno, and Bolivia. Human-mediated movement of dogs presents a major risk for rabies re-emergence in Peru, jeopardizing regional dog-mediated rabies control. Additional sequence data is needed for comprehensive phylogenetic analyses.
Collapse
Affiliation(s)
- Renzo Salazar
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Kirstyn Brunker
- School of Biodiversity, Animal Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Elvis W. Díaz
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edith Zegarra
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | - Ynes Monroy
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | | | - Katty Borrini-Mayorí
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Micaela De la Puente-León
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Genetic Design and Engineering Center (GDEC), Bioengineering Department, Rice University, Houston, Texas, United States of America
| | - Sandeep Kasaragod
- School of Biodiversity, Animal Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Michael Z. Levy
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie Hampson
- School of Biodiversity, Animal Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ricardo Castillo-Neyra
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Forero-Muñoz NR, Dansereau G, Viard F, Acheson E, Leighton P, Poisot T. Spatial Landscape Structure Influences Cross-Species Transmission in a Rabies-like Virus Model. Microorganisms 2025; 13:416. [PMID: 40005781 PMCID: PMC11858330 DOI: 10.3390/microorganisms13020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we simulated biologically realistic agent-based models over neutral landscapes to examine how spatial structure affects the spread of a rabies-like virus in a two-species system. We built landscapes with varying autocorrelation levels and simulated disease dynamics using different transmission rates for intra- and interspecies spread. The results were analysed based on combinations of spatial landscape structures and transmission rates, focusing on the median number of new reservoir and spillover cases. We found that both spatial landscape structures and viral transmission rates are key factors in determining the number of infected simulated agents and the epidemiological week when the highest number of cases occurs. While isolated habitat patches with elevated carrying capacity pose significant risks for viral transmission, they may also slow the spread compared to more connected patches, depending on the modelled scenario. This study highlights the importance of spatial landscape structure and viral transmission rates in cross-species spread. Our findings have implications for disease control strategies and suggest that future research should also focus on how landscape factors interact with pathogen dynamics, especially in those locations where susceptible agents could be more in contact with pathogens with high transmission rates.
Collapse
Affiliation(s)
- Norma Rocio Forero-Muñoz
- Département de Sciences Biologiques, Faculté des Arts et des Sciences, Université de Montréal, Montreal, QC H2V 0B3, Canada; (N.R.F.-M.); (G.D.)
| | - Gabriel Dansereau
- Département de Sciences Biologiques, Faculté des Arts et des Sciences, Université de Montréal, Montreal, QC H2V 0B3, Canada; (N.R.F.-M.); (G.D.)
| | - Francois Viard
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 8H5, Canada; (F.V.); (P.L.)
| | - Emily Acheson
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Université de Montréal, Montreal, QC J2S 8H5, Canada;
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC J2S 0H7, Canada
| | - Patrick Leighton
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, QC J2S 8H5, Canada; (F.V.); (P.L.)
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique (GREZOSP), Université de Montréal, Montreal, QC J2S 8H5, Canada;
| | - Timothée Poisot
- Département de Sciences Biologiques, Faculté des Arts et des Sciences, Université de Montréal, Montreal, QC H2V 0B3, Canada; (N.R.F.-M.); (G.D.)
| |
Collapse
|
5
|
Zhang L, Cruz J, Tian Y, Wang Y, Jiang J, Gonzales RM, Azul RR, Peña RCD, Sun S, Liu Y, Jiang T, Fang L, Tu C, Gong W, Feng Y. Phylogeography Analysis Reveals Rabies Epidemiology, Evolution, and Transmission in the Philippines. Mol Biol Evol 2025; 42:msaf007. [PMID: 39936582 PMCID: PMC11815495 DOI: 10.1093/molbev/msaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 02/13/2025] Open
Abstract
Rabies, caused by rabies virus, is a severe public health problem in the Philippines, where animal rabies epidemiology had been extensively investigated, but little is known about the national epidemiologic situations since 2010. Here, we report a 12-year nationwide animal rabies surveillance with systematic phylogenetic analysis, in which 353 whole genomes of rabies viruses collected from animal rabies cases between 2018 and 2022 were obtained. The phylogenetic and spatial-temporal evolutionary analyses showed that rabies viruses in the Philippines were exclusively classified into the SEA4 subclade within the Asian clade, but forming three major geographically specific lineages. Intra-island spread predominates the rabies transmission in three major island regions, while the inter-island transmission, between major island regions, is very limited, likely due to ocean barriers. Overall, our findings have provided the most comprehensive dataset on the infected animal species, geographic distribution, transmission dynamics, genetic diversity of rabies viruses, and transmission risk factors, thus established a basis to support WOAH-endorsed national control program for dog-mediated rabies in the Philippines.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jeffrey Cruz
- Animal Disease Diagnosis and Reference Laboratory, Veterinary Laboratory Division, Department of Agriculture Bureau of Animal Industry, Quezon, Philippines
| | - Yao Tian
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuyang Wang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Riva Marie Gonzales
- Animal Disease Diagnosis and Reference Laboratory, Veterinary Laboratory Division, Department of Agriculture Bureau of Animal Industry, Quezon, Philippines
| | - Rachel R Azul
- Animal Disease Diagnosis and Reference Laboratory, Veterinary Laboratory Division, Department of Agriculture Bureau of Animal Industry, Quezon, Philippines
| | - Rainelda C Dela Peña
- Animal Disease Diagnosis and Reference Laboratory, Veterinary Laboratory Division, Department of Agriculture Bureau of Animal Industry, Quezon, Philippines
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wenjie Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Kumar A, Tatu U. Typing Arctic and Africa-2 clades of rabies virus using clade-defining single nucleotide polymorphisms. Arch Microbiol 2025; 207:39. [PMID: 39841275 DOI: 10.1007/s00203-025-04235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Rabies is a deadly neurotropic, zoonotic disease with a mortality rate of 100% after symptoms appear. Rabies virus (RABV) is the primary cause of rabies disease in humans, and it mainly spreads via dog bites in developing countries. Over the course of RABV evolution, multiple RABV variants, called clades, have emerged. However, our understanding of these clades is limited, as the only method to identify a clade is sequencing, followed by phylogeny. In this study, we have developed a rapid, PCR-based method for typing two RABV clades. We utilised highly conserved amino acid changes specific to the Arctic and Africa-2 clades of the rabies virus (RABV). A single nucleotide substitution from adenine to thymine at position 178 within the nucleoprotein gene was found to be clade-specific in the Arctic clade. Similarly, adenine at position 638 is a distinctive marker for the Africa-2 clade. The assay demonstrated high specificity and offers the added benefit of PCR-based amplification, enabling virus detection even when viral titers are low. The assay can identify the Arctic clade and Africa-2 clade without sequencing and is highly specific and sensitive. Furthermore, this method can be adapted to detect other RABV clades and a wide range of viruses.
Collapse
Affiliation(s)
- Ankeet Kumar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Utpal Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
7
|
Veytsel G, Desiato J, Chung H, Tan S, Risatti GR, Helal ZH, Jang S, Lee DH, Bahl J. Molecular epidemiology, evolution, and transmission dynamics of raccoon rabies virus in Connecticut. Virus Evol 2024; 11:veae114. [PMID: 39802825 PMCID: PMC11711587 DOI: 10.1093/ve/veae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
In North America, raccoon rabies virus (RRV) is a public health concern due to its potential for rapid spread, maintenance in wildlife, and impact on human and domesticated animal health. RRV is an endemic zoonotic pathogen throughout the eastern USA. In 1991, an outbreak of RRV in Fairfield County, Connecticut, spread through the state and eventually throughout the Northeast and into Canada. Factors that contribute to, or curb, RRV transmission should be explored and quantified to guide targeted rabies control efforts, including the size and location of buffer zones of vaccinated animals. However, population dynamics and potential underlying determinants of rabies virus diversity and circulation in Connecticut have not been fully studied. In this study, we aim to (i) investigate RRV source-sink dynamics between Connecticut and surrounding states and provinces, (ii) explore the impact of the Connecticut River as a natural barrier to transmission, and (iii) characterize the genomic diversity and transmission dynamics in Connecticut. Using RRV whole-genome sequences collected from various host species between 1990 and 2020, we performed comparative genetic and Bayesian phylodynamic analyses at multiple spatial scales. We analyzed 71 whole-genome sequences from Connecticut, including 21 recent RRV specimens collected at the Connecticut Veterinary Medical Diagnostic Laboratory that we sequenced for this study. Our analyses revealed evidence of RRV incursions over the US-Canada border, including bidirectional spread between Quebec and Vermont. Additionally, we highlighted the importance of Connecticut and New York in seeding RRV transmission in eastern North America, including two introduction events from New York to Connecticut that resulted in sustained local transmission. While RRV transmission does occur across the Housatonic and Connecticut Rivers, we demonstrated the distinct presence of spatial structuring in the phylogenetic trees and characterized the directionality of RRV migration. The significantly higher mean transition rates from locations east to west of the Connecticut River, compared to west to east, may be leveraged in directing interventions to fortify these natural barriers. Ultimately, the findings of these international, regional, and state analyses can inform targeted control programs, vaccination efforts, and enhanced surveillance at borders of key viral sources and sinks.
Collapse
Affiliation(s)
- Gabriella Veytsel
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 E. Green Street, Athens, GA 30602, United States
| | - Julia Desiato
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- Connecticut Emerging Infections Program, Yale School of Public Health, 1 Church Street, New Haven, CT 06510, United States
| | - Hyunjung Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| | - Swan Tan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
| | - Zeinab H Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
| | - Sungmin Jang
- Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, 215 Glenbrook Road, Storrs, CT 06269, United States
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Justin Bahl
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 E. Green Street, Athens, GA 30602, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA 30602, United States
| |
Collapse
|
8
|
Wobessi JNS, Bailly JL, Kameni Feussom JM, Njouom R, Sadeuh-Mba SA. Spatiotemporal dynamics of rabies virus detected in rabid dogs in Cameroon, 2010-2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 126:105688. [PMID: 39515442 DOI: 10.1016/j.meegid.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Rabies is a viral zoonosis that causes an estimated 60,000 human deaths each year, mainly in Africa and Asia. The etiological agent of rabies, the Rabies Lyssavirus or Rabies Virus (RABV) has been characterized in dog populations in Cameroon, in previous studies. However, the dynamics of RABV maintenance and propagation in dogs are still to be documented in Cameroon. This study thus, aimed at investigating the spatial and temporal dynamics of RABV variants in Cameroon. Long genomic sequences of about 4893 nucleotides, encompassing the N, P, M and G genes as well as part of the G-L intergenic region (Ψ), were determined from 56 RABV strains recovered from dog populations in Cameroon from 2010 to 2021. Temporal and spatial dynamics of RABV circulation in Cameroon were investigated by Bayesian analyses with the BEAST 1.10.4 package from extended RABV genomic sequences data combined with their collection dates and the geographical coordinates of their sampling areas. This revealed a genetic evolution rate of 3.14 × 10-4 substitutions/site/year among Africa-1a and Africa-2 clades of RABV from Cameroon. The most recent common ancestor (MRCA) of the studied strains of the Africa-1a lineage was estimated to have emerged between 1880 and 1906 (95 % HPD; mean 1894), while that of the strains of the Africa-2 clade had a slightly later estimated origin between 1907 and 1928 (95 % HPD, mean 1918). Overall, phylogeographic analyses suggested RABV spread in Cameroon between sub-national regions. Our data provides substantial support to previous findings from similar epidemiological settings, indicating human mediated movements of infected dogs between distant cities may be a key factor in the maintenance of the enzootic cycle of rabies among dogs in Cameroon.
Collapse
Affiliation(s)
- Jocelyne Noel Sowe Wobessi
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon; Ecole Doctorale Regionale (EDR) d'Afrique Centrale, Tropical Infectiology, Franceville, Gabon
| | - Jean-Luc Bailly
- Laboratoire Micro-organisme Genome et Environnement (LMGE), Clermont Ferrand, France
| | - Jean-Marc Kameni Feussom
- Cameroon Epidemiological Network for Animal Diseases (RESCAM), Ministry of Livestock, Fisheries and Animal Industries, Yaounde, Cameroon; Epidemiology and Public Health Veterinary Association (ESPV), Yaounde, Cameroon
| | - Richard Njouom
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon
| | - Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur du Cameroun, PO Box 1274, Yaounde, Cameroon; Salisbury Animal Health Laboratory, Maryland Department of Agriculture, 27722 Nanticoke Rd, Salisbury, MD 21801, United States of America.
| |
Collapse
|
9
|
Kumar A, Tushir S, Devasurmutt Y, Nath SS, Tatu U. Identification of clade-defining single nucleotide polymorphisms for improved rabies virus surveillance. New Microbes New Infect 2024; 62:101511. [PMID: 39512853 PMCID: PMC11542045 DOI: 10.1016/j.nmni.2024.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Background Rabies is an ancient disease that remains endemic in many countries. It causes many human deaths annually, predominantly in resource-poor countries. Over evolutionary timelines, several rabies virus (RABV) genotypes have stabilised, forming distinct clades. Extensive studies have been conducted on the origin, occurrence and spread of RABV clades. Single nucleotide polymorphisms (SNPs) distribution across the RABV genome and its clades remains largely unknown, highlighting the need for comprehensive whole-genome analyses. Methods We accessed whole genome sequences for RABV from public databases and identified SNPs across the whole genome sequences. Then, we annotated these SNPs using an R script, and these SNPs were categorised into different categories; universal, clade-specific, and clade-defining, based on the frequency of occurrence. Results In this study, we present the SNPs occurring in the RABV based on whole genome sequences belonging to 8 clades isolated from 7 different host species likely to harbour dog-related rabies. We classified mutations into several classes based on their location within the genome and assessed the effect of SNP mutations on the viral glycoprotein. Conclusions The clade-defining mutations have implications for targeted surveillance and classification of clades. Additionally, we investigated the effects of these mutations on the Glycoprotein of the virus. Our findings contribute to expanding knowledge about RABV clade diversity and evolution, which has significant implications for effectively tracking and combatting RABV transmission.
Collapse
Affiliation(s)
- Ankeet Kumar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheetal Tushir
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Yashas Devasurmutt
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sujith S. Nath
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Utpal Tatu
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Hourdel V, Balière C, Vanhomwegen J, Brisebarre A, Grassin Q, Manuguerra JC, Kallel H, Demar M, Dacheux L, Caro V. Complete genome sequence of a vampire bat-related rabies virus obtained by metagenomics from a patient with encephalitis of unknown etiology, French Guiana. Microbiol Resour Announc 2024; 13:e0051424. [PMID: 39365087 PMCID: PMC11556106 DOI: 10.1128/mra.00514-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
We report the complete genome sequence of a rabies virus obtained by direct metagenomics from the cerebellum of a gold panner who died of unknown encephalitis in French Guiana. Phylogenetic analysis exhibited a close genetic relationship with vampire bat-related isolates, confirming the second case of human rabies identified in this territory.
Collapse
Affiliation(s)
- Véronique Hourdel
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Charlotte Balière
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Jessica Vanhomwegen
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Angela Brisebarre
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Quentin Grassin
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Hatem Kallel
- Service de Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- Laboratoire de Biologie Médicale, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| | - Valérie Caro
- Institut Pasteur, Université Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) Unit, Paris, France
| |
Collapse
|
11
|
Durrant R, Cobbold CA, Brunker K, Campbell K, Dushoff J, Ferguson EA, Jaswant G, Lugelo A, Lushasi K, Sikana L, Hampson K. Examining the molecular clock hypothesis for the contemporary evolution of the rabies virus. PLoS Pathog 2024; 20:e1012740. [PMID: 39585914 PMCID: PMC11627394 DOI: 10.1371/journal.ppat.1012740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024] Open
Abstract
The molecular clock hypothesis assumes that mutations accumulate on an organism's genome at a constant rate over time, but this assumption does not always hold true. While modelling approaches exist to accommodate deviations from a strict molecular clock, assumptions about rate variation may not fully represent the underlying evolutionary processes. There is considerable variability in rabies virus (RABV) incubation periods, ranging from days to over a year, during which viral replication may be reduced. This prompts the question of whether modelling RABV on a per infection generation basis might be more appropriate. We investigate how variable incubation periods affect root-to-tip divergence under per-unit time and per-generation models of mutation. Additionally, we assess how well these models represent root-to-tip divergence in time-stamped RABV sequences. We find that at low substitution rates (<1 substitution per genome per generation) divergence patterns between these models are difficult to distinguish, while above this threshold differences become apparent across a range of sampling rates. Using a Tanzanian RABV dataset, we calculate the mean substitution rate to be 0.17 substitutions per genome per generation. At RABV's substitution rate, the per-generation substitution model is unlikely to represent rabies evolution substantially differently than the molecular clock model when examining contemporary outbreaks; over enough generations for any divergence to accumulate, extreme incubation periods average out. However, measuring substitution rates per-generation holds potential in applications such as inferring transmission trees and predicting lineage emergence.
Collapse
Affiliation(s)
- Rowan Durrant
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christina A. Cobbold
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Kirstyn Brunker
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Campbell
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Elaine A. Ferguson
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gurdeep Jaswant
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- University of Nairobi Institute of Tropical and Infectious Diseases (UNITID), Nairobi, Kenya
- Tanzania Industrial Research Development Organisation (TIRDO), Dar es Salaam, Tanzania
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Ahmed Lugelo
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Global Animal Health Tanzania, Arusha, Tanzania
| | - Kennedy Lushasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Lwitiko Sikana
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Katie Hampson
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Akinsulie OC, Adebowale OO, Adesola RO, Banwo OG, Idris I, Ogunleye SC, Fasakin O, Bakre A, Oladapo IP, Aliyu VA, Waniwa EO, Fasiku O, Joshi M, Olorunshola M. Holistic application of the one health approach in the prevention and control of rabies: plausible steps towards achieving the 2030 vision in Africa. ONE HEALTH OUTLOOK 2024; 6:22. [PMID: 39261974 PMCID: PMC11389241 DOI: 10.1186/s42522-024-00108-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 09/13/2024]
Abstract
Rabies remains a significant public health challenge in Africa, primarily burdening impoverished rural communities, with children and young adults being the most vulnerable. Achieving complete elimination in the continent by 2030 requires a coordinated effort hinged on the One Health concept, external support from international organizations like the World Health Organization (WHO) and the national governments of endemic countries. Here, we reviewed the various socio-economic and ecological factors influencing the spatial distribution and molecular epidemiology of the disease. To mitigate the transmission of rabies on a global scale, and specifically in Africa, we proposed a multi-pronged approach including enhanced access to healthcare resources, cultural sensitization and massive health promotion with efforts geared towards promoting responsible dog and pet ownership and population management, effective monitoring, and mitigation of environmental changes.
Collapse
Affiliation(s)
- Olalekan Chris Akinsulie
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamilekan Gabriel Banwo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ibrahim Idris
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Seto Charles Ogunleye
- Comparative Biomedical Sciences, Mississippi State University, Mississippi State, Starkville, MS, 39760, USA
| | | | - Adetolase Bakre
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa Peace Oladapo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Victor Ayodele Aliyu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Emily Onesai Waniwa
- Central Veterinary Laboratory, Division of Veterinary Technical Services, Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | - Oluwatobi Fasiku
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Melina Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal.
| | - Mercy Olorunshola
- Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
13
|
Salazar R, Brunker K, Díaz EW, Zegarra E, Monroy Y, Baldarrago GN, Borrini-Mayorí K, De la Puente-León M, Kasaragod S, Levy MZ, Hampson K, Castillo-Neyra R. Genomic Characterization of a Dog-Mediated Rabies Outbreak in El Pedregal, Arequipa, Peru. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608982. [PMID: 39229209 PMCID: PMC11370554 DOI: 10.1101/2024.08.21.608982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Rabies, a re-emerging zoonosis with the highest known human case fatality rate, has been largely absent from Peru, except for endemic circulation in the Puno region on the Bolivian border and re-emergence in Arequipa City in 2015, where it has persisted. In 2021, an outbreak occurred in the rapidly expanding city of El Pedregal near Arequipa, followed by more cases in 2022 after nearly a year of epidemiological silence. While currently under control, questions persist regarding the origin of the El Pedregal outbreak and implications for maintaining rabies control in Peru. Methods We sequenced 25 dog rabies virus (RABV) genomes from the El Pedregal outbreak (n=11) and Arequipa City (n=14) from 2021-2023 using Nanopore sequencing in Peru. Historical genomes from Puno (n=4, 2010-2012) and Arequipa (n=5, 2015-2019), were sequenced using an Illumina approach in the UK. In total, 34 RABV genomes were analyzed, including archived and newly obtained samples. The genomes were analyzed phylogenetically to understand the outbreak's context and origins. Results Phylogenomic analysis identified two genetic clusters in El Pedregal: 2021 cases stemmed from a single introduction unrelated to Arequipa cases, while the 2022 sequence suggested a new introduction from Arequipa rather than persistence. In relation to canine RABV diversity in Latin America, all new sequences belonged to a new minor clade, Cosmopolitan Am5, sharing relatives from Bolivia, Argentina, and Brazil. Conclusion Genomic insights into the El Pedregal outbreak revealed multiple introductions over a 2-year window. Eco-epidemiological conditions, including migratory worker patterns, suggest human-mediated movement drove introductions. Despite outbreak containment, El Pedregal remains at risk of dog-mediated rabies due to ongoing circulation in Arequipa, Puno, and Bolivia. Human-mediated movement of dogs presents a major risk for rabies re-emergence in Peru, jeopardizing regional dog-mediated rabies control. Additional sequence data is needed for comprehensive phylogenetic analyses.
Collapse
Affiliation(s)
- Renzo Salazar
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elvis W Díaz
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edith Zegarra
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | - Ynes Monroy
- Laboratorio de Referencia Regional de la Gerencia Regional de Salud de Arequipa, Arequipa, Perú
| | | | - Katty Borrini-Mayorí
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Micaela De la Puente-León
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Sandeep Kasaragod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michael Z Levy
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
- The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Ricardo Castillo-Neyra
- Zoonotic Disease Research Lab, One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Perú
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Caraballo DA, Vico ML, Piccirilli MG, Hirmas Riade SM, Russo S, Martínez G, Beltrán FJ, Cisterna DM. Bat Rabies in the Americas: Is Myotis the Main Ancestral Spreader? Viruses 2024; 16:1302. [PMID: 39205276 PMCID: PMC11359690 DOI: 10.3390/v16081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The rabies virus (RABV) is the exclusive lyssavirus affecting both wild and domestic mammalian hosts in the Americas, including humans. Additionally, the Americas stand out as the sole region where bat rabies occurs. While carnivore rabies is being increasingly managed across the region, bats are emerging as significant reservoirs of RABV infection for humans and domestic animals. Knowledge of the bat species maintaining rabies and comprehending cross-species transmission (CST) and host shift processes are pivotal for directing surveillance as well as ecological research involving wildlife reservoir hosts. Prior research indicates that bat RABV CST is influenced by host genetic similarity and geographic overlap, reflecting host adaptation. In this study, we compiled and analyzed a comprehensive nucleoprotein gene dataset representing bat-borne RABV diversity in Argentina and the broader Americas using Bayesian phylogenetics. We examined the association between host genus and geography, finding both factors shaping the global phylogenetic structure. Utilizing a phylogeographic approach, we inferred CST and identified key bat hosts driving transmission. Consistent with CST determinants, we observed monophyletic/paraphyletic clustering of most bat genera in the RABV phylogeny, with stronger CST evidence between host genera of the same family. We further discuss Myotis as a potential ancestral spreader of much of RABV diversity.
Collapse
Affiliation(s)
- Diego A. Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - María Lorena Vico
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| | - María Guadalupe Piccirilli
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Stella Maris Hirmas Riade
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Susana Russo
- Dirección General de Laboratorio y Control Técnico (DILAB), Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Buenos Aires B1640CZT, Argentina
| | - Gustavo Martínez
- Servicio de Neurovirosis, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires C1282AFF, Argentina
| | - Fernando J. Beltrán
- Instituto de Zoonosis “Luis Pasteur”, Ciudad Autónoma de Buenos Aires C1405DCD, Argentina
| | - Daniel M. Cisterna
- Departamento de Zoonosis Urbanas, Ministerio de Salud de la Provincia de Buenos Aires, Buenos Aires B1870, Argentina
| |
Collapse
|
15
|
Kawaguchi N, Itakura Y, Intaruck K, Ariizumi T, Harada M, Inoue S, Maeda K, Ito N, Hall WW, Sawa H, Orba Y, Sasaki M. Reverse genetic approaches allowing the characterization of the rabies virus street strain belonging to the SEA4 subclade. Sci Rep 2024; 14:18509. [PMID: 39122768 PMCID: PMC11316049 DOI: 10.1038/s41598-024-69613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.
Collapse
Affiliation(s)
- Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
Wambugu EN, Kimita G, Kituyi SN, Washington MA, Masakhwe C, Mutunga LM, Jaswant G, Thumbi SM, Schaefer BC, Waitumbi JN. Geographic Distribution of Rabies Virus and Genomic Sequence Alignment of Wild and Vaccine Strains, Kenya. Emerg Infect Dis 2024; 30:1642-1650. [PMID: 39043404 PMCID: PMC11286075 DOI: 10.3201/eid3008.230876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Rabies, a viral disease that causes lethal encephalitis, kills ≈59,000 persons worldwide annually, despite availability of effective countermeasures. Rabies is endemic in Kenya and is mainly transmitted to humans through bites from rabid domestic dogs. We analyzed 164 brain stems collected from rabid animals in western and eastern Kenya and evaluated the phylogenetic relationships of rabies virus (RABV) from the 2 regions. We also analyzed RABV genomes for potential amino acid changes in the vaccine antigenic sites of nucleoprotein and glycoprotein compared with RABV vaccine strains commonly used in Kenya. We found that RABV genomes from eastern Kenya overwhelmingly clustered with the Africa-1b subclade and RABV from western Kenya clustered with Africa-1a. We noted minimal amino acid variances between the wild and vaccine virus strains. These data confirm minimal viral migration between the 2 regions and that rabies endemicity is the result of limited vaccine coverage rather than limited efficacy.
Collapse
|
17
|
Gilbert AT, Van Pelt LI, Hastings LA, Gigante CM, Orciari LA, Kelley S, Fitzpatrick K, Condori REC, Li Y, Brunt S, Davis A, Hopken MW, Mankowski CCP, Wallace RM, Rupprecht CE, Chipman RB, Bergman DL. Reemergence of a Big Brown Bat Lyssavirus rabies Variant in Striped Skunks in Flagstaff, Arizona, USA, 2021-2023. Vector Borne Zoonotic Dis 2024; 24:552-562. [PMID: 38775097 DOI: 10.1089/vbz.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background: Throughout the Americas, Lyssavirus rabies (RV) perpetuates as multiple variants among bat and mesocarnivore species. Interspecific RV spillover occurs on occasion, but clusters and viral host shifts are rare. The spillover and host shift of a big brown bat (Eptesicus fuscus) RV variant Ef-W1 into mesocarnivores was reported previously on several occasions during 2001-2009 in Flagstaff, Arizona, USA, and controlled through rabies vaccination of target wildlife. During autumn 2021, a new cluster of Ef-W1 RV cases infecting striped skunks (Mephitis mephitis) was detected from United States Department of Agriculture enhanced rabies surveillance in Flagstaff. The number of Ef-W1 RV spillover cases within a short timeframe suggested the potential for transmission between skunks and an emerging host shift. Materials and Methods: Whole and partial RV genomic sequencing was performed to evaluate the phylogenetic relationships of the 2021-2023 Ef-W1 cases infecting striped skunks with earlier outbreaks. Additionally, real-time reverse-transcriptase PCR (rtRT-PCR) was used to opportunistically compare viral RNA loads in brain and salivary gland tissues of naturally infected skunks. Results: Genomic RV sequencing revealed that the origin of the 2021-2023 epizootic of Ef-W1 RV was distinct from the multiple outbreaks detected from 2001-2009. Naturally infected skunks with the Ef-W1 RV showed greater viral RNA loads in the brain, but equivalent viral RNA loads in the mandibular salivary glands, compared to an opportunistic sample of skunks naturally infected with a South-Central skunk RV from northern Colorado, USA. Conclusion: Considering a high risk for onward transmission and spread of the Ef-W1 RV in Flagstaff, public outreach, enhanced rabies surveillance, and control efforts, focused on education, sample characterization, and vaccination, have been ongoing since 2021 to mitigate and prevent the spread and establishment of Ef-W1 RV in mesocarnivores.
Collapse
Affiliation(s)
- Amy T Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Lolita I Van Pelt
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| | - Lias A Hastings
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| | - Crystal M Gigante
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lillian A Orciari
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sabrina Kelley
- Coconino County Health and Human Services, Flagstaff, Arizona, USA
| | | | - Rene E Condori Condori
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yu Li
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Scott Brunt
- New York State Department of Health, Wadsworth Center Rabies Laboratory, Slingerlands, New York, USA
| | - April Davis
- New York State Department of Health, Wadsworth Center Rabies Laboratory, Slingerlands, New York, USA
| | - Matthew W Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Clara C P Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Ryan M Wallace
- National Center for Emerging and Zoonotic Infectious Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles E Rupprecht
- Auburn University, College of Forestry, Wildlife, and the Environment, Auburn, Alabama, USA
| | - Richard B Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Rabies Management Program, Concord, New Hampshire, USA
| | - David L Bergman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Phoenix, Arizona, USA
| |
Collapse
|
18
|
Ghosh S, Hasan MN, Nath ND, Haider N, Jones DH, Islam MK, Rahaman MM, Mursalin HS, Mahmud N, Kamruzzaman M, Rabby MF, Kar S, Ullah SM, Ali Shah MR, Jahan AA, Rana MS, Chowdhury S, Uddin MJ, Sunil TS, Ahmed BN, Siddiqui UR, Kaisar SG, Islam MN. Rabies control in Bangladesh and prediction of human rabies cases by 2030: a One Health approach. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 27:100452. [PMID: 39140082 PMCID: PMC11321326 DOI: 10.1016/j.lansea.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/12/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Background Bangladesh is making progress toward achieving zero dog-mediated rabies deaths by 2030, a global goal set in 2015. Methods Drawing from multiple datasets, including patient immunisation record books and mass dog vaccination (MDV) databases, we conducted a comprehensive analysis between 2011 and 2023 to understand the effectiveness of rabies control programmes and predict human rabies cases in Bangladesh by 2030 using time-series forecasting models. We also compared rabies virus sequences from GenBank in Bangladesh and other South Asian countries. Findings The estimated dog population in Bangladesh was determined to be 1,668,140, with an average dog population density of 12.83 dogs/km2 (95% CI 11.14-14.53) and a human-to-dog ratio of 86.70 (95% CI 76.60-96.80). The MDV campaign has led to the vaccination of an average of 21,295 dogs (95% CI 18,654-23,935) per district annually out of an estimated 26,065 dogs (95% CI 22,898-29,230). A declining trend in predicted and observed human rabies cases has been identified, suggesting that Bangladesh is poised to make substantial progress towards achieving the 'Zero by 30' goal, provided the current trajectory continues. The phylogenetic analysis shows that rabies viruses in Bangladesh belong to the Arctic-like-1 group, which differs from those in Bhutan despite sharing a common ancestor. Interpretation Bangladesh's One Health approach demonstrated that an increase in MDV and anti-rabies vaccine (ARV) resulted in a decline in the relative risk of human rabies cases, indicating that eliminating dog-mediated human rabies could be achievable. Funding The study was supported by the Communicable Disease Control (CDC) Division of the Directorate General of Health Services (DGHS) of the People's Republic of Bangladesh.
Collapse
Affiliation(s)
- Sumon Ghosh
- Department of Public Health, College of Education, Health, and Human Sciences, The University of Tennessee, Knoxville, TN 37996, USA
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, The University of Tennessee, Knoxville, USA
| | - Najmul Haider
- School of Life Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Daleniece Higgins Jones
- Department of Public Health, College of Education, Health, and Human Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Md. Kamrul Islam
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - M. Mujibur Rahaman
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Hasan Sayedul Mursalin
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Nadim Mahmud
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Md. Kamruzzaman
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Md. Fazlay Rabby
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Shotabdi Kar
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Sayed Mohammed Ullah
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Md. Rashed Ali Shah
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Afsana Akter Jahan
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Md. Sohel Rana
- Livestock Research Institute, Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | - Sukanta Chowdhury
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Jamal Uddin
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Faculty of Graduate Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Thankam S. Sunil
- Department of Public Health, College of Education, Health, and Human Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Be-Nazir Ahmed
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Umme Ruman Siddiqui
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - S.M. Golam Kaisar
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| | - Md. Nazmul Islam
- Disease Control Unit, Communicable Disease Control, Directorate General of Health Services, Ministry of Health and Family Welfare, Bangladesh
| |
Collapse
|
19
|
Atuheire CGK, Okwee-Acai J, Taremwa M, Terence O, Ssali SN, Mwiine FN, Kankya C, Skjerve E, Tryland M. Descriptive analyses of knowledge, attitudes, and practices regarding rabies transmission and prevention in rural communities near wildlife reserves in Uganda: a One Health cross-sectional study. Trop Med Health 2024; 52:48. [PMID: 39030649 PMCID: PMC11264860 DOI: 10.1186/s41182-024-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Despite urban (domestic dog) rabies cycles being the main target for rabies elimination by 2030, sylvatic (wildlife) rabies cycles can act as rabies spillovers especially in settlements contiguous to wildlife reserves. Rural communities next to wildlife reserves are characterized by unique socio-demographic and cultural practices including bat consumption, hunting for bushmeat, and non-vaccination of hunting dogs against rabies among others. This study aimed to compare the knowledge, attitudes, and practices (KAPs) related to rabies transmission and prevention in the three districts of Uganda; (1) Nwoya, neighboring Murchison Falls National Park (MFNP) in the north, (2) Kamwenge neighboring Kibaale National Park (KNP), Queen Elizabeth National Park (QENP) and Katonga Game Reserve (KGR) in the west, and (3) Bukedea, neighboring Pian Upe Game Reserve (PUGR) in the east of Uganda. METHODS A community-based cross-sectional survey was conducted in settlements contiguous to these wildlife reserves. Using a semi-structured questionnaire, data were collected from 843 households owning dogs and livestock. Data were collected between the months of January and April 2023. Stratified univariate analyses by district were carried out using the Chi-square test for independence and Fisher's exact test to compare KAPs in the three study districts. RESULTS The median age of study participants was 42 years (Q1, Q3 = 30, 52) with males comprising the majority (67%, n = 562). The key findings revealed that participants from the Nwoya district in the north (MFNP) had little knowledge about rabies epidemiology (8.5%, n = 25), only 64% (n = 187) of them knew its signs and symptoms such as a rabid dog presenting with aggressiveness and showed negative attitudes towards prevention measures (15.3%, n = 45). Participants in the Kamwenge district-west (KNP, QENP, and KGR) had little knowledge and negative attitude towards wildlife-human interaction pertaining to rabies transmission and prevention especially those with no or primary level of education (20.9%, n = 27) while participants from Bukedea in the east (PUGR) had remarkedly poor practices towards rabies transmission, prevention, and control (37.8%, n = 114). CONCLUSIONS Rabies from sylvatic cycles remains a neglected public health threat in rural communities surrounding national parks and game reserves in Uganda. Our study findings highlight key gaps in knowledge, attitudes, and practices related to rabies transmission and prevention among such communities. Communication and action between veterinary services, wildlife authority, public health teams, social science and community leaders through available community platforms is key in addressing rabies among the sympatric at-risk communities in Uganda.
Collapse
Affiliation(s)
- Collins G K Atuheire
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda.
| | - James Okwee-Acai
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Martha Taremwa
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Odoch Terence
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Sarah N Ssali
- School of Women and Gender Studies, College of Humanities, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frank N Mwiine
- Department of Biomolecular Resources and Bio-Lab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Clovice Kankya
- Department of Biosecurity, Ecosystems & Veterinary Public Health, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480, Koppang, Norway
| |
Collapse
|
20
|
Perraud V, Vanderhoydonck B, Bouvier G, Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben Khalifa Y, Kergoat L, Lannoy J, Van Buyten T, Izadi-Pruneyre N, Chaltin P, Neyts J, Marchand A, Larrous F, Bourhy H. Mechanism of action of phthalazinone derivatives against rabies virus. Antiviral Res 2024; 224:105838. [PMID: 38373533 DOI: 10.1016/j.antiviral.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.
Collapse
Affiliation(s)
- Victoire Perraud
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Bart Vanderhoydonck
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Guillaume Bouvier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, F-75015, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Amuri Kilonda
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Mohamed Koukni
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | | | - Sophie Rogée
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Youcef Ben Khalifa
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | | | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium; Centre for Drug Design and Discovery (CD3), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| |
Collapse
|
21
|
Auerswald H, Guillebaud J, Durand B, Le Vu M, Sorn S, In S, Pov V, Davun H, Duong V, Ly S, Dussart P, Chevalier V. Bayesian modeling of post-vaccination serological data suggests that yearly vaccination of dog aged <2 years old is efficient to stop rabies circulation in Cambodia. PLoS Negl Trop Dis 2024; 18:e0012089. [PMID: 38635851 PMCID: PMC11060556 DOI: 10.1371/journal.pntd.0012089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/30/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Rabies control remains challenging in low and middle-income countries, mostly due to lack of financial resources, rapid turnover of dog populations and poor accessibility to dogs. Rabies is endemic in Cambodia, where no national rabies vaccination program is implemented. The objective of this study was to assess the short and long-term vaccination-induced immunity in Cambodian dogs under field conditions, and to propose optimized vaccination strategies. A cohort of 351 dogs was followed at regular time points following primary vaccination only (PV) or PV plus single booster (BV). Fluorescent antibody virus neutralization test (FAVNT) was implemented to determine the neutralizing antibody titer against rabies and an individual titer ≥0·5 IU/mL indicated protection. Bayesian modeling was used to evaluate the individual duration of protection against rabies and the efficacy of two different vaccination strategies. Overall, 61% of dogs had a protective immunity one year after PV. In dogs receiving a BV, this protective immunity remained for up to one year after the BV in 95% of dogs. According to the best Bayesian model, a PV conferred a protective immunity in 82% of dogs (95% CI: 75-91%) for a mean duration of 4.7 years, and BV induced a lifelong protective immunity. Annual PV of dogs less than one year old and systematic BV solely of dogs vaccinated the year before would allow to achieve the 70% World Health Organization recommended threshold to control rabies circulation in a dog population in three to five years of implementation depending on dog population dynamics. This vaccination strategy would save up to about a third of vaccine doses, reducing cost and time efforts of mass dog vaccination campaigns. These results can contribute to optimize rabies control measures in Cambodia moving towards the global goal of ending human death from dog-mediated rabies by 2030.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Julia Guillebaud
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, Maisons-Alfort, France
| | - Mathilde Le Vu
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Vutha Pov
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Holl Davun
- General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Véronique Chevalier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche ASTRE, Montpellier, France
- ASTRE, Université de Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
22
|
Tuvshinjargal B, Erdenechimeg D, Dulam P, Saruuljargal A, Battsetseg B, Tuvshintulga B. Genetic analyses of rabies virus glycoprotein and nucleoprotein gene sequences reveal the emergence of multiple lineages in animals in Arkhangai province, a central region of Mongolia. Braz J Microbiol 2023; 54:3315-3320. [PMID: 37923877 PMCID: PMC10689655 DOI: 10.1007/s42770-023-01161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Genetic characterizations of rabies viruses circulating in carnivore and non-carnivore animals were investigated for the first time in Arkhangai province, a central region of Mongolia. Also, glycoprotein gene of the rabies virus was sequenced for the first time in Mongolia. The nucleotide sequences of the glycoprotein and nucleoprotein genes were analysed, revealing the presence of multiple lineages in this area. Of particular concern are the lineages identified in carnivores, which might emerge to spread throughout Mongolia, further facilitating transboundary transmission to neighbouring countries, including China and Russia.
Collapse
Affiliation(s)
| | - Dashzevge Erdenechimeg
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | | | | | - Badgar Battsetseg
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia
| | - Bumduuren Tuvshintulga
- Laboratory of Virology, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar, 17024, Mongolia.
| |
Collapse
|
23
|
Hopken MW, Piaggio AJ, Abdo Z, Chipman RB, Mankowski CP, Nelson KM, Hilton MS, Thurber C, Tsuchiya MTN, Maldonado JE, Gilbert AT. Are rabid raccoons ( Procyon lotor) ready for the rapture? Determining the geographic origin of rabies virus-infected raccoons using RADcapture and microhaplotypes. Evol Appl 2023; 16:1937-1955. [PMID: 38143904 PMCID: PMC10739080 DOI: 10.1111/eva.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/06/2023] [Accepted: 10/18/2023] [Indexed: 12/26/2023] Open
Abstract
North America is recognized for the exceptional richness of rabies virus (RV) wildlife reservoir species. Management of RV is accomplished through vaccination targeting mesocarnivore reservoir populations, such as the raccoon (Procyon lotor) in Eastern North America. Raccoons are a common generalist species, and populations may reach high densities in developed areas, which can result in contact with humans and pets with potential exposures to the raccoon variant of RV throughout the eastern United States. Understanding the spatial movement of RV by raccoon populations is important for monitoring and refining strategies supporting the landscape-level control and local elimination of this lethal zoonosis. We developed a high-throughput genotyping panel for raccoons based on hundreds of microhaplotypes to identify population structure and genetic diversity relevant to rabies management programs. Throughout the eastern United States, we identified hierarchical population genetic structure with clusters that were connected through isolation-by-distance. We also illustrate that this genotyping approach can be used to support real-time management priorities by identifying the geographic origin of a rabid raccoon that was collected in an area of the United States that had been raccoon RV-free for 8 years. The results from this study and the utility of the microhaplotype panel and genotyping method will provide managers with information on raccoon ecology that can be incorporated into future management decisions.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Clara P. Mankowski
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Kathleen M. Nelson
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| | - Christine Thurber
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Rabies Management ProgramConcordNew HampshireUSA
| | - Mirian T. N. Tsuchiya
- Data Science Lab, Office of the Chief Information OfficerSmithsonian InstitutionWashingtonDCUSA
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife ServicesNational Wildlife Research CenterFort CollinsColoradoUSA
| |
Collapse
|
24
|
Condori RE, Kartskhia N, Avaliani L, Donduashvili M, Elbakidze T, Kapanadze A, Pieracci EG, Maghlakelidze G, Wadhwa A, Morgan CN, Reynolds M, Li Y, Ninidze L. Comparing the genetic typing methods for effective surveillance and rabies control in Georgia. Front Microbiol 2023; 14:1243510. [PMID: 38107855 PMCID: PMC10722154 DOI: 10.3389/fmicb.2023.1243510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
A full nucleoprotein gene sequencing of 68 isolates collected from passive rabies surveillance system in Georgia between 2015 and 2016 identified two distinct dog rabies phylogroups, GEO_V1 and GEO_V2, which both belonged to the cosmopolitan dog clade. GEO_V1 was found throughout the country and was further divided into four sub-phylogroups that overlapped geographically; GEO_V2 was found in the southeast region and was closely related to dog rabies in Azerbaijan. A sequence analysis of the full N gene, partial nucleoprotein gene of N-terminal and C-terminal, and the amplicon sequences of pan-lyssavirus RT-qPCR LN34 showed that all four sequencing approaches provided clear genetic typing results of canine rabies and could further differentiate GEO_V1 and GEO_V2. The phylogenetic analysis results vary and were affected by the length of the sequences used. Amplicon sequencing of the LN34 assay positive samples provided a rapid and cost-effective method for rabies genetic typing, which is important for improving rabies surveillance and canine rabies eradication globally.
Collapse
Affiliation(s)
- Rene E. Condori
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Natia Kartskhia
- Veterinary Department, National Food Agency, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| | - Lasha Avaliani
- Veterinary Department, National Food Agency, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| | - Marina Donduashvili
- State Laboratory of Agriculture, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| | - Tinatin Elbakidze
- State Laboratory of Agriculture, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| | - Ana Kapanadze
- State Laboratory of Agriculture, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| | - Emily G. Pieracci
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Giorgi Maghlakelidze
- Center for Global Health, Centers for Disease Control and Prevention, Tbilisi, Georgia
| | - Ashutosh Wadhwa
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Clint N. Morgan
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mary Reynolds
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lena Ninidze
- Veterinary Department, National Food Agency, Ministry of Environmental Protection and Agriculture, Tbilisi, Georgia
| |
Collapse
|
25
|
Chupin SA, Sprygin AV, Zinyakov NG, Guseva NA, Shcherbinin SV, Korennoy FI, Adelshin RV, Mazloum A, Sukharkov AY, Nevzorova VV. Phylogenetic Characterization of Rabies Virus Field Isolates Collected from Animals in European Russian Regions in 2009-2022. Microorganisms 2023; 11:2526. [PMID: 37894184 PMCID: PMC10609256 DOI: 10.3390/microorganisms11102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Rabies is a fatal disease of mammals that poses a high zoonotic risk to humans as well. The distribution of rabies is mainly driven by host animal migration and human-mediated dispersion. To contribute to the global understanding of the rabies virus (RABV) molecular epidemiology, 94 RABV field isolates collected from animals in 13 European Russian regions were phylogenetically characterized using the nearly full-size N gene nucleotide sequences. According to phylogenetic inferences, all isolates belonged to one of the two established phylogenetic groups, either group C (n = 54) or group D (n = 40), which are part of the clade Cosmopolitan of RABVs. Some representatives of group C collected from regions located far apart from each other had a remarkably high level of nucleotide identity. The possibility of the contribution of local bat species to the distribution of RABVs was discussed. Interestingly, over the years, the fraction of group D isolates has been constantly decreasing compared with that of group C isolates. The phylogenetic insights generated herein might have an important contribution to the control and surveillance of animal rabies epidemiology in the region.
Collapse
Affiliation(s)
- Sergei A. Chupin
- Reference Laboratory for Rabies and BSE, Federal Centre for Animal Health, 600901 Vladimir, Russia
| | - Alexandr V. Sprygin
- Laboratory of Molecular and Genetic Researches, Federal Centre for Animal Health, 600901 Vladimir, Russia; (A.V.S.); (A.M.)
| | - Nikolay G. Zinyakov
- Reference Laboratory for Viral Avian Diseases, Federal Centre for Animal Health, 600901 Vladimir, Russia
| | - Nelly A. Guseva
- Reference Laboratory for Viral Avian Diseases, Federal Centre for Animal Health, 600901 Vladimir, Russia
| | - Sergey V. Shcherbinin
- Information Analysis Centre under the Department for Veterinary Surveillance, Federal Centre for Animal Health, 600901 Vladimir, Russia (F.I.K.)
| | - Fedor I. Korennoy
- Information Analysis Centre under the Department for Veterinary Surveillance, Federal Centre for Animal Health, 600901 Vladimir, Russia (F.I.K.)
| | - Renat V. Adelshin
- Irkutsk Anti-Plague Research Institute of Siberia and the Far East, 664047 Irkutsk, Russia;
- Faculty of Biology and Soil Sciences, Irkutsk State University, 664033 Irkutsk, Russia
| | - Ali Mazloum
- Laboratory of Molecular and Genetic Researches, Federal Centre for Animal Health, 600901 Vladimir, Russia; (A.V.S.); (A.M.)
| | - Andrey Y. Sukharkov
- Reference Laboratory for Rabies and BSE, Federal Centre for Animal Health, 600901 Vladimir, Russia
| | | |
Collapse
|
26
|
Li G, Chen X, Li X, Liang Y, Li X, Liang W, Yan Z, Wang Y, Wang Y, Luo J, Guo XF, Zhu XT. Analyzing the Evolution and Host Adaptation of the Rabies Virus from the Perspective of Codon Usage Bias. Transbound Emerg Dis 2023; 2023:4667253. [PMID: 40303686 PMCID: PMC12016951 DOI: 10.1155/2023/4667253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 05/02/2025]
Abstract
Rabies virus (RABV) is a highly pathogenic virus that causes a fatal disease in humans and other mammals, but the mechanism of its evolution, spread, and spillover remains unknown. In this study, we analyzed the codon usage pattern of 2,018 RABV full-length genome sequences from 79 countries collected between 1931 and 2021 to provide an insight into its molecular evolution and unravel its unknown host-adapted pattern. We found that RABV exhibited a weak codon usage bias, with a preference for the codons ending in A (28.10 ± 0.01) or U (26.43 ± 0.02). Moreover, natural selection plays a major role in shaping the codon usage bias of the RABV. Notably, nearly half of the 18 codons in the virus were best matched to the hosts' most abundant isoacceptor tRNAs, which might account for the wide range of RABV hosts. Furthermore, significant differences were observed in the codon usage patterns of RABV for different host species, suggesting that codon usage bias may be influenced by host-specific factors. In conclusion, our study reveals codon usage patterns of RABV that may help in the development of control strategies and effective vaccines and therapies against this deadly virus.
Collapse
Affiliation(s)
- Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuhong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yinyi Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weiheng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- South China Biological Medicine, Guangzhou 511300, China
| | - Xiu-Tong Zhu
- South China Biological Medicine, Guangzhou 511300, China
| |
Collapse
|
27
|
Li G, Zhang Y, He HL, Chen CY, Li X, Xiao Y, Yan ZB, Chu Y, Luo J, Guo XF. Evolution and distribution of rabies viruses from a panorama view. Microbiol Spectr 2023; 11:e0525722. [PMID: 37668395 PMCID: PMC10581214 DOI: 10.1128/spectrum.05257-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Rabies kills more than 59,000 people annually, mainly in developing countries. Previous studies on the evolution and distribution of rabies viruses (RABVs) were scattered. Here, we explore the evolution and distribution of this deadly virus from a novel panorama view. Multiple bioinformatic software tools were employed to analyze the phylogenetic diversity, evolution, spatiotemporal, and distribution of RABVs. The analyses were based on 1,202 qualified full-length genomes of RABVs and numerous literatures. Of the 10 distinct phylogenetic clades of RABV that we identified, more frequent intra- and inter-clade recombination occurs in the sequences of Asian-SEA, Arctic, and Cosmopolitan clades isolated from China, while according to existing sequence information, RABV might originate from bats (posterior probability, PP = 0.75, PP = 0.60 inferred from N and L genes, separately) in North America (PP = 0.57, PP = 0.62 inferred from N and L genes, separately). Due to the difference in evolutionary rate of N (2.22 × 10-4 subs/site/year, 95% HPD 1.99-2.47 × 10-4 subs/site/year) and L genes (1.67 × 10-4 subs/site/year, 95% HPD 1.59-1.74 × 10-4 subs/site/year), the root age was 1,406.6 (95% HPD 1,291.2-1,518.2) and 1,122.7 (95% HPD 1,052.4-1,193.9) inferred from N and L genes, separately. Among other findings, Mephitidae plays an important role in the interspecific transmission and communication of RABV, which we found tends to spread to populations genetically proximate to the host. We also identified amino acids under positive selection in different genes of different clades as well as single nucleotide variation sites important for different lineages. IMPORTANCE Rabies virus is widely distributed all over the world, and wild animals are its largest potential reservoir. Our study offers a panorama view about evolution and distribution of rabies viruses and emphasizes the need to monitor the transmission dynamics of animal rabies.
Collapse
Affiliation(s)
- Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong-Ling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chang-Yi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Bin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Chu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Feng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
28
|
Layan M, Dacheux L, Lemey P, Brunker K, Ma L, Troupin C, Dussart P, Chevalier V, Wood JLN, Ly S, Duong V, Bourhy H, Dellicour S. Uncovering the endemic circulation of rabies in Cambodia. Mol Ecol 2023; 32:5140-5155. [PMID: 37540190 DOI: 10.1111/mec.17087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.
Collapse
Affiliation(s)
- Maylis Layan
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, UMR2000, CNRS, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Laurent Dacheux
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Laurence Ma
- Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, Paris, France
| | - Cécile Troupin
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Véronique Chevalier
- CIRAD, UMR ASTRE, Montpellier, France
- ASTRE, Univ. Montpellier CIRAD, INRAE, Montpellier, France
- Epidemiology and Clinical Research, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sowath Ly
- Epidemiology and Public Health, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
29
|
Zhang L, Sun S, Gong W, Thompson L, Cruz J, Dukpa K, Gonzales RM, Tu Z, He B, Liu Y, Tu C, Feng Y. Large-scale phylogenetic analysis reveals genetic diversity and geographic distribution of rabies virus in South-East and South Asia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105472. [PMID: 37353186 DOI: 10.1016/j.meegid.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
South-East Asia (SEA) and South Asia (SA) are two important geographic regions with the most severe enzootic rabies in the world. In these regions, phylogenetic analysis of rabies virus (RABV) has been conducted only at a country level; the results obtained from different countries are scattered and unequal, with a non-uniform system to name RABV genotypes. Therefore, it is difficult to undertake origin-tracking and compare inter-country RABV evolution and transmission. To avoid the confusion in understanding and to generate a panoramic picture of RABV genetic diversity, distribution, and transmission in SEA and SA, the present study conducted a systematic phylogenetic analysis by combining all sequences representing 2368 RABV strains submitted to GenBank by 14 rabies endemic SEA and SA countries. The results showed that RABVs circulating in two regions were classified into four major clades and many subclades: the Asia clade is circulating only in SEA, the Indian subcontinent, and Arctic-like clades only in SA, while the Cosmopolitan clade has been detected in both regions. The results also showed a wide range of hosts were infected by divergent RABV subclades, with dogs being the major transmission source. However, wildlife rabies was also found to be an important issue with 6 wild carnivore species identified as potential sources of spillover risk for sylvatic rabies to humans, domestic animals, and other wild animals. Current findings indicate that the two regions have separate virus clades circulating thus indicating the absence of cross-transmission between the regions. The study emphasizes the importance of phylogenetic analysis in the regions using uniform genotyping and naming systems for rabies surveillance, to coordinate actions of member countries to eliminate dog-mediated human rabies by 2030.
Collapse
Affiliation(s)
- Liang Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Sheng Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Wenjie Gong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China; College of Animal Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lesa Thompson
- World Organization for Animal Health Regional Representative for Asia and the Pacific, Tokyo, Japan
| | - Jeffrey Cruz
- Department of Agriculture Bureau of Animal Industry, Quezon, Philippines
| | - Kinzang Dukpa
- World Organization for Animal Health Regional Representative for Asia and the Pacific, Tokyo, Japan
| | | | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
30
|
Podgoreanu P, Petre A, Tănasă RI, Dinu S, Oprea M, Marandiuc IM, Vlase E. Sequencing and Partial Molecular Characterization of BAB-TMP, the Babeș Strain of the Fixed Rabies Virus Adapted for Multiplication in Cell Lines. Viruses 2023; 15:1851. [PMID: 37766258 PMCID: PMC10536377 DOI: 10.3390/v15091851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The rabies virus is a major zoonosis that causes severe nervous disease in humans, leading to paralysis and death. The world's second anti-rabies center was established in 1888 by Victor Babeș, in Bucharest, where an eponymous strain of rabies was isolated and used to develop a method for immunization. The Babeș strain of the rabies virus was used for over 100 years in Romania to produce a rabies vaccine for human use, based on animal nerve tissue, thus having a proven history of prophylactic use. The present study aimed to sequence the whole genome of the Babeș strain and to explore its genetic relationships with other vaccine strains as well as to characterize its relevant molecular traits. After being adapted for multiplication in cell lines and designated BAB-TMP, 99% of the viral genome was sequenced. The overall organization of the genome is similar to that of other rabies vaccine strains. Phylogenetic analysis indicated that the BAB-TMP strain is closely related to the Russian RV-97 vaccine strain, and both seem to have a common ancestor. The nucleoprotein gene of the investigated genome was the most conserved, and the glycoprotein showed several unique amino acid substitutions within the major antigenic sites and linear epitopes.
Collapse
Affiliation(s)
| | | | - Radu Iulian Tănasă
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (P.P.); (A.P.)
| | | | | | | | | |
Collapse
|
31
|
Huaman C, Paskey AC, Clouse C, Feasley A, Rader M, Rice GK, Luquette AE, Fitzpatrick MC, Drumm HM, Yan L, Cer RZ, Donduashvili M, Buchukuri T, Nanava A, Hulseberg CE, Washington MA, Laing ED, Malagon F, Broder CC, Bishop-Lilly KA, Schaefer BC. Genomic Surveillance of Rabies Virus in Georgian Canines. Viruses 2023; 15:1797. [PMID: 37766204 PMCID: PMC10537093 DOI: 10.3390/v15091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Rabies is a fatal zoonosis that is considered a re-emerging infectious disease. Although rabies remains endemic in canines throughout much of the world, vaccination programs have essentially eliminated dog rabies in the Americas and much of Europe. However, despite the goal of eliminating dog rabies in the European Union by 2020, sporadic cases of dog rabies still occur in Eastern Europe, including Georgia. To assess the genetic diversity of the strains recently circulating in Georgia, we sequenced seventy-eight RABV-positive samples from the brain tissues of rabid dogs and jackals using Illumina short-read sequencing of total RNA shotgun libraries. Seventy-seven RABV genomes were successfully assembled and annotated, with seventy-four of them reaching the coding-complete status. Phylogenetic analyses of the nucleoprotein (N) and attachment glycoprotein (G) genes placed all the assembled genomes into the Cosmopolitan clade, consistent with the Georgian origin of the samples. An amino acid alignment of the G glycoprotein ectodomain identified twelve different sequences for this domain among the samples. Only one of the ectodomain groups contained a residue change in an antigenic site, an R264H change in the G5 antigenic site. Three isolates were cultured, and these were found to be efficiently neutralized by the human monoclonal antibody A6. Overall, our data show that recently circulating RABV isolates from Georgian canines are predominantly closely related phylogroup I viruses of the Cosmopolitan clade. Current human rabies vaccines should offer protection against infection by Georgian canine RABVs. The genomes have been deposited in GenBank (accessions: OQ603609-OQ603685).
Collapse
Affiliation(s)
- Celeste Huaman
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Adrian C. Paskey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Caitlyn Clouse
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Austin Feasley
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Madeline Rader
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Andrea E. Luquette
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Maren C. Fitzpatrick
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Hannah M. Drumm
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Lianying Yan
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | | | - Tamar Buchukuri
- State Laboratory of Agriculture (SLA), Tbilisi 0159, Georgia
| | - Anna Nanava
- US Army Medical Research Directorate-Georgia (USAMRD-G), Tbilisi 0198, Georgia
| | | | | | - Eric D. Laing
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Francisco Malagon
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | | | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Brian C. Schaefer
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
32
|
Hopken MW, Gilfillan D, Gilbert AT, Piaggio AJ, Hilton MS, Pierce J, Kimball B, Abdo Z. Biodiversity indices and Random Forests reveal the potential for striped skunk (Mephitis mephitis) fecal microbial communities to function as a biomarker for oral rabies vaccination. PLoS One 2023; 18:e0285852. [PMID: 37607164 PMCID: PMC10443867 DOI: 10.1371/journal.pone.0285852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/24/2023] [Indexed: 08/24/2023] Open
Abstract
Wildlife disease surveillance and monitoring poses unique challenges when assessing rates of population vaccination, immunity, or infection prevalence. Non-invasively detected biomarkers can help reduce risk to both animal and field personnel during wildlife disease management activities. In this study, we investigated the utility of fecal microbiome data collected from captive striped skunks (Mephitis mephitis) in predicting rabies virus vaccination and infection status. We sequenced the hypervariable region 4 (V4) of the bacterial 16S gene and estimated alpha and beta diversity across timepoints in three groups of skunks: vaccination then rabies virus infection, sham vaccination then rabies virus infection, and rabies virus infected without vaccination. Alpha diversity did not differ among treatment groups but beta diversity between treatments was statistically significant. The phyla Firmicutes and Proteobacteria were dominant among all samples. Using Random Forests, we identified operational taxonomic units (OTUs) that greatly influenced classification of fecal samples into treatment groups. Each of these OTUs was correlated with fecal volatile organic compounds detected from the samples for companion treatment groups in another study. This research is the first to highlight striped skunk microbiome biodiversity as a vaccination biomarker which pushes the frontier on alternative methods for surveillance and monitoring of vaccination and disease in wildlife populations.
Collapse
Affiliation(s)
- Matthew W. Hopken
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Darby Gilfillan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Antoinette J. Piaggio
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Mikaela Samsel Hilton
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - James Pierce
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Bruce Kimball
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
33
|
Holtz A, Baele G, Bourhy H, Zhukova A. Integrating full and partial genome sequences to decipher the global spread of canine rabies virus. Nat Commun 2023; 14:4247. [PMID: 37460566 DOI: 10.1038/s41467-023-39847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Despite the rapid growth in viral genome sequencing, statistical methods face challenges in handling historical viral endemic diseases with large amounts of underutilized partial sequence data. We propose a phylogenetic pipeline that harnesses both full and partial viral genome sequences to investigate historical pathogen spread between countries. Its application to rabies virus (RABV) yields precise dating and confident estimates of its geographic dispersal. By using full genomes and partial sequences, we reduce both geographic and genetic biases that often hinder studies that focus on specific genes. Our pipeline reveals an emergence of the present canine-mediated RABV between years 1301 and 1403 and reveals regional introductions over a 700-year period. This geographic reconstruction enables us to locate episodes of human-mediated introductions of RABV and examine the role that European colonization played in its spread. Our approach enables phylogeographic analysis of large and genetically diverse data sets for many viral pathogens.
Collapse
Affiliation(s)
- Andrew Holtz
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
- World Health Organization Collaborating Center for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France.
| |
Collapse
|
34
|
Dascalu MA, Picard-Meyer E, Robardet E, Servat A, Arseniev S, Groza O, Starciuc N, Vuta V, Barbuceanu F, Tanase OI, Daraban Bocaneti F, Quenault H, Hirchaud E, Blanchard Y, Velescu E, Cliquet F. Whole genome sequencing and phylogenetic characterisation of rabies virus strains from Moldova and north-eastern Romania. PLoS Negl Trop Dis 2023; 17:e0011446. [PMID: 37410714 DOI: 10.1371/journal.pntd.0011446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Rabies is the oldest fatal zoonotic disease recognised as a neglected tropical disease and is caused by an RNA virus belonging to the genus Lyssavirus, family Rhabdoviridae. METHODOLOGY/PRINCIPAL FINDINGS A deep molecular analysis was conducted on full-length nucleoprotein (N) gene and whole genome sequences of rabies virus from 37 animal brain samples collected between 2012 and 2017 to study the circulation of rabies virus (RABV) variants. The overall aim was to better understand their distribution in Moldova and north-eastern Romania. Both Sanger and high throughput sequencing on Ion Torrent and Illumina platforms were performed. Phylogenetic analysis of the RABV sequences from both Moldova and Romania revealed that all the samples (irrespective of the year of isolation and the species) belonged to a single phylogenetic group: north-eastern Europe (NEE), clustering into three assigned lineages: RO#5, RO#6 and RO#7. CONCLUSIONS/SIGNIFICANCE High throughput sequencing of RABV samples from domestic and wild animals was performed for the first time for both countries, providing new insights into virus evolution and epidemiology in this less studied region, expanding our understanding of the disease.
Collapse
Affiliation(s)
- Mihaela Anca Dascalu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences "Ion Ionescu de la Brad", Mihail Sadoveanu Alley, Romania
| | - Evelyne Picard-Meyer
- ANSES, Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Emmanuelle Robardet
- ANSES, Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Alexandre Servat
- ANSES, Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Malzéville, France
| | | | - Oxana Groza
- Republican Center of Veterinary Diagnostic, Chisinau, Moldova
| | - Nicolae Starciuc
- Faculty of Veterinary Medicine, State Agrarian University, Chisinau, Moldova
| | - Vlad Vuta
- Institute for Diagnosis and Animal Health, OIE Reference Laboratory for Rabies, Bucharest, Romania; University of Agronomic Study and Veterinary Medicine, Faculty of Veterinary Medicine, Bucharest, Romania
| | - Florica Barbuceanu
- Institute for Diagnosis and Animal Health, OIE Reference Laboratory for Rabies, Bucharest, Romania; University of Agronomic Study and Veterinary Medicine, Faculty of Veterinary Medicine, Bucharest, Romania
| | - Oana Irina Tanase
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences "Ion Ionescu de la Brad", Mihail Sadoveanu Alley, Romania
| | - Florentina Daraban Bocaneti
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences "Ion Ionescu de la Brad", Mihail Sadoveanu Alley, Romania
| | - Helene Quenault
- ANSES, Nancy Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Edouard Hirchaud
- ANSES, Nancy Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Yannick Blanchard
- ANSES, Nancy Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Elena Velescu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences "Ion Ionescu de la Brad", Mihail Sadoveanu Alley, Romania
| | - Florence Cliquet
- ANSES, Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, Malzéville, France
| |
Collapse
|
35
|
Update on laboratory data of animal rabies at the Centre Pasteur of Cameroon from 2014 to 2021. Res Vet Sci 2023; 157:6-12. [PMID: 36842248 DOI: 10.1016/j.rvsc.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Rabies is a worldwide zoonotic disease mainly transmitted to humans by an infected dog bite. Despite the endemicity of rabies in dogs and few documented cases in Cameroon, there is still not enough data on frequency of rabies cases in animals. The present study aims to update data on the circulation of rabies in animals screened at the Centre Pasteur of Cameroon (CPC) between 2014 and 2021. The detection of rabies in animals was based on passive surveillance. Animal rabies cases were confirmed on brain biopsies using fluorescent antibody test and SYBR green based real-time RT-PCR for negative results confirmation. The total nucleoprotein (N) gene of animal-derived RABV isolated were amplified by hemi nested RT-PCR and subjected to phylogenetic analyses. From 2014 to 2021, a total of 92 animals including 86 dogs (93.5%), 3 cats, 2 pigs and 1 chiropteran were screened for rabies at the CPC. From the 86 dog sampled, 62.3% (54/86) were tested positive for rabies and 1 out of 3 cat samples was also tested positive. The PEP demand was very high (59,371) during the study period. Phylogenetic analyses assigned all 15 studied isolates successfully sequenced to the Africa-1a lineage belonging to the Cosmopolitan clade. The study highlights the frequent circulation of rabies in Cameroon and the role of dogs and cat as main reservoir and vector of rabies.
Collapse
|
36
|
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, Varsani A. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 2023; 580:98-111. [PMID: 36801670 DOI: 10.1016/j.virol.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.
Collapse
Affiliation(s)
- Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ahva L Potticary
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; University of Georgia in the Department of Entomology, Athens, GA, 30602, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
37
|
Pseudotyped Viruses for Lyssavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:191-208. [PMID: 36920698 DOI: 10.1007/978-981-99-0113-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.
Collapse
|
38
|
Embregts CWE, Farag EABA, Bansal D, Boter M, van der Linden A, Vaes VP, van Middelkoop-van den Berg I, IJpelaar J, Ziglam H, Coyle PV, Ibrahim I, Mohran KA, Alrajhi MMS, Islam MM, Abdeen R, Al-Zeyara AA, Younis NM, Al-Romaihi HE, AlThani MHJ, Sikkema RS, Koopmans MPG, Oude Munnink BB, GeurtsvanKessel CH. Rabies Virus Populations in Humans and Mice Show Minor Inter-Host Variability within Various Central Nervous System Regions and Peripheral Tissues. Viruses 2022; 14:v14122661. [PMID: 36560665 PMCID: PMC9781572 DOI: 10.3390/v14122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Rabies virus (RABV) has a broad host range and infects multiple cell types throughout the infection cycle. Next-generation sequencing (NGS) and minor variant analysis are powerful tools for studying virus populations within specific hosts and tissues, leading to novel insights into the mechanisms of host-switching and key factors for infecting specific cell types. In this study we investigated RABV populations and minor variants in both original (non-passaged) samples and in vitro-passaged isolates of various CNS regions (hippocampus, medulla oblongata and spinal cord) of a fatal human rabies case, and of multiple CNS and non-CNS tissues of experimentally infected mice. No differences in virus populations were detected between the human CNS regions, and only one non-synonymous single nucleotide polymorphism (SNP) was detected in the fifth in vitro passage of virus isolated from the spinal cord. However, the appearance of this SNP shows the importance of sequencing newly passaged virus stocks before further use. Similarly, we did not detect apparent differences in virus populations isolated from different CNS and non-CNS tissues of experimentally infected mice. Sequencing of viruses obtained from pharyngeal swab and salivary gland proved difficult, and we propose methods for improving sampling.
Collapse
Affiliation(s)
- Carmen W. E. Embregts
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | | | | | - Marjan Boter
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Anne van der Linden
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | | | - Jeroen. IJpelaar
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Hisham Ziglam
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | | | - Imad Ibrahim
- Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khaled A. Mohran
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
- Biotechnology Departments ERC, Animal Health Research Institute, Dokki 12611, Egypt
| | | | - Md. Mazharul Islam
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Randa Abdeen
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Abdul Aziz Al-Zeyara
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | - Nidal Mahmoud Younis
- Department of Animal Resources, Ministry of Municipality, Doha P.O. Box 35081, Qatar
| | | | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Bas B. Oude Munnink
- Department of Viroscience, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| | | |
Collapse
|
39
|
Binkley L, O'Quin J, Jourdan B, Yimer G, Deressa A, Pomeroy LW. Quantifying intra- and inter-species contact rates at supplemental feeding sites in Ethiopia to inform rabies maintenance potential of multiple host species. Transbound Emerg Dis 2022; 69:3837-3849. [PMID: 36325637 PMCID: PMC10099229 DOI: 10.1111/tbed.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Rabies, a multi-host pathogen responsible for the loss of roughly 59,000 human lives each year worldwide, continues to impose a significant burden of disease despite control efforts, especially in Ethiopia. However, how species other than dogs contribute to rabies transmission throughout Ethiopia remains largely unknown. In this study, we quantified interactions among wildlife species in Ethiopia with the greatest potential for contributing to rabies maintenance. We observed wildlife at supplemental scavenging sites across multiple landscape types and quantified transmission potential. More specifically, we used camera trap data to quantify species abundance, species distribution, and intra- and inter-species contacts per trapping night over time and by location. We derived a mathematical expression for the basic reproductive number (R0 ) based on within- and between-species contract rates by applying the next generation method to the susceptible, exposed, infectious, removed model. We calculated R0 for transmission within each species and between each pair of species using camera trap data in order to identify pairwise interactions that contributed the most to transmission in an ecological community. We estimated which species, or species pairs, could maintain transmission ( R 0 > 1 ${R_0} > 1$ ) and which species, or species pairs, had contact rates too low for maintenance ( R 0 < 1 ${R_0} < 1$ ). Our results identified multiple urban carnivores as candidate species for rabies maintenance throughout Ethiopia, with hyenas exhibiting the greatest risk for rabies maintenance through intra-species transmission. Hyenas and cats had the greatest risk for rabies maintenance through inter-species transmission. Urban and peri-urban sites posed the greatest risk for rabies transmission. The night-time hours presented the greatest risk for a contact event that could result in rabies transmission. Overall, both intra- and inter-species contacts posed risk for rabies maintenance. Our results can be used to target future studies and inform population management decisions.
Collapse
Affiliation(s)
- Laura Binkley
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.,Global One Health initiative, Office of Internaional Affairs, The Ohio State University, Columbus, Ohio, USA
| | - Jeanette O'Quin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Balbine Jourdan
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Getnet Yimer
- Global One Health initiative, Office of Internaional Affairs, The Ohio State University, Columbus, Ohio, USA
| | - Asefa Deressa
- Rabies and Other Zoonotic Diseases Research Division, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Laura W Pomeroy
- Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA.,Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
40
|
Detection and molecular characterization of rabies virus isolates from humans in Cameroon. Diagn Microbiol Infect Dis 2022; 105:115834. [DOI: 10.1016/j.diagmicrobio.2022.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022]
|
41
|
Evolutionary analysis of rabies virus isolates from Georgia. Arch Virol 2022; 167:2293-2298. [DOI: 10.1007/s00705-022-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
|
42
|
Miao F, Zhao J, Li N, Liu Y, Chen T, Mi L, Yang J, Chen Q, Zhang F, Feng J, Li S, Zhang S, Hu R. Genetic Diversity, Evolutionary Dynamics, and Pathogenicity of Ferret Badger Rabies Virus Variants in Mainland China, 2008–2018. Front Microbiol 2022; 13:929202. [PMID: 35910614 PMCID: PMC9330412 DOI: 10.3389/fmicb.2022.929202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
In contrast to dog-associated human rabies cases decline year by year due to the rabies vaccination coverage rates increase in China, ferret badger (FB, Melogale moschata)-associated human rabies cases emerged in the 1990s, and are now an increasingly recognized problem in southeast China. To investigate epidemiology, temporal evolution dynamics, transmission characterization, and pathogenicity of FB-associated rabies viruses (RABVs), from 2008 to 2018, we collected 3,622 FB brain samples in Jiangxi and Zhejiang Province, and detected 112 RABV isolates. Four FB-related lineages were identified by phylogenetic analysis (lineages A–D), the estimated Times to Most Recent Common Ancestor were 1941, 1990, 1937, and 1997 for lineages A–D, respectively. Furthermore, although no FB-associated human rabies case has been reported there apart from Wuyuan area, FB-RABV isolates are mainly distributed in Jiangxi Province. Pathogenicity of FB-RABVs was assessed using peripheral inoculation in mice and in beagles with masseter muscles, mortality-rates ranging from 20 to 100% in mice and 0 to 20% in beagles in the groups infected with the various isolates. Screening of sera from humans with FB bites and no post-exposure prophylaxis to rabies revealed that five of nine were positive for neutralizing antibodies of RABV. All the results above indicated that FB-RABV variants caused a lesser pathogenicity in mice, beagles, and even humans. Vaccination in mice suggests that inactivated vaccine or recombinant subunit vaccine products can be used to control FB-associated rabies, however, oral vaccines for stray dogs and wildlife need to be developed and licensed in China urgently.
Collapse
Affiliation(s)
- Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinghui Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ye Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinjin Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qi Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Feng
- Suzhou Shangfangshan Forest Zoo, Suzhou, China
| | - Shunfei Li
- Department of Innovative Medical Research, Chinese People’s Liberation Army General Hospital, Institute of Hospital Management, Beijing, China
- *Correspondence: Shunfei Li,
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Shoufeng Zhang,
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Rongliang Hu,
| |
Collapse
|
43
|
Condori RE, Aragon A, Breckenridge M, Pesko K, Mower K, Ettestad P, Melman S, Velasco-Villa A, Orciari LA, Yager P, Streicker DG, Gigante CM, Morgan C, Wallace R, Li Y. Divergent Rabies Virus Variant of Probable Bat Origin in 2 Gray Foxes, New Mexico, USA. Emerg Infect Dis 2022; 28:1137-1145. [PMID: 35608558 PMCID: PMC9155866 DOI: 10.3201/eid2806.211718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the Western Hemisphere, bat-associated rabies viruses (RABVs) have established independent transmission cycles in multiple mammal hosts, forming genetically distinct lineages. In New Mexico, USA, skunks, bats, and gray foxes are rabies reservoir hosts and represent a public health risk because of encounters with humans. During 2015 and 2019, two previously undescribed RABVs were detected in 2 gray foxes (Urocyon cinereoargenteus) in Lincoln County, New Mexico. Phylogenetic analysis of the nucleoprotein gene indicated that the isolates are a novel RABV variant. These 2 cases probably represent repeated spillover events from an unknown bat reservoir to gray foxes. Molecular analysis of rabies cases across New Mexico identified that other cross-species transmission events were the result of viral variants previously known to be enzootic to New Mexico. Despite a robust rabies public health surveillance system in the United States, advances in testing and surveillance techniques continue to identify previously unrecognized zoonotic pathogens.
Collapse
|
44
|
Elimination of human rabies in Goa, India through an integrated One Health approach. Nat Commun 2022; 13:2788. [PMID: 35589709 PMCID: PMC9120018 DOI: 10.1038/s41467-022-30371-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Dog-mediated rabies kills tens of thousands of people each year in India, representing one third of the estimated global rabies burden. Whilst the World Health Organization (WHO), World Organization for Animal Health (OIE) and the Food and Agriculture Organization of the United Nations (FAO) have set a target for global dog-mediated human rabies elimination by 2030, examples of large-scale dog vaccination programs demonstrating elimination remain limited in Africa and Asia. We describe the development of a data-driven rabies elimination program from 2013 to 2019 in Goa State, India, culminating in human rabies elimination and a 92% reduction in monthly canine rabies cases. Smartphone technology enabled systematic spatial direction of remote teams to vaccinate over 95,000 dogs at 70% vaccination coverage, and rabies education teams to reach 150,000 children annually. An estimated 2249 disability-adjusted life years (DALYs) were averted over the program period at 526 USD per DALY, making the intervention 'very cost-effective' by WHO definitions. This One Health program demonstrates that human rabies elimination is achievable at the state level in India.
Collapse
|
45
|
Campbell K, Gifford RJ, Singer J, Hill V, O’Toole A, Rambaut A, Hampson K, Brunker K. Making genomic surveillance deliver: A lineage classification and nomenclature system to inform rabies elimination. PLoS Pathog 2022; 18:e1010023. [PMID: 35500026 PMCID: PMC9162366 DOI: 10.1371/journal.ppat.1010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/02/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.
Collapse
Affiliation(s)
- Kathryn Campbell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Joshua Singer
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Verity Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Aine O’Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Hampson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Kirstyn Brunker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
46
|
The Comparison of Full G and N Gene Sequences From Turkish Rabies Virus Field Strains. Virus Res 2022; 315:198790. [PMID: 35487366 DOI: 10.1016/j.virusres.2022.198790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
The rabies infection is a zoonotic viral disease in humans and is spread by both wild and domestic carnivores. This study aimed to molecularly characterize the field strains of the rabies virus circulating in Turkey between 2013 and 2020. Brain samples obtained from 16 infected animals (8 cattle, one donkey, three foxes, three dogs, and one marten) were tested. Full nucleoprotein (N) and glycoprotein (G) gene sequences were used to determine the genetic and antigenic characteristics of the rabies virus field strains. The phylogenetic analyses revealed that the 16 field strains identified in Turkey belonged to the Cosmopolitan lineage.
Collapse
|
47
|
N'dilimabaka N, Koumba Mavoungou D, Soami V, Bohou Kombila L, Mouguiama RM, Mondjo A, Mangombi Pambou JB, Ngoma JF, Ovengue FC, Alilangori TP, Koko J, Bitegue Methe L, Mboumba Mboumba H, Sima Zue A, Edjo Nkili G, Lekana-Douki SE, Maganga GD. Molecular analyses of human rabies virus associated with encephalitis in two children in Gabon. IJID REGIONS 2022; 2:180-183. [PMID: 35757081 PMCID: PMC9216393 DOI: 10.1016/j.ijregi.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 10/25/2022]
|
48
|
De Benedictis P, Leopardi S, Markotter W, Velasco-Villa A. The Importance of Accurate Host Species Identification in the Framework of Rabies Surveillance, Control and Elimination. Viruses 2022; 14:v14030492. [PMID: 35336899 PMCID: PMC8954416 DOI: 10.3390/v14030492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 02/03/2023] Open
Abstract
Accurate host identification is paramount to understand disease epidemiology and to apply appropriate control measures. This is especially important for multi-host pathogens such as the rabies virus, a major and almost invariably fatal zoonosis that has mobilized unanimous engagement at an international level towards the final goal of zero human deaths due to canine rabies. Currently, diagnostic laboratories implement a standardized identification using taxonomic keys. However, this method is challenged by high and undiscovered biodiversity, decomposition of carcasses and subjective misevaluation, as has been attested to by findings from a cohort of 242 archived specimens collected across Sub-Saharan Africa and submitted for rabies diagnosis. We applied two simple and cheap methods targeting the Cytochrome b and Cytochrome c oxidase subunit I to confirm the initial classification. We therefore suggest prioritizing a standardized protocol that includes, as a first step, the implementation of taxonomic keys at a family or subfamily level, followed by the molecular characterization of the host species.
Collapse
Affiliation(s)
- Paola De Benedictis
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
- Correspondence:
| | - Stefania Leopardi
- FAO Reference Center for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Andres Velasco-Villa
- Centers for Diseases Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA;
| |
Collapse
|
49
|
de Melo GD, Hellert J, Gupta R, Corti D, Bourhy H. Monoclonal antibodies against rabies: current uses in prophylaxis and in therapy. Curr Opin Virol 2022; 53:101204. [PMID: 35151116 DOI: 10.1016/j.coviro.2022.101204] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/25/2022]
Abstract
Rabies is a severe viral infection that causes an acute encephalomyelitis, which presents a case fatality of nearly 100% after the manifestation of neurological clinical signs. Rabies can be efficiently prevented with post-exposure prophylaxis (PEP), composed of vaccines and anti-rabies immunoglobulins (RIGs); however, no treatment exists for symptomatic rabies. The PEP protocol faces access and implementation obstacles in resource-limited settings, which could be partially overcome by substituting RIGs for monoclonal antibodies (mAbs). mAbs offer lower production costs, consistent supply availability, long-term storage/stability, and an improved safety profile. Here we summarize the key features of the different available mAbs against rabies, focusing on their application in PEP and highlighting their potential in a novel therapeutic approach.
Collapse
Affiliation(s)
- Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France
| | - Jan Hellert
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie (HPI), Notkestrasse 85, Hamburg, 22607, Germany
| | | | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France; Institut Pasteur, Université de Paris, National Reference Center for Rabies, Paris, F-75015, France; Institut Pasteur, Université de Paris, WHO Collaborating Centre for Reference and Research on Rabies, Paris, F-75015, France.
| |
Collapse
|
50
|
Faye M, Faye O, Paola ND, Ndione MHD, Diagne MM, Diagne CT, Bob NS, Fall G, Heraud J, Sall AA, Faye O. Rabies surveillance in Senegal 2001 to 2015 uncovers first infection of a honey‐badger. Transbound Emerg Dis 2022; 69:e1350-e1364. [DOI: 10.1111/tbed.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Oumar Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Nicholas Di Paola
- Center for Genome Sciences United States Army Medical Research Institute of Infectious Diseases Fort Detrick Frederick Maryland 21702 USA
| | | | - Moussa Moise Diagne
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | | | - Ndeye Sakha Bob
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Gamou Fall
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Jean‐Michel Heraud
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Amadou Alpha Sall
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| | - Ousmane Faye
- Virology Department Institut Pasteur de Dakar 36 Avenue Pasteur Dakar 220 Senegal
| |
Collapse
|