1
|
Saraswat D, Rojas IG, Kumar R, Li R, Salvatori O, Irimia D, Edgerton M. Neutrophil swarming is crucial for limiting oral mucosal infection by Candida albicans. J Leukoc Biol 2025; 117:qiae239. [PMID: 39530591 PMCID: PMC11953071 DOI: 10.1093/jleuko/qiae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Oral mucosal colonization by Candida albicans is benign in healthy people but progresses to deeper infection, known as oropharyngeal candidiasis, that may become disseminated when combined with immunosuppression. Cortisone use and neutropenia are risk factors for invasive mucosal fungal infections; however, the mechanisms are poorly understood. Here, we identify in vivo neutrophil functional complexes known as swarms that are crucial for preventing C. albicans epithelial invasion. Anti-Ly6G antibody treatment impaired swarm formation and increased fungal infection depth, confirming the role of neutrophil swarms in limiting C. albicans invasion. Neutrophil swarm function could be disrupted by administration of resolvins, and required BLT1 (leukotriene B4 receptor 1) expression so that administration of a leukotriene synthesis inhibitor reduced neutrophil swarm size permitting C. albicans invasion beyond the basement membrane. Cortisone treatment similarly reduced neutrophil swarming behavior and BLT1 expression and delayed expression of epithelial cytokines and chemokines. Thus, swarm structures have an important function in preventing deep invasion by C. albicans within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.
Collapse
Affiliation(s)
- Darpan Saraswat
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
| | - Isolde Gina Rojas
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
- Department of Periodontics and Endodontics, University at Buffalo, Buffalo, NY 14214, United States
| | - Rohitashw Kumar
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
| | - Rui Li
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
- Department of Restorative Dentistry, University at Buffalo, Buffalo, NY 14214, United States
| | - Ornella Salvatori
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
| | - Daniel Irimia
- Center for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Shriners Burns Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Mira Edgerton
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
2
|
Liu F, Zeng M, Zhou X, Huang F, Song Z. Aspergillus fumigatus escape mechanisms from its harsh survival environments. Appl Microbiol Biotechnol 2024; 108:53. [PMID: 38175242 DOI: 10.1007/s00253-023-12952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.
Collapse
Affiliation(s)
- Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
3
|
Antunes D, Domingues R, Cruz-Almeida M, Rodrigues L, Borges O, Carvalho A, Casadevall A, Fernandes C, Gonçalves T. Cell wall nanoparticles from hyphae of Alternaria infectoria grown with caspofungin, nikkomycin, or pyroquilon trigger different activation profiles in macrophages. Microbiol Spectr 2024; 12:e0064524. [PMID: 39329485 PMCID: PMC11537108 DOI: 10.1128/spectrum.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024] Open
Abstract
Alternaria infectoria causes opportunistic human infections and is a source of allergens leading to respiratory allergies. In this work, we prepared cell wall nanoparticles (CWNPs) as a novel approach to study macrophage immunomodulation by fungal hyphal cell walls. A. infectoria was grown in the presence of caspofungin, an inhibitor of β(1,3)-glucan synthesis; nikkomycin Z, an inhibitor of chitin synthases; and pyroquilon, an inhibitor of dihydroxynaphthalene (DHN)-melanin synthesis. Distinct CWNPs were obtained from these cultures, referred to as casCWNPs, nkCWNPs, and pyrCWNPs, respectively. CWNPs are round-shaped particles with a diameter of 70-200 nm diameter particles that when added to macrophages are taken up by membrane ruffling. CWNPs with no DHN-melanin and more glucan (pyrCWNPs) caused early macrophage activation and lowest viability, with the cells exhibiting ultrastructural modifications such as higher vacuolization and formation of autophagy-like structures. CasCWNPs promoted the highest tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) increase, also resulting in the release of partially degraded chitin, an aspect never observed in macrophage-like cells and fungi. After 6 h of interaction with CWNPs, only half were viable, except with control CWNPs. Overall, this work indicates that compounds that modify the fungal cell wall led to CWNPs with new properties that may have implications for the effects of drugs during antifungal therapy. CWNPs provide a new tool to study the interaction of hyphal fungal cell wall components with phagocytic cells and enable to show how the modification of cell wall components in A. infectoria can modulate the response by macrophages.IMPORTANCEAlternaria species are ubiquitous environmental fungi to which the human host can continuously be exposed, through the inhalation of fungal spores but also of fragments of hyphae, from desegregated mycelia. These fungi are involved in hypersensitization and severe respiratory allergies, such as asthma, and can cause opportunistic infections in immunodepressed human host leading to severe disease. The first fungal structures to interact with the host cells are the cell wall components, and their modulation leads to differential immune responses. Here, we show that fungal cells grown with cell wall inhibitors led to cell wall nanoparticles with new properties in their interaction with macrophages. With this strategy, we overcame the limitation of in vitro assays interacting with filamentous fungi and showed that the absence of DNH-melanin leads to higher virulence, while caspofungin leads to cells walls that trigger higher hydrolysis of chitin and higher production of cytokines.
Collapse
Affiliation(s)
- Daniela Antunes
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Domingues
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana Cruz-Almeida
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Lisa Rodrigues
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Olga Borges
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Univ Coimbra, FFUC—Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chantal Fernandes
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Univ Coimbra, CNC-UC—Center for Neuroscience and Cell Biology of the University of Coimbra, Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Univ Coimbra, FMUC—Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Thrikawala SU, Anderson MH, Rosowski EE. Glucocorticoids Suppress NF-κB-Mediated Neutrophil Control of Aspergillus fumigatus Hyphal Growth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:971-987. [PMID: 39178124 PMCID: PMC11408098 DOI: 10.4049/jimmunol.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.
Collapse
Affiliation(s)
- Savini U. Thrikawala
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Molly H. Anderson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
5
|
Lima-Gomes PDS, do Nascimento MTC, Nadaes NR, de Campos SG, Tavares Haido RM, Danelli MDG, Pinto-da-Silva LH, Saraiva EM. Chick heterophils release DNA extracellular traps (DETs) in vitro and in vivo upon Aspergillus fumigatus conidia exposure. Microbes Infect 2024; 26:105261. [PMID: 37984735 DOI: 10.1016/j.micinf.2023.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Aspergillosis is a common fungal disease in avian species, causing high mortality in young chicks in agricultural farms and yards. It is caused by fungi belonging to the genus Aspergillus. Aspergillosis occurs by inhalation of fungal conidia, and in chickens, effective infection control relies on a rapid and large influx of heterophils to the lungs. Heterophils, upon different stimuli, release to the extracellular milieu their chromatin associated with several proteins that ensnare and kill different pathogens similarly to neutrophil extracellular traps. Here, we showed that Aspergillus fumigatus conidia and the peptidogalactomannan (PGM), isolated from the fungus cell wall, induce the release of DNA extracellular traps (DETs) in chicks' blood and lung heterophils. We demonstrated that reactive oxygen species, elastase and peptidyl arginine deiminase (PAD) were involved in DETs extrusion, the occurrence of DETs in the lungs of A. fumigatus-exposed chicks in vivo, and its role in chick survival. These results may contribute to developing more efficient tools for the therapeutic and diagnosis of aspergillosis.
Collapse
Affiliation(s)
- Phillipe de Souza Lima-Gomes
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Michelle Tanny Cunha do Nascimento
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Natalia Rocha Nadaes
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Sérgio Gaspar de Campos
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Rosa Maria Tavares Haido
- Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Maria das Graças Danelli
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Lucia Helena Pinto-da-Silva
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Perdomo J, Leung HHL. Immune Thrombosis: Exploring the Significance of Immune Complexes and NETosis. BIOLOGY 2023; 12:1332. [PMID: 37887042 PMCID: PMC10604267 DOI: 10.3390/biology12101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Neutrophil extracellular traps (NETs) are major contributors to inflammation and autoimmunity, playing a key role in the development of thrombotic disorders. NETs, composed of DNA, histones, and numerous other proteins serve as scaffolds for thrombus formation and promote platelet activation, coagulation, and endothelial dysfunction. Accumulating evidence indicates that NETs mediate thrombosis in autoimmune diseases, viral and bacterial infections, cancer, and cardiovascular disease. This article reviews the role and mechanisms of immune complexes in NETs formation and their contribution to the generation of a prothrombotic state. Immune complexes are formed by interactions between antigens and antibodies and can induce NETosis by the direct activation of neutrophils via Fc receptors, via platelet activation, and through endothelial inflammation. We discuss the mechanisms by which NETs induced by immune complexes contribute to immune thrombotic processes and consider the potential development of therapeutic strategies. Targeting immune complexes and NETosis hold promise for mitigating thrombotic events and reducing the burden of immune thrombosis.
Collapse
Affiliation(s)
- José Perdomo
- Haematology Research Group, Faculty Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Halina H. L. Leung
- Haematology Research Unit, St George & Sutherland Clinical Campuses, Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Kogarah, NSW 2217, Australia;
| |
Collapse
|
7
|
Edgerton M, Rojas I, Kumar R, Li R, Salvatori O, Abrams S, Irimia D. Neutrophil swarms containing myeloid-derived suppressor cells are crucial for limiting oral mucosal infection by C. albicans. RESEARCH SQUARE 2023:rs.3.rs-3346012. [PMID: 37886517 PMCID: PMC10602121 DOI: 10.21203/rs.3.rs-3346012/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.
Collapse
|
8
|
Vogel D, Hills P, Moore JP. Strigolactones GR-24 and Nijmegen Applications Result in Reduced Susceptibility of Tobacco and Grapevine Plantlets to Botrytis cinerea Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:3202. [PMID: 37765366 PMCID: PMC10535315 DOI: 10.3390/plants12183202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Priming agents are plant defence-inducing compounds which can prompt a state of protection but may also aid in plant growth and interactions with beneficial microbes. The synthetic strigolactones (±)-GR24 and Nijmegen-1 were evaluated as potential priming agents for induced resistance against Botrytis cinerea in tobacco and grapevine plants. The growth and stress response profiles of B. cinerea to strigolactones were also investigated. Soil drench treatment with strigolactones induced resistance in greenhouse-grown tobacco plants and restricted lesion development. The mode of action appeared to function by priming redox-associated compounds to produce an anti-oxidant protective response for limiting the infection. The results obtained in the in vitro assays mirrored that of the greenhouse-grown plants. Exposure of B. cinerea to the strigolactones resulted in increased hyphal branching, with (±)-GR24 stimulating a stronger effect than Nijmegen-1 by affecting colony diameter and radial growth. An oxidative stress response was observed, with B. cinerea exhibiting increased ROS and SOD levels when grown with strigolactones. This study identified the application of strigolactones as potential priming agents to induce disease resistance in both tobacco and grapevine plants. In addition, strigolactones may alter the ROS homeostasis of B. cinerea, resulting in both morphological and physiological changes, thereby reducing virulence.
Collapse
Affiliation(s)
- Dominic Vogel
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Paul Hills
- Institute for Plant Biotechnology, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Li Y, Dai M, Lu L, Zhang Y. The C 2H 2-Type Transcription Factor ZfpA, Coordinately with CrzA, Affects Azole Susceptibility by Regulating the Multidrug Transporter Gene atrF in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0032523. [PMID: 37318356 PMCID: PMC10434176 DOI: 10.1128/spectrum.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
The incidence of invasive aspergillosis caused by Aspergillus fumigatus has risen steadily over the past few decades due to the limited effective treatment options and the emergence of antifungal-resistant isolates. In clinic-isolated A. fumigatus, the azole resistance mechanism is primarily caused by mutations of the drug target and/or overexpression of drug efflux pumps. However, knowledge about how drug efflux pumps are transcriptionally regulated is limited. In this study, we found that loss of a C2H2 transcription factor ZfpA (zinc finger protein) results in the marked upregulation of a series of drug efflux pump-encoding genes, especially atrF, which contributes to azole drug resistance in A. fumigatus. CrzA is a previously identified positive transcription factor for genes of drug efflux pumps, and ZfpA transcriptionally inhibits expressions of drug efflux pumps in a CrzA-dependent way. Under the treatment of azoles, both ZfpA and CrzA transfer to nuclei and coregulate the expression of multidrug transporters and then keep normal drug susceptibility in fungal cells. Findings in this study demonstrated that ZfpA is not only involved in fungal growth and virulence potential but also negatively regulates antifungal drug susceptibility. IMPORTANCE Conserved across all kingdoms of life, ABC transporters comprise one of the largest protein families. They are associated with multidrug resistance, affecting aspects such as resistance to antimicrobials or anticancer drugs. Despite the importance of ABC transporters in multidrug resistance, the understanding of their regulatory network is still limited in A. fumigatus. Here, we found that the loss of the transcription factor ZfpA induces the expression of the ABC transporter gene atrF, altering azole susceptibility in A. fumigatus. ZfpA, coordinately with CrzA, affects the azole susceptibility by regulating the expression of the ABC transporter gene atrF. These findings reveal the regulatory mechanism of the ABC transporter gene atrF in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Ellett F, Kacamak NI, Alvarez CR, Oliveira EH, Hasturk H, Paster BJ, Kantarci A, Irimia D. Fusobacterium nucleatum dissemination by neutrophils. J Oral Microbiol 2023; 15:2217067. [PMID: 37283724 PMCID: PMC10240972 DOI: 10.1080/20002297.2023.2217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies uncovered that Fusobacterium nucleatum (Fn), a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils. We show that Fn survives within human neutrophils after phagocytosis. Using in vitro microfluidic devices, we determine that human neutrophils can protect and transport Fn over large distances. Moreover, we validate these observations in vivo by showing that neutrophils disseminate Fn using a zebrafish model. Our data support the emerging hypothesis that bacterial dissemination by neutrophils is a mechanistic link between oral and systemic diseases. Furthermore, our results may ultimately lead to therapeutic approaches that target specific host-bacteria interactions, including the dissemination process.
Collapse
Affiliation(s)
- Felix Ellett
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nazli I. Kacamak
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Carla R. Alvarez
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Eduardo H.S. Oliveira
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Bruce J. Paster
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Daniel Irimia
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, USA
- Shriners Hospital for Children, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Schoen TJ, Calise DG, Bok JW, Giese MA, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. PLoS Pathog 2023; 19:e1011152. [PMID: 37126504 PMCID: PMC10174577 DOI: 10.1371/journal.ppat.1011152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chibueze D. Nwagwu
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Wei S, Hu C, Zhang Y, Lv Y, Zhang S, Zhai H, Hu Y. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2501-2514. [PMID: 36809388 DOI: 10.1007/s00253-023-12404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
Aspergillus niger produces genotoxic and carcinogenic ochratoxin A (OTA) that severely threatens human and animal health. Transcription factor Azf1 is essential in regulating fungal cell development and primary metabolism. However, its effect and mechanism on secondary metabolism are unclear. Here, we characterized and deleted a Azf1 homolog gene, An15g00120 (AnAzf1), in A. niger, which completely blocked OTA production, and repressed the OTA cluster genes, p450, nrps, hal, and bzip at the transcriptional level. The results indicated that AnAzf1 was a positive regulator of OTA biosynthesis. Transcriptome sequencing results showed that the AnAzf1 deletion significantly upregulated antioxidant genes and downregulated oxidative phosphorylation genes. Enzymes involved in reactive oxygen species (ROS) scavenging, including catalase (CAT) and peroxidase (POD) were increased, and the corresponding ROS levels were decreased. Upregulation of genes (cat, catA, hog1, and gfd) in the MAPK pathway and downregulation of genes in iron homeostasis were associated with decreased ROS levels, linking the altered MAPK pathway and iron homeostasis to lower ROS levels caused by AnAzf1 deletion. Additionally, enzymes including complex I (NADH-ubiquinone oxidoreductase), and complex V (ATP synthase), as well as ATP levels, were significantly decreased, indicating impaired oxidative phosphorylation caused by the AnAzf1-deletion. During lower ROS levels and impaired oxidative phosphorylation, OTA was not produced in ∆AnAzf1. Together, these results strongly suggested that AnAzf1 deletion blocked OTA production in A. niger by a synergistic interference of ROS accumulation and oxidative phosphorylation. KEY POINTS: • AnAzf1 positively regulated OTA biosynthesis in A. niger. • Deletion of AnAzf1 decreased ROS levels and impaired oxidative phosphorylation. • An altered MAPK pathway and iron homeostasis were associated with lower ROS levels.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Chaojiang Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
13
|
Melenotte C, Aimanianda V, Slavin M, Aguado JM, Armstrong-James D, Chen YC, Husain S, Van Delden C, Saliba F, Lefort A, Botterel F, Lortholary O. Invasive aspergillosis in liver transplant recipients. Transpl Infect Dis 2023:e14049. [PMID: 36929539 DOI: 10.1111/tid.14049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.
Collapse
Affiliation(s)
- Cléa Melenotte
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France
| | - Monica Slavin
- Department of Infectious Diseases, National Center for Infections in Cancer, Sir Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Oncology, Sir Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shahid Husain
- Department of Transplant Infectious Diseases, Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Christian Van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Francoise Botterel
- EA Dynamyc 7380 UPEC, ENVA, Faculté de Médecine, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Virologie, Bactériologie-Hygiène, Mycologie-Parasitologie, DHU VIC, CHU Henri Mondor, Créteil, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Necker Enfants-Malades, AP-HP, Paris, France.,Faculté de Médecine, Université Paris-Cité, Paris, France.,Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses and Antifungals, Molecular Mycology Unit, UMR2000, Paris, France.,Paris University, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades Hospital, AP-HP, IHU Imagine, Paris, France
| |
Collapse
|
14
|
Schoen TJ, Calise DG, Bok JW, Nwagwu CD, Zarnowski R, Andes D, Huttenlocher A, Keller NP. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525624. [PMID: 36747761 PMCID: PMC9901008 DOI: 10.1101/2023.01.25.525624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish- Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo . ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection. Author Summary Aspergillus fumigatus is a common environmental fungus that can infect immunocompromised people and cause a life-threatening disease called invasive aspergillosis. An important step during infection is the development of A. fumigatus filaments known as hyphae. A. fumigatus uses hyphae to acquire nutrients and invade host tissues, leading to tissue damage and disseminated infection. In this study we report that a regulator of gene transcription in A. fumigatus called ZfpA is important for hyphal growth during infection. We find that ZfpA activity protects the fungus from being killed by innate immune cells and decreases the efficacy of antifungal drugs during infection by regulating construction of the cell wall, an important protective layer for fungal pathogens. Our study introduces ZfpA as an important genetic regulator of stress tolerance during infection that protects A. fumigatus from the host immune response and antifungal drugs.
Collapse
Affiliation(s)
- Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dante G. Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022; 22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell migration is crucial for many biological processes, including normal development, immune response, and tissue homeostasis and many pathological processes such as cancer metastasis and wound healing. Microfluidics has revolutionized the research in cell migration since its inception as it reduces the cost of studies and allows precise manipulation of different parameters that affect cell migratory response. Over the past decade, the field has made great strides in many directions, such as techniques for better control of the cellular microenvironment, application-oriented physiological-like models, and machine-assisted cell image analysis methods. Here we review recent developments in the field of microfluidic cell migration through the following aspects: 1) the co-culture models for studying host-pathogen interactions at single-cell resolution; 2) the spatiotemporal manipulation of the chemical gradients guiding cell migration; 3) the organ-on-chip models to study cell transmigration; and 4) the deep learning image processing strategies for cell migration data analysis. We further discuss the challenges, possible improvement and future perspectives of using microfluidic techniques to study cell migration.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Piao Guo
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Liang C, Lian N, Li M. The emerging role of neutrophil extracellular traps in fungal infection. Front Cell Infect Microbiol 2022; 12:900895. [PMID: 36034717 PMCID: PMC9411525 DOI: 10.3389/fcimb.2022.900895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fungal infections are global public health problems and can lead to substantial human morbidity and mortality. Current antifungal therapy is not satisfactory, especially for invasive, life-threatening fungal infections. Modulating the antifungal capacity of the host immune system is a feasible way to combat fungal infections. Neutrophils are key components of the innate immune system that resist fungal pathogens by releasing reticular extracellular structures called neutrophil extracellular traps (NETs). When compared with phagocytosis and oxidative burst, NETs show better capability in terms of trapping large pathogens, such as fungi. This review will summarize interactions between fungal pathogens and NETs. Molecular mechanisms of fungi-induced NETs formation and defensive strategies used by fungi are also discussed.
Collapse
Affiliation(s)
- Chuting Liang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
| | - Ni Lian
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections (STIs), Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Dermatology, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Min Li,
| |
Collapse
|
17
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
18
|
Invasive aspergillosis-on-chip: A quantitative treatment study of human Aspergillus fumigatus infection. Biomaterials 2022; 283:121420. [DOI: 10.1016/j.biomaterials.2022.121420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/29/2022]
|
19
|
Babatunde KA, Ayuso JM, Kerr SC, Huttenlocher A, Beebe DJ. Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Front Immunol 2021; 12:781535. [PMID: 34899746 PMCID: PMC8653704 DOI: 10.3389/fimmu.2021.781535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
During infection, neutrophils are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. Neutrophils are considered to be short-lived effector cells that undergo cell death at infection sites and in damaged tissues. However, recent in vitro and in vivo evidence suggests that neutrophil behavior is more complex and that they can migrate away from the inflammatory site back into the vasculature following the resolution of inflammation. Microfluidic devices have contributed to an improved understanding of the interaction and behavior of neutrophils ex vivo in 2D and 3D microenvironments. The role of reverse migration and its contribution to the resolution of inflammation remains unclear. In this review, we will provide a summary of the current applications of microfluidic devices to investigate neutrophil behavior and interactions with other immune cells with a focus on forward and reverse migration in neutrophils.
Collapse
Affiliation(s)
| | - Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
20
|
Heuer C, Bahnemann J, Scheper T, Segal E. Paving the Way to Overcome Antifungal Drug Resistance: Current Practices and Novel Developments for Rapid and Reliable Antifungal Susceptibility Testing. SMALL METHODS 2021; 5:e2100713. [PMID: 34927979 DOI: 10.1002/smtd.202100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Indexed: 06/14/2023]
Abstract
The past year has established the link between the COVID-19 pandemic and the global spread of severe fungal infections; thus, underscoring the critical need for rapid and realizable fungal disease diagnostics. While in recent years, health authorities, such as the Centers for Disease Control and Prevention, have reported the alarming emergence and spread of drug-resistant pathogenic fungi and warned against the devastating consequences, progress in the diagnosis and treatment of fungal infections is limited. Early diagnosis and patient-tailored therapy are established to be key in reducing morbidity and mortality associated with fungal (and cofungal) infections. As such, antifungal susceptibility testing (AFST) is crucial in revealing susceptibility or resistance of these pathogens and initiating correct antifungal therapy. Today, gold standard AFST methods require several days for completion, and thus this much delayed time for answer limits their clinical application. This review focuses on the advancements made in developing novel AFST techniques and discusses their implications in the context of the practiced clinical workflow. The aim of this work is to highlight the advantages and drawbacks of currently available methods and identify the main gaps hindering their progress toward clinical application.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 320003, Israel
| | - Janina Bahnemann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 320003, Israel
| |
Collapse
|
21
|
Hopke A, Mela A, Ellett F, Carter-House D, Peña JF, Stajich JE, Altamirano S, Lovett B, Egan M, Kale S, Kronholm I, Guerette P, Szewczyk E, McCluskey K, Breslauer D, Shah H, Coad BR, Momany M, Irimia D. Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS One 2021; 16:e0257823. [PMID: 34587206 PMCID: PMC8480888 DOI: 10.1371/journal.pone.0257823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 01/16/2023] Open
Abstract
Fungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics. Here, we used a microfluidic device featuring four different maze patterns to compare the growth velocity and branching frequency of fourteen filamentous fungi. These measurements result from the collective work of several labs in the form of a competition named the "Fungus Olympics." The competing fungi included five ascomycete species (ten strains total), two basidiomycete species, and two zygomycete species. We found that growth velocity within a straight channel varied from 1 to 4 μm/min. We also found that the time to complete mazes when fungal hyphae branched or turned at various angles did not correlate with linear growth velocity. We discovered that fungi in our study used one of two distinct strategies to traverse mazes: high-frequency branching in which all possible paths were explored, and low-frequency branching in which only one or two paths were explored. While the high-frequency branching helped fungi escape mazes with sharp turns faster, the low-frequency turning had a significant advantage in mazes with shallower turns. Future work will more systematically examine these trends.
Collapse
Affiliation(s)
- Alex Hopke
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Alex Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Felix Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Derreck Carter-House
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jesús F. Peña
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Sophie Altamirano
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brian Lovett
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Martin Egan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, Virginia, United States of America
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Paul Guerette
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Edyta Szewczyk
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Kevin McCluskey
- Bolt Threads Inc., Emeryville, California, United States of America
| | - David Breslauer
- Bolt Threads Inc., Emeryville, California, United States of America
| | - Hiral Shah
- Bharat Chattoo Genome Research Centre, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Bryan R. Coad
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (DI); (MM)
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospital for Children, Boston, Massachusetts, United States of America
- * E-mail: (DI); (MM)
| |
Collapse
|
22
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
23
|
Hind LE, Giese MA, Schoen TJ, Beebe DJ, Keller N, Huttenlocher A. Immune Cell Paracrine Signaling Drives the Neutrophil Response to A. fumigatus in an Infection-on-a-Chip Model. Cell Mol Bioeng 2021; 14:133-145. [PMID: 33868496 PMCID: PMC8010091 DOI: 10.1007/s12195-020-00655-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Neutrophils act as first responders during an infection, following signals from the pathogen as well as other host cells to migrate from blood vessels to the site of infection. This tightly regulated process is critical for pathogen clearance and, in many cases, eliminates the pathogen without the need for an additional immune response. It is, therefore, critical to understand what signals drive neutrophil migration to infection in a physiologically relevant environment. METHODS In this study, we used an infection-on-a-chip model to recapitulate many important aspects of the infectious microenvironment including an endothelial blood vessel, an extracellular matrix, and the environmental fungal pathogen Aspergillus fumigatus. We then used this model to visualize the innate immune response to fungal infection. RESULTS We found that A. fumigatus germination dynamics are influenced by the presence of an endothelial lumen. Furthermore, we demonstrated that neutrophils are recruited to and swarm around A. fumigatus hyphae and that the presence of monocytes significantly increases the neutrophil response to A. fumigatus. Using secreted protein analysis and blocking antibodies, we found that this increased migration is likely due to signaling by MIP-1 family proteins. Finally, we demonstrated that signal relay between neutrophils, mediated by LTB4 signaling, is also important for sustained neutrophil migration and swarming in response to A. fumigatus infection in our system. CONCLUSIONS Taken together, these results suggest that paracrine signaling from both monocytes and neutrophils plays an important role in driving the neutrophil response to A. fumigatus.
Collapse
Affiliation(s)
- Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Taylor J. Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology, University of Wisconsin-Madison, Madison, WI USA
| | - Nancy Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
24
|
Gimeno A, Stanley CE, Ngamenie Z, Hsung MH, Walder F, Schmieder SS, Bindschedler S, Junier P, Keller B, Vogelgsang S. A versatile microfluidic platform measures hyphal interactions between Fusarium graminearum and Clonostachys rosea in real-time. Commun Biol 2021; 4:262. [PMID: 33637874 PMCID: PMC7910300 DOI: 10.1038/s42003-021-01767-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Routinely, fungal-fungal interactions (FFI) are studied on agar surfaces. However, this format restricts high-resolution dynamic imaging. To gain experimental access to FFI at the hyphal level in real-time, we developed a microfluidic platform, a FFI device. This device utilises microchannel geometry to enhance the visibility of hyphal growth and provides control channels to allow comparisons between localised and systemic effects. We demonstrate its function by investigating the FFI between the biological control agent (BCA) Clonostachys rosea and the plant pathogen Fusarium graminearum. Microscope image analyses confirm the inhibitory effect of the necrotrophic BCA and we show that a loss of fluorescence in parasitised hyphae of GFP-tagged F. graminearum coincides with the detection of GFP in mycelium of C. rosea. The versatility of our device to operate under both water-saturated and nutrient-rich as well as dry and nutrient-deficient conditions, coupled with its spatio-temporal output, opens new opportunities to study relationships between fungi.
Collapse
Affiliation(s)
- Alejandro Gimeno
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Claire E Stanley
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland.
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| | - Zacharie Ngamenie
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland
| | - Ming-Hui Hsung
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Florian Walder
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Zurich, Switzerland
| | - Stefanie S Schmieder
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Beat Keller
- Molecular Plant Biology and Phytopathology, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Susanne Vogelgsang
- Ecological Plant Protection in Arable Crops, Plant Protection, Agroscope, Zurich, Switzerland.
| |
Collapse
|
25
|
Outer Membrane Structural Defects in Salmonella enterica Serovar Typhimurium Affect Neutrophil Chemokinesis but Not Chemotaxis. mSphere 2021; 6:6/1/e01012-20. [PMID: 33627508 PMCID: PMC8544890 DOI: 10.1128/msphere.01012-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils, the first line of defense against pathogens, are critical in the host response to acute and chronic infections. In Gram-negative pathogens, the bacterial outer membrane (OM) is a key mediator of pathogen detection; nonetheless, the effects of variations in its molecular structure on the neutrophil migratory response to bacteria remain largely unknown. Here, we developed a quantitative microfluidic assay that precludes physical contact between bacteria and neutrophils while maintaining chemical communication, thus allowing investigation of both transient and steady-state responses of neutrophils to a library of Salmonella enterica serovar Typhimurium OM-related mutants at single-cell resolution. Using single-cell quantitative metrics, we found that transient neutrophil chemokinesis is highly gradated based upon OM structure, while transient and steady-state chemotaxis responses differ little between mutants. Based on our finding of a lack of correlation between chemokinesis and chemotaxis, we define "stimulation score" as a metric that comprehensively describes the neutrophil response to pathogens. Complemented with a killing assay, our results provide insight into how OM modifications affect neutrophil recruitment and pathogen survival. Altogether, our platform enables the discovery of transient and steady-state migratory responses and provides a new path for quantitative interrogation of cell decision-making processes in a variety of host-pathogen interactions.IMPORTANCE Our findings provide insights into the previously unexplored effects of Salmonella envelope defects on fundamental innate immune cell behavior, which advance the knowledge in pathogen-host cell biology and potentially inspire the rational design of attenuated strains for vaccines or immunotherapeutic strains for cancer therapy. Furthermore, the microfluidic assay platform and analytical tools reported herein enable high-throughput, sensitive, and quantitative screening of microbial strains' immunogenicity in vitro This approach could be particularly beneficial for rapid in vitro screening of engineered microbial strains (e.g., vaccine candidates) as the quantitative ranking of the overall strength of the neutrophil response, reported by "stimulation score," agrees with in vivo cytokine response trends reported in the literature.
Collapse
|
26
|
Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat Commun 2020; 11:5158. [PMID: 33056992 PMCID: PMC7557911 DOI: 10.1038/s41467-020-18999-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi. Fungi produce oxygenated fatty acids, or oxylipins, of unclear function. Here, Niu et al. show that an Aspergillus oxylipin induces various developmental processes in several fungi, including lateral branching in human pathogenic Aspergillus species, and appressorium formation in the plant pathogen Magnaporthe grisea.
Collapse
|
27
|
Heuer C, Leonard H, Nitzan N, Lavy-Alperovitch A, Massad-Ivanir N, Scheper T, Segal E. Antifungal Susceptibility Testing of Aspergillus niger on Silicon Microwells by Intensity-Based Reflectometric Interference Spectroscopy. ACS Infect Dis 2020; 6:2560-2566. [PMID: 32930571 PMCID: PMC7584364 DOI: 10.1021/acsinfecdis.0c00234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There is a demonstrated and paramount need for rapid, reliable infectious disease diagnostics, particularly those for invasive fungal infections. Current clinical determinations for an appropriate antifungal therapy can take up to 3 days using current antifungal susceptibility testing methods, a time-to-readout that can prove detrimental for immunocompromised patients and promote the spread of antifungal resistant pathogens. Herein, we demonstrate the application of intensity-based reflectometric interference spectroscopic measurements (termed iPRISM) on microstructured silicon sensors for use as a rapid, phenotypic antifungal susceptibility test. This diagnostic platform optically tracks morphological changes of fungi corresponding to conidia growth and hyphal colonization at a solid-liquid interface in real time. Using Aspergillus niger as a model fungal pathogen, we can determine the minimal inhibitory concentration of clinically relevant antifungals within 12 h. This assay allows for expedited detection of fungal growth and provides a label-free alternative to broth microdilution and agar diffusion methods, with the potential to be used for point-of-care diagnostics.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | | | | | | | | | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | | |
Collapse
|
28
|
Seidel C, Moreno-Velásquez SD, Ben-Ghazzi N, Gago S, Read ND, Bowyer P. Phagolysosomal Survival Enables Non-lytic Hyphal Escape and Ramification Through Lung Epithelium During Aspergillus fumigatus Infection. Front Microbiol 2020; 11:1955. [PMID: 32973709 PMCID: PMC7468521 DOI: 10.3389/fmicb.2020.01955] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Aspergillus fumigatus is the most important mould pathogen in immunosuppressed patients. Suboptimal clearance of inhaled spores results in the colonisation of the lung airways by invasive hyphae. The first point of contact between A. fumigatus and the host is the lung epithelium. In vitro and ex vivo studies have characterised critical aspects of the interaction of invasive hyphae on the surface of epithelial cells. However, the cellular interplay between internalised A. fumigatus and the lung epithelium remains largely unexplored. Here, we use high-resolution live-cell confocal microscopy, 3D rendered imaging and transmission electron microscopy to define the development of A. fumigatus after lung epithelium internalisation in vitro. Germination, morphology and growth of A. fumigatus were significantly impaired upon internalisation by alveolar (A549) and bronchial (16HBE) lung epithelial cells compared to those growing on the host surface. Internalised spores and germlings were surrounded by the host phagolysosome membrane. Sixty per cent of the phagosomes containing germlings were not acidified at 24 h post infection allowing hyphal development. During escape, the phagolysosomal membrane was not ruptured but likely fused to host plasma membrane allowing hyphal exit from the intact host cell in an non-lytic Manner. Subsequently, escaping hyphae elongated between or through adjacent epithelial lung cells without penetration of the host cytoplasm. Hyphal tips penetrating new epithelial cells were surrounded by the recipient cell plasma membrane. Altogether, our results suggest cells of lung epithelium survive fungal penetration because the phagolysosomal and plasma membranes are never breached and that conversely, fungal spores survive due to phagosome maturation failure. Consequently, fungal hyphae can grow through the epithelial cell layer without directly damaging the host. These processes likely prevent the activation of downstream immune responses alongside limiting the access of professional phagocytes to the invading fungal hypha. Further research is needed to investigate if these events also occur during penetration of fungi in endothelial cells, fibroblasts and other cell types.
Collapse
Affiliation(s)
- Constanze Seidel
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sergio D Moreno-Velásquez
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nagwa Ben-Ghazzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nick D Read
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| |
Collapse
|
29
|
Zhang Z, Jiang Y, Chen J, Chen P, Kong Q, Lu L, Sang H. In vitro and in vivo characterization of two nonsporulating Aspergillus fumigatus clinical isolates from immunocompetent patients. Med Mycol 2020; 58:543-551. [PMID: 31290538 DOI: 10.1093/mmy/myz076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 06/15/2019] [Indexed: 01/04/2023] Open
Abstract
Aspergillus fumigatus is a pathogenic fungus responsible for invasive aspergillosis (IA). Typically, it can produce abundant conidia to survive and spread. The infection by A. fumigatus usually occurs in immunocompromised patients due to failed clearance of inhaled conidia. However, the incidence of aspergillosis in immunocompetent hosts has been increasing, the pathogenesis of which is still unknown. Our team previously obtained two clinical nonsporulating A. fumigatus isolates from non-immunocompromised patients, which only have the form of hyphae. This present study demonstrated the in vitro and in vivo characteristics of the two nonsporulating A. fumigatus isolates and verified that their conidiation defects are associated to abolished expression of the sporulation-related central regulatory pathway brlA gene. In addition, we confirmed the mutation site of brlA gene (c.657_660delTCCT) contributes to the nonsporulating phenotype in one clinical isolate. Plate assay showed that the two nonsporulating isolates have a similar resistance to antifungal drugs, cell wall disturbing substances, and oxidative stress compared with the wild-type reference Af293. Most important of all, we employed an immunocompetent mouse model to mimic the pathogenesis of pulmonary aspergillosis in non-immunocompromised patients. It revealed that the hyphae of two nonsporulating isolates and Af293 have similar virulence in immunocompetent hosts. Interestingly, the hyphae fragments of Af293 but not conidia are able to induce invasive aspergillosis in immunocompetent mice. In conclusion, our study indicate that the form of hyphae may play a dominant causative role in pulmonary aspergillosis of immunocompetent hosts rather than conidia.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yuan Jiang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Chen
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Peiying Chen
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Min K, Neiman AM, Konopka JB. Fungal Pathogens: Shape-Shifting Invaders. Trends Microbiol 2020; 28:922-933. [PMID: 32474010 DOI: 10.1016/j.tim.2020.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are on the rise due to new medical procedures that have increased the number of immune compromised patients, antibacterial antibiotics that disrupt the microbiome, and increased use of indwelling medical devices that provide sites for biofilm formation. Key to understanding the mechanisms of pathogenesis is to determine how fungal morphology impacts virulence strategies. For example, small budding cells use very different strategies to disseminate compared with long hyphal filaments. Furthermore, cell morphology must be monitored in the host, as many fungal pathogens change their shape to disseminate into new areas, acquire nutrients, and avoid attack by the immune system. This review describes the shape-shifting alterations in morphogenesis of human fungal pathogens and how they influence virulence strategies.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
31
|
Bieger BD, Rogers AM, Bates S, Egan MJ. Long-distance early endosome motility in Aspergillus fumigatus promotes normal hyphal growth behaviors in controlled microenvironments but is dispensable for virulence. Traffic 2020; 21:479-487. [PMID: 32378777 DOI: 10.1111/tra.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule-based motor proteins, serving as platforms for the long-distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long-distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics-based approach we show that contact-induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA-mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.
Collapse
Affiliation(s)
- Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
32
|
Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun 2020; 11:2031. [PMID: 32341348 PMCID: PMC7184738 DOI: 10.1038/s41467-020-15834-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophils employ several mechanisms to restrict fungi, including the action of enzymes such as myeloperoxidase (MPO) or NADPH oxidase, and the release of neutrophil extracellular traps (NETs). Moreover, they cooperate, forming “swarms” to attack fungi that are larger than individual neutrophils. Here, we designed an assay for studying how these mechanisms work together and contribute to neutrophil's ability to contain clusters of live Candida. We find that neutrophil swarming over Candida clusters delays germination through the action of MPO and NADPH oxidase, and restricts fungal growth through NET release within the swarm. In comparison with neutrophils from healthy subjects, those from patients with chronic granulomatous disease produce larger swarms against Candida, but their release of NETs is delayed, resulting in impaired control of fungal growth. We also show that granulocyte colony-stimulating factors (GCSF and GM-CSF) enhance swarming and neutrophil ability to restrict fungal growth, even during treatment with chemical inhibitors that disrupt neutrophil function. Neutrophils employ several mechanisms to control the growth of fungi, including enzymes, reactive oxygen species, extracellular traps, and formation of “swarms”. Here, Hopke et al. study how the different mechanisms work together, using an in vitro assay with human neutrophils and clusters of live Candida cells.
Collapse
|
33
|
Abstract
Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities.
Collapse
|
34
|
Yakti W, Kovács GM, Franken P. Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiol Ecol 2019; 95:fiz164. [PMID: 31609451 PMCID: PMC6864363 DOI: 10.1093/femsec/fiz164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Dark septate endophytes (DSEs) present a group of widespread root-colonizing fungi. The role of these endophytes in ecosystems and their interactions with plant pathogens are not well understood. In the current study, we assessed the antagonistic potential of the model DSE Cadophora sp. against the tomato soilborne pathogens Rhizoctonia solani, Pythium aphanidermatum and Verticillium dahliae. To investigate their interactions, we conducted in vitro assays followed by a greenhouse experiments in which tomato plants were inoculated with different combinations of the DSE and pathogens. RNA accumulation of selected tomato pathogenesis-related genes and of Cadophora sp. genes with putative antifungal function was analyzed. Cadophora sp. inhibited the growth of the fungal pathogens in vitro and vice versa; a negative impact of the pathogens on the growth of the DSE was also detected. In roots, however, this mutual negative interaction could not be observed. Expression analyses of plant genes could not explain this differential effect, but among the Cadophora sp. genes analyzed, a gene coding for a chalcone synthase was downregulated in planta. The data indicate that plants can change the interaction between fungi and, therefore, in vitro detected antagonism does not necessarily reflect the situation inside the plant.
Collapse
Affiliation(s)
- Wael Yakti
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1,14979 Großbeeren, Brandenburg, Germany and Institute of Biology, Plant Physiology Department, Humboldt University of Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Budapest 1022, Hungary
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1,14979 Großbeeren, Brandenburg, Germany and Institute of Biology, Plant Physiology Department, Humboldt University of Berlin, Philippstraße 13, 10115 Berlin, Germany
- Erfurt Research Centre for Horticultural Crops, University of Applied Sciences, Kühnhäuser Straße 101, 99090 Erfurt, Thuringia, Germany
| |
Collapse
|
35
|
Zhai P, Song J, Gao L, Lu L. A sphingolipid synthesis-related protein OrmA in Aspergillus fumigatus is responsible for azole susceptibility and virulence. Cell Microbiol 2019; 21:e13092. [PMID: 31376233 DOI: 10.1111/cmi.13092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis-related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate-limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome-wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose-dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole-response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway-HacA-dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.
Collapse
Affiliation(s)
- Pengfei Zhai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
36
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
37
|
Live Monitoring and Analysis of Fungal Growth, Viability, and Mycelial Morphology Using the IncuCyte NeuroTrack Processing Module. mBio 2019; 10:mBio.00673-19. [PMID: 31138745 PMCID: PMC6538782 DOI: 10.1128/mbio.00673-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogenic fungi remain a major cause of infectious complications in immunocompromised patients. Microscopic techniques are crucial for our understanding of fungal biology, host-pathogen interaction, and the pleiotropic effects of antifungal drugs on fungal cell growth and morphogenesis. Taking advantage of the morphological similarities of neuronal cell networks and mycelial growth patterns, we employed the IncuCyte time-lapse microscopy system and its NeuroTrack image analysis software package to study growth and branching of a variety of pathogenic yeasts and molds. Using optimized image processing definitions, we validated IncuCyte NeuroTrack analysis as a reliable and efficient tool for translational applications such as antifungal efficacy evaluation and coculture with host immune effector cells. Hence, the IncuCyte system and its NeuroTrack module provide an appealing platform for efficient in vitro studies of antifungal compounds and immunotherapeutic strategies in medical mycology. Efficient live-imaging methods are pivotal to understand fungal morphogenesis, especially as it relates to interactions with host immune cells and mechanisms of antifungal drugs. Due to the notable similarities in growth patterns of neuronal cells and mycelial networks, we sought to repurpose the NeuroTrack (NT) processing module of the IncuCyte time-lapse microscopy system as a tool to quantify mycelial growth and branching of pathogenic fungi. We showed the robustness of NT analysis to study Candida albicans and five different molds and confirmed established characteristics of mycelial growth kinetics. We also documented high intra- and interassay reproducibility of the NT module for a spectrum of spore inocula and culture periods. Using GFP-expressing Aspergillus fumigatus and Rhizopus arrhizus, the feasibility of fluorescence-based NT analysis was validated. In addition, we performed proof-of-concept experiments of NT analysis for several translational applications such as studying the morphogenesis of a filamentation-defective C. albicans mutant, the effects of different classes of antifungals (polyenes, azoles, and echinocandins), and coculture with host immune cells. High accuracy was found, even at high immune cell-to-fungus ratios or in the presence of fungal debris. For antifungal efficacy studies, addition of a cytotoxicity dye further refined IncuCyte-based analysis, facilitating real-time determination of fungistatic and fungicidal activity in a single assay. Complementing conventional MIC-based assays, NT analysis is an appealing method to study fungal morphogenesis and viability in the context of antifungal compound screening and evaluation of novel immune therapeutics.
Collapse
|
38
|
Jones CN, Ellett F, Robertson AL, Forrest KM, Judice K, Balkovec JM, Springer M, Markmann JF, Vyas JM, Warren HS, Irimia D. Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Front Immunol 2019; 10:644. [PMID: 31024528 PMCID: PMC6465576 DOI: 10.3389/fimmu.2019.00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anne L Robertson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Judice
- Cidara Therapeutics, San Diego, CA, United States
| | | | | | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Division of Transplantation, Massachusetts General Hospital, Boston, MA, United States
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H Shaw Warren
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Menacing Mold: Recent Advances in Aspergillus Pathogenesis and Host Defense. J Mol Biol 2019; 431:4229-4246. [PMID: 30954573 DOI: 10.1016/j.jmb.2019.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 03/30/2019] [Indexed: 02/08/2023]
Abstract
The genus Aspergillus is ubiquitous in the environment and contains a number of species, primarily A. fumigatus, that cause mold-associated disease in humans. Humans inhale several hundred to several thousand Aspergillus conidia (i.e., vegetative spores) daily and typically clear these in an asymptomatic manner. In immunocompromised individuals, Aspergillus conidia can germinate into tissue-invasive hyphae, disseminate, and cause invasive aspergillosis. In this review, we first discuss novel concepts in host defense against Aspergillus infections and emphasize new insights in fungal recognition and signaling, innate immune activation, and fungal killing. Second, the review focuses on novel concepts of Aspergillus pathogenesis and highlights emerging knowledge regarding fungal strain heterogeneity, stress responses, and metabolic adaptations on infectious outcomes. Mechanistic insight into the host-pathogen interplay is thus critical to define novel druggable fungal targets and to exploit novel immune-based strategies to improve clinical outcomes associated with aspergillosis in vulnerable patient populations.
Collapse
|
40
|
Ellett F, Jalali F, Marand AL, Jorgensen J, Mutlu BR, Lee J, Raff AB, Irimia D. Microfluidic arenas for war games between neutrophils and microbes. LAB ON A CHIP 2019; 19:1205-1216. [PMID: 30865740 PMCID: PMC6544356 DOI: 10.1039/c8lc01263f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Measurements of neutrophil activities such as cell migration and phagocytosis are generally performed using low-content bulk assays, which provide little detail activity at the single cell level, or flow cytometry methods, which have the single cell resolution but lack perspective on the kinetics of the process. Here, we present a microfluidic assay for measuring the essential functions that contribute to the antimicrobial activity of neutrophils: migration towards the target, and killing of microbes. The assay interrogates the interactions between isolated human neutrophils and populations of live, proliferating microbes. The outcome is measured in a binary mode that is reflective of in vivo infections, which are either cleared or endure the host response. The outcome of the interactions is also characterized at single cell resolution for both the neutrophils and the microbes. We applied the assay to test the response of neutrophils from intensive care patients to live Staphylococcus aureus, and observed alterations of antimicrobial neutrophil activity in patients, including those with sepsis. By directly measuring neutrophil activity against live targets at high spatial and temporal resolution, this assay provides unique insights into the life-or-death contest shaping the outcome of interactions between populations of neutrophils and microbes.
Collapse
Affiliation(s)
- Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Yang Q, Cao L, Xu F. Analysis of Leukocyte Behaviors on Microfluidic Chips. Adv Healthc Mater 2019; 8:e1801406. [PMID: 30672149 DOI: 10.1002/adhm.201801406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/05/2019] [Indexed: 01/17/2023]
Abstract
The orchestration of massive leukocytes in the immune system protects humans from invading pathogens and abnormal cells in the body. So far, researches focusing on leukocyte behaviors are performed based on both in vivo and in vitro models. The in vivo animal models are usually less controllable due to their extreme complexity and nonignorable species issue. Therefore, many researchers turn to in vitro models. With the advances in micro/nanofabrication, the microfluidic chip has emerged as a novel platform for model construction in multiple biomedical research fields. Specifically, the microfluidic chip is used to study leukocyte behaviors, due to its incomparable advantages in high throughput, precise control, and flexible integration. Moreover, the small size of the microstructures on the microfluidic chip can better mimic the native microenvironment of leukocytes, which contributes to a more reliable recapitulation. Herein are reviewed the recent advances in microfluidic chip-based leukocyte behavior analysis to provide an overview of this field. Detailed discussions are specifically focused on host defense against pathogens, immunodiagnosis, and immunotherapy studies on microfluidic chips. Finally, the current technical challenges are discussed, as well as possible innovations in this field to improve the related applications.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
- Bioinspired Engineering and Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| |
Collapse
|
42
|
Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 2019; 110:857-868. [DOI: 10.1016/j.biopha.2018.12.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/21/2022] Open
|
43
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
44
|
Irimia D, Wang X. Inflammation-on-a-Chip: Probing the Immune System Ex Vivo. Trends Biotechnol 2018; 36:923-937. [PMID: 29728272 PMCID: PMC6098972 DOI: 10.1016/j.tibtech.2018.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Inflammation is the typical result of activating the host immune system against pathogens, and it helps to clear microbes from tissues. However, inflammation can occur in the absence of pathogens, contributing to tissue damage and leading to disease. Understanding how immune cells coordinate their activities to initiate, modulate, and terminate inflammation is key to developing effective interventions to preserve health and combat diseases. Towards this goal, inflammation-on-a-chip tools provide unique features that greatly benefit the study of inflammation. They reconstitute tissue environments in microfabricated devices and enable real-time, high-resolution observations and quantification of cellular activities relevant to inflammation. We review here recent advances in inflammation-on-a-chip technologies and highlight the biological insights and clinical applications enabled by these emerging tools.
Collapse
Affiliation(s)
- Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| | - Xiao Wang
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA
| |
Collapse
|
45
|
Rosowski EE, Raffa N, Knox BP, Golenberg N, Keller NP, Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog 2018; 14:e1007229. [PMID: 30071103 PMCID: PMC6091969 DOI: 10.1371/journal.ppat.1007229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/14/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
In immunocompromised individuals, Aspergillus fumigatus causes invasive fungal disease that is often difficult to treat. Exactly how immune mechanisms control A. fumigatus in immunocompetent individuals remains unclear. Here, we use transparent zebrafish larvae to visualize and quantify neutrophil and macrophage behaviors in response to different A. fumigatus strains. We find that macrophages form dense clusters around spores, establishing a protective niche for fungal survival. Macrophages exert these protective effects by inhibiting fungal germination, thereby inhibiting subsequent neutrophil recruitment and neutrophil-mediated killing. Germination directly drives fungal clearance as faster-growing CEA10-derived strains are killed better in vivo than slower-growing Af293-derived strains. Additionally, a CEA10 pyrG-deficient strain with impaired germination is cleared less effectively by neutrophils. Host inflammatory activation through Myd88 is required for killing of a CEA10-derived strain but not sufficient for killing of an Af293-derived strain, further demonstrating the role of fungal-intrinsic differences in the ability of a host to clear an infection. Altogether, we describe a new role for macrophages in the persistence of A. fumigatus and highlight the ability of different A. fumigatus strains to adopt diverse modes of virulence. Immunocompromised patients are susceptible to invasive fungal infections, including aspergillosis. However, healthy humans inhale spores of the fungus Aspergillus fumigatus from the environment every day without becoming sick, and how the immune system clears this infection is still obscure. Additionally, there are many different strains of A. fumigatus, and whether the pathogenesis of these different strains varies is also largely unknown. To investigate these questions, we infected larval zebrafish with A. fumigatus spores derived from two genetically diverse strains. Larval zebrafish allow for visualization of fungal growth and innate immune cell behavior in live, intact animals. We find that differences in the rate of growth between strains directly affect fungal persistence. In both wild-type and macrophage-deficient zebrafish larvae, a fast-germinating strain is actually cleared better than a slow-germinating strain. This fungal killing is driven primarily by neutrophils while macrophages promote fungal persistence by inhibiting spore germination. Our experiments underline different mechanisms of virulence that pathogens can utilize—rapid growth versus dormancy and persistence—and inform future strategies for fighting fungal infections in susceptible immunocompromised patients.
Collapse
Affiliation(s)
- Emily E. Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Raffa
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Benjamin P. Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Netta Golenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
46
|
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets! Genes (Basel) 2018; 9:genes9070332. [PMID: 30004464 PMCID: PMC6071111 DOI: 10.3390/genes9070332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Fungal infections caused by Candida, Aspergillus, and Cryptococcus species are an increasing problem worldwide, associated with very high mortality rates. The successful prevalence of these human pathogens is due to their ability to thrive in stressful host niche colonization sites, to tolerate host immune system-induced stress, and to resist antifungal drugs. This review focuses on the key role played by multidrug resistance (MDR) transporters, belonging to the ATP-binding cassette (ABC), and the major facilitator superfamilies (MFS), in mediating fungal resistance to pathogenesis-related stresses. These clearly include the extrusion of antifungal drugs, with C. albicans CDR1 and MDR1 genes, and corresponding homologs in other fungal pathogens, playing a key role in this phenomenon. More recently, however, clues on the transcriptional regulation and physiological roles of MDR transporters, including the transport of lipids, ions, and small metabolites, have emerged, linking these transporters to important pathogenesis features, such as resistance to host niche environments, biofilm formation, immune system evasion, and virulence. The wider view of the activity of MDR transporters provided in this review highlights their relevance beyond drug resistance and the need to develop therapeutic strategies that successfully face the challenges posed by the pleiotropic nature of these transporters.
Collapse
|
47
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
48
|
Cai Z, Du W, Zhang Z, Guan L, Zeng Q, Chai Y, Dai C, Lu L. TheAspergillus fumigatustranscription factor AceA is involved not only in Cu but also in Zn detoxification through regulating transporters CrpA and ZrcA. Cell Microbiol 2018; 20:e12864. [DOI: 10.1111/cmi.12864] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Zhendong Cai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Wenlong Du
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Zheng Zhang
- Department of Dermatology, Jinling Hospital, School of Medicine; Nanjing University; Nanjing China
| | - Luyu Guan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Qiuqiong Zeng
- Department of Dermatology, Jinling Hospital, School of Medicine; Nanjing University; Nanjing China
| | - Yanfei Chai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| |
Collapse
|
49
|
Ruf D, Brantl V, Wagener J. Mitochondrial Fragmentation in Aspergillus fumigatus as Early Marker of Granulocyte Killing Activity. Front Cell Infect Microbiol 2018; 8:128. [PMID: 29868488 PMCID: PMC5960683 DOI: 10.3389/fcimb.2018.00128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
The host's defense against invasive mold infections relies on diverse antimicrobial activities of innate immune cells. However, studying these mechanisms in vitro is complicated by the filamentous nature of such pathogens that typically form long, branched, multinucleated and compartmentalized hyphae. Here we describe a novel method that allows for the visualization and quantification of the antifungal killing activity exerted by human granulocytes against hyphae of the opportunistic pathogen Aspergillus fumigatus. The approach relies on the distinct impact of fungal cell death on the morphology of mitochondria that were visualized with green fluorescent protein (GFP). We show that oxidative stress induces complete fragmentation of the tubular mitochondrial network which correlates with cell death of affected hyphae. Live cell microscopy revealed a similar and non-reversible disruption of the mitochondrial morphology followed by fading of fluorescence in Aspergillus hyphae that were killed by human granulocytes. Quantitative microscopic analysis of fixed samples was subsequently used to estimate the antifungal activity. By utilizing this assay, we demonstrate that lipopolysaccharides as well as human serum significantly increase the killing efficacy of the granulocytes. Our results demonstrate that evaluation of the mitochondrial morphology can be utilized to assess the fungicidal activity of granulocytes against A. fumigatus hyphae.
Collapse
Affiliation(s)
- Dominik Ruf
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Victor Brantl
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany.,Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
50
|
Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities. Curr Opin Infect Dis 2018; 30:364-371. [PMID: 28509673 DOI: 10.1097/qco.0000000000000381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. RECENT FINDINGS Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. SUMMARY Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity.
Collapse
|