1
|
Li C, Holmes EC, Shi W. The diversity, pathogenic spectrum, and ecological significance of arthropod viruses. Trends Microbiol 2025:S0966-842X(25)00081-2. [PMID: 40240215 DOI: 10.1016/j.tim.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
Research on arthropod viruses initially focused on those associated with diseases in vertebrates, particularly humans, as well as in plants of economic importance. However, the more recent deployment of metatranscriptomic sequencing of diverse arthropod species has facilitated the discovery of a multitude of novel arthropod viruses, in turn revealing that pathogenic viruses represent only a small component of the arthropod virome. In addition, arthropods may play a pivotal role in viral evolution and ecological dynamics, and have the potential to act as reservoirs for pathogens affecting vertebrates or plants. Due to active interactions between arthropod populations and diverse organisms - including fungi, plants, vertebrates, and even other arthropods in both aquatic and terrestrial ecosystems - there is an increased risk of the spillover of arthropod viruses to other organisms, including mammals. Herein, we review our current understanding of the diversity and ecology of arthropod viruses. We outline what is known about pathogenic arthropod viruses in diverse host types and emphasize the unique niche of arthropods as the source of emerging viral infectious diseases. Finally, we describe the evolutionary interactions between arthropod viruses and their hosts in ecosystems, at the same time highlighting their ecological significance with respect to regulating host populations.
Collapse
Affiliation(s)
- Cixiu Li
- Department of Pathogen Biology, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Weifeng Shi
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Wallace MA, Wille M, Geoghegan J, Imrie RM, Holmes EC, Harrison XA, Longdon B. Making sense of the virome in light of evolution and ecology. Proc Biol Sci 2025; 292:20250389. [PMID: 40169018 PMCID: PMC11961256 DOI: 10.1098/rspb.2025.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the patterns and drivers of viral prevalence and abundance is of key importance for understanding pathogen emergence. Over the last decade, metagenomic sequencing has exponentially expanded our knowledge of the diversity and evolution of viruses associated with all domains of life. However, as most of these 'virome' studies are primarily descriptive, our understanding of the predictors of virus prevalence, abundance and diversity, and their variation in space and time, remains limited. For example, we do not yet understand the relative importance of ecological predictors (e.g. seasonality and habitat) versus evolutionary predictors (e.g. host and virus phylogenies) in driving virus prevalence and diversity. Few studies are set up to reveal the factors that predict the virome composition of individual hosts, populations or species. In addition, most studies of virus ecology represent a snapshot of single species viromes at a single point in time and space. Fortunately, recent studies have begun to use metagenomic data to directly test hypotheses about the evolutionary and ecological factors which drive virus prevalence, sharing and diversity. By synthesizing evidence across studies, we present some over-arching ecological and evolutionary patterns in virome composition, and illustrate the need for additional work to quantify the drivers of virus prevalence and diversity.
Collapse
Affiliation(s)
- Megan A. Wallace
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jemma Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ryan M. Imrie
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
3
|
Tian D, Ye RZ, Li YY, Wang N, Gao WY, Wang BH, Lin ZT, Zhu WJ, Wang QS, Liu YT, Wei H, Wang YF, Sun Y, Shi XY, Jia N, Jiang JF, Cui XM, Cao WC, Liu ZH. Virome specific to tick genus with distinct ecogeographical distribution. MICROBIOME 2025; 13:57. [PMID: 40022268 PMCID: PMC11869668 DOI: 10.1186/s40168-025-02061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The emergence of tick-borne pathogens poses a serious threat to both human and animal health. There remains controversy about virome diversity in relation to tick genus and ecogeographical factors. RESULTS We conducted the meta‑transcriptomic sequencing of 155 pools of ticks encompassing 7 species of 3 genera collected from diverse geographical fauna of Ningxia Province, China. Two species of Dermacentor genus were distributed in the predominantly grassland areas of the central and eastern regions, with the lowest viral diversity. Two species of Hyalomma ticks were found in the predominantly desert areas of the northern regions, with intermediate viral diversity. Three species of Haemaphysalis ticks were concentrated in the predominantly forested areas of the southern regions, exhibiting the highest viral diversity. We assembled 348 viral genomes of 63 species in 14 orders, including 26 novel viruses. The identified viruses were clearly specific to tick genus: 22 virus species were exclusive to Dermacentor, 12 to Hyalomma, and 27 to Haemaphysalis. CONCLUSIONS The associations between tick genera and geographical distribution, viral richness, and composition provide new insights into tick-virus interactions, offering clues to identify high-risk regions for different tick-borne viruses. Video Abstract.
Collapse
Affiliation(s)
- Di Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Run-Ze Ye
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu-Yu Li
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bai-Hui Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Wen-Jie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Qiu-Shi Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ya-Ting Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Hua Wei
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wu-Chun Cao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People's Republic of China.
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Zhi-Hong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| |
Collapse
|
4
|
Imrie RM, Wallace MA, Longdon B. Positive correlations in susceptibility to a diverse panel of viruses across Drosophilidae host species. Evol Lett 2025:qraf002. [PMID: 40007858 PMCID: PMC7617412 DOI: 10.1093/evlett/qraf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Our ability to predict the emergence of novel viruses relies on there being generalisable patterns in the susceptibilities of hosts to novel infections. Studies investigating variation in susceptibility among host species have consistently shown that closely related hosts share similar susceptibilities to a given virus. However, the extent to which such phylogenetic patterns of susceptibility are correlated amongst diverse sets of viruses is unclear. Here, we investigate phylogenetic correlations in susceptibility among Drosophilidae hosts to a panel of eleven different invertebrate viruses, comprising seven unique virus species, six unique families, and both RNA and DNA viruses. The susceptibility of hosts to each pair of viruses tested was either positively correlated across host species or did not show evidence of correlation. No negative correlations, indicative of evolutionary trade-offs in host susceptibility to different viruses, were detected between any virus pairs. The strength of correlations were generally higher in viruses of the same species and family, consistent with virus phylogenetic patterns in host infectivity. Our results suggest that generalised host susceptibility can result in positive correlations, even between highly diverged viruses, while specialised interactions with individual viruses cause a stepwise decrease in correlation strength between viruses from the within-species, to the within-family, to the across-family level.
Collapse
Affiliation(s)
- Ryan M. Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Megan A. Wallace
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
5
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
6
|
Dufloo J, Andreu-Moreno I, Moreno-García J, Valero-Rello A, Sanjuán R. Receptor-binding proteins from animal viruses are broadly compatible with human cell entry factors. Nat Microbiol 2025; 10:405-419. [PMID: 39747691 PMCID: PMC11790484 DOI: 10.1038/s41564-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Cross-species transmission of animal viruses poses a threat to human health. However, systematic experimental assessments of these risks remain scarce. A critical step in viral infection is cellular internalization mediated by viral receptor-binding proteins (RBPs). Here we constructed viral pseudotypes bearing the RBPs of 102 enveloped RNA viruses and assayed their infectivity across 5,202 RBP-cell combinations. This showed that most of the tested viruses have the potential to enter human cells. Pseudotype infectivity varied widely among the 14 viral families examined and was influenced by RBP characteristics, host of origin and target cell type. Cellular gene expression data revealed that the availability of specific cell-surface receptors is not necessarily the main factor limiting viral entry and that additional host factors must be considered. Altogether, these results suggest weak interspecies barriers in the early stages of infection and advance our understanding of the molecular interactions driving viral zoonosis.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Jorge Moreno-García
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Ana Valero-Rello
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain.
| |
Collapse
|
7
|
Wang D, Li L, Ren Z, Yu Y, Zhang Z, Zhou J, Zhao H, Zhao Z, Shi P, Mi X, Jin X, Deng Z, Li J, Chen J. Host Specificity and Geographic Dispersion Shape Virome Diversity in Rhinolophus Bats. Mol Ecol 2025; 34:e17645. [PMID: 39825599 DOI: 10.1111/mec.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R. sinicus and 11 other bat species. The massive metatranscriptomic data revealed substantial viral genome resources of 133 vertebrate-infecting viral clusters, which contain occasional cross-species transmission across mammalian orders and especially across bat families. Notably, those viruses included nine clusters closely related to human and/or livestock pathogens, such as SARS-CoVs and SADS-CoVs. The investigation also highlighted distinct features of viral diversity between and within bat colonies, which appear to be influenced by the distinct host population genetics of R. affinis and R. sinicus species. The comparison of SARSr-CoVs further showed varied impact of host specificity along genome-wide diversification and modular viral evolution among Rhinolophus species. Overall, the findings point to a complex interaction between host genetic diversity, and the way viruses spread and structure within natural populations, calling for continued surveillance efforts to understand factors driving viral transmission and emergence in human populations. These results present the underestimated spillover risk of bat viruses, highlighting the importance of enhancing preparedness and surveillance for emerging zoonotic viruses.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zirui Ren
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhipeng Zhang
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hailong Zhao
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Peibo Shi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrui Mi
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Jin
- BGI Research, Shenzhen, China
| | - Ziqing Deng
- BGI Research, Beijing, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, China
- BGI Research, Shenzhen, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Sarker S, Talukder S, Athukorala A, Whiteley PL. The Spleen Virome of Australia's Endemic Platypus Is Dominated by Highly Diverse Papillomaviruses. Viruses 2025; 17:176. [PMID: 40006931 PMCID: PMC11860646 DOI: 10.3390/v17020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The platypus (Ornithorhynchus anatinus), a unique monotreme, represents a pivotal point in mammalian evolution with its distinctive traits, such as electroreception and venom production. Despite its evolutionary significance, the viral diversity within platypuses remains poorly understood. This study employed next-generation sequencing to investigate the virome of the dead platypuses, uncovering a range of novel and divergent viruses. Among the identified viruses were four complete genomes of papillomaviruses (OaPV1-4) exhibiting substantial divergence from known strains, suggesting a novel genus within the subfamily Secondpapillomavirinae. Additionally, five novel parvoviruses were detected, including two with complete genomes, highlighting the complex viral ecosystem of the platypus. Phylogenetic analysis placed these viruses in unique evolutionary branches, further demonstrating the platypus's evolutionary significance. A circular DNA virus, a tombus-like virus, and a nodamuvirus were also identified, expanding the understanding of viral diversity in monotremes. These findings offer crucial insights into viral evolution in one of the most unique mammalian lineages, emphasising the need for further exploration to assess ecological and pathological impacts on platypus populations.
Collapse
Affiliation(s)
- Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Saranika Talukder
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Pam L. Whiteley
- Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia;
| |
Collapse
|
9
|
de Sousa LLF, Guilardi MD, Martins JO, Alves BSS, Tibo LHS, da Silva-Antunes P, Cabral-Miranda G, Caldeira DB, Brandão PE, Campos FS, Janini LMR, Durães-Carvalho R. Phylogenetic inferences reveal multiple intra- and interhost genetic diversity among bat rabies viruses circulating in northeastern Brazil. ONE HEALTH OUTLOOK 2025; 7:1. [PMID: 39757183 DOI: 10.1186/s42522-024-00124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Rabies, a lethal viral zoonotic disease, remains a significant global public health concern. In northeastern Brazil, in particular, its epidemiology is complex and dynamic, characterized by the presence of several reservoirs associated with human rabies infection. METHODS This study, conducted from June 2022 to July 2023, was part of a passive epidemiological surveillance initiative under Brazil's National Rabies Surveillance Program. It investigated the presence of Rhabdovirus (RhabV) in 356 postmortem chiropteran brain samples using three diagnostic techniques for rabies and conducted an evolutionary study on both pan-RhabV- and pan-LYSSAV-positive PCR samples. The samples were collected from 20 bat species and different locations in the State of Ceará, an endemic region for the rabies virus (RABV). Rabies-positive samples were further explored through Bayesian, genetic distance mapping and recombination analyses. RESULTS From a total of 356 samples collected, 43 (12.07%) were positive for direct immunofluorescence (DIF) and 40 (11.23%) for mouse intracerebral inoculation (MIT) tests. Among the positive results, 40 samples were confirmed by both DIF and MIT, while 13 (3.65%) had inconclusive results for one or both techniques. Molecular assays identified 38 rabies-positive samples (10.67%). Members of the Molossidae and Phyllostomidae families had the highest prevalence, highlighting the role of insectivorous and frugivorous bats in the cycle and dynamics of rabies transmission. Phylogenetic reconstructions revealed three distinct and well-supported clusters and clades, indicating the cocirculation of different RABV lineages in the region and shedding light on both intra- and interhost diversity. We also demonstrated genetic distance among the RABV clusters and inferred that their common ancestor originated in Europe, later diversifying across continents. No recombination breakpoints were identified. CONCLUSIONS This study highlights the dynamic nature of RABV evolution within individual bat hosts, contributing to the understanding of the genetic diversity of RABV variants found in several bat species in northeastern Brazil. This study provides crucial insights into viral transmission dynamics within and between different host species and is essential for designing effective rabies control and prevention strategies tailored to endemic regions.
Collapse
Affiliation(s)
- Larissa Leão F de Sousa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil
- Rabies Diagnosis Laboratory, Central Laboratory of Public Health - LACEN, Fortaleza, CE, Brazil
| | - Mariana Dias Guilardi
- Interunit Bioinformatics Graduate Program, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Junior Olimpio Martins
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Stefanie S Alves
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Henrique S Tibo
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Gustavo Cabral-Miranda
- Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | | | | | - Fabrício Souza Campos
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Mário R Janini
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, SP, Brazil.
- Interunit Bioinformatics Graduate Program, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Liu PC, Chang TY, Chen XA, Cheng CC, Huang CH, Chen AY, Tsai SK, Young JJ, Chen CC. Synergistic antiviral potential of N-(2-hydroxy)propyl-3-trimethylammoniumchitosan-functionalized silver nanoparticles with oseltamivir against influenza A viruses. Int J Biol Macromol 2025; 284:137996. [PMID: 39586441 DOI: 10.1016/j.ijbiomac.2024.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
This study introduced a novel antiviral approach by combining three substances with different antiviral mechanisms: N-(2-hydroxy)propyl-3-trimethylammoniumchitosan (HTC), silver nanoparticles (AgNPs), and oseltamivir. First, positively surface-charged AgNPs were prepared using an environmentally friendly method. The surfaces of these AgNPs were capped with cationic quaternary chitosan HTC. It exhibits a positive zeta potential with extraordinary stability in aqueous solutions and facilitates substantial and rapid cellular uptake including entry into the cell nucleus. HTC-AgNPs display broad-spectrum antiviral activity against three influenza A viruses (H5N1, H3N2, and H1N1) at biocompatible concentrations. When blended with oseltamivir, HTC-AgNPs enhances the antiviral activity from that of oseltamivir alone by at least 20 times. After 24 h of combined treatment, the inhibition efficiency against influenza A virus can attain up to 99.9 %. We anticipate that this combination could reduce the effective dose of Tamiflu by 10-fold when used in clinic, thus shortening recovery period and lowering the medication costs. Moreover, the synergistic effects of the three active substances would reduce the likelihood of the emergence of drug-resistant viral strains. This would, in turn, enhance the effectiveness and safety of this medication.
Collapse
Affiliation(s)
- Ping-Cheng Liu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Xin-An Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei 11490, Taiwan, ROC; Graduate Institute of Biodefense, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| |
Collapse
|
11
|
Chang WS, Harvey E, Mahar JE, Firth C, Shi M, Simon-Loriere E, Geoghegan JL, Wille M. Improving the reporting of metagenomic virome-scale data. Commun Biol 2024; 7:1687. [PMID: 39706917 DOI: 10.1038/s42003-024-07212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jackie E Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Animal Health Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Cadhla Firth
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mang Shi
- Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China
| | - Etienne Simon-Loriere
- Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Michelle Wille
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
French RK, Anderson S, Cain K, Digby A, Greene TC, Miskelly CM, Muller CG, Taylor MW, Recovery Team K, Geoghegan JL, Holmes EC. Diversity and cross-species transmission of viruses in a remote island ecosystem: implications for wildlife conservation. Virus Evol 2024; 11:veae113. [PMID: 39802822 PMCID: PMC11711479 DOI: 10.1093/ve/veae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The ability of viruses to emerge in new species is influenced by aspects of host biology and ecology, with some taxa harbouring a high diversity and abundance of viruses. However, how these factors shape virus diversity at the ecosystem scale is often unclear. To better understand the pattern and determinants of viral diversity within an ecosystem, and to describe the novel avian viruses infecting an individual avian community, we performed a metagenomic snapshot of the virome from the entire avian community on remote Pukenui/Anchor Island in Aotearoa New Zealand. Through total RNA sequencing of 18 bird species, we identified 50 avian viruses from 9 viral families, of which 96% were novel. Of note, passerines (perching birds) exhibited high viral abundance and diversity, with viruses found across all nine viral families identified. We also identified numerous viruses infecting seabirds on the Island, including megriviruses, hepaciviruses, and hepatoviruses, while parrots exhibited an extremely low diversity of avian viruses. Within passerines, closely related astroviruses and hepatoviruses, and multiple identical hepe-like viruses, were shared among host species. Phylogenetic reconciliation analysis of these viral groups revealed a mixture of co-divergence and cross-species transmission, with virus host-jumping relatively frequent among passerines. In contrast, there was no evidence for recent cross-species virus transmission in parrots or seabirds. The novel pegiviruses and a flavivirus identified here also pose intriguing questions regarding their origins, pathogenicity, and potential impact on vertebrate hosts. Overall, these results highlight the importance of understudied remote island ecosystems as refugia for novel viruses, as well as the intricate interplay between host ecology and behaviour in shaping viral communities.
Collapse
Affiliation(s)
- Rebecca K French
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sandra Anderson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kristal Cain
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Andrew Digby
- Department of Conservation, Kākāpō Recovery Team, Invercargill 9810, New Zealand
| | - Terry C Greene
- Department of Conservation, Christchurch 8011, New Zealand
| | - Colin M Miskelly
- Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand
| | - Chris G Muller
- Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4410, New Zealand
- Zoology and Ecology Group, Massey University, Palmerston North 4442, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kākāpō Recovery Team
- Kākāpō Recovery Team‡, Department of Conservation, Invercargill 9810, New Zealand
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington 5022, New Zealand
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Wang X‘M, Muller J, McDowell M, Rasmussen DA. Quantifying the strength of viral fitness trade-offs between hosts: a meta-analysis of pleiotropic fitness effects. Evol Lett 2024; 8:851-865. [PMID: 39677573 PMCID: PMC11637551 DOI: 10.1093/evlett/qrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 12/17/2024] Open
Abstract
The range of hosts a given virus can infect is widely presumed to be limited by fitness trade-offs between alternative hosts. These fitness trade-offs may arise naturally due to antagonistic pleiotropy if mutations that increase fitness in one host tend to decrease fitness in alternate hosts. Yet there is also growing recognition that positive pleiotropy may be more common than previously appreciated. With positive pleiotropy, mutations have concordant fitness effects such that a beneficial mutation can simultaneously increase fitness in different hosts, providing a genetic mechanism by which selection can overcome fitness trade-offs. How readily evolution can overcome fitness trade-offs therefore depends on the overall distribution of mutational fitness effects between hosts, including the relative frequency of antagonistic versus positive pleiotropy. We therefore conducted a systematic meta-analysis of the pleiotropic fitness effects of viral mutations reported in different hosts. Our analysis indicates that while both antagonistic and positive pleiotropy are common, fitness effects are overall positively correlated between hosts and unconditionally beneficial mutations are not uncommon. Moreover, the relative frequency of antagonistic versus positive pleiotropy may simply reflect the underlying frequency of beneficial and deleterious mutations in individual hosts. Given a mutation is beneficial in one host, the probability that it is deleterious in another host is roughly equal to the probability that any mutation is deleterious, suggesting there is no natural tendency toward antagonistic pleiotropy. The widespread prevalence of positive pleiotropy suggests that many fitness trade-offs may be readily overcome by evolution given the right selection pressures.
Collapse
Affiliation(s)
- Xuechun ‘May’ Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Julia Muller
- Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Mya McDowell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Buigues J, Viñals A, Martínez-Recio R, Monrós JS, Cuevas JM, Sanjuán R. Phylogenetic evidence supporting the nonenveloped nature of hepadnavirus ancestors. Proc Natl Acad Sci U S A 2024; 121:e2415631121. [PMID: 39471221 PMCID: PMC11551314 DOI: 10.1073/pnas.2415631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/28/2024] [Indexed: 11/01/2024] Open
Abstract
Reverse-transcribing animal DNA viruses include the hepadnaviruses, a well-characterized family of small enveloped viruses that infect vertebrates but also a sister group of nonenveloped viruses more recently discovered in fish and termed the nackednaviruses. Here, we describe the complete sequence of a virus found in the feces of an insectivorous bat, which encodes a core protein and a reverse transcriptase but no envelope protein. A database search identified a viral sequence from a permafrost sample as its closest relative. The two viruses form a cluster that occupies a basal phylogenetic position relative to hepadnaviruses and nackednaviruses, with an estimated divergence time of 500 My. These findings may lead to the definition of a "proto-nackednavirus" family and support the hypothesis that the ancestors of hepadnaviruses were nonenveloped.
Collapse
Affiliation(s)
- Jaime Buigues
- Institute for Integrative Systems Biology, Universitat de València and Consejo Superior de Investigaciones Científicas, València46980, Spain
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València46980, Spain
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology, Universitat de València and Consejo Superior de Investigaciones Científicas, València46980, Spain
| | - Juan S. Monrós
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València46980, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology, Universitat de València and Consejo Superior de Investigaciones Científicas, València46980, Spain
- Department of Genetics, Universitat de València, València46100, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València and Consejo Superior de Investigaciones Científicas, València46980, Spain
- Department of Genetics, Universitat de València, València46100, Spain
| |
Collapse
|
15
|
Barkan D, Garland K, Zhang L, Eastman RT, Hesse M, Knapp M, Ornelas E, Tang J, Cortopassi WA, Wang Y, King F, Jia W, Nguyen Z, Frank AO, Chan R, Fang E, Fuller D, Busby S, Carias H, Donahue K, Tandeske L, Diagana TT, Jarrousse N, Moser H, Sarko C, Dovala D, Moquin S, Marx VM. Identification of Potent, Broad-Spectrum Coronavirus Main Protease Inhibitors for Pandemic Preparedness. J Med Chem 2024; 67:17454-17471. [PMID: 39332817 PMCID: PMC11472307 DOI: 10.1021/acs.jmedchem.4c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024]
Abstract
The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (Mpro), we constructed a structurally diverse Mpro panel by clustering all known coronavirus sequences by Mpro active site sequence similarity. Through screening, we identified a potent covalent inhibitor that engaged the catalytic cysteine of SARS-CoV-2 Mpro and used structure-based medicinal chemistry to develop compounds in the pyrazolopyrimidine sulfone series that exhibit submicromolar activity against multiple Mpro homologues. Additionally, we solved the first X-ray cocrystal structure of Mpro from the human-infecting OC43 coronavirus, providing insights into potency differences among compound-target pairs. Overall, the chemical compounds described in this study serve as starting points for the development of antivirals with broad-spectrum activity, enhancing our preparedness for emerging human-infecting coronaviruses.
Collapse
Affiliation(s)
- David
T. Barkan
- Discovery
Sciences, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Keira Garland
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Lei Zhang
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Richard T. Eastman
- Global
Health, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Matthew Hesse
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Mark Knapp
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Elizabeth Ornelas
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Jenny Tang
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Wilian Augusto Cortopassi
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Yu Wang
- Discovery
Sciences, Novartis Biomedical Research, La Jolla, California 92121, United States
| | - Frederick King
- Discovery
Sciences, Novartis Biomedical Research, La Jolla, California 92121, United States
| | - Weiping Jia
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Zachary Nguyen
- Discovery
Sciences, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreas O. Frank
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Ryan Chan
- Global
Health, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Eric Fang
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Daniel Fuller
- Discovery
Sciences, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Scott Busby
- Discovery
Sciences, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Heidi Carias
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Kristine Donahue
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Laura Tandeske
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Thierry T. Diagana
- Global
Health, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Nadine Jarrousse
- Global
Health, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Heinz Moser
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Christopher Sarko
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| | - Dustin Dovala
- Discovery
Sciences, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Stephanie Moquin
- Global
Health, Novartis Biomedical Research, Emeryville, California 94608, United States
| | - Vanessa M. Marx
- Global
Discovery Chemistry, Novartis Biomedical
Research, Emeryville, California 94608, United States
| |
Collapse
|
16
|
Maestri R, Perez-Lamarque B, Zhukova A, Morlon H. Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses. eLife 2024; 13:RP91745. [PMID: 39196812 PMCID: PMC11357359 DOI: 10.7554/elife.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.
Collapse
Affiliation(s)
- Renan Maestri
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, UAParisFrance
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| |
Collapse
|
17
|
Emmenegger EJ, Bueren EK, Conway CM, Sanders GE, Hendrix AN, Schroeder T, Di Cicco E, Pham PH, Lumsden JS, Clouthier SC. Host Jump of an Exotic Fish Rhabdovirus into a New Class of Animals Poses a Disease Threat to Amphibians. Viruses 2024; 16:1193. [PMID: 39205167 PMCID: PMC11360232 DOI: 10.3390/v16081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Spring viremia of carp virus (SVCV) is a rhabdovirus that primarily infects cyprinid finfishes and causes a disease notifiable to the World Organization for Animal Health. Amphibians, which are sympatric with cyprinids in freshwater ecosystems, are considered non-permissive hosts of rhabdoviruses. The potential host range expansion of SVCV in an atypical host species was evaluated by testing the susceptibility of amphibians native to the Pacific Northwest. Larval long-toed salamanders Ambystoma macrodactylum and Pacific tree frog Pseudacris regilla tadpoles were exposed to SVCV strains from genotypes Ia, Ib, Ic, or Id by either intraperitoneal injection, immersion, or cohabitation with virus-infected koi Cyprinus rubrofuscus. Cumulative mortality was 100% for salamanders injected with SVCV, 98-100% for tadpoles exposed to virus via immersion, and 0-100% for tadpoles cohabited with SVCV-infected koi. Many of the animals that died exhibited clinical signs of disease and SVCV RNA was found by in situ hybridization in tissue sections of immersion-exposed tadpoles, particularly in the cells of the gastrointestinal tract and liver. SVCV was also detected by plaque assay and RT-qPCR testing in both amphibian species regardless of the virus exposure method, and viable virus was detected up to 28 days after initial exposure. Recovery of infectious virus from naïve tadpoles cohabited with SVCV-infected koi further demonstrated that SVCV transmission can occur between classes of ectothermic vertebrates. Collectively, these results indicated that SVCV, a fish rhabdovirus, can be transmitted to and cause lethal disease in two amphibian species. Therefore, members of all five of the major vertebrate groups (mammals, birds, reptiles, fish, and amphibians) appear to be vulnerable to rhabdovirus infections. Future research studying potential spillover and spillback infections of aquatic rhabdoviruses between foreign and domestic amphibian and fish species will provide insights into the stressors driving novel interclass virus transmission events.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - Emma K Bueren
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
- Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA
| | - Carla M Conway
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th Street, Seattle, WA 98115, USA
| | - George E Sanders
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - A Noble Hendrix
- QEDA Consulting, 4007 Densmore Avenue N, Seattle, WA 98103, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tamara Schroeder
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation (PSF), 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
| | - Phuc H Pham
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John S Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sharon C Clouthier
- Freshwater Institute, Fisheries and Oceans Canada (DFO), 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
18
|
Grimwood RM, Waller SJ, Wierenga JR, Lim L, Dubrulle J, Holmes EC, Geoghegan JL. Viromes of Antarctic fish resemble the diversity found at lower latitudes. Virus Evol 2024; 10:veae050. [PMID: 39071139 PMCID: PMC11282168 DOI: 10.1093/ve/veae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Antarctica harbours some of the most isolated and extreme environments on Earth, concealing a largely unexplored and unique component of the global animal virosphere. To understand the diversity and evolutionary histories of viruses in these polar species, we determined the viromes of gill metatranscriptomes from 11 Antarctic fish species with 248 samples collected from the Ross Sea region spanning the Perciformes, Gadiformes, and Scorpaeniformes orders. The continent's shift southward and cooling temperatures >20 million years ago led to a reduction in biodiversity and subsequent radiation of some marine fauna, such as the notothenioid fishes. Despite decreased host species richness in polar regions, we revealed a surprisingly complex virome diversity in Ross Sea fish, with the types and numbers of viruses per host species and individuals sampled comparable to that of fish in warmer marine environments with higher host community diversity. We also observed a higher number of closely related viruses likely representing instances of recent and historic host-switching events among the Perciformes (all notothenioids) than in the Gadiformes, suggesting that rapid speciation events within this order generated closely related host species with few genetic barriers to cross-species transmission. Additionally, we identified novel genomic variation in an arenavirus with a split nucleoprotein sequence containing a stable helical structure, indicating potential adaptation of viral proteins to extreme temperatures. These findings enhance our understanding of virus evolution and virus-host interactions in response to environmental shifts, especially in less diverse ecosystems that are more vulnerable to the impacts of anthropogenic and climate changes.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Janelle R Wierenga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Lauren Lim
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jérémy Dubrulle
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, Wellington 5018, New Zealand
| |
Collapse
|
19
|
Mahar JE, Wille M, Harvey E, Moritz CC, Holmes EC. The diverse liver viromes of Australian geckos and skinks are dominated by hepaciviruses and picornaviruses and reflect host taxonomy and habitat. Virus Evol 2024; 10:veae044. [PMID: 38854849 PMCID: PMC11160328 DOI: 10.1093/ve/veae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Lizards have diverse ecologies and evolutionary histories, and represent a promising group to explore how hosts shape virome structure and virus evolution. Yet, little is known about the viromes of these animals. In Australia, squamates (lizards and snakes) comprise the most diverse order of vertebrates, and Australia hosts the highest diversity of lizards globally, with the greatest breadth of habitat use. We used meta-transcriptomic sequencing to determine the virome of nine co-distributed, tropical lizard species from three taxonomic families in Australia and analyzed these data to identify host traits associated with viral abundance and diversity. We show that lizards carry a large diversity of viruses, identifying more than thirty novel, highly divergent vertebrate-associated viruses. These viruses were from nine viral families, including several that contain well known pathogens, such as the Flaviviridae, Picornaviridae, Bornaviridae, Iridoviridae, and Rhabdoviridae. Members of the Flaviviridae were particularly abundant across species sampled here, largely belonging to the genus Hepacivirus: fourteen novel hepaciviruses were identified, broadening the known diversity of this group and better defining its evolution by uncovering new reptilian clades. The evolutionary histories of the viruses studied here frequently aligned with the biogeographic and phylogenetic histories of the hosts, indicating that exogenous viruses may help infer host evolutionary history if sampling is strategic and sampling density high enough. Notably, analysis of alpha and beta diversity revealed that virome composition and richness in the animals sampled here was shaped by host taxonomy and habitat. In sum, we identified a diverse range of reptile viruses that broadly contributes to our understanding of virus-host ecology and evolution.
Collapse
Affiliation(s)
- Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michelle Wille
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Craig C Moritz
- Research School of Biology & Centre for Biodiversity Analysis, The Australian National University, Canberra, ACT 2600, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
20
|
Ghaly TM, Gillings MR, Rajabal V, Paulsen IT, Tetu SG. Horizontal gene transfer in plant microbiomes: integrons as hotspots for cross-species gene exchange. Front Microbiol 2024; 15:1338026. [PMID: 38741746 PMCID: PMC11089894 DOI: 10.3389/fmicb.2024.1338026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.
Collapse
Affiliation(s)
- Timothy M. Ghaly
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Ian T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| | - Sasha G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW, Australia
| |
Collapse
|
21
|
Sadiq S, Holmes EC, Mahar JE. Genomic and phylogenetic features of the Picobirnaviridae suggest microbial rather than animal hosts. Virus Evol 2024; 10:veae033. [PMID: 38756987 PMCID: PMC11096803 DOI: 10.1093/ve/veae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The RNA virus family Picobirnaviridae has traditionally been associated with the gastrointestinal systems of terrestrial mammals and birds, with the majority of viruses detected in animal stool samples. Metatranscriptomic studies of vertebrates, invertebrates, microbial communities, and environmental samples have resulted in an enormous expansion of the genomic and phylogenetic diversity of this family. Yet picobirnaviruses remain poorly classified, with only one genus and three species formally ratified by the International Committee of Virus Taxonomy. Additionally, an inability to culture picobirnaviruses in a laboratory setting or isolate them in animal tissue samples, combined with the presence of bacterial genetic motifs in their genomes, suggests that these viruses may represent RNA bacteriophage rather than being associated with animal infection. Utilising a data set of 2,286 picobirnaviruses sourced from mammals, birds, reptiles, fish, invertebrates, microbial communities, and environmental samples, we identified seven consistent phylogenetic clusters likely representing Picobirnavirus genera that we tentatively name 'Alpha-', 'Beta-', 'Gamma-', 'Delta-', 'Epsilon-', 'Zeta-', and 'Etapicobirnavirus'. A statistical analysis of topological congruence between virus-host phylogenies revealed more frequent cross-species transmission than any other RNA virus family. In addition, bacterial ribosomal binding site motifs were more enriched in Picobirnavirus genomes than in the two groups of established RNA bacteriophage-the Leviviricetes and Cystoviridae. Overall, our findings support the hypothesis that the Picobirnaviridae have bacterial hosts and provide a lower-level taxonomic classification for this highly diverse and ubiquitous family of RNA viruses.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong, SAR, China
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Yang CH, Song AL, Qiu Y, Ge XY. Cross-species transmission and host range genes in poxviruses. Virol Sin 2024; 39:177-193. [PMID: 38272237 PMCID: PMC11074647 DOI: 10.1016/j.virs.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.
Collapse
Affiliation(s)
- Chen-Hui Yang
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - A-Ling Song
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China
| | - Ye Qiu
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410012, China.
| |
Collapse
|
23
|
Costa VA, Ronco F, Mifsud JCO, Harvey E, Salzburger W, Holmes EC. Host adaptive radiation is associated with rapid virus diversification and cross-species transmission in African cichlid fishes. Curr Biol 2024; 34:1247-1257.e3. [PMID: 38428417 DOI: 10.1016/j.cub.2024.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fabrizia Ronco
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Polinas M, Cacciotto C, Zobba R, Antuofermo E, Burrai GP, Pirino S, Pittau M, Alberti A. Ovine papillomaviruses: Diversity, pathogenicity, and evolution. Vet Microbiol 2024; 289:109955. [PMID: 38160507 DOI: 10.1016/j.vetmic.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The family Papillomaviridae includes a plethora of viral species infecting virtually all vertebrates excluding amphibians, with astonishing impact on human and animal health. Although more than 250 species have been described in humans, the total number of papillomaviruses (PVs) discovered in animals does not reach up to this number. In animals, PV infections are mostly asymptomatic or can cause variable clinical conditions ranging from self-limiting papillomas and other cutaneous and mucosal benign lesions to cancer. Most of animal PV types have been discovered in cattle, dogs, horses, and cats with other farm host species remaining overlooked. In particular, the number of PV types so far identified in sheep is limited. This paper comprehensively reviews ovine PVs features, including viral taxonomy and evolution; genome organization; viral tropism and pathogenesis; macroscopical features and histopathological patterns, as well as available diagnostics tools. Data are critically presented and discussed in terms of impact on veterinary and public health. The development of future dedicated research is also discussed.
Collapse
Affiliation(s)
- Marta Polinas
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Elisabetta Antuofermo
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Giovanni Pietro Burrai
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Salvatore Pirino
- Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, Italy; Mediterranean Center for Disease Control, Università degli studi di Sassari, Italy.
| |
Collapse
|
25
|
Kong F, Jia H, Xiao Q, Fang L, Wang Q. Prevention and Control of Swine Enteric Coronaviruses in China: A Review of Vaccine Development and Application. Vaccines (Basel) 2023; 12:11. [PMID: 38276670 PMCID: PMC10820180 DOI: 10.3390/vaccines12010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Swine enteric coronaviruses (SECs) cause significant economic losses to the pig industry in China. Although many commercialized vaccines against transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are available, viruses are still widespread. The recent emergence of porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), for which no vaccines are available, increases the disease burden. In this review, we first introduced the genomic organization and epidemiology of SECs in China. Then, we discussed the current vaccine development and application in China, aiming to provide suggestions for better prevention and control of SECs in China and other countries.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Huilin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Qi Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China; (F.K.); (H.J.); (Q.X.)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Forero-Muñoz NR, Muylaert RL, Seifert SN, Albery GF, Becker DJ, Carlson CJ, Poisot T. The coevolutionary mosaic of bat betacoronavirus emergence risk. Virus Evol 2023; 10:vead079. [PMID: 38361817 PMCID: PMC10868545 DOI: 10.1093/ve/vead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.
Collapse
Affiliation(s)
- Norma R Forero-Muñoz
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal (Québec) H2V 0B3, Canada
- Québec Centre for Biodiversity Sciences
| | - Renata L Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, New Zealand
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Colin J Carlson
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal (Québec) H2V 0B3, Canada
- Québec Centre for Biodiversity Sciences
| |
Collapse
|
27
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
29
|
Fan Y, Hou Y, Li Q, Dian Z, Wang B, Xia X. RNA virus diversity in rodents. Arch Microbiol 2023; 206:9. [PMID: 38038743 DOI: 10.1007/s00203-023-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Many zoonotic disease emergencies are associated with RNA viruses in rodents that substantially impact public health. With the widespread application of meta-genomics and meta-transcriptomics for virus discovery over the last decade, viral sequences deposited in public databases have expanded rapidly, and the number of novel viruses discovered in rodents has increased. As important reservoirs of zoonotic viruses, rodents have attracted increasing attention for the risk of potential spillover of rodent-borne viruses. However, knowledge of rodent viral diversity and the major factors contributing to the risk of zoonotic epidemic outbreaks remains limited. Therefore, this study analyzes the diversity and composition of rodent RNA viruses using virus records from the Database of Rodent-associated Viruses (DRodVir/ZOVER), which covers the published literatures and records in GenBank database, reviews the main rodent RNA virus-induced human infectious diseases, and discusses potential challenges in this field.
Collapse
Affiliation(s)
- Yayu Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Ziqin Dian
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
30
|
French RK, Anderson SH, Cain KE, Greene TC, Minor M, Miskelly CM, Montoya JM, Wille M, Muller CG, Taylor MW, Digby A, Holmes EC. Host phylogeny shapes viral transmission networks in an island ecosystem. Nat Ecol Evol 2023; 7:1834-1843. [PMID: 37679456 PMCID: PMC10627826 DOI: 10.1038/s41559-023-02192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
Virus transmission between host species underpins disease emergence. Both host phylogenetic relatedness and aspects of their ecology, such as species interactions and predator-prey relationships, may govern rates and patterns of cross-species virus transmission and hence zoonotic risk. To address the impact of host phylogeny and ecology on virus diversity and evolution, we characterized the virome structure of a relatively isolated island ecological community in Fiordland, New Zealand, that are linked through a food web. We show that phylogenetic barriers that inhibited cross-species virus transmission occurred at the level of host phyla (between the Chordata, Arthropoda and Streptophyta) as well as at lower taxonomic levels. By contrast, host ecology, manifest as predator-prey interactions and diet, had a smaller influence on virome composition, especially at higher taxonomic levels. The virus-host community comprised a 'small world' network, in which hosts with a high diversity of viruses were more likely to acquire new viruses, and generalist viruses that infect multiple hosts were more likely to infect additional species compared to host specialist viruses. Such a highly connected ecological community increases the likelihood of cross-species virus transmission, particularly among closely related species, and suggests that host generalist viruses present the greatest risk of disease emergence.
Collapse
Affiliation(s)
- Rebecca K French
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Sandra H Anderson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Terry C Greene
- Biodiversity Group, Department of Conservation, Christchurch, New Zealand
| | - Maria Minor
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Colin M Miskelly
- Te Papa Tongarewa Museum of New Zealand, Wellington, New Zealand
| | - Jose M Montoya
- Theoretical and Experimental Ecology Station, National Centre for Scientific Research (CNRS), Moulis, France
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Chris G Muller
- Wildbase, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael W Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Kākāpō Recovery Team, Department of Conservation, Invercargill, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Wang W, Zhou L, Ge X, Han J, Guo X, Zhang Y, Yang H. Analysis of codon usage patterns of porcine enteric alphacoronavirus and its host adaptability. Virology 2023; 587:109879. [PMID: 37677987 DOI: 10.1016/j.virol.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly emerging swine enteropathogen that poses a threat to the swine industry. To understand the PEAV genome evolution, we performed a comprehensive analysis of the codon usage patterns in fifty-nine PEAV strains currently available. Phylogenetic analysis showed that PEAV can be divided into six lineages. Effective number of codons analysis demonstrated that the PEAV genome exhibits a low codon usage bias (CUB). Nucleotide composition analysis indicated that the PEAV genome has the most abundant nucleotide U content, with GC content (39.37% ± 0.08%) much lower than AU content (60.63% ± 0.08%). Neutrality and effective number of codons plot analyses suggested that natural selection rather than mutation pressure dominates the CUB of PEAV. Host adaptation analysis revealed that PEAV fits the codon usage pattern of non-human primates, humans and mice better than that of pigs. Our data enriches information on PEAV evolution, host adaptability, and cross-species transmission.
Collapse
Affiliation(s)
- Wenlong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
32
|
Grimwood RM, Fortune-Kelly G, Holmes EC, Ingram T, Geoghegan JL. Host specificity shapes fish viromes across lakes on an isolated remote island. Virology 2023; 587:109884. [PMID: 37757732 DOI: 10.1016/j.virol.2023.109884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Fish viromes often provide insights into the origin and evolution of viruses affecting tetrapods, including those associated with imporant human diseases. However, despite fish being the most diverse vertebrate group, their viruses are still understudied. We investigated the viromes of fish on Chatham Island (Rēkohu), a geographically isolated island housing 9% of New Zealand's threatened endemic fish species. Using metatranscriptomics, we analyzed samples from seven host species across 16 waterbodies. We identified 19 fish viruses, including 16 potentially novel species, expanding families such as the Coronaviridae, Hantaviridae, Poxviridae, and the recently proposed Tosoviridae. Surprisingly, virome composition was not influenced by the ecological factors measured and smelt (Retropinna retropinna) viromes were consistent across lakes despite differences in host life history, seawater influence, and community richness. Overall, fish viromes across Rēkohu were highly diverse and revealed a long history of co-divergence between host and virus despite their unique and geographically isolated ecosystem.
Collapse
Affiliation(s)
- Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | | | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Travis Ingram
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand; Institute of Environmental Science and Research, Wellington, 5018, New Zealand.
| |
Collapse
|
33
|
Li N, Bai Y, Yan X, Guo Z, Xiang K, Yang Z, Shangguan H, Ge J, Zhao L. The prevalence, genetic diversity and evolutionary analysis of cachavirus firstly detected in northeastern China. Front Vet Sci 2023; 10:1233972. [PMID: 37771946 PMCID: PMC10527371 DOI: 10.3389/fvets.2023.1233972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
Canine cachavirus is a novel parvovirus belonging to the genus Chaphamaparvovirus that was first detected in dogs in the United States. However, our knowledge of the prevalence and genetic characteristics of cachavirus is relatively limited. In this study, 325 canine fecal specimens collected from healthy and diarrheic dogs in northeastern China were screened with PCR. Twenty-two of the 325 (6.8%) samples were positive for cachavirus. The diarrhea samples showed high viral coinfection rates, and we detected coinfections with canine astrovirus (CaAstV) and cachavirus for the first time. A sequence analysis revealed that the Chinese cachavirus strains have point mutations in four consecutive amino acid codons relative to the original American strain. A codon usage analysis of the VP1 gene showed that most preferred codons in cachavirus were A- or T-ending codons, as in traditional canine parvovirus 2. A co-evolutionary analysis showed that cachavirus has undergone cospeciation with its hosts and has been transmitted among different host species. Our findings extend the limited cachavirus sequences available, and provide detailed molecular characterization of the strains in northeastern China. Further epidemiological surveillance is required to determine the significance and evolution of cachavirus.
Collapse
Affiliation(s)
- Nuowa Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| | - Lili Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
34
|
Liu H, Zhang Y, Liu Y, Xiao J, Huang Z, Li Y, Li H, Li P. Virome analysis of an ectomycorrhizal fungus Suillus luteus revealing potential evolutionary implications. Front Cell Infect Microbiol 2023; 13:1229859. [PMID: 37662006 PMCID: PMC10470027 DOI: 10.3389/fcimb.2023.1229859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Suillus luteus is a widespread edible ectomycorrhizal fungus that holds significant importance in both ecological and economic value. Mycoviruses are ubiquitous infectious agents hosted in different fungi, with some known to exert beneficial or detrimental effects on their hosts. However, mycoviruses hosted in ectomycorrhizal fungi remain poorly studied. To address this gap in knowledge, we employed next-generation sequencing (NGS) to investigate the virome of S. luteus. Using BLASTp analysis and phylogenetic tree construction, we identified 33 mycovirus species, with over half of them belonging to the phylum Lenarviricota, and 29 of these viruses were novel. These mycoviruses were further grouped into 11 lineages, with the discovery of a new negative-sense single-stranded RNA viral family in the order Bunyavirales. In addition, our findings suggest the occurrence of cross-species transmission (CST) between the fungus and ticks, shedding light on potential evolutionary events that have shaped the viral community in different hosts. This study is not only the first study to characterize mycoviruses in S. luteus but highlights the enormous diversity of mycoviruses and their implications for virus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaping Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pengfei Li
- Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Li Y, Xiao M, Zhang Y, Li Z, Bai S, Su H, Peng R, Wang G, Hu X, Song X, Li X, Tang C, Lu G, Yin F, Zhang P, Du J. Identification of two novel papillomaviruses in belugas. Front Microbiol 2023; 14:1165839. [PMID: 37564289 PMCID: PMC10411887 DOI: 10.3389/fmicb.2023.1165839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Papillomaviruses (PVs) can cause hyperplasia in the skin and mucous membranes of humans, mammals, and non-mammalian animals, and are a significant risk factor for cervical and genital cancers. Methods Using next-generation sequencing (NGS), we identified two novel strains of papillomavirus, PV-HMU-1 and PV-HMU-2, in swabs taken from belugas (Delphinapterus leucas) at Polar Ocean Parks in Qingdao and Dalian. Results We amplified the complete genomes of both strains and screened ten belugas and one false killer whale (Pseudorca crassidens) for the late gene (L1) to determine the infection rate. In Qingdao, 50% of the two sampled belugas were infected with PV-HMU-1, while the false killer whale was negative. In Dalian, 71% of the eight sampled belugas were infected with PV-HMU-2. In their L1 genes, PV-HMU-1 and PV-HMU-2 showed 64.99 and 68.12% amino acid identity, respectively, with other members of Papillomaviridae. Phylogenetic analysis of combinatorial amino acid sequences revealed that PV-HMU-1 and PV-HMU-2 clustered with other known dolphin PVs but formed distinct branches. PVs carried by belugas were proposed as novel species under Firstpapillomavirinae. Conclusion The discovery of these two novel PVs enhances our understanding of the genetic diversity of papillomaviruses and their impact on the beluga population.
Collapse
Affiliation(s)
- Youyou Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Yun Zhang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zihan Li
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shijie Bai
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Haoxiang Su
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyan Peng
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gaoyu Wang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xiaoyuan Hu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, China
| | - Xin Li
- Qingdao Polar Haichang Ocean Park, Qingdao, China
| | - Chuanning Tang
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Gang Lu
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children’s Medical Center, Haikou, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Laboratory of Marine Viruses and Molecular Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jiang Du
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- National Health Commission, Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Wang J, Pan YF, Yang LF, Yang WH, Lv K, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen S, Shu YL, Guo D, Gao ZH, Liang G, Li J, Chen YQ, Holmes EC, Feng Y, Shi M. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat Commun 2023; 14:4079. [PMID: 37429936 DOI: 10.1038/s41467-023-39835-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Fen Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Chu-Ming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guo-Peng Kuang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qin-Yu Gou
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Huan-le Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shoudeng Chen
- Molecular Imaging Center, Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yue-Long Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong Province, China
| | - Zi-Hou Gao
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, Yunnan, China.
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
37
|
Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, Webster JP, Li YY, Li HT, Vergote V, Maes P, Chong YL, Laudisoit A, Baelo P, Ngoy S, Mbalitini SG, Gembu GC, Musaba AP, Goüy de Bellocq J, Leirs H, Verheyen E, Pybus OG, Katzourakis A, Alagaili AN, Gryseels S, Li YC, Suchard MA, Bletsa M, Lemey P. The evolutionary history of hepaciviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547218. [PMID: 37425679 PMCID: PMC10327235 DOI: 10.1101/2023.06.30.547218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
Collapse
Affiliation(s)
- YQ Li
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - M Ghafari
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AJ Holbrook
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - I Boonen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - N Amor
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Catalano
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - JP Webster
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - YY Li
- College of Life Sciences, Linyi University, Linyi, 276000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - HT Li
- College of Life Sciences, Liaocheng University, Liaocheng, 252000, China
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - V Vergote
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - P Maes
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| | - YL Chong
- Animal Resource Science and Management Group, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Malaysia
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 999077, China
| | - A Laudisoit
- EcoHealth Alliance, New York, NY 10018, USA
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - P Baelo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - S Ngoy
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - SG Mbalitini
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - GC Gembu
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Akawa P Musaba
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - J Goüy de Bellocq
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - H Leirs
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - E Verheyen
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - OG Pybus
- Department of Biology, University of Oxford, Oxford, OX1, UK
- Department of Pathobiology and Population Sciences, the Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - A Katzourakis
- Department of Biology, University of Oxford, Oxford, OX1, UK
| | - AN Alagaili
- Laboratory of Biodiversity, Parasitology, and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - S Gryseels
- Evolutionary Ecology group (EVECO), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - YC Li
- Marine College, Shandong University (Weihai), Weihai, 264209, China
| | - MA Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095, USA
| | - M Bletsa
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - P Lemey
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
38
|
Xi Y, Jiang X, Xie X, Zhao M, Zhang H, Qin K, Wang X, Liu Y, Yang S, Shen Q, Ji L, Shang P, Zhang W, Shan T. Viromics Reveals the High Diversity of Viruses from Fishes of the Tibet Highland. Microbiol Spectr 2023; 11:e0094623. [PMID: 37219423 PMCID: PMC10269613 DOI: 10.1128/spectrum.00946-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Aquaculture is important for food security and nutrition. The economy has recently been significantly threatened and the risk of zoonoses significantly increased by aquatic diseases, and the ongoing introduction of new aquatic pathogens, particularly viruses, continues to represent a hazard. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. Here, we conducted a metagenomic survey of different species of healthy fishes caught in the Lhasa River, Tibet, China, and sampled intestinal contents, gills, and tissues. To be more precise, by identifying and analyzing viral genomes, we aim to determine the abundance, diversity, and evolutionary relationships of viruses in fish with other potential hosts. Our analysis identified 28 potentially novel viruses, 22 of which may be associated with vertebrates, across seven viral families. During our research, we found several new strains of viruses in fish, including papillomavirus, hepadnavirus, and hepevirus. Additionally, we discovered two viral families, Circoviridae and Parvoviridae, which were prevalent and closely related to viruses that infect mammals. These findings further expand our understanding of highland fish viruses and highlight the emerging view that fish harbor large, unknown viruses. IMPORTANCE The economy and zoonoses have recently been significantly threatened by aquatic diseases. Yet, our knowledge of the diversity and abundance of fish viruses is still limited. We identified the wide genetic diversity of viruses that these fish were harboring. Since there are currently few studies on the virome of fish living in the Tibet highland, our research adds to the body of knowledge. This discovery lays the groundwork for future studies on the virome of fish species and other highland animals, preserving the ecological equilibrium on the plateau.
Collapse
Affiliation(s)
- Yuan Xi
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaojie Jiang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinrui Xie
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Min Zhao
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Han Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kailin Qin
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
39
|
Zhang P, Zhang Y, Cao L, Li J, Wu C, Tian M, Zhang Z, Zhang C, Zhang W, Li Y. A Diverse Virome Is Identified in Parasitic Flatworms of Domestic Animals in Xinjiang, China. Microbiol Spectr 2023; 11:e0070223. [PMID: 37042768 PMCID: PMC10269781 DOI: 10.1128/spectrum.00702-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Parasitic flatworms infect diverse vertebrates and are major threats to animal and even human health; however, little is known about the virome of these lower life forms. Using viral metagenomic sequencing, we characterized the virome of the parasitic flatworms collected from major domestic animals, including Dicrocoelium lanceatum and Taenia hydatigena, Echinococcus granulosus sensu stricto and Echinococcus multilocularis. Seven and three different viruses were discovered from D. lanceatum and T. hydatigena, respectively, and no viral sequences were found in adult tapeworms and protoscoleces of E. granulosus sensu stricto and E. multilocularis. Two out of the five parasitic flatworm species carry viruses, showing a host specificity of these viruses. These viruses belong to the Parvoviridae, Circoviridae, unclassified circular, Rep-encoding single-stranded (CRESS) DNA virus, Rhabdoviridae, Endornaviridae, and unclassified RNA viruses. The presence of multiple highly divergent RNA viruses, especially those that cluster with viruses found in marine animals, implies a deep evolutionary history of parasite-associated viruses. In addition, we found viruses with high identity to common pathogens in dogs, including canine circovirus and canine parvovirus 2. The presence of these viruses in the parasites implies that they may infect parasitic flatworms but does not completely exclude the possibility of contamination from host intestinal contents. Furthermore, we demonstrated that certain viruses, such as CRESS DNA virus may integrate into the genome of their host. Our results expand the knowledge of viral diversity in parasites of important domestic animals, highlighting the need for further investigations of their prevalence among other parasites of key animals. IMPORTANCE Characterizing the virome of parasites is important for unveiling the viral diversity, evolution, and ecology and will help to understand the "Russian doll" pattern among viruses, parasites, and host animals. Our data indicate that diverse viruses are present in specific parasitic flatworms, including viruses that may have an ancient evolutionary history and viruses currently circulating in parasite-infected host animals. These data also raise the question of whether parasitic flatworms acquire and/or carry some viruses that may have transmission potential to animals. In addition, through the study of virus-parasite-host interactions, including the influence of viral infection on the life cycle of the parasite, as well as its fitness and pathogenicity to the host, we could find new strategies to prevent and control parasitic diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhuangzhi Zhang
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Chang T, Hunt BPV, Hirai J, Suttle CA. Divergent RNA viruses infecting sea lice, major ectoparasites of fish. PLoS Pathog 2023; 19:e1011386. [PMID: 37347729 PMCID: PMC10287012 DOI: 10.1371/journal.ppat.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023] Open
Abstract
Sea lice, the major ectoparasites of fish, have significant economic impacts on wild and farmed finfish, and have been implicated in the decline of wild salmon populations. As blood-feeding arthropods, sea lice may also be reservoirs for viruses infecting fish. However, except for two groups of negative-strand RNA viruses within the order Mononegavirales, nothing is known about viruses of sea lice. Here, we used transcriptomic data from three key species of sea lice (Lepeophtheirus salmonis, Caligus clemensi, and Caligus rogercresseyi) to identify 32 previously unknown RNA viruses. The viruses encompassed all the existing phyla of RNA viruses, with many placed in deeply branching lineages that likely represent new families and genera. Importantly, the presence of canonical virus-derived small interfering RNAs (viRNAs) indicates that most of these viruses infect sea lice, even though in some cases their closest classified relatives are only known to infect plants or fungi. We also identified both viRNAs and PIWI-interacting RNAs (piRNAs) from sequences of a bunya-like and two qin-like viruses in C. rogercresseyi. Our analyses showed that most of the viruses found in C. rogercresseyi occurred in multiple life stages, spanning from planktonic to parasitic stages. Phylogenetic analysis revealed that many of the viruses infecting sea lice were closely related to those that infect a wide array of eukaryotes with which arthropods associate, including fungi and parasitic tapeworms, implying that over evolutionary time there has been cross-phylum and cross-kingdom switching of viruses between arthropods and other eukaryotes. Overall, this study greatly expands our view of virus diversity in crustaceans, identifies viruses that infect and replicate in sea lice, and provides evidence that over evolutionary time, viruses have switched between arthropods and eukaryotic hosts in other phyla and kingdoms.
Collapse
Affiliation(s)
- Tianyi Chang
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Brian P. V. Hunt
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
- Hakai Institute, Campbell River, Canada
| | - Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
- Hakai Institute, Campbell River, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
De Falco F, Cuccaro B, De Tullio R, Alberti A, Cutarelli A, De Carlo E, Roperto S. Possible etiological association of ovine papillomaviruses with bladder tumors in cattle. Virus Res 2023; 328:199084. [PMID: 36878382 DOI: 10.1016/j.virusres.2023.199084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION Bladder tumors of cattle are very uncommon accounting from 0.1% to 0.01% of all bovine malignancies. Bladder tumors are common in cattle grazing on bracken fern-infested pasturelands. Bovine papillomaviruses have a crucial role in tumors of bovine urinary bladder. AIM OF THE STUDY To investigate the potential association of ovine papillomavirus (OaPV) infection with bladder carcinogenesis of cattle. METHODS Droplet digital PCR was used to detect and quantify the nucleic acids of OaPVs in bladder tumors of cattle that were collected at public and private slaughterhouses. RESULTS OaPV DNA and RNA were detected and quantified in 10 bladder tumors of cattle that were tested negative for bovine papillomaviruses. The most prevalent genotypes were OaPV1 and OaPV2. OaPV4 was rarely observed. Furthermore, we detected a significant overexpression and hyperphosphorylation of pRb and a significant overexpression and activation of the calpain-1 as well as a significant overexpression of E2F3 and of phosphorylated (activated) PDGFβR in neoplastic bladders in comparison with healthy bladders, which suggests that E2F3 and PDGFβR may play an important role in OaPV-mediated molecular pathways that lead to bladder carcinogenesis. CONCLUSION In all tumors, OaPV RNA could explain the causality of the disease of the urinary bladder. Therefore, persistent infections by OaPVs could be involved in bladder carcinogenesis. Our data showed that there is a possible etiologic association of OaPVs with bladder tumors of cattle.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Bianca Cuccaro
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Roberta De Tullio
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, Genova, Italy
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy.
| |
Collapse
|
42
|
Wilson A, Bogie B, Chaaban H, Burge K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023; 11:909. [PMID: 37110332 PMCID: PMC10144239 DOI: 10.3390/microorganisms11040909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The intestinal microbiome is frequently implicated in necrotizing enterocolitis (NEC) pathogenesis. While no particular organism has been associated with NEC development, a general reduction in bacterial diversity and increase in pathobiont abundance has been noted preceding disease onset. However, nearly all evaluations of the preterm infant microbiome focus exclusively on the bacterial constituents, completely ignoring any fungi, protozoa, archaea, and viruses present. The abundance, diversity, and function of these nonbacterial microbes within the preterm intestinal ecosystem are largely unknown. Here, we review findings on the role of fungi and viruses, including bacteriophages, in preterm intestinal development and neonatal intestinal inflammation, with potential roles in NEC pathogenesis yet to be determined. In addition, we highlight the importance of host and environmental influences, interkingdom interactions, and the role of human milk in shaping fungal and viral abundance, diversity, and function within the preterm intestinal ecosystem.
Collapse
Affiliation(s)
| | | | - Hala Chaaban
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathryn Burge
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
43
|
Rivarez MPS, Pecman A, Bačnik K, Maksimović O, Vučurović A, Seljak G, Mehle N, Gutiérrez-Aguirre I, Ravnikar M, Kutnjak D. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. MICROBIOME 2023; 11:60. [PMID: 36973750 PMCID: PMC10042675 DOI: 10.1186/s40168-023-01500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. RESULTS Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. CONCLUSIONS We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies. Video Abstract.
Collapse
Affiliation(s)
- Mark Paul Selda Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
- Present Address: College of Agriculture and Agri-Industries, Caraga State University, Ampayon, Butuan City, 8600 Philippines
| | - Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Olivera Maksimović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, 1000 Slovenia
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Gabrijel Seljak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri Glavni trg 8, Vipava, 5271 Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana, 1000 Slovenia
| |
Collapse
|
44
|
Zinner D, Paciência FMD, Roos C. Host-Parasite Coevolution in Primates. Life (Basel) 2023; 13:823. [PMID: 36983978 PMCID: PMC10058613 DOI: 10.3390/life13030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Organisms adapt to their environment through evolutionary processes. Environments consist of abiotic factors, but also of other organisms. In many cases, two or more species interact over generations and adapt in a reciprocal way to evolutionary changes in the respective other species. Such coevolutionary processes are found in mutualistic and antagonistic systems, such as predator-prey and host-parasite (including pathogens) relationships. Coevolution often results in an "arms race" between pathogens and hosts and can significantly affect the virulence of pathogens and thus the severity of infectious diseases, a process that we are currently witnessing with SARS-CoV-2. Furthermore, it can lead to co-speciation, resulting in congruent phylogenies of, e.g., the host and parasite. Monkeys and other primates are no exception. They are hosts to a large number of pathogens that have shaped not only the primate immune system but also various ecological and behavioral adaptions. These pathogens can cause severe diseases and most likely also infect multiple primate species, including humans. Here, we briefly review general aspects of the coevolutionary process in its strict sense and highlight the value of cophylogenetic analyses as an indicator for coevolution.
Collapse
Affiliation(s)
- Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | | | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
46
|
Eliash N, Suenaga M, Mikheyev AS. Vector-virus interaction affects viral loads and co-occurrence. BMC Biol 2022; 20:284. [PMID: 36527054 PMCID: PMC9758805 DOI: 10.1186/s12915-022-01463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Vector-borne viral diseases threaten human and wildlife worldwide. Vectors are often viewed as a passive syringe injecting the virus. However, to survive, replicate and spread, viruses must manipulate vector biology. While most vector-borne viral research focuses on vectors transmitting a single virus, in reality, vectors often carry diverse viruses. Yet how viruses affect the vectors remains poorly understood. Here, we focused on the varroa mite (Varroa destructor), an emergent parasite that can carry over 20 honey bee viruses, and has been responsible for colony collapses worldwide, as well as changes in global viral populations. Co-evolution of the varroa and the viral community makes it possible to investigate whether viruses affect vector gene expression and whether these interactions affect viral epidemiology. RESULTS Using a large set of available varroa transcriptomes, we identified how abundances of individual viruses affect the vector's transcriptional network. We found no evidence of competition between viruses, but rather that some virus abundances are positively correlated. Furthermore, viruses that are found together interact with the vector's gene co-expression modules in similar ways, suggesting that interactions with the vector affect viral epidemiology. We experimentally validated this observation by silencing candidate genes using RNAi and found that the reduction in varroa gene expression was accompanied by a change in viral load. CONCLUSIONS Combined, the meta-transcriptomic analysis and experimental results shed light on the mechanism by which viruses interact with each other and with their vector to shape the disease course.
Collapse
Affiliation(s)
- Nurit Eliash
- grid.18098.380000 0004 1937 0562Shamir Research Institute, University of Haifa, Katzrin, Israel ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Miyuki Suenaga
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan
| | - Alexander S. Mikheyev
- grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, 1919-1 Tancha Onna-son, Okinawa, 904-0495 Japan ,grid.1001.00000 0001 2180 7477Australian National University, Canberra, ACT, 2600 Australia
| |
Collapse
|
47
|
Enveloped viruses show increased propensity to cross-species transmission and zoonosis. Proc Natl Acad Sci U S A 2022; 119:e2215600119. [PMID: 36472956 PMCID: PMC9897429 DOI: 10.1073/pnas.2215600119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.
Collapse
|
48
|
Wang J, Pan YF, Yang LF, Yang WH, Luo CM, Wang J, Kuang GP, Wu WC, Gou QY, Xin GY, Li B, Luo HL, Chen YQ, Shu YL, Guo D, Gao ZH, Liang G, Li J, Holmes EC, Feng Y, Shi M. Individual bat viromes reveal the co-infection, spillover and emergence risk of potential zoonotic viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517609. [PMID: 36451889 PMCID: PMC9709790 DOI: 10.1101/2022.11.23.517609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within bats at the level of individual animals, and hence the frequency of virus co-infection and inter-species transmission. Using an unbiased meta-transcriptomics approach we characterised the mammalian associated viruses present in 149 individual bats sampled from Yunnan province, China. This revealed a high frequency of virus co-infection and species spillover among the animals studied, with 12 viruses shared among different bat species, which in turn facilitates virus recombination and reassortment. Of note, we identified five viral species that are likely to be pathogenic to humans or livestock, including a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV-2 and SARS-CoV, with only five amino acid differences between its receptor-binding domain sequence and that of the earliest sequences of SARS-CoV-2. Functional analysis predicts that this recombinant coronavirus can utilize the human ACE2 receptor such that it is likely to be of high zoonotic risk. Our study highlights the common occurrence of inter-species transmission and co-infection of bat viruses, as well as their implications for virus emergence.
Collapse
|
49
|
De Falco F, Cutarelli A, Cuccaro B, Catoi C, De Carlo E, Roperto S. Evidence of a novel cross-species transmission by ovine papillomaviruses. Transbound Emerg Dis 2022; 69:3850-3857. [PMID: 36335589 DOI: 10.1111/tbed.14756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
Ovine papillomavirus (OaPV) comprises four genotypes; OaPV1, OaPV2 and OaPV4 are fibropapillomaviruses within the genus Deltapapillomavirus, whereas OaPV3 is an epitheliotropic virus that belongs to the genus Dyokappapapillomavirus. To date, all of them have been known to infect sheep only. OaPV1, OaPV2 and OaPV4 have been associated with ovine cutaneous and mucosal fibropapillomas, whereas OaPV3 is a key factor in the squamous cell carcinoma pathway of the sheep skin. Whole blood samples obtained from 128 cattle at public slaughterhouses were investigated using droplet digital polymerase chain reaction (ddPCR). ddPCR is a new-generation PCR technique that enables an accurate and absolute quantification of target molecules with high sensitivity and specificity. All OaPVs were detected by identification and quantification of nucleic acids using specific fluorescent probes. Of 128 blood samples, 100 (∼78%) showed OaPV infections. Further, 42, 35 and 23 blood samples showed single, double and triple OaPV infections, respectively. OaPV1 was responsible for 22 single infections, OaPV2 caused 16 single infections and OaPV3 and OaPV4 caused two single infections each. OaPV1 and OaPV2 were the most frequent ovine viruses in dual and triple infections. In many blood samples, both ovine deltapapillomavirus and dyokappapapillomavirus were found to be transcriptionally active, as shown by the detection and quantification of E5 oncogene transcripts for OaPV1, L1 transcripts for OaPV2, E6 and E7 transcripts for OaPV3 and E6 for OaPV4. OaPVs were found in the blood samples from cattle that shared grasslands rich in bracken ferns known to contain immunosuppressant substances. Furthermore, OaPVs were also found in cattle from intensive livestock farming without any contact with sheep. Because OaPV DNA was detected in both grass hay and corn silage, it is conceivable that these feed may be the viral sources.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Bianca Cuccaro
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cornel Catoi
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Esterina De Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
50
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|