1
|
Ramu D, Kim E. Exosomal Lipids in Cancer Progression and Metastasis. Cancer Med 2025; 14:e70687. [PMID: 40111100 PMCID: PMC11924287 DOI: 10.1002/cam4.70687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality. It is responsible for 90% of all cancer-related deaths. Intercellular communication is a crucial feature underlying cancer metastasis and progression. Cancerous tumors secrete membrane-derived small extracellular vesicles (30-150 nm) into their extracellular milieu. These tiny organelles, known as exosomes, facilitate intercellular communication by transferring bioactive molecules. These exosomes harbor different cargos, such as proteins, nucleic acids, and lipids, that mediate multifaceted functions in various oncogenic processes. Of note, the amount of lipids in exosomes is multifold higher than that of other cargos. Most studies have investigated the role of exosomes' protein and nucleic acid content in various oncogenic processes, while the role of lipid cargo in cancer pathophysiology remains largely obscure. MATERIALS AND METHODS We conducted an extensive literature review on the role of exosomes and lipids in cancer progression, specifically addressing the topic of exosomal lipids and their involvement in cancer metastasis and progression. CONCLUSIONS This review aims to shed light on the lipid contents of exosomes in cancer metastasis. In this context, the role of exosomal lipids in signaling pathways, immunomodulation, and energy production for cancer cell survival provides insights into overcoming cancer progression and metastasis.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Eunjoo Kim
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| |
Collapse
|
2
|
Hashemi M, Mohandesi Khosroshahi E, Asadi S, Tanha M, Ghatei Mohseni F, Abdolmohammad Sagha R, Taheri E, Vazayefi P, Shekarriz H, Habibi F, Mortazi S, Khorrami R, Nabavi N, Rashidi M, Taheriazam A, Rahimzadeh P, Entezari M. Emerging roles of non-coding RNAs in modulating the PI3K/Akt pathway in cancer. Noncoding RNA Res 2025; 10:1-15. [PMID: 39296640 PMCID: PMC11406677 DOI: 10.1016/j.ncrna.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Forough Ghatei Mohseni
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramina Abdolmohammad Sagha
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elham Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Paria Vazayefi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Helya Shekarriz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Habibi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Mortazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Independent Researchers, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Schultz S, Gomard-Henshaw K, Muller M. RNA Modifications and Their Role in Regulating KSHV Replication and Pathogenic Mechanisms. J Med Virol 2025; 97:e70140. [PMID: 39740054 DOI: 10.1002/jmv.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication. Recent studies have highlighted the importance of RNA modifications, also known as the epitranscriptome, in regulating KSHV-encoded RNAs, adding a novel layer of posttranscriptional control previously unknown. These RNA modifications, such as N6-methyladenosine, A-to-I editing, and N4-acetylcytidine, are involved in fine-tuning KSHV gene expression during both latency and lytic replication. Understanding the role of RNA modifications in KSHV infection is essential for revealing new regulatory mechanisms and identifying therapeutic opportunities. Targeting these RNA modifications could serve as a strategy to disrupt key viral processes, offering promising insights into KSHV pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- S Schultz
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - K Gomard-Henshaw
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Muller
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
6
|
Teng M, Luo J, Zhang Y, Reddy VRAP, Samuel P, Yao Y, Nair V. Viral miRNA delivered by exosomes from Marek's disease virus-transformed lymphoma cell line exerts regulatory function in internalized primary chicken embryo fibroblast cells. Tumour Virus Res 2024; 18:200286. [PMID: 38914377 PMCID: PMC11260597 DOI: 10.1016/j.tvr.2024.200286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
In the past decade, research has demonstrated that viral miRNAs encoded by a number of viral genomes, particularly by most of the herpesvirus including Marek's disease virus (MDV), play important regulatory roles in viral infection, replication, and regulation of tumorigenesis. As macrovesicles in cells, exosomes can deliver viral miRNAs and exert gene regulatory functions. Whether the exosomes play a role in the replication, pathogenesis/tumorigenesis of avian herpesviruses such as oncogenic Marek's disease virus (MDV) remains unclear. Herein we extracted and identified the exosomes from MDV-transformed T cell line MSB-1 and demonstrated high abundance of MDV-1 miRNA expression. Using dual luciferase-based reporter assay, we also demonstrated that the exosomes derived from MSB-1 can deliver functional miRNA successfully into primary chicken embryo fibroblasts. These findings provide new insights into the role of exosomes and the mechanisms of how virus-encoded miRNA function in MDV latency/activation switching, viral replication, pathogenesis and/or tumorigenesis.
Collapse
Affiliation(s)
- Man Teng
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Institute for Animal Health & UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China; Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yaoyao Zhang
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Vishwanatha R A P Reddy
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom
| | - Priya Samuel
- Department of Biological and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Guildford, Surrey, United Kingdom; Department of Biology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Yu CJ, Damania B. Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis. Cancers (Basel) 2024; 16:3693. [PMID: 39518131 PMCID: PMC11544871 DOI: 10.3390/cancers16213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 15-20% of cancers are caused by viruses. Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is an oncogenic virus that is the etiologic agent of not only Kaposi sarcoma but also the lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV can infect a broad tropism of cells, including B lymphocytes, wherein KSHV encodes specific viral proteins that can transform the cell. KSHV infection precedes the progression of PEL and MCD. KSHV establishes lifelong infection and has two phases of its lifecycle: latent and lytic. During the latent phase, viral genomes are maintained episomally with limited gene expression. Upon sporadic reactivation, the virus enters its replicative lytic phase to produce infectious virions. KSHV relies on its viral products to modulate host factors to evade immune detection or to co-opt their function for KSHV persistence. These manipulations dysregulate normal cell pathways to ensure cell survival and inhibit antiviral immune responses, which in turn, contribute to KSHV-associated malignancies. Here, we highlight the known molecular mechanisms of KSHV that promote lymphomagenesis and how these findings identify potential therapeutic targets for KSHV-associated lymphomas.
Collapse
Affiliation(s)
| | - Blossom Damania
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| |
Collapse
|
9
|
Pérez SE, Gooz M, Maldonado EN. Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections. Cells 2024; 13:1789. [PMID: 39513896 PMCID: PMC11545457 DOI: 10.3390/cells13211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus-mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities.
Collapse
Affiliation(s)
- Sandra E. Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil CC7000, Buenos Aires, Argentina;
| | - Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
11
|
Luongo M, Laurenziello P, Cesta G, Bochicchio AM, Omer LC, Falco G, Milone MR, Cibarelli F, Russi S, Laurino S. The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor's biology and their translational prospects. Mol Cancer 2024; 23:172. [PMID: 39174949 PMCID: PMC11340101 DOI: 10.1186/s12943-024-02083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.
Collapse
Affiliation(s)
- Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Giuseppe Cesta
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Anna Maria Bochicchio
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Ludmila Carmen Omer
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | | | | | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy.
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| |
Collapse
|
12
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
13
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
14
|
Jawad SF, Altalbawy FMA, Hussein RM, Fadhil AA, Jawad MA, Zabibah RS, Taraki TY, Mohan CD, Rangappa KS. The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Rev 2024; 43:5-27. [PMID: 37552389 DOI: 10.1007/s10555-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.
Collapse
Affiliation(s)
- Sabrean Farhan Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences, University of Cairo, Giza, 12613, Egypt
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India.
- FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| | | |
Collapse
|
15
|
Chang H, Chen E, Hu Y, Wu L, Deng L, Ye‐Lehmann S, Mao X, Zhu T, Liu J, Chen C. Extracellular Vesicles: The Invisible Heroes and Villains of COVID-19 Central Neuropathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305554. [PMID: 38143270 PMCID: PMC10933635 DOI: 10.1002/advs.202305554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Indexed: 12/26/2023]
Abstract
Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.
Collapse
Affiliation(s)
- Haiqing Chang
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Erya Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yi Hu
- Department of Cardiology, Honghui hospitalXi'an Jiaotong UniversityXi'an710049China
| | - Lining Wu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liyun Deng
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shixin Ye‐Lehmann
- Diseases and Hormones of the Nervous System University of Paris‐Scalay Bicêtre Hosptial BâtGrégory Pincus 80 Rue du Gal Leclerc, CedexLe Kremlin Bicêtre94276France
| | - Xiaobo Mao
- Department of NeurologyInstitute of Cell EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMD21218USA
| | - Tao Zhu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jin Liu
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chan Chen
- Department of AnesthesiologyWest China HospitalSichuan UniversityLaboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Centre of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
16
|
Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol Res Pract 2023; 251:154846. [PMID: 37837860 DOI: 10.1016/j.prp.2023.154846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Polónia B, Xavier CPR, Kopecka J, Riganti C, Vasconcelos MH. The role of Extracellular Vesicles in glycolytic and lipid metabolic reprogramming of cancer cells: Consequences for drug resistance. Cytokine Growth Factor Rev 2023; 73:150-162. [PMID: 37225643 DOI: 10.1016/j.cytogfr.2023.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
In order to adapt to a higher proliferative rate and an increased demand for energy sources, cancer cells rewire their metabolic pathways, a process currently recognized as a hallmark of cancer. Even though the metabolism of glucose is perhaps the most discussed metabolic shift in cancer, lipid metabolic alterations have been recently recognized as relevant players in the growth and proliferation of cancer cells. Importantly, some of these metabolic alterations are reported to induce a drug resistant phenotype in cancer cells. The acquisition of drug resistance traits severely hinders cancer treatment, being currently considered one of the major challenges of the oncological field. Evidence suggests that Extracellular Vesicles (EVs), which play a crucial role in intercellular communication, may act as facilitators of tumour progression, survival and drug resistance by modulating several aspects involved in the metabolism of cancer cells. This review aims to gather and discuss relevant data regarding metabolic reprograming in cancer, particularly involving the glycolytic and lipid alterations, focusing on its influence on drug resistance and highlighting the relevance of EVs as intercellular mediators of this process.
Collapse
Affiliation(s)
- Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal
| | - Joanna Kopecka
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
18
|
Gouzouasis V, Tastsoglou S, Giannakakis A, Hatzigeorgiou AG. Virus-Derived Small RNAs and microRNAs in Health and Disease. Annu Rev Biomed Data Sci 2023; 6:275-298. [PMID: 37159873 DOI: 10.1146/annurev-biodatasci-122220-111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that can regulate all steps of gene expression (induction, transcription, and translation). Several virus families, primarily double-stranded DNA viruses, encode small RNAs (sRNAs), including miRNAs. These virus-derived miRNAs (v-miRNAs) help the virus evade the host's innate and adaptive immune system and maintain an environment of chronic latent infection. In this review, the functions of the sRNA-mediated virus-host interactions are highlighted, delineating their implication in chronic stress, inflammation, immunopathology, and disease. We provide insights into the latest viral RNA-based research-in silico approaches for functional characterization of v-miRNAs and other RNA types. The latest research can assist toward the identification of therapeutic targets to combat viral infections.
Collapse
Affiliation(s)
- Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece;
- DIANA-Lab, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
19
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
21
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
22
|
Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, Li C, Xu JX, Nie CP, Li K, Zhang X, Xia X, Li J. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer 2022; 10:jitc-2022-005151. [PMID: 36126994 PMCID: PMC9490630 DOI: 10.1136/jitc-2022-005151] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stimulator of interferon genes (STING) is an innate immune sensor of cytoplasmic double-stranded DNA originating from microorganisms and host cells. The activation of cytosolic DNA-STING pathway in tumor microenvironments is usually linked to more robust adaptive immune responses to tumors, however the intracellular function of STING in regulatory T cells is largely unknown. In the present study, we aimed to explore the contribution of intracellular STING activation to regulatory T cell induction (iTreg) in cervical cancer (CC) microenvironments. METHODS Blood samples and tumor specimens were obtained from patients with CC. The intratumoral STING, CCL22, CD8 and forkhead box P3 (FOXP3) expression levels were measured by immunohistochemistry. T cell-specific STING conditional knockout mice (CD4-Cre/STINGflox/flox, TKO) were generated, and syngeneic TC-1 tumor model were investigated. The differentiation and molecular regulatory pathway of human and murine iTreg under different treatments were investigated by ex vivo assays, immunoblotting and quantitative PCR. Tumor-associated exosomes (T-EXO) were isolated from CC cell lines and exosomal contents were identified by ELISA and Western blot analysis. The impact of T-EXO on T cell differentiation was tested in in vitro cell culture. RESULTS Increased STING, CCL22 level, FOXP3+ cells but decreased CD8+ cells in tumor tissues predicted poor survival. Tumor-bearing CD4-Cre-STINGflox/flox (TKO) mice displayed slower tumor growth tendencies as well as fewer FOXP3+ cells but higher CD8+ cell proportion in tumor tissues than wild-type (WT) mice. Activating of STING signaling cooperated with T cell receptor, interleukin-2 receptor and transforming growth factor-beta (TGF-β) signals to promote CD4+CD25highFOXP3+ iTreg differentiation from both human and murine CD4+-naïve T cells from WT and IFNAR-/- mice but not TKO or IRF3-/- mice in vitro. Ectopic STING, TBK1 or IRF3 expression promoted iTreg differentiation from human CD4+-naïve T cells. T cell-intrinsic STING activation induced FOXP3 transcription through TBK1-IRF3-mediated SMAD3 and STAT5 phosphorylation independent of interferon-β. In CC, tumor-derived exosomes activated STING signaling in tumor-infiltrated T cells by exosomal TGF-β, cyclic GMP-AMP synthase and 2'-3'-cGAMP, leading to iTreg expansion. CONCLUSIONS These findings highlight a novel mechanism for iTreg expansion mediated by tumor-derived exosome-activated T cell-intrinsic STING signal, and provide a rationale for developing immunotherapeutic strategies targeting STING signal in CC.
Collapse
Affiliation(s)
- Huanhe Ni
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - He Huang
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lin Zhang
- Department of Experiment Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jing-Xiao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Cai-Ping Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Kui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaoshi Zhang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China .,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Fridman ES, Ginini L, Gil Z. The Role of Extracellular Vesicles in Metabolic Reprogramming of the Tumor Microenvironment. Cells 2022; 11:cells11091433. [PMID: 35563739 PMCID: PMC9104192 DOI: 10.3390/cells11091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) includes a network of cancerous and non-cancerous cells, together with associated blood vessels, the extracellular matrix, and signaling molecules. The TME contributes to cancer progression during various phases of tumorigenesis, and interactions that take place within the TME have become targets of focus in cancer therapy development. Extracellular vesicles (EVs) are known to be conveyors of genetic material, proteins, and lipids within the TME. One of the hallmarks of cancer is its ability to reprogram metabolism to sustain cell growth and proliferation in a stringent environment. In this review, we provide an overview of TME EV involvement in the metabolic reprogramming of cancer and stromal cells, which favors cancer progression by enhancing angiogenesis, proliferation, metastasis, treatment resistance, and immunoevasion. Targeting the communication mechanisms and systems utilized by TME-EVs is opening a new frontier in cancer therapy.
Collapse
Affiliation(s)
- Eran S. Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel; (E.S.F.); (L.G.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
24
|
McNamara RP, Eason AB, Zhou Y, Bigi R, Griffith JD, Costantini LM, Rudek MA, Anders NM, Damania BA, Dittmer DP. Exosome-Encased Nucleic Acid Scaffold Chemotherapeutic Agents for Superior Anti-Tumor and Anti-Angiogenesis Activity. ACS BIO & MED CHEM AU 2022; 2:140-149. [PMID: 35480227 PMCID: PMC9026271 DOI: 10.1021/acsbiomedchemau.1c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Extracellular vesicles (EVs), or exosomes, play a pivotal role in tumor growth and metastasis, such as in the case of Kaposi Sarcoma. By loading tumor-derived EVs with chemotherapeutic drugs, we noted that their pro-tumor/pro-angiogenic phenotype was converted into an anti-tumor phenotype in vivo. Drug concentration in EVs was significantly higher than in clinically approved liposome formulation, as retention was facilitated by the presence of miRNAs inside the natural EVs. This demonstrates a new mechanism by which to increase the payload capacity of nanoparticles. By exploiting the targeting preferences of tumor-derived EVs, chemotherapeutics can be directed to specifically poison the cells and the microenvironment that enables metastasis.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Anthony B. Eason
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Yijun Zhou
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Rachele Bigi
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Jack D. Griffith
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Lindsey M. Costantini
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
- Department
of Biological and Biomedical Sciences, North
Carolina Central University, 1801 Fayetteville Street Durham, North Carolina 27707, United States
| | - Michelle A. Rudek
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Nicole M. Anders
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Blossom A. Damania
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Dirk P. Dittmer
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| |
Collapse
|
25
|
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel) 2022; 14:cancers14081865. [PMID: 35454774 PMCID: PMC9032679 DOI: 10.3390/cancers14081865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Abstract Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
Collapse
|
26
|
McNamara RP, Zhou Y, Eason AB, Landis JT, Chambers MG, Willcox S, Peterson TA, Schouest B, Maness NJ, MacLean AG, Costantini LM, Griffith JD, Dittmer DP. Imaging of surface microdomains on individual extracellular vesicles in 3-D. J Extracell Vesicles 2022; 11:e12191. [PMID: 35234354 PMCID: PMC8888793 DOI: 10.1002/jev2.12191] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted from all cell types and are intimately involved in tissue homeostasis. They are being explored as vaccine and gene therapy platforms, as well as potential biomarkers. As their size is below the diffraction limit of light microscopy, direct visualizations have been daunting and single-particle studies under physiological conditions have been hampered. Here, direct stochastic optical reconstruction microscopy (dSTORM) was employed to visualize EVs in three-dimensions and to localize molecule clusters such as the tetraspanins CD81 and CD9 on the surface of individual EVs. These studies demonstrate the existence of membrane microdomains on EVs. These were confirmed by Cryo-EM. Individual particle visualization provided insights into the heterogeneity, structure, and complexity of EVs not previously appreciated.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yijun Zhou
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Anthony B. Eason
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Justin T. Landis
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Meredith G. Chambers
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Tiffany A. Peterson
- Tulane National Primate Research CentreTulane UniversityCovingtonLouisianaUSA
| | - Blake Schouest
- Tulane National Primate Research CentreTulane UniversityCovingtonLouisianaUSA
| | - Nicholas J. Maness
- Tulane National Primate Research CentreTulane UniversityCovingtonLouisianaUSA
| | - Andrew G. MacLean
- Tulane National Primate Research CentreTulane UniversityCovingtonLouisianaUSA
| | - Lindsey M. Costantini
- Department of Biological and Biomedical SciencesNorth Carolina Central UniversityDurhamNorth CarolinaUSA
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Dirk Peter Dittmer
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA,Lineberger Comprehensive Cancer CentreThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
27
|
Dupin N, Jary A, Boussouar S, Syrykh C, Gandjbakhche A, Bergeret S, Palich R. Current and Future Tools for Diagnosis of Kaposi's Sarcoma. Cancers (Basel) 2021; 13:cancers13235927. [PMID: 34885035 PMCID: PMC8657166 DOI: 10.3390/cancers13235927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Kaposi’s sarcoma, a rare opportunistic tumor, is observed in four epidemiological conditions (AIDS-related, iatrogenic, endemic or classic KS). Although in most cases KS is an indolent disease, it can be locally aggressive and/or it can invade other organs than the skin, resulting in more severe presentations, especially in patients with severe immunosuppression. There is no consensus on the imaging workup that is necessary for either the initial staging of the disease or the follow-up. Future perspectives include the use of certain non-invasive imaging tools that may help to evaluate the clinical response to treatment, as well as certain new histological markers that may help in guiding the treatment planning for this atypical neoplasm. Abstract Kaposi’s sarcoma (KS) is a rare, atypical malignancy associated with immunosuppression and can be qualified as an opportunistic tumor, which responds to immune modulation or restoration. Four different epidemiological forms have been individualized (AIDS-related, iatrogenic, endemic or classic KS). Although clinical examination is sufficient to diagnose cutaneous lesions of KS, additional explorations are necessary in order to detect lesions involving other organs. New histological markers have been developed in recent years concerning the detection of HHV-8 latent or lytic proteins in the lesions, helping to confirm the diagnosis when it is clinically doubtful. More recently, the evaluation of the local immune response has also been shown to provide some guidance in choosing the appropriate therapeutic option when necessary. We also review the indication and the results of conventional radiological imaging and of non-invasive imaging tools such as 18F-fluoro-deoxy-glucose positron emission tomography, thermography and laser Doppler imaging for the diagnosis of KS and for the follow-up of therapeutic response in patients requiring systemic treatment.
Collapse
Affiliation(s)
- Nicolas Dupin
- Dermatology Department, Cochin Hospital, AP-HP, Institut Cochin, INSERM 1016, Université de Paris, 75014 Paris, France;
| | - Aude Jary
- Virology Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne University, 75013 Paris, France;
| | - Samia Boussouar
- Cardiothoracic Imaging Unit, Pitié-Salpêtrière Hospital, AP-HP, ICAN Institute of Cardiometabolism and Nutrition, INSERM, Sorbonne University, 75013 Paris, France;
| | - Charlotte Syrykh
- Department of Pathology, University Cancer Institute of Toulouse-Oncopole, 31000 Toulouse, France;
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sébastien Bergeret
- Nuclear Medicine Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France;
| | - Romain Palich
- Infectious Diseases Department, Pitié-Salpêtrière Hospital, AP-HP, Pierre Louis Epidemiology and Public Health Institute (iPLESP), INSERM 1136, Sorbonne University, 75013 Paris, France
- Correspondence: ; Tel.: +33-1-42-16-01-71; Fax: +33-1-42-16-04-45
| |
Collapse
|
28
|
Chen W, Xie Y, Wang T, Wang L. New insights into Epstein‑Barr virus‑associated tumors: Exosomes (Review). Oncol Rep 2021; 47:13. [PMID: 34779497 PMCID: PMC8600424 DOI: 10.3892/or.2021.8224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is endemic worldwide and is associated with a number of human tumors. EBV-associated tumors have unique mechanisms of tumorigenesis. EBV encodes multiple oncogenic molecules that can be loaded into exosomes released by EBV+ tumor cells to mediate intercellular communication. Moreover, different EBV+ tumor cells secrete exosomes that act on various target cells with various biological functions. In addition to oncogenicity, EBV+ exosomes have potential immunosuppressive effects. Investigating EBV+ exosomes could identify the role of EBV in tumorigenesis and progression. The present review summarized advances in studies focusing on exosomes and the functions of EBV+ exosomes derived from different EBV-associated tumors. EBV+ exosomes are expected to become a new biomarker for disease diagnosis and prognosis. Therefore, exosome-targeted therapy displays potential.
Collapse
Affiliation(s)
- Wei Chen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tingting Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Yang L, Li J, Li S, Dang W, Xin S, Long S, Zhang W, Cao P, Lu J. Extracellular Vesicles Regulated by Viruses and Antiviral Strategies. Front Cell Dev Biol 2021; 9:722020. [PMID: 34746122 PMCID: PMC8566986 DOI: 10.3389/fcell.2021.722020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), consisting of exosomes, micro-vesicles, and other vesicles, mainly originate from the multi-vesicular body (MVB) pathway or plasma membrane. EVs are increasingly recognized as a tool to mediate the intercellular communication and are closely related to human health. Viral infection is associated with various diseases, including respiratory diseases, neurological diseases, and cancers. Accumulating studies have shown that viruses could modulate their infection ability and pathogenicity through regulating the component and function of EVs. Non-coding RNA (ncRNA) molecules are often targets of viruses and also serve as the main functional cargo of virus-related EVs, which have an important role in the epigenetic regulation of target cells. In this review, we summarize the research progress of EVs under the regulation of viruses, highlighting the content alteration and function of virus-regulated EVs, emphasizing their isolation methods in the context of virus infection, and potential antiviral strategies based on their use. This review would promote the understanding of the viral pathogenesis and the development of antiviral research.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,National Healthcare Commission (NHC) Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
30
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
31
|
Machhi J, Shahjin F, Das S, Patel M, Abdelmoaty MM, Cohen JD, Singh PA, Baldi A, Bajwa N, Kumar R, Vora LK, Patel TA, Oleynikov MD, Soni D, Yeapuri P, Mukadam I, Chakraborty R, Saksena CG, Herskovitz J, Hasan M, Oupicky D, Das S, Donnelly RF, Hettie KS, Chang L, Gendelman HE, Kevadiya BD. A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. J Neuroimmune Pharmacol 2021; 16:270-288. [PMID: 33544324 PMCID: PMC7862527 DOI: 10.1007/s11481-020-09981-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are the common designation for ectosomes, microparticles and microvesicles serving dominant roles in intercellular communication. Both viable and dying cells release EVs to the extracellular environment for transfer of cell, immune and infectious materials. Defined morphologically as lipid bi-layered structures EVs show molecular, biochemical, distribution, and entry mechanisms similar to viruses within cells and tissues. In recent years their functional capacities have been harnessed to deliver biomolecules and drugs and immunological agents to specific cells and organs of interest or disease. Interest in EVs as putative vaccines or drug delivery vehicles are substantial. The vesicles have properties of receptors nanoassembly on their surface. EVs can interact with specific immunocytes that include antigen presenting cells (dendritic cells and other mononuclear phagocytes) to elicit immune responses or affect tissue and cellular homeostasis or disease. Due to potential advantages like biocompatibility, biodegradation and efficient immune activation, EVs have gained attraction for the development of treatment or a vaccine system against the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection. In this review efforts to use EVs to contain SARS CoV-2 and affect the current viral pandemic are discussed. An emphasis is made on mesenchymal stem cell derived EVs' as a vaccine candidate delivery system.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Preet Amol Singh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India
| | - Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Tapan A Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rajashree Chakraborty
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Caroline G Saksena
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Suvarthi Das
- Department of Medicine, Stanford Medical School, Stanford University, 94304, Palo Alto, CA, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University, 94304, Palo Alto, CA, USA
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, 21201, Baltimore, MD, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, PB, India.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
32
|
Liu X, Zhu C, Wang Y, Wei F, Cai Q. KSHV Reprogramming of Host Energy Metabolism for Pathogenesis. Front Cell Infect Microbiol 2021; 11:621156. [PMID: 34055662 PMCID: PMC8153180 DOI: 10.3389/fcimb.2021.621156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Reprogramming of energy metabolism is a key for cancer development. Kaposi’s sarcoma-associated herpesvirus (KSHV), a human oncogenic herpesvirus, is tightly associated with several human malignancies by infecting B-lymphocyte or endothelial cells. Cancer cell energy metabolism is mainly dominated by three pathways of central carbon metabolism, including aerobic glycolysis, glutaminolysis, and fatty acid synthesis. Increasing evidence has shown that KSHV infection can alter central carbon metabolic pathways to produce biomass for viral replication, as well as the survival and proliferation of infected cells. In this review, we summarize recent studies exploring how KSHV manipulates host cell metabolism to promote viral pathogenesis, which provides the potential therapeutic targets and strategies for KSHV-associated cancers.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Ministry of Education (MOE) & National Health Committee (NHC) & Chinese Academy of Medical Science (CAMS), Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- Ministry of Education (MOE) & National Health Committee (NHC) & Chinese Academy of Medical Science (CAMS), Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- Ministry of Education (MOE) & National Health Committee (NHC) & Chinese Academy of Medical Science (CAMS), Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- Ministry of Education (MOE) & National Health Committee (NHC) & Chinese Academy of Medical Science (CAMS), Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Jeon H, Kang SK, Lee MJ, Park C, Yoo SM, Kang YH, Lee MS. Rab27b regulates extracellular vesicle production in cells infected with Kaposi's sarcoma-associated herpesvirus to promote cell survival and persistent infection. J Microbiol 2021; 59:522-529. [PMID: 33877577 DOI: 10.1007/s12275-021-1108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab-27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab-27b in the KSHV life cycle.
Collapse
Affiliation(s)
- Hyungtaek Jeon
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Su-Kyung Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Ju Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Changhoon Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
34
|
Maleki S, Jabalee J, Garnis C. The Role of Extracellular Vesicles in Mediating Resistance to Anticancer Therapies. Int J Mol Sci 2021; 22:4166. [PMID: 33920605 PMCID: PMC8073860 DOI: 10.3390/ijms22084166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Although advances in targeted therapies have driven great progress in cancer treatment and outcomes, drug resistance remains a major obstacle to improving patient survival. Several mechanisms are involved in developing resistance to both conventional chemotherapy and molecularly targeted therapies, including drug efflux, secondary mutations, compensatory genetic alterations occurring upstream or downstream of a drug target, oncogenic bypass, drug activation and inactivation, and DNA damage repair. Extracellular vesicles (EVs) are membrane-bound lipid bilayer vesicles that are involved in cell-cell communication and regulating biological processes. EVs derived from cancer cells play critical roles in tumor progression, metastasis, and drug resistance by delivering protein and genetic material to cells of the tumor microenvironment. Understanding the biochemical and genetic mechanisms underlying drug resistance will aid in the development of new therapeutic strategies. Herein, we review the role of EVs as mediators of drug resistance in the context of cancer.
Collapse
Affiliation(s)
- Saeideh Maleki
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
| | - James Jabalee
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
| | - Cathie Garnis
- Postgraduate Program in Interdisciplinary Oncology, Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (S.M.); (J.J.)
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
35
|
Magon KL, Parish JL. From infection to cancer: how DNA tumour viruses alter host cell central carbon and lipid metabolism. Open Biol 2021; 11:210004. [PMID: 33653084 PMCID: PMC8061758 DOI: 10.1098/rsob.210004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Infections cause 13% of all cancers globally, and DNA tumour viruses account for almost 60% of these cancers. All viruses are obligate intracellular parasites and hijack host cell functions to replicate and complete their life cycles to produce progeny virions. While many aspects of viral manipulation of host cells have been studied, how DNA tumour viruses manipulate host cell metabolism and whether metabolic alterations in the virus life cycle contribute to carcinogenesis are not well understood. In this review, we compare the differences in central carbon and fatty acid metabolism in host cells following infection, oncogenic transformation, and virus-driven cancer of DNA tumour viruses including: Epstein-Barr virus, hepatitis B virus, human papillomavirus, Kaposi's sarcoma-associated herpesvirus and Merkel cell polyomavirus.
Collapse
Affiliation(s)
- Kamini L. Magon
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joanna L. Parish
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2021; 7:627842. [PMID: 33585567 PMCID: PMC7873863 DOI: 10.3389/fmolb.2020.627842] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Rishikesh, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
37
|
Nkosi D, Sun L, Duke LC, Meckes DG. Epstein-Barr virus LMP1 manipulates the content and functions of extracellular vesicles to enhance metastatic potential of recipient cells. PLoS Pathog 2020; 16:e1009023. [PMID: 33382850 PMCID: PMC7774862 DOI: 10.1371/journal.ppat.1009023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) mediate intercellular communication events and alterations in normal vesicle content contribute to function and disease initiation or progression. The ability to package a variety of cargo and transmit molecular information between cells renders EVs important mediators of cell-to-cell crosstalk. Latent membrane protein 1 (LMP1) is a chief viral oncoprotein expressed in most Epstein-Barr virus (EBV)-associated cancers and is released from cells at high levels in EVs. LMP1 containing EVs have been demonstrated to promote cell growth, migration, differentiation, and regulate immune cell function. Despite these significant changes in recipient cells induced by LMP1 modified EVs, the mechanism how this viral oncogene modulates the recipient cells towards these phenotypes is not well understood. We hypothesize that LMP1 alters EV content and following uptake of the LMP1-modified EVs by the recipient cells results in the activation of cell signaling pathways and increased gene expression which modulates the biological properties of recipient cell towards a new phenotype. Our results show that LMP1 expression alters the EV protein and microRNA content packaged into EVs. The LMP1-modified EVs also enhance recipient cell adhesion, proliferation, migration, invasion concomitant with the activation of ERK, AKT, and NF-κB signaling pathways. The LMP1 containing EVs induced transcriptome reprogramming in the recipient cells by altering gene expression of different targets including cadherins, matrix metalloproteinases 9 (MMP9), MMP2 and integrin-α5 which contribute to extracellular matrix (ECM) remodeling. Altogether, our data demonstrate the mechanism in which LMP1-modified EVs reshape the tumor microenvironment by increasing gene expression of ECM interaction proteins.
Collapse
Affiliation(s)
- Dingani Nkosi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Li Sun
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Leanne C. Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
38
|
Ahmad I, Valverde A, Siddiqui H, Schaller S, Naqvi AR. Viral MicroRNAs: Interfering the Interferon Signaling. Curr Pharm Des 2020; 26:446-454. [PMID: 31924149 DOI: 10.2174/1381612826666200109181238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
Abstract
Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.
Collapse
Affiliation(s)
- Imran Ahmad
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Hasan Siddiqui
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| |
Collapse
|
39
|
New Insights on the Mobility of Viral and Host Non-Coding RNAs Reveal Extracellular Vesicles as Intriguing Candidate Antiviral Targets. Pathogens 2020; 9:pathogens9110876. [PMID: 33114356 PMCID: PMC7690884 DOI: 10.3390/pathogens9110876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022] Open
Abstract
Intercellular communication occurring by cell-to-cell contacts and via secreted messengers trafficked through extracellular vehicles is critical for regulating biological functions of multicellular organisms. Recent research has revealed that non-coding RNAs can be found in extracellular vesicles consistent with a functional importance of these molecular vehicles in virus propagation and suggesting that these essential membrane-bound bodies can be highjacked by viruses to promote disease pathogenesis. Newly emerging evidence that coronaviruses generate non-coding RNAs and use extracellular vesicles to facilitate viral pathogenicity may have important implications for the development of effective strategies to combat COVID-19, a disease caused by infection with the novel coronavirus, SARS-CoV-2. This article provides a short overview of our current understanding of the interactions between non-coding RNAs and extracellular vesicles and highlights recent research which supports these interactions as potential therapeutic targets in the development of novel antiviral therapies.
Collapse
|
40
|
Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther 2020; 5:242. [PMID: 33077737 PMCID: PMC7572387 DOI: 10.1038/s41392-020-00359-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is reported to be one of the hallmarks of cancer, which is an adaptive mechanism by which fast-growing cancer cells adapt to their increasing energy demands. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Meanwhile, the TME is a highly heterogeneous ecosystem incorporating cancer cells, fibroblasts, adipocytes, endothelial cells, mesenchymal stem cells, and extracellular matrix. Accumulated evidence indicates that exosomes may transfer biologically functional molecules to the recipient cells, which facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells and their surrounding stromal cells. In this review, we present the role of exosomes in the TME and the underlying mechanism of how exosomes exacerbate tumor development through metabolic reprogramming. In addition, we will also discuss the potential role of exosomes targeting metabolic process as biomarkers for tumor diagnosis and prognosis, and exosomes-mediated metabolic reprogramming as potential targets for cancer therapy. Furthermore, a better understanding of the link between exosomes and metabolic reprogramming, and their impact on cancer progression, would provide novel insights for cancer prevention and treatment in the future.
Collapse
Affiliation(s)
- Enli Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Miao Yu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China. .,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, 250021, Jinan, China.
| |
Collapse
|
41
|
McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020; 44:129-138. [PMID: 32846272 PMCID: PMC7755726 DOI: 10.1016/j.coviro.2020.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Viruses are obligate intracellular parasites that usurp cellular signaling networks to promote pathogen spread and disease progression. Signaling through extracellular vesicles (EVs) is an emerging field of study in the virus-host interaction network. EVs relay information both locally and distally through incorporated contents, typically without tripping innate immune sensors. Therefore, this extracellular signaling axis presents itself as a tantalizing target for promoting a favorable niche for the pathogen(s) takeover of the host, particularly for chronic infections. From the incorporation of virus-encoded molecules such as micro RNAs and proteins/enzymes to the envelopment of entire infectious particles, evolutionary distinct viruses have shown a remarkable ability to converge on this means of communication. In this review, we will cover the recent advances in this field and explore how EV can be used as potential biomarkers for chronic, persistent, or latent virus infections.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States.
| |
Collapse
|
42
|
McNamara RP, Dittmer DP. Modern Techniques for the Isolation of Extracellular Vesicles and Viruses. J Neuroimmune Pharmacol 2020. [PMID: 31512168 DOI: 10.1007/s11481-%20019-09874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular signaling is pivotal to maintain organismal homeostasis. A quickly emerging field of interest within extracellular signaling is the study of extracellular vesicles (EV), which act as messaging vehicles for nucleic acids, proteins, metabolites, lipids, etc. from donor cells to recipient cells. This transfer of biologically active material within a vesicular body is similar to the infection of a cell through a virus particle, which transfers genetic material from one cell to another to preserve an infection state, and viruses are known to modulate EV. Although considerable heterogeneity exists within EV and viruses, this review focuses on those that are small (< 200 nm in diameter) and of relatively low density (< 1.3 g/mL). A multitude of isolation methods for EV and virus particles exist. In this review, we present an update on methods for their isolation, purification, and phenotypic characterization. We hope that the information we provide will be of use to basic science and clinical investigators, as well as biotechnologists in this emerging field. Graphical Abstract.
Collapse
Affiliation(s)
- Ryan P McNamara
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
Purification Methods and the Presence of RNA in Virus Particles and Extracellular Vesicles. Viruses 2020; 12:v12090917. [PMID: 32825599 PMCID: PMC7552034 DOI: 10.3390/v12090917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fields of extracellular vesicles (EV) and virus infections are marred in a debate on whether a particular mRNA or non-coding RNA (i.e., miRNA) is packaged into a virus particle or copurifying EV and similarly, whether a particular mRNA or non-coding RNA is contained in meaningful numbers within an EV. Key in settling this debate, is whether the purification methods are adequate to separate virus particles, EV and contaminant soluble RNA and RNA:protein complexes. Differential centrifugation/ultracentrifugation and precipitating agents like polyethylene glycol are widely utilized for both EV and virus purifications. EV are known to co-sediment with virions and other particulates, such as defective interfering particles and protein aggregates. Here, we discuss how encased RNAs from a heterogeneous mixture of particles can be distinguished by different purification methods. This is particularly important for subsequent interpretation of whether the RNA associated phenotype is contributed solely by virus or EV particles or a mixture of both. We also discuss the discrepancy of miRNA abundance in EV from different input material.
Collapse
|
44
|
Sears JD, Waldron KJ, Wei J, Chang CH. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections. Immunology 2020; 162:135-144. [PMID: 32681647 DOI: 10.1111/imm.13238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs.
Collapse
Affiliation(s)
| | | | - Jian Wei
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Grabowska K, Wąchalska M, Graul M, Rychłowski M, Bieńkowska-Szewczyk K, Lipińska AD. Alphaherpesvirus gB Homologs Are Targeted to Extracellular Vesicles, but They Differentially Affect MHC Class II Molecules. Viruses 2020; 12:v12040429. [PMID: 32290097 PMCID: PMC7232241 DOI: 10.3390/v12040429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Herpesvirus envelope glycoprotein B (gB) is one of the best-documented extracellular vesicle (EVs)-incorporated viral proteins. Regarding the sequence and structure conservation between gB homologs, we asked whether bovine herpesvirus-1 (BoHV-1) and pseudorabies virus (PRV)-encoded gB share the property of herpes simplex-1 (HSV-1) gB to be trafficked to EVs and affect major histocompatibility complex (MHC) class II. Our data highlight some conserved and differential features of the three gBs. We demonstrate that mature, fully processed BoHV-1 and PRV gBs localize to EVs isolated from constructed stable cell lines and EVs-enriched fractions from virus-infected cells. gB also shares the ability to co-localize with CD63 and MHC II in late endosomes. However, we report here a differential effect of the HSV-1, BoHV-1, and PRV glycoprotein on the surface MHC II levels, and MHC II loading to EVs in stable cell lines, which may result from their adverse ability to bind HLA-DR, with PRV gB being the most divergent. BoHV-1 and HSV-1 gB could retard HLA-DR exports to the plasma membrane. Our results confirm that the differential effect of gB on MHC II may require various mechanisms, either dependent on its complex formation or on inducing general alterations to the vesicular transport. EVs from virus-infected cells also contained other viral glycoproteins, like gD or gE, and they were enriched in MHC II. As shown for BoHV-1 gB- or BoHV-1-infected cell-derived vesicles, those EVs could bind anti-virus antibodies in ELISA, which supports the immunoregulatory potential of alphaherpesvirus gB.
Collapse
|
46
|
Nahand JS, Mahjoubin-Tehran M, Moghoofei M, Pourhanifeh MH, Mirzaei HR, Asemi Z, Khatami A, Bokharaei-Salim F, Mirzaei H, Hamblin MR. Exosomal miRNAs: novel players in viral infection. Epigenomics 2020; 12:353-370. [PMID: 32093516 PMCID: PMC7713899 DOI: 10.2217/epi-2019-0192] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are secreted nanovesicles that are able to transfer their cargo (such as miRNAs) between cells. To determine to what extent exosomes and exosomal miRNAs are involved in the pathogenesis, progression and diagnosis of viral infections. The scientific literature (PubMed and Google Scholar) was searched from 1970 to 2019. The complex biogenesis of exosomes and miRNAs was reviewed. Exosomes contain both viral and host miRNAs that can be used as diagnostic biomarkers for viral diseases. Viral proteins can alter miRNAs, and conversely miRNAs can alter the host response to viral infections in a positive or negative manner. It is expected that exosomal miRNAs will be increasingly used for diagnosis, monitoring and even treatment of viral infections.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
47
|
Fernandes M, Teixeira AL, Medeiros R. The opportunistic effect of exosomes on Non-Hodgkin Lymphoma microenvironment modulation. Crit Rev Oncol Hematol 2019; 144:102825. [PMID: 31734546 DOI: 10.1016/j.critrevonc.2019.102825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
There has been a shift in the paradigm of Non-Hodgkin lymphomas, changing from the classical genetic aberration-based model to a more complex and dynamic model involving tumor microenvironment interactions. In this instance, exosomes have emerged as important mediators in intercellular communication by providing survival and proliferation signals, licensing immune evasion and acquisition of drug resistance. The capability to transfer molecular cargo made exosomes a focus of research to understand cancer pathogenesis and its progression pathways. Several studies identified exosomes transporting tumor-released components in peripheral blood and focused on understanding their clinical relevance in the diagnosis, prognostic and in monitoring cancer progression. Moreover, due to their biophysical properties and physiological function, exosomes have drawn attention as potential therapeutic target and drug delivery vehicles. This review will discuss the function of exosomes in Non-Hodgkin lymphomagenesis, highlight their potential as diagnosis and prognosis biomarkers, and as new therapeutic opportunities in lymphoma management.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Research Department, LPCC-Portuguese League against Cancer- Northern Branch (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr António Bernardino de Almeida, 4200-072 Porto, Portugal; Faculty of Medicine, University of Porto (FMUP), Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal; Research Department, LPCC-Portuguese League against Cancer- Northern Branch (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200-172 Porto, Portugal; CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça de 9 de Abril 349, 4249-004 Porto, Portugal.
| |
Collapse
|
48
|
Wu J, Gu J, Shen L, Fang D, Zou X, Cao Y, Wang S, Mao L. Exosomal MicroRNA-155 Inhibits Enterovirus A71 Infection by Targeting PICALM. Int J Biol Sci 2019; 15:2925-2935. [PMID: 31853228 PMCID: PMC6909958 DOI: 10.7150/ijbs.36388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease (HFMD) that is associated with neurological complications. Researchers have shown that exosomes containing host cellular microRNA (miRNA) can modulate the recipient's cellular response during viral infection. However, it is unclear how exosomal miRNAs regulate this response during EV-A71 infection. In this study, we used an exosomal miRNA chip to show that microRNA-155 (miR-155) was markedly enriched in exosomes after EV-A71 infection. Moreover, exosomal miR-155 efficaciously inhibited EV-A71 infection by targeting phosphatidylinositol clathrin assembly protein (PICALM) in recipient cells. Importantly, we confirmed that exosomal miR-155 reduced EV-A71 infection severity in vivo. Additionally, miR-155 levels in throat swabs from EV-A71-infected patients were higher than in those from healthy individuals. Collectively, our findings provide evidence that exosomal miR-155 plays a role in host-pathogen interactions by mediating EV-A71 infection via the repression of PICALM; these results provide insights into the regulatory mechanisms of viral infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Daihua Fang
- Clinical Laboratory, Xuzhou Children's Hospital, Xuzhou, China
| | - Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuwen Cao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
49
|
Magalhaes I, Yogev O, Mattsson J, Schurich A. The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity. Front Immunol 2019; 10:2309. [PMID: 31636636 PMCID: PMC6788393 DOI: 10.3389/fimmu.2019.02309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Upon activation naïve T cells undergo metabolic changes to support the differentiation into subsets of effector or regulatory cells, and enable subsequent metabolic adaptations to form memory. Interfering with these metabolic alterations leads to abrogation or reprogramming of T cell differentiation, demonstrating the importance of these pathways in T cell development. It has long been appreciated that the conversion of a healthy cell to a cancerous cell is accompanied by metabolic changes, which support uncontrolled proliferation. Especially in solid tumors these metabolic changes significantly influence the tumor microenvironment (TME) and affect tumor infiltrating immune cells. The TME is often hypoxic and nutrient depleted, additionally tumor cells produce co-inhibitory signals, together suppressing the immune response. Interestingly, viruses can stimulate a metabolism akin to that seen in tumor cells in their host cells and even in neighboring cells (e.g., via transfer of virally modified extracellular vesicles). Thus, viruses create their own niche which favors viral persistence and propagation, while again keeping the immune response at bay. In this review we will focus on the mechanisms employed by tumor cells and viruses influencing T cell metabolic regulation and the impact they have on shaping T cell fate.
Collapse
Affiliation(s)
- Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ohad Yogev
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Schurich
- Department of Infectious Diseases, King's College London, London, United Kingdom
| |
Collapse
|
50
|
He G, Wu J, Kong H, Zhang Y, Li Y, Cai M, Shaduhan G, Yan Y, Zheng Y, Ding J. Comparative analysis of miRNAs in exosomes released by sheeppox virus-infected ovine testicular cells. Comp Immunol Microbiol Infect Dis 2019; 67:101363. [PMID: 31600681 DOI: 10.1016/j.cimid.2019.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
Exosomes, secreted by various cells, are nanometer-scale vesicles with the functions in intercellular communication. To understand a role of exosomal miRNAs in the sheeppox virus infection, exosomes were isolated from sheeppox virus-infected sheep testicular cells 0 h, 24 h and 72 h post infection. The results of transmission electron microscopy and size distribution showed that all three exosome samples were spherical particles with negatively-stained membrane, ranging from 39 nm to 127 nm in diameter. A total of 106 known and 279 novel miRNAs were identified, and 78 known and 54 novel miRNAs were commonly detected in three exosome samples. Compared with the exosomes by the uninfected controls, a total of 34 known miRNAs were aberrantly expressed in the exosomes from infected cells. In agreement with the sequencing data, the expression of oar-miR-21 and oar-miR-10b was shown to be the highest in exosomes at 24 h after SPPV-infected, and the expression of oar-let-7f was the highest in exosomes at 72 h. Conversely, the expression of oar-let-7b and oar-miR-221 was significantly decreased 24 h and 72 h post infection compared with 0 h. The analysis results also revealed that differentially expressed miRNAs were mostly involved in an immune system process and stimulus response. These results provide rich data to further investigate a role of exosomal miRNAs in SPPV-host interactions.
Collapse
Affiliation(s)
- Guitian He
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Helei Kong
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China
| | - Yating Li
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Mengting Cai
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Gulinazi Shaduhan
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yuting Yan
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|